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a b s t r a c t 

In this article, a new 6th-order weighted essentially non-oscillatory (WENO) scheme is developed. As 

with previous 6th-order central-upwind WENO schemes, the present scheme is a convex combination of 

four candidate linear reconstructions. The difference is that the most upwind and downwind stencils use 

four cell values, while the inner two stencils nominally use three cell values but the original quadratic 

reconstructions are modified to be 4th-order approximations by adding cubic correction terms involving 

the five cell values of the classical 5th-order WENO scheme. Sixth-order accuracy of the new scheme 

in smooth regions including critical points is achieved by using a reference smoothness indicator. Sev- 

eral numerical examples show that the new scheme has higher resolution compared with the recently 

developed 6th-order WENO schemes. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

The detailed simulation of complex shock waves and fine scale

tructures in compressible flows requires robust shock capturing

ethods with small dissipation and dispersion errors. High-order

umerical methods for hyperbolic conservation laws provide an ef-

ective means for the simulation of complex compressible flows.

any high-order high-resolution methods have been developed in

he past four decades, such as piecewise parabolic method (PPM)

1] , essentially non-oscillatory schemes (ENO) [2,3] , weighted ENO

chemes (WENO) [4,5] , discontinuous Galerkin methods [6,7] ,

onotonicity-preserving schemes [8] , and so on. These methods

ave been shown to be capable of producing satisfactory numer-

cal results, and there have been a lot of subsequent studies on

hem for improving computational efficiency, robustness, accuracy,

nd reducing dissipation and dispersion errors. 

The classical 5th-order WENO scheme [5] has attracted a great

eal of attention due to the merit of easy implementation, high

rder accuracy in smooth regions, and essentially non-oscillatory

roperty near discontinuities. However, the scheme is a bit dissi-

ative for the simulation of small scale structures in smooth re-

ions. Up to now, four different approaches have been developed

or reducing numerical dissipation of the classical WENO scheme.

he first approach, e.g., [9–11] , is to hybridize a low-dissipation
∗ Corresponding author. 
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cheme which is dominant in smooth regions and a WENO scheme

hich is dominant in non-smooth regions. The second approach,

.g., [12,13] , is to modify the weights to cure accuracy degen-

ration at critical points and distribute a little more weights to

he less smooth stencils. There are multiple strategies for this ap-

roach, e.g., a mapping function (WENO-M [12] ), a global reference

moothness indicator (WENO-Z [13,14] ), and smoothness indicators

ased on L 1 -norm (WENO-P [15] ). The third approach is to modify

he stencils and corresponding weights, like P-WENO [16] , WENO-

Q [17] and WENO-MS [18] schemes. The above three approaches

se three candidate stencils over the same five-point global sten-

il as the classical 5th-order WENO scheme. The fourth approach

s to add an additional downwind candidate stencil to the classical

th-order upwind WENO scheme. This approach started from the

-point WENO-SYMOO and WENO-SYMBO schemes in [19] , which

re designed based on the idea of optimal order of accuracy and

ptimal bandwidth-resolving efficiency, respectively. However, the 

rder of the WENO-SYMBO scheme degenerates even in smooth

egions, and the order-optimized WENO-SYMOO scheme is unsta-

le near contact discontinuities even when only moderate discon-

inuities are involved. Ref. [20] defined a smoothness indicator for

he downwind stencil and devised a reference smoothness indica-

or τ similar to that in the WENO-Z scheme [13] for achieving the

ptimal order of accuracy. However, it is found that this scheme

eeds extra artificial dissipation to maintain the numerical stabil-

ty. Hu et al. [21] developed a 6th-order central-upwind WENO

cheme which is analogous to the scheme [20] but with a different

moothness indicator for the downwind stencil and no additional

rtificial dissipation is needed. 

https://doi.org/10.1016/j.compfluid.2020.104625
http://www.ScienceDirect.com
http://www.elsevier.com/locate/compfluid
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compfluid.2020.104625&domain=pdf
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mailto:klzhao@lsec.cc.ac.cn
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Fig. 1. Stencils of the WENO-CU6 scheme [21] for the numerical flux ˆ f i +1 / 2 . For the 

WENO-Z6 scheme [22] , the stencil S 3 has an extra upwind point i . 
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More recently, Hu [22] found that the 6th-order WENO scheme

[21] generates evident oscillations around discontinuities for CFL

number greater than 0.6, and the oscillations grow with increasing

grid points. Hu [22] fixed this problem by letting the most down-

wind stencil to include an upwind point so as to increase numeri-

cal stability. A direct use of the Jiang-Shu nonlinear weights makes

the resulting scheme achieve only 5th-order accuracy in smooth

regions of the solution without critical points. Two strategies were

used in [22] to recover the optimal order of accuracy. One is the

mapping function [12,23,24] , another is the reference smoothness

indicator [13,21] . The latter strategy has less computational cost

and can obtain nearly identical results to the first one. 

In this work, we further improve upon the 6th-order WENO

scheme of Hu [22] to enhance the resolution while maintaining

the robustness and efficiency. The most upwind stencil is modified

to be composed of 4 grid points, while the inner two stencils still

use 3 grid points but the reconstructions are made 4th-order ac-

curate by adding cubic correction terms involving the global five

grid points of the classical WENO scheme as did in [18] . We com-

pute the smoothness indicator of each stencil according to the

Jiang-Shu formula [5] . However, the resulting Jiang-Shu weights

can not satisfy the sufficient condition for ensuring the optimal or-

der of convergence, and the scheme achieves only 5th-order ac-

curacy in smooth regions. To recover the optimal order, we use

a reference global smoothness indicator to construct a WENO-Z

type scheme (called WENO-MSZ6 where MS stands for “Modified

Stencil”). Several numerical examples show that the WENO-MSZ6

scheme achieves 6th-order accuracy in smooth regions including

the first order critical points and has small dissipation errors while

maintaining the robustness and efficiency of the recently devel-

oped 6th-order WENO schemes [21,22] . 

The organization of this paper is as follows. In Section 2 , the

recently developed 6th-order WENO schemes are reviewed. In

Section 3 , we present a new modified 6th-order WENO scheme us-

ing a reference smoothness indicator to recover the optimal order.

Section 4 presents several benchmark examples to demonstrate the

performance of the new scheme. A conclusion is given in Section 5 .

2. The 6th-order central-upwind WENO schemes 

In this section, we briefly review two similar and most re-

cent 6th-order central-upwind finite difference WENO schemes,

i.e., WENO-CU6 [21] and WENO-Z6 [22] for solving the one-

dimensional hyperbolic conservation law 

u t + f (u ) x = 0 , a ≤ x ≤ b, t > 0 , (1)

where u ( x, t ) is the conservative variable, f ( u ( x, t )) is the flux func-

tion. Eq. (1) is solved on a uniform grid defined by the nodes

x i = a + (i − 0 . 5)�x, i = 1 , · · · , N, which are also called cell cen-

ters, with cell interfaces given by x i +1 / 2 = x i + �x/ 2 , where �x =
(b − a ) /N is the grid spacing. Throughout this paper, a function

value at the center x i is denoted by a subscript i , e.g., f i = f (x i ) . 

The spatial derivative in Eq. (1) can be approximated by a

conservative finite difference between cell boundaries, giving the

semi-discretization form 

du i 

dt 
= −

h i + 1 2 
− h i − 1 

2 

�x 
, (2)

where u i ( t ) is the numerical approximation to the point value u ( x i ,

t ) at the node x i , and h ( x ) is a numerical flux function defined im-

plicitly as [25] 

f (x ) = 

1 

�x 

∫ x +�x/ 2 

x −�x/ 2 

h (ξ ) dξ . (3)

If h i ± 1/2 in (2) are approximated by numerical fluxes ˆ f i ±1 / 2 re-

constructed from known cell average values f i , i.e., ˆ f i ±1 / 2 = h i ±1 / 2 +
(�x 6 ) , and the O(�x 6 ) term is smooth, then Eq. (2) will have

(�x 6 ) accuracy. 

The 6th-order WENO schemes [21,22] use the characteristic-

ise decomposition and local Lax-Friedrichs flux splitting tech-

iques for the WENO reconstruction as in [26] . Hereafter, we will

nly describe the construction of the positive numerical flux in

 characteristic component as formulas for the negative numeri-

al flux are symmetric about the grid interface x i +1 / 2 . For simplic-

ty we will drop the “ + ” sign in the superscript of the positive

ux f + . 

.1. Review of the construction of the WENO-CU6 and WENO-Z6 

chemes 

The 6th-order central-upwind WENO scheme (WENO-CU6)

21] use a 6-point global stencil S 6 which is subdivided into four

andidate stencils as shown in Fig. 1 . They differ from the clas-

ical 5th-order WENO scheme in a downwind point i + 3 and a

ownwind stencil S 3 . Also, the stencil S 3 for the WENO-Z6 scheme

22] has an additional upwind point which may help numerical

tability. Candidate numerical fluxes at the grid interface i + 1 / 2

re calculated and a convex combination of the four candidate nu-

erical fluxes ˆ f (k ) 
i +1 / 2 

, k = 0 , 1 , 2 , 3 gives the numerical flux with the

ptimal weights to retain the 6th-order accuracy in smooth re-

ions. However, in order to suppress spurious oscillations near dis-

ontinuities, the weights should effectively remove the contribu-

ion of stencils which contain the discontinuity. To be more spe-

ific, let 

 k = { i + k − 2 , i + k − 1 , i + k } , k = 0 , 1 , 2 , 3 

nd 

S k = { i + k − 2 , i + k − 1 , i + k } , k = 0 , 1 , 2 , 

 3 = { i, i + 1 , i + 2 , i + 3 } 
e the four candidate stencils of the WENO-CU6 [21] and WENO-

6 [19] schemes, respectively. 

To approximate the function h ( x ) in Eq. (2) , 2nd-degree polyno-

ials ˆ f (k ) (x ) = a 0 ,k + a 1 ,k x + a 2 ,k x 
2 are constructed on all candidate

tencils except S 3 of the WENO-Z6 scheme where a 3rd-degree

olynomial is constructed. The coefficients of the polynomials are

alculated according to Eq. (3) with known values of f i at sten-

il nodes. Each 

ˆ f (k ) (x ) calculated gives a 3rd-order (or 4th-order

n S 3 of WENO-Z6) approximation of h ( x ). Evaluations of ˆ f (k ) (x ) at

he i + 1 / 2 grid interface give the candidate fluxes 

ˆ f 0 i +1 / 2 = 

1 

3 

f i −2 −
7 

6 

f i −1 + 

11 

6 

f i , 

ˆ f 1 i +1 / 2 = −1 

6 

f i −1 + 

5 

6 

f i + 

1 

3 

f i +1 , 

ˆ f 2 i +1 / 2 = 

1 

3 

f i + 

5 

6 

f i +1 −
1 

6 

f i +2 , 

ˆ f 3 i +1 / 2 = 

11 

f i +1 −
7 

f i +2 + 

1 

f i +3 ( WENO-CU6 ) , 

6 6 3 
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Fig. 2. Stencils of the present WENO-MSZ6 scheme for the numerical flux ˆ f i +1 / 2 . 
ˆ f 3 i +1 / 2 = 

1 

4 

f i + 

13 

12 

f i +1 −
5 

12 

f i +2 + 

1 

12 

f i +3 ( WENO-Z6 ) , (4) 

here the last two equations are contributions of the downwind

tencil S 3 . A nonlinear convex combination of ˆ f k 
i +1 / 2 

on the four

tencils is used to define the WENO numerical flux 

ˆ f i +1 / 2 = 

3 ∑ 

k =0 

ω k ̂
 f k i +1 / 2 . (5) 

To construct the nonlinear weights ω k in Eq. (5) , the four op-

imal weights d k , k = 0 , 1 , 2 , 3 are needed. The optimal weights d k 
re found such that their linear combination with the four candi-

ate fluxes, 
∑ 3 

k =0 d k 
ˆ f k 
i +1 / 2 

, recovers the optimal 6th-order approxi-

ation of the smooth function h ( x ) 

ˆ f i +1 / 2 = 

1 

60 

( f i −2 − 8 f i −1 + 37 f i + 37 f i +1 − 8 f i +2 + f i +3 ) 

= h i +1 / 2 + O(�x 6 ) . (6) 

y using Eq. (4) and direct algebraic calculation, one gets the lin-

ar optimal weights 

 0 = 

1 

20 

, d 1 = 

9 

20 

, d 2 = 

9 

20 

, d 3 = 

1 

20 

, ( WENO-CU6 ) (7)

 0 = 

1 

20 

, d 1 = 

9 

20 

, d 2 = 

6 

20 

, d 3 = 

4 

20 

, ( WENO-Z6 ) (8)

The nonlinear weights ω k take a form similar to the WENO-Z

cheme [13] , 

 k = 

αk ∑ 3 
l=0 αl 

, αk = d k 

(
C + 

τ6 

βk + ε

)
, (9)

here ε = 10 −40 , k = 0 , 1 , 2 , 3 . The WENO-CU6 scheme introduces

 free parameter C � 1 to increase the contribution of the optimal

eights when the smoothness indicators have comparable magni-

udes inspired by the work [27] . However, the WENO-Z6 scheme

ses C = 1 in order to avoid numerical oscillations around discon-

inuities for large CFL number associated with C � 1. 

The first three smoothness indicators βk in Eq. (9) are defined

s [26] 

k = 

2 ∑ 

l=1 

∫ x i +1 / 2 

x i −1 / 2 

�x 2 l−1 

(
d l 

dx l 
ˆ f (k ) 

)2 

dx, k = 0 , 1 , 2 . (10)

owever, the fourth smoothness indicator β3 in the WENO-CU6

cheme is defined to be that of the 6-point stencil for the 6th-

rder interpolation 

3 = β6 = 

5 ∑ 

l=1 

∫ x i +1 / 2 

x i −1 / 2 

�x 2 l−1 

(
d l 

dx l 
ˆ f (6) 

)2 

dx. (11) 

q. (10) has the well-known form: 

0 = β JS 
0 

= 

1 

4 

( f i −2 − 4 f i −1 + 3 f i ) 
2 + 

13 

12 

( f i −2 − 2 f j−1 + f i ) 
2 , 

1 = β JS 
1 

= 

1 

4 

( f i −1 − f i +1 ) 
2 + 

13 

12 

( f i −1 − 2 f i + f i +1 ) 
2 , 

2 = β JS 
2 

= 

1 

4 

(3 f i − 4 f i +1 + f i +2 ) 
2 + 

13 

12 

( f i − 2 f i +1 + f i +2 ) 
2 . (12) 

q. (11) takes the specific form [21] 

3 = β6 = 

1 

10080 

[
271779 f 2 i −2 + f i −2 ( 2380800 f i −1 + 4086352 f i 

− 3462252 f i +1 + 1458762 f i +2 − 245620 f i +3 ) 

+ f i −1 ( 5653317 f i −1 − 20427884 f i + 17905032 f i +1 

− 7727988 f i +2 + 1325006 f i +3 ) 

+ f i ( 19510972 f i − 35817664 f i +1 + 15929912 f i +2 

− 2792660 f i +3 ) 
+ f i +1 (17195652 f i +1 − 15880404 f i +2 + 2863984 f i +3 ) 

+ f i +2 (3824847 f i +2 − 1429976 f i +3 ) + 139633 f 2 i +3 ) 
]

(13) 

he fourth smoothness indicator β3 in the WENO-Z6 scheme is

till defined to be the Jiang-Shu smoothness indicator based on the

ocal stencil interpolation 

3 = 

3 ∑ 

l=1 

∫ x i +1 / 2 

x i −1 / 2 

�x 2 l−1 

(
d l 

dx l 
ˆ f (3) 

)2 

dx 

= 

1 

36 

( 11 f i − 18 f i +1 + 9 f i +2 − 2 f i +3 ) 
2 

+ 

13 

12 

( 2 f i − 5 f i +1 + 4 f i +2 − f i +3 ) 
2 

+ 

781 

720 

( f i − 3 f i +1 + 3 f i +2 − f i +3 ) 
2 
. (14) 

inally, the reference smoothness indicator τ 6 is defined by Hu

t al [21] 

6 = 

∣∣∣β3 − 1 

6 

( β0 + 4 β1 + β2 ) 

∣∣∣ = 

{
O(�x 6 ) ( WENO-CU6 ) 

O(�x 5 ) ( WENO-Z6 ) 
. (15) 

emark 1. The WENO-CU6 scheme would have only 4th order in

mooth region without critical point if using the classic WENO-JS

eights [5] . It achieves the optimal 6th-order accuracy by using

he WENO-Z weights (9) , but it still degenerates to 4th-order even

nd-order accuracy at critical points. The smoothness indicator β3 

ver the 6-point global stencil is meant to weight the three up-

ind stencils and the downwind stencil. However, the scheme pro-

uces evident spurious oscillations for large CFL number due to a

arge parameter C . 

emark 2. The WENO-Z6 scheme would have only 5th order

n smooth region without critical point if using the classic WENO-

S weights [5] . It achieves 6th-order accuracy by using the WENO-

 weights (9) with C = 1 . However, it still loses one order

f accuracy at critical points. This scheme produces compara-

le results with the WENO-CU6 scheme, but has less computa-

ional cost, and tolerates large CFL number without producing

scillations. 

. Construction of a new 6th-order WENO scheme 

In this section, we present a new 6th-order WENO scheme. As

ith previous 6th-order WENO schemes [19,21,22] , we also use

our stencils for calculating the numerical flux ˆ f i +1 / 2 as shown in

ig. 2 . The stencils S k are composed of different numbers of nodes,

pecifically, 

 0 = { i − 2 , i − 1 , i, i + 1 } , S 1 = { i − 1 , i, i + 1 } , 
 2 = { i, i + 1 , i + 2 } , 
 3 = { i, i + 1 , i + 2 , i + 3 } , (16) 
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Fig. 3. The L 1 (top) and L ∞ (bottom) errors computed with the WENO-CU6, 

WENO-Z6, WENO-MSZ6 and linear schemes, respectively, for the linear advection 

Eq. (32) with the initial condition (33) at t = 2 . 0 . 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Comparison between the exact and numerical solutions of the linear ad- 

vection Eq. (32) with the initial condition (34) by using WENO-CU6, WENO-Z6, 

WENO-MSZ6 at t = 6 with 200 (top) and 400 grid points (bottom). 
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fi k  
where S 0 has an extra point i + 1 . For the two nominally 3-point

stencils S 1 and S 2 , we add cubic correction terms to the original

2nd-degree polynomial interpolations such that the results become

4th-order approximations as did in our previous paper [18] . These

correction terms depend on 5 points from i − 2 to i + 2 as the clas-

sic WENO scheme [5] . For the two 4-point stencils S 0 and S 4 , we

use the same 3rd-degree polynomial interpolations as [22] . Thus

for the four stencils S k , k = 0 , 1 , 2 , 3 , we construct candidate flux

polynomials ˆ f (k ) (x ) which are 4th-order approximations to the im-

plicit function h ( x ), and evaluate them at the interface i + 1 / 2 to

give 

ˆ f 0 i +1 / 2 = 

1 

12 

f i −2 −
5 

12 

f i −1 + 

13 

12 

f i + 

1 

4 

f i +1 , 

ˆ f 1 i +1 / 2 = −1 

6 

f i −1 + 

5 

6 

f i + 

1 

3 

f i +1 −
1 

24 

(− f i −2 + 2 f i −1 − 2 f i +1 + f i +2 ) ,

ˆ f 2 i +1 / 2 = 

1 

f i + 

5 

f i +1 −
1 

f i +2 + 

1 

( − f i −2 + 2 f i −1 − 2 f i +1 + f i +2 ) , 

3 6 6 24 
ˆ f 3 i +1 / 2 = 

1 

4 

f i + 

13 

12 

f i +1 −
5 

12 

f i +2 + 

1 

12 

f i +3 . (17)

he linear convex combination of the four candidate fluxes,
 3 
k =0 d k 

ˆ f k 
i +1 / 2 

, should recover the optimal 6th-order numerical flux

6) . By using Eq. (17) and by direct algebraic calculation, we can

et the linear optimal weights 

 0 = 

1 

5 

, d 1 = 

3 

10 

, d 2 = 

3 

10 

, d 3 = 

1 

5 

. (18)

Following the idea of the conventional WENO schemes, a non-

inear convex combination of the candidate numerical fluxes ˆ f k 
i +1 / 2 

17) 

ˆ f MS 
i +1 / 2 = ω 0 ̂

 f 0 i +1 / 2 + ω 1 ̂
 f 1 i +1 / 2 + ω 2 ̂

 f 2 i +1 / 2 + ω 3 ̂
 f 3 i +1 / 2 (19)

s used to compute the numerical flux, where MS denotes “modi-

ed stencil”. The nonlinear weights ω in Eq. (19) can be defined
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Fig. 5. Local view of numerical solutions of the linear advection Eq. (32) with the initial condition (34) with N = 3200 by using (a) WENO-CU6, (b) WENO-Z6, (c) WENO- 

MSZ6. 

u

ω  

T  

v

β

β

β

β

sing the JS-weights [5] 

 k = 

αk 

3 ∑ 

l=0 

αl 

, αk = 

d k 
(βk + ε) 2 

, k = 0 , 1 , 2 , 3 . (20)

he smoothness indicators βk are calculated according to the con-

entional formula [5,26] , which have the discrete form 

0 = 

1 

36 

( 2 f i −2 − 9 f i −1 + 18 f i − 11 f i +1 ) 
2 

+ 

13 

12 

( f i −2 − 4 f i −1 + 5 f i − 2 f i +1 ) 
2 

+ 

781 

720 

( f i −2 − 3 f i −1 + 3 f i − f i +1 ) 
2 
, 

1 = 

1 

( f i −1 − f i +1 ) 
2 + 

13 

(
f i −1 − 2 f j + f i +1 

)2 
4 12 
+ 

89 

320 

( − f i −2 + 2 f i −1 − 2 f i +1 + f i +2 ) 
2 

+ 

1 

12 

(
− f i −2 + 2 f i −1 − 2 f i +1 + f j+2 

)
( f i −1 − f i +1 ) , 

2 = 

1 

4 

( 3 f i − 4 f i +1 + f i +2 ) 
2 + 

13 

12 

( f i − 2 f i +1 + f i +2 ) 
2 

+ 

547 

960 

( − f i −2 + 2 f i −1 − 2 f i +1 + f i +2 ) 
2 

− 1 

12 

(
− f i −2 + 2 f i −1 − 2 f i +1 + f j+2 

)
× ( 19 f i − 34 f i +1 + 15 f i +2 ) , 

3 = 

1 

36 

( 11 f i − 18 f i +1 + 9 f i +2 − 2 f i +3 ) 
2 

+ 

13 

12 

( 2 f i − 5 f i +1 + 4 f i +2 − f i +3 ) 
2 

+ 

781 

720 

( f i − 3 f i +1 + 3 f i +2 − f i +3 ) 
2 
. (21) 
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Fig. 6. Density profiles of the shock-entropy wave interaction [23] with WENO-CU6, 

WENO-Z6 and WENO-MSZ6 at t = 1 . 8 with 200 (top) and 400 grid points (bottom). 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Density profiles of shock tube problem computed with WENO-CU6, WENO- 

Z6 and WENO-MSZ6 at t = 0 . 2 . (a) 200 grid points with CFL = 0 . 6 . (b) 400 grid 

points with CFL = 0 . 8 . 
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Here, β0 and β3 are the same as in the WENO-Z6 scheme [22] ,

and β1 and β2 are the same as in our modified stencil 5th-order

WENO scheme [18] . Eqs. (17) –(21) constitute our naively modified

6th-order WENO scheme. 

Remark 3. In practical use, we define a tunable function ϕ as in

[18] 

ϕ = 1 −
( | β JS 

0 
− β JS 

2 
| 

β JS 
0 

+ β JS 
2 

+ ε

)r 

, r ≥ 1 , (22)

and multiply ϕ with the last two terms in β1 and β2 in (21) and

the last terms in 

ˆ f 1 
i +1 / 2 

and 

ˆ f 2 
i +1 / 2 

in (17) in order to suppress nu-

merical oscillations associated with these terms. ε is a small posi-

tive number used to avoid division by zero. This ϕ does not affect

the optimal order of convergence [18] . We take r = 1 . 

In the following two subsections, we first analyse the accu-

racy of the naively modified 6th-order WENO scheme, then ap-

ply a remedy method to the scheme to recover the optimal 6th-
rder accuracy in smooth region including the first-order critical

oint. 

.1. Accuracy analysis of the naively modified 6th-order WENO 

cheme 

First, we can derive a sufficient condition for 6th-order con-

ergence of Eq. (19) . Adding and subtracting 
∑ 3 

k =0 d k 
ˆ f k 
i +1 / 2 

from

q. (19) give 

ˆ f i +1 / 2 = 

3 ∑ 

k =0 

d k ̂  f k i +1 / 2 + 

3 ∑ 

k =0 

(ω k − d k ) ̂  f k i +1 / 2 , (23)

here the first term on the right-hand-side produces the 6th-

rder accurate numerical flux (6) . The second term must be at

east O(�x 7 ) in order for ( ̂  f i +1 / 2 − ˆ f i −1 / 2 ) / �x to be approximated

t sixth order. Noting that the ˆ f k 
i +1 / 2 

(17) are 4th-order approxima-
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Fig. 8. Velocity and internal energy profiles of the LeBlanc shock tube problem [30,31] computed with the WENO-CU6, WENO-Z6 and WENO-MSZ6 schemes at t = 6 with 

CFL = 0 . 6 on 400 grid points (top), and 800 grid points (bottom). 

t

∑

w  

n

ω  

f  

t  

w  

p

 

(

β

β

β

β

F

β

w  

E  
ions of h i +1 / 2 , we have 

3 
 

k =0 

( ω k − d k ) ̃  f k i +1 / 2 = 

3 ∑ 

k =0 

( ω k − d k ) 
(
h i +1 / 2 + O 

(
�x 4 

))

= h i +1 / 2 

3 ∑ 

k =0 

( ω k − d k ) + 

3 ∑ 

k =0 

( ω k − d k ) O(�x 4 ) , 

(24) 

here the first term on the right-hand-side vanishes due to the

ormalization of the weights. Thus, it is sufficient to require 

 k = d k + O(�x 3 ) (25)

or the overall scheme to have 6th-order accuracy. We remark

hat the sufficient condition (25) relaxes the requirement on the

eights by one order compared with that in [21,22] due to the

resent 4th-order stencil approximations. 
Second, Taylor-series expansions of the smoothness indicator

21) at point i give 

0 = f 
′ 2 
i �x 2 + 

13 

12 

f 
′′ 2 
i �x 4 + 

1 

2 

f 
′ 
i f 

(4) �x 5 + O(�x 6 ) , 

1 = f 
′ 2 
i �x 2 + 

13 

12 

f 
′′ 2 
i �x 4 + O(�x 6 ) , 

2 = f 
′ 2 
i �x 2 + 

13 

12 

f 
′′ 2 
i �x 4 − 1 

2 

f 
′ 
i f 

(4) 
i 

�x 5 + O(�x 6 ) , 

3 = f 
′ 2 
i �x 2 + 

13 

12 

f 
′′ 2 
i �x 4 + 

1 

2 

f 
′ 
i f 

(4) 
i 

�x 5 + O(�x 6 ) . (26) 

ollowing the analysis in [12] , Eq. (26) can be written as 

k = D 

(
1 + O(�x 2 ) 

)
. (27) 

here D is some non-zero constant independent of k . Notice that

q. (27) holds even for f ′ 
i 

= 0 , f ′′ 
i 

� = 0 . Substitution of Eq. (27) into
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Fig. 9. Density profiles of the interacting blast waves [24] computed with the 

WENO-CU6,WENO-Z6 and WENO-MSZ6 schemes at t = 0 . 038 with CFL = 0 . 6 on 400 

grid points. The zoom is near the contact discontinuity. 

Table 1 

CPU time (seconds) of different schemes spent for in- 

teracting blast waves. 

N WENO-Z6 WENO-CU6 WENO-MSZ6 

100 0.223 0.247 0.263 

400 2.901 3.132 3.287 

1600 39.634 40.865 41.641 

x  

3  

T  

1  

t  

e

L

L

W  

s  

w

 

s

u

 

w  √
 

a  

c  
Eq. (20) gives 

ω k = d k + O(�x 2 ) . (28)

Comparison of this result with the condition (25) shows that the

naively modified 6th-order WENO scheme actually achieves only

5th-order accuracy in smooth regions. To recover the optimal order

of accuracy, we should make the nonlinear weights approximate

the linear weights with O(�x 3 ) . 

In the following subsection, we use the strategy of refer-

ence smoothness indicator [13] to recover the optimal 6th-order

accuracy. 

3.2. A reference smoothness indicator to recover the optimal 

6th-order accuracy 

The nonlinear weights can be computed as per the WENO-Z

scheme [13] by 

ω 

Z 
k = 

αZ 
k 

3 ∑ 

l=0 

αZ 
l 

, αZ 
k = d k 

(
1 + 

(
τ6 

βk + ε

)p )
, k = 0 , . . . , 3 , (29)

where the parameter p is used to control the order of accuracy and

dissipation. In Ref. [22] p = 1 attains the optimal order in smooth

region without critical point while p = 2 attains the optimal or-

der even at critical point but increases the dissipation. Since the

reference smoothness indicator τ 6 is preferred to contain all 6

points, the highest order we can obtain from the expansions (26) is

the following linear combination which is slightly different from

Eq. (15) : 

τ6 = | β3 − β0 | = O(�x 6 ) . (30)

For p = 1 , through simple computation, we get 

ω 

Z 
k = d k + O(�x 4 ) , k = 0 , 1 , 2 , 3 , (31)

which obviously satisfy the sufficient condition (25) in smooth re-

gion including the first-order critical point ( f ′ 
i 

= 0 , f ′′ 
i 

� = 0 ). We call

the modified 6th-order WENO scheme with the weights (29) ( p =
1 ) “WENO-MSZ6” scheme, where MS represents “Modified Stencil”.

4. Numerical tests 

In this section, we provide several numerical examples to

demonstrate the performance of the proposed WENO-MSZ6

scheme. The numerical results are compared with the 6th-order

WENO-CU6 [21] with C = 20 in Eq. (9) and the WENO-Z6

[22] schemes. ε = 10 −40 is used in Eqs. (9) , (22) and (29) . The pre-

sentation of this section starts with problems for the linear advec-

tion equation, followed by problems for the 1D and 2D Euler equa-

tions and 2D Navier-Stokes equations. The characteristic decom-

position and local Lax-Friedrichs flux splitting techniques for sys-

tems are used in the WENO reconstruction [26] . The time integra-

tion is carried out with the third-order TVD Runge-Kutta method

[28,29] . 

4.1. Linear advection problems 

In this subsection, we test the new scheme in the 1D scalar

linear advection equation with periodic boundary conditions, 

u t + u x = 0 , −1 ≤ x ≤ 1 , t ≥ 0 . (32)

We consider two initial conditions. The first initial condition 

u (x, 0) = sin 

(
πx − sin (πx ) 

π

)
(33)

is used to test the order of convergence. The solution of

Eq. (32) with the initial condition (33) has two critical points at
 ≈ ± 0.59 [12] . The time step is taken as �t = �x 2 so that the

rd-order TVD Runge-Kutta method in time is effectively 6th-order.

his problem is computed on different grids with N = 20 , 40, 80,

60, 320 and 640 grid cells. Fig. 3 shows the L 1 and L ∞ 

errors at

 = 2 . The norm of the error is computed by comparison with the

xact solution according to 

 1 = �x 

N ∑ 

i =1 

| u i − u exact ,i | , 

 ∞ 

= max | u i − u exact ,i | ∀ i = 1 , . . . , N. 

e see that the three 6th-order WENO schemes have almost the

ame errors as the linear central 6th-order scheme and converge

ith 6th-order accuracy. 

The second initial condition, which contains a Gaussian, a

quare wave, a triangle and a semi-ellipse wave, is given by 

 (x, 0) = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

1 
6 ( G (x, β, z − δ) + G (x, β, z + δ) 

+4 G (x, β, z) ) , −0 . 8 ≤ x ≤ −0 . 6 , 

1 . 0 , −0 . 4 ≤ x ≤ −0 . 2 , 

1 − | 10(x − 0 . 1) | , 0 . 0 < x ≤ 0 . 2 , 

1 
6 ( F (x, α, a − δ) + G (x, α, a + δ) 

+4 G (x, α, a ) ) , 0 . 4 ≤ x ≤ 0 . 6 , 

0 . 0 , otherwise . 

(34)

here G (x, β, z) = exp 

−β(x −z) 2 , F (x, α, a ) =
 

max (1 − α2 (x − a ) 2 , 0) , a = 0 . 5 , z = −0 . 7 , δ = 0 . 005 , α = 10

nd β = ln 2 / 36 δ2 . The solution of Eq. (32) with the initial

ondition (34) consists of discontinuities, corner singularities
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Fig. 10. Density contours for the Mach 3 wind tunnel flow with a forward step at t = 4 . 0 using �x = �y = 

1 
240 

, CFL = 0 . 6 . 50 equally spaced density contours from 0.32 to 

6.15. From top to bottom: (a) WENO-JS5, (b) WENO-Z6, (c) WENO-CU6, (d) WENO-MSZ6. 

a  

e  

n  

t  

t  

t  

a  

a  

o  

C  

t  

b  

s

4

 

l

U  

w

U

T

nd smooth regions. The square wave can be used to test the

ssentially non-oscillatory property of schemes. Fig. 4 show the

umerical results at t = 6 computed with CFL = 0 . 6 . We see that

he resolution of all the schemes are comparable, even though

he WENO-CU6 scheme shows slightly higher resolution due to

he use of parameter C = 20 in the weights. Fig. 5 shows zones

round x = −0 . 2 at t = 6 computed with N = 3200 grid cells

nd different CFL numbers. We can see that there are numerical

scillations for WENO-CU6 when CFL ≥ 0.7, for WENO-Z6 when

FL ≥ 0.8, and for WENO-MSZ6 when CFL ≥ 0.9. This shows

hat the present scheme tolerates larger CFL number thus has

etter stability compared with the WENO-CU6 and WENO-Z6

chemes. 
.2. 1D Euler systems 

In this subsection, we present the numerical tests in the 1D Eu-

er equations 

 t + F ( U ) x = 0 , (35)

here 

 = (ρ, ρu, E) T , F ( U ) = 

(
ρu, ρu 

2 + p, u (E + p) 
)T 

. 

he equation of state is given by 

p = (γ − 1) 
(

E − 1 

2 

ρu 

2 
)
, 
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Fig. 11. Density contours of the Rayleigh-Taylor instability at t = 1 . 95 using �x = �y = 1 / 240 , CFL = 0 . 6 . From left to right: (a)WENO-JS5, (b) WENO-CU6 [21] , (c) WENO-Z6 

[20] , (d) WENO-MSZ6. 
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where ρ , u, p and E are the density, velocity, pressure and total

energy respectively, and γ is the ratio of specific heats and γ = 1 . 4

is used in all examples unless specified explicitly. The following

four examples in 1D Euler systems are considered. 

Example 1. ( Shock-entropy wave interaction ). We compute the

shock-entropy wave interaction problem [23] on the interval

[ −5 , 5] with zero-gradient boundary conditions on both ends. The

initial condition is given by 

(ρ, u, p) = 

{
(3 . 857143 , 2 . 629369 , 10 . 33333) , if − 5 ≤ x < −4 ,

(1 + λ sin (κx ) , 0 , 1) , if − 4 ≤ x ≤ 5 , 

where λ = 0 . 2 and κ = 5 are the amplitude and wave num-

ber of the entropy wave, respectively. In this problem, a right-

moving Mach 3 shock wave interacts with sine waves in a den-

sity disturbance that generates a flow field with both smooth

structures and discontinuities. This flow induces wave trails be-

hind a right-going shock at wave numbers higher than the ini-

tial density-variation wave number κ , which are progressing into

smaller amplitude shocks. Since the exact solution is unknown,

a reference solution is obtained by using the fifth-order WENO-

JS scheme [5] with 3200 grid points. We compute the problem

up to t = 1 . 8 with CFL = 0 . 6 on two grids with �x = 0 . 05 and

�x = 0 . 025 respectively. Fig. 6 compares the computed density

profiles with the reference solution. It is seen that the present

WENO-MSZ6 captures shocks better than WENO-CU6 and WENO-

Z6, especially in the high-frequency waves just behind the right

going shock. By comparison, the WENO-MSZ6 scheme is the

best. 
xample 2. ( Shock tube problem ). For the Sod’ shock tube problem

32] , the initial condition is given by 

(ρ, u, p) = 

{
(1 . 0 0 0 , 0 , 1 . 0) , if 0 ≤ x < 0 . 5 , 

(0 . 125 , 0 , 0 . 1) , if 0 . 5 ≤ x ≤ 1 . 0 . 
(36)

e solve this problem up to t = 0 . 2 with �x = 0 . 005 . The CFL

umber is set to 0.6. The numerical density fields are displayed

n Fig. 7 . It is seen that the WENO-CU6 has produced overshoot at

he contact discontinuity. The WENO-MSZ6 scheme shows slightly

igher resolution of the contact discontinuity than the other two

chemes, but it has a small overshoot at the shock. With CFL = 0 . 8

nd N = 400 there will be overshoot for all the 6th-order WENO

chemes near discontinuities, but the WENO-CU6 is most evident.

o, it is suggested to use CFL number smaller than 0.6 for all the

th-order WENO schemes. 

xample 3. ( LeBlanc shock tube problem ). In this extreme shock

ube problem [30,31] , the computational domain is [0,9] filled with

 perfect gas with γ = 5 / 3 . The initial conditions are with high ra-

io of jumps for the internal energy and density. The jump for the

nternal energy is 10 6 and that for the density is 10 3 . The initial

onditions are given by 

(ρ, u, e ) = 

{
(1 . 0 , 0 . 0 , 0 . 1) , if 0 ≤ x < 3 , 

(0 . 0 01 , 0 . 0 0 0 , 10 

−7 ) , if 3 ≤ x ≤ 9 . 

e solve this problem up to t = 6 with �x = 9 / 400 and �x =
 / 800 and CFL = 0 . 6 . The computed velocity and internal energy

elds are displayed in Fig. 8 . We see that WENO-MSZ6 performs

etter than WENO-CU6 and WENO-Z6. An overshoot is produced,

specially for the internal energy. However similar results were ob-
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Fig. 12. Density contours of Double-Mach reflection of a Mach 10 shock wave with 30 contours lines from 1.8878 to 20.9144 at t = 0 . 2 using 800 × 200 grid cells and 

CFL = 0 . 6 . (a) WENO-JS5, (b) WENO-CU6, (c) WENO-Z6, (d) WENO-MSZ6 schemes. 
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ained in [30,31] . Fig. 8 (bottom) shows that the numerical solution

s greatly improved as the mesh is refined. 

xample 4. ( Interacting blast waves ). The two-blast-wave interac-

ion problem [1] is given by the initial condition 

(ρ, u, p) = 

{ 

(1 , 0 , 10 0 0) , if 0 ≤ x < 0 . 1 , 

(1 , 0 , 0 . 01) , if 0 . 1 ≤ x < 0 . 9 

(1 , 0 , 100) , if 0 . 9 ≤ x ≤ 1 . 

he reflective boundary condition is applied at both x = 0 and x =
 . We solve this problem up to t = 0 . 038 with 400 grid points and

FL = 0 . 6 . The reference solution is calculated by using the WENO-

S5 scheme [5] on 3200 grid points. Fig. 9 shows the computed

ensity distributions. Again, all the schemes perform with high ac-

uracy. The zoned region shows that the WENO-MSZ6 scheme pro-
uces slightly higher resolution than the WENO-CU6 and WENO-

6 schemes around x = 0 . 75 . Table 1 show the CPU time of three

ifferent schemes for computing the blast wave example. It is seen

hat the CPU time increases a little from WENO-Z6 to WENO-CU6

nd WENO-MSZ6. 

.3. 2D Euler systems 

In this subsection we apply the present WENO-MSZ6 scheme to

olve the 2D compressible Euler systems of the form: 

 t + F ( U ) x + G ( U ) y = 0 , (37)

here 

U = (ρ, ρu, ρv , E) T , 
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Fig. 13. Density contours of viscous shock tube using 10 0 0 × 500 grid points 

and CFL = 0 . 6 , Re = 10 0 0 , t = 1 . (a) WENO-JS5, (b) WENO-CU6, (c) WENO-Z6, (d) 

WENO-MSZ6. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 14. Distribution of the density along the bottom wall of the tube at t = 1 

for Re = 10 0 0 . The reference solution is computed by using WENO-JS5 on the 

2500 × 1250 grid. 
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F ( U ) = (ρu, ρu 

2 + p, ρu v , u (E + p)) T , 

G ( U ) = (ρv , ρv u, ρv 2 + p, v (E + p)) T , 

p = (γ − 1) 
(

E − 1 

2 

ρ(u 

2 + v 2 ) 
)
. (38)

Here ρ , u, v, p and E are density, components of velocity in

the x and y coordinate directions, pressure and total energy, re-

spectively. The following three examples in 2D Euler systems are

considered. 

Example 1 ( Mach 3 wind tunnel flow with a step ). Mach 3 wind

tunnel flow with a forward step [1] is widely used to verify the

capability of high-resolution schemes [17,33] in capturing shock-

rich flow structures generated from boundary reflections. In this

problem, a uniform Mach 3 flow is flown into a wind tunnel of

[0, 3] × [0, 1] with a step of 0.2 units high located at 0.6 units

away from the left end of the tunnel. Supersonic inflow and out-

flow conditions are imposed on the left and right ends while a
eflective condition is imposed on the remaining boundaries. We

ompare the numerical results at t = 4 . 0 in Fig. 10 . It is seen that

he shock waves and discontinuities are captured well. An exami-

ation of these results reveals that WENO-MSZ6 predicts the for-

ation of vortices on the slip line earlier than the WENO-Z6 and

ENO-CU6 schemes, and the three schemes have higher resolution

ompared with the fifth-order WENO-JS5 scheme. 

xample 2 ( Rayleigh-Taylor instability ). Rayleigh-Taylor instability
appens on an interface between two fluids of different densities
hen an acceleration is directed from heavier fluid to lighter fluid.

his problem has been simulated extensively in the literature (e.g.,
16,34,35] ). The computational domain is [0, 1/4] × [0, 1] and the
nitial conditions are 

(ρ, u, v , p) = 

{
(2 , 0 , −0 . 025 a cos (8 πx ) , 2 y + 1) , if 0 ≤ y < 0 . 5 , 

(1 , 0 , −0 . 025 a cos (8 πx ) , y + 1 . 5) , if 0 . 5 ≤ y < 1 , 

with the ratio of specific heats γ = 5 / 3 . The gravitational effect

s introduced by adding the source term S = (0 , 0 , ρ, ρv ) T to the

ight-hand side of the 2D Euler Eq. (37) . Reflective boundary con-

itions are imposed for the left and right boundaries, and the top

nd bottom boundaries are set as (ρ, u, v , p) = (1 , 0 , 0 , 2 . 5) and

(ρ, u, v , p) = (2 , 0 , 0 , 1) , respectively. The CFL number is set to 0.6.

he final simulation time is t = 1 . 95 . The density contours plotted

n Fig. 11 show that the WENO-MSZ6 scheme obtains richer struc-

ures than the WENO-CU6 and WENO-Z6 schemes, particularly, it

roduces more vortices on the interface, indicating that it is less

issipative than the other schemes. 

xample 3 ( Double Mach reflection of a strong shock ). We con-

ider the two dimensional double Mach reflection problem of a

hock off an oblique surface which describes the reflection of a

lanar Mach shock in air hitting a wedge [1] . We calculate this

roblem on [0, 4] × [0, 1] domain and display the results in [0,

] × [0, 1] as customary. Initially a right-moving Mach 10 shock

s imposed and the shock front makes an angle of 60 ◦ with the x

xis at x = 1 / 6 . The region from x = 0 to x = 1 / 6 along the bot-

om boundary is assigned the exact values of the initial post-

hock flow and a reflecting boundary condition is taken for the

est. The left end boundary is assigned the values of the initial

ost-shock flow. For the right end boundary at x = 4 , all gradi-
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Fig. 15. Density contours of shock/mixing layer interaction, CFL = 0 . 6 , Re = 500 , t = 120 , 320 × 80 grid points. From (a) to (d): WENO-JS5, WENO-CU6, WENO-Z6, WENO- 

MSZ6. 
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a  
nts are set to zero. The top boundary is set to describe the ex-

ct motion of the Mach 10 shock. See [1] and [22] for a de-

ailed description of the computational setup. We solve the prob-

em up to time t = 0 . 2 using �x = �y = 1 / 200 . The numerical re-

ults of density contours obtained using the WENO-JS5, WENO-

U6, WENO-Z6 and WENO-MSZ6 schemes are displayed in Fig. 12 .

e see that the WENO-MSZ6 and WENO-CU6 schemes resolve

he instabilities around the Mach stem better than the WENO-

6 scheme, and the three schemes are better than the WENO-JS5

cheme. 

.4. 2D viscous shock tube problem 

From this subsection onward we evaluate the capability of the

resent scheme in resolving viscous flows. In this subsection we

onsider the 2D viscous shock tube problem in a square tube with

nit side length and insulated walls. This problem has been simu-

ated in many papers [36–39] . The governing equations are the 2D

ompressible Navier-Stokes equations 

 t + F ( U ) x + G ( U ) y = F v ( U ) x + G 

v ( U ) y , (39)
here the conservative variables U and inviscid fluxes F and G
re given in (38) , and the viscous fluxes F v and G 

v are given
y [37] 

F v ( U ) = 

[ 
0 , τxx = λ(u x + v y ) + 2 μu x , τxy = μ(u y + v x ) , uτxx + v τxy + 

γμ

Pr 
e x 

] T 
,

 

v ( U ) = 

[ 
0 , τyx = τxy , τyy = λ(u x + v y ) + 2 μv y , uτyx + v τyy + 

γμ

Pr 
e y 

] T 
. 

As usual, the pressure p is given by the perfect gas law p =
(γ − 1) ρe, where e is the specific internal energy. The fluid

s assumed as ideal gas with γ = 1 . 4 , constant viscosity coef-

cients μ = 1 /Re, λ = −2 μ/ 3 are assumed for this problem as

37] , where Re is the Reynolds number, and the Prandtl num-

er P r = 0 . 73 . The initial states on the left and right regions

f the diaphragm located vertically at the middle of the tube

re (ρ, u, v , p) L = ( 120 , 0 , 0 , 120 /γ ) , 0 ≤ x ≤ 0 . 5 , and (ρ, u, v , p) R =
( 1 . 2 , 0 , 0 , 1 . 2 /γ ) , 0 . 5 < x ≤ 1 . The diaphragm is broken at t = 0 . A

hock wave forms, followed by a contact discontinuity, and trav-

ls to the right. In the same time, a rarefaction wave expands

n both directions. The incident shock wave induces a bound-

ry layer along the horizontal wall. The shock reflects at the
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Fig. 16. Numerical schlieren according to T = 0 . 95 × exp (−2 . 0 |∇ρ| ) of shock/mixing layer interaction, CFL = 0 . 6 , Re = 500 , t = 120 , 320 × 80 grid points. From (a) to (d): 

WENO-JS5, WENO-CU6, WENO-Z6, WENO-MSZ6. 

 

 

 

 

 

 

 

 

 

 

 

 

t  

 

 

 

 

 

 

 

t  

p  

v  

h  

[

4

 

i  

I  

t  

a  

f  

f  

i  

t  

t  

l  

l  

b  
right wall at t ≈ 0.21, and interacts with the contact disconti-

nuity and the boundary layer, creating a complex flow field typ-

ical of separation bubbles, a typical “λ-shape” shock pattern in

the boundary layer, a slip line, and rolled-up vortices. By ap-

plying the symmetry condition at the upper boundary, the com-

putational domain is [0, 1] × [0, 0.5]. For the left, bottom

and right boundaries, non-slip and adiabatic wall conditions are

applied. 

The viscous and heat diffusion terms are calculated by a 6th-

order central scheme [40] . The Reynolds number is Re = 10 0 0 . The

computations have been performed using four different schemes:

WENO-JS, WENO-CU6, WENO-Z6 and WENO-MSZ6, on 10 0 0 × 500

points. Fig. 13 shows a comparison of the density contours at

 = 1 . At this time the shock has reflected from the right end

wall and goes into the zone of the rarefaction wave [37,38] . The

contact discontinuity has interacted with the reflected shock and

stays almost stationary, close to the right wall. The results of

different schemes are similar, however, differences can be ob-

served near the bottom wall, especially, the 6th-order WENO-CU6,

WENO-Z6 and WENO-MSZ6 schemes resolve the slip line ema-

nating from the triple point of the “λ-shape” shock pattern bet-
er than the 5th-order WENO-JS scheme. Fig. 14 shows a com-

arison of the density distributions along the bottom wall among

arious WENO schemes. It is seen that the result of WENO-MSZ6

as a highest peak at x ≈ 0.88, in agrement with the trend in

37–39] . 

.5. Shock/mixing layer interaction 

The problem of a shock wave impingement on a mixing layer

s used to assess the performance of numerical schemes [41–43] .

n the problem, a spatially developing mixing layer has an ini-

ial convective Mach number M c = (u 1 − u 2 ) / (c 1 + c 2 ) = 0 . 6 , and

n oblique shock with a wedge angle of β = 12 ◦ and incident

rom the upper-left corner interacts with the vortices generated

rom the instability of the shear layer. The incident oblique shock

s refracted by the shear layer and then reflects from the bot-

om slip wall, and transmits the shear layer again. At the same

ime, alternate compression-expansion fans form around the shear

ayer. Downstream the transmitting position, a series of shock-

ets (small transient shocks) form around the vortices. The outflow

oundary has been arranged to be supersonic everywhere. The
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omputational domain is [0 , 200] × [ −20 , 20] . At x = 0 , the super-

onic inflow boundary condition has a hyperbolic tangent velocity

rofile, 

 = 

1 

2 

[ (u 1 + u 2 ) + tanh (2 y ) ] , v = 0 . 

or the upper stream of the shear layer (y ≥ 0) , u 1 = 3 , ρ1 =
 . 6374 , p 1 = 0 . 3327 and for the lower stream (y < 0) , u 2 = 2 , ρ2 =
 . 3626 , p 2 = 0 . 3327 . The post shock states of the incident oblique

hock are set at the upper boundary, and slip-adiabatic wall condi-

ions are assumed at the bottom boundary to avoid any boundary-

ayer formation and subsequent complexities. Transverse-velocity

uctuations are added to the y velocity component at the

nlet: 

 

′ = 

2 ∑ 

k =1 

a k cos (2 πkt/T + φk ) exp (−y 2 /b) , 

here b = 10 , a 1 = a 2 = 0 . 05 , φ1 = 0 , φ2 = π/ 2 , T = λ/u c is the

eriod, λ = 30 is the wavelength, u c = 2 . 68 is the convective ve-

ocity [41] . The Prandtl number Pr is set to 0.72 and the Reynolds

umber Re is chosen to be 500, and the ratio of specific heats

= 1 . 4 . The dynamic viscosity μ is calculated according to the

utherland law for this example. Figs. 15 and 16 show the numer-

cal density contours and schlieren based on density respectively

omputed with the 320 × 80 grid. We see that the results of the

our schemes are similar, and the schlieren graphs in Fig. 16 show

ore clearly the refracted and transmitted shocks, shocklets down-

tream the transmission, vortices, and expansion fans. We can also

ee that the three 6th-order WENO schemes have almost the same

esolution, which is higher than the WENO-JS5 scheme. 

. Conclusions 

A new central-upwind 6th-order WENO scheme (WENO-MSZ6)

ased on modified candidate stencil approximations is presented.

he four stencil approximations achieve 4th-order accuracy thus

he sufficient condition for the optimal 6th-order accuracy can be

ne order lower than that in previous 6th-order WENO schemes.

 reference smoothness indicator is used to achieve the op-

imal order even at critical points. We compare the present

cheme with the two recently developed WENO-CU6 and WENO-

6 schemes. A number of 1D and 2D numerical examples show

hat the present scheme produces higher resolution and can

olerate a larger CFL number for the occurrence of visible os-

illations near discontinuities compared with other two 6th-

rder WENO schemes. However, the robustness of the present

ENO-MSZ6 scheme for calculating strong discontinuities has

ot been tested fully. It needs to be tested in more numerical

roblems. 
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