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Abstract
Recently, Buchmüller and Helzel proposed a modified dimension-by-dimension finite-
volume (FV)WENOmethod on Cartesian grids for multidimensional nonlinear conservation
lawswhich can retain the full order of accuracyof the underlying one-dimensional (1D) recon-
struction. In this work, we extend this method to multidimensional convection–diffusion
equations. The 1D sixth-order central reconstruction of the conserved quantity is utilized for
discretizing the diffusion terms inwhich the diffusion coefficientsmay be nonlinear functions
of the conserved quantity. Using high-order accurate conversions between edge-averaged
values and edge center values of any sufficiently smooth quantity, high-order accurate con-
vective and viscous numerical fluxes at cell interfaces are computed. The presentmodified FV
method uses fourth-order accurate conversions for the diffusive fluxes. Numerical examples
show that the present method achieves fourth-order accuracy for multidimensional smooth
problems, and is suitable for the numerical simulation of viscous shocked flows.
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1 Introduction

Convection–diffusion equations are widely used in fluidmechanics, oil reservoir exploration,
chemical engineering and many other fields (Morton 1996; Wang et al. 2000; Wang and Li
2007; Lin et al. 2009; Gao et al. 2019; Tian 2019; Huang et al. 2019). Numerical solutions
of convection–diffusion equations often use finite difference methods (Chou and Shu 2007;
Golbabai and Arabshahi 2010; Sun and Li 2014), finite-volume methods (FVM) (Liang and
Zhao 2006; Gao et al. 2019; Tian 2019; Huang et al. 2019; Angermann and Wang 2019)
and finite element methods (FEM) (Chana et al. 2014; Cheichan et al. 2019; Zhang and
Chen 2019). Due to the merit of local conservation and suitability for complicated domains,
FVMs are widely used in engineering computations. FVMs can be applied on structured,
unstructured grids or mixed grids. FVMs can also be used on arbitrary Cartesian meshes
even those with abrupt changes in mesh sizes and with hanging nodes, without affecting
their conservation and accuracy, in contrast to high order FDMs which can only be used on
smoothly varying structuredmeshes. FVMs are easier to implement in the emergingCartesian
Adaptive mesh refinement (AMR) approach (Buchmüller et al. 2016; Tamaki and Imamura
2017; Schmidmayer et al. 2019). This is the main reason that high-order FVMs on Cartesian
grids are still under active development.

The finite-volume (FV) weighted essentially non-oscillatory (WENO) methods (Shu
1997) can obtain high-order accurate and essentially non-oscillatory numerical solution for
nonlinear conservation laws, thus they were used to solve convection–diffusion equations
(Manzini and Russo 2008; Huang et al. 2019) and the Euler and Navier–Stokes equations
(Titarev and Toro 2004; Lo et al. 2010; Zhang et al. 2011; Teng et al. 2011; Huang et al. 2019).
The simplest and most efficient way to use the FV WENO methods on multidimensional
Cartesian grids is to apply the 1DWENOscheme in each direction (Shu 1997).Unfortunately,
such a dimension-by-dimension FVM is only second-order accurate for smooth solutions of
multidimensional nonlinear hyperbolic conservation laws (Zhang et al. 2011; Buchmüller
and Helzel 2014). The conventional high-order FV WENO methods on Cartesian grids use
a series of 1D reconstructions to obtain the conserved quantities on quadrature points on cell
edges (Titarev and Toro 2004; Zhang et al. 2011; Teng et al. 2011). However, these true FV
WENO methods have high computational costs.

Recently, Buchmüller and Helzel (2014) proposed an efficient modified dimension-by-
dimension FVWENOmethod on Cartesian grids which can retain the full order of accuracy
of the underlying 1D WENO reconstruction when applied to multidimensional nonlinear
hyperbolic conservation laws, and then extended the method to the AMR grid (Buchmüller
et al. 2016, 2018). Du et al. (2019) developed a sixth-order modified FV WENO method on
3D Cartesian grids. The key technique in the modified FV WENO method is the conversion
between edge-averaged values and edge-center values of the conserved quantity and numeri-
cal flux, which makes the modified dimension-by-dimension method achieve the full spatial
order of accuracy of the underlying 1D reconstruction. However, extension of the modified
FVmethod to convection–diffusion equations have not been considered. In particular, how to
obtain high-order accurate discretizations for a conservative nonlinear diffusion term remains
untouched.

In this paper, we extend the modified FV WENO method to multidimensional nonlinear
convection–diffusion equations. The main contribution is a fourth-order conversion formula
between edge-averaged values and edge-centered values of the viscous fluxes. Numeri-
cal results show that the resulting method achieves expected fourth-order accuracy, and

123



A high-order modified finite-volume method… Page 3 of 20   214 

is effective in computing convection–diffusion equations. Applications to the compressible
Navier–Stokes equations are demonstrated.

The rest of this paper is organized as follows. In Sect. 2, the classical dimension-by-
dimension FV diffusion flux is given, which is shown to be only second-order accurate. In
Sect. 3, we derive a high-order FV diffusion flux based on the 1D central reconstruction (CR)
of the conserved quantity. Then we give the algorithm of the present modified FV method.
Numerical results are presented in Sect. 4 to verify the accuracy, efficiency and robustness
of the present method. Concluding remarks are given in Sect. 5.

2 Dimension-by-dimension finite-volumemethod

The fact that the dimension-by-dimension FVWENOmethod formultidimensional nonlinear
hyperbolic conservation laws is only second-order accurate has been shown in Zhang et al.
(2011); Buchmüller and Helzel (2014). In this section, we briefly introduce the dimension-
by-dimension FV method for a two-dimensional convection–diffusion equation. We will
show that the resulting FV diffusive flux with non-constant diffusion coefficients is also only
second-order accurate even using a high-order 1D reconstruction.

The two-dimensional convection–diffusion problem considered is given by

∂t u + ∇ · f(u) − ∇ · fv(u,∇u) = s(u, x, y, t),

u(x, y, 0) = u0(x, y), (2.1)

andproper boundary conditions.Here,u(x, y, t) is the conservedquantity, f = (
f (u), g(u)

)T
,

where f (u) and g(u) are the convective flux functions, fv = (
f v(u,∇u), gv(u,∇u)

)T
,

where f v(u,∇u) = a(x, y, u)∂xu + b(x, y, u)∂yu and gv(u,∇u) = c(x, y, u)∂xu +
d(x, y, u)∂yu are the viscous flux functions, and s(u, x, y, t) is the source term. To dis-
cretize Eq. (2.1), let Ci, j = (xi−1/2, xi+1/2) × (y j−1/2, y j+1/2) be a control volume in the
x-y space,with assumed uniformgrid sizes�x = xi+1/2−xi−1/2 and�y = y j+1/2−y j−1/2.

Integrating Eq. (2.1) over Ci, j , we obtain the semi-discrete form of a FV method,

d

dt
Ui, j (t) = − 1

�x

(
F̂i+ 1

2 , j − F̂i− 1
2 , j

)
− 1

�y

(
Ĝi, j+ 1

2
− Ĝi, j− 1

2

)

+ 1

�x

(
F̂v
i+ 1

2 , j
− F̂v

i− 1
2 , j

)
+ 1

�y

(
Ĝv

i, j+ 1
2

− Ĝv
i, j− 1

2

)
+ Si, j (t), (2.2)

where

Ui, j (t) ≈ 1

�x�y

∫ y
j+ 1

2

y
j− 1

2

∫ x
i+ 1

2

x
i− 1

2

u(x, y, t)dxdy,

Si, j (t) ≈ 1

�x�y

∫ y
j+ 1

2

y
j− 1

2

∫ x
i+ 1

2

x
i− 1

2

s(u, x, y, t)dxdy

are the numerical approximations of the exact cell averages of the conserved quantity and
source term, and
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F̂i+ 1
2 , j ≈ f̄i+ 1

2 , j ≡ 1

�y

∫ y
j+ 1

2

y
j− 1

2

f (u(xi+ 1
2
, y, t))dy,

Ĝi, j+ 1
2

≈ ḡi, j+ 1
2

≡ 1

�x

∫ x
i+ 1

2

x
i− 1

2

g(u(x, y j+ 1
2
, t))dx,

F̂v
i+ 1

2 , j
≈ f vi+ 1

2 , j ≡ 1

�y

∫ y
j+ 1

2

y
j− 1

2

f v(u,∇u)|x
i+ 1

2
dy,

Ĝv
i, j+ 1

2
≈ gvi, j+ 1

2
≡ 1

�x

∫ x
i+ 1

2

x
i− 1

2

gv(u,∇u)|y
j+ 1

2
dx

are the numerical approximations of the exact edge averages of the convective and viscous
fluxes.

In the dimension-by-dimension FV WENO method, 1D WENO reconstructions from
known cell-averaged conserved quantities {Ui, j } aremade for the convective terms. Similarly,
for the diffusion terms, we construct (p − 1)-th degree polynomials q1(x) in the x direction
and q2(y) in the y direction by 1D sixth-order accurate central reconstruction (CR6) (Vevek
et al. 2019) for the conserved quantity, which represent local approximations of the conserved
quantity at cell interfaces averaged in another coordinate. They are constructed by satisfying

Um, j = 1

�x

∫ x
m+ 1

2

x
m− 1

2

[
q1(x) + O(�x p)

]
dx, m ∈ [i − 2, . . . , i + 3], (2.3a)

Ui,n = 1

�y

∫ y
n+ 1

2

y
n− 1

2

[
q2(y) + O(�y p)

]
dy, n ∈ [ j − 2, . . . , j + 3] (2.3b)

with p = 6 in this paper. Note that the stencil of CR6 (six cells from i − 2 to i + 3 in Fig. 1)
for reconstructing Ui+ 1

2 , j is symmetrical with respect to the interface xi+1/2 to provide the
necessary isotropic diffusion.

If Um, j are exact cell averages of the conserved quantity, then Eq. (2.3a) indicates that

q1(x) = 1

�y

∫ y
j+ 1

2

y
j− 1

2

u(x, y)dy + O(�x p), (2.4)

and it can be seen easily that the derivative and integration are interchangeable:

∂xq
1(x) = 1

�y

∫ y
j+ 1

2

y
j− 1

2

∂xu(x, y)dy + O(�x p−1). (2.5)

Similar results hold for q2(y) in the y direction.
By evaluating the polynomials and their derivatives at interfaces, we get the reconstructed

edge-averaged values of the conserved quantity and its derivative at the cell interface as

Ui+ 1
2 , j := q1

(
xi+ 1

2 , j

)
, Ui, j+ 1

2
:= q2

(
yi, j+ 1

2

)
.

∂xUi+ 1
2 , j := ∂xq

1
(
xi+ 1

2 , j

)
, ∂yUi, j+ 1

2
:= ∂yq

2
(
yi, j+ 1

2

)
. (2.6)
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The corresponding exact edge-averaged values of the conserved quantity and its derivative
at the cell interface are denoted by

ui+ 1
2 , j := 1

�y

∫ y
j+ 1

2

y
j− 1

2

u(xi+ 1
2
, y)dy, ui, j+ 1

2
:= 1

�x

∫ x
i+ 1

2

x
i− 1

2

u(x, y j+ 1
2
)dx,

∂xui+ 1
2 , j := 1

�y

∫ y
j+ 1

2

y
j− 1

2

∂xu(xi+ 1
2
, y)dy, ∂yui, j+ 1

2
:= 1

�x

∫ x
i+ 1

2

x
i− 1

2

∂yu(x, y j+ 1
2
)dx .

(2.7)

From Eqs. (2.4) and (2.5), we see that the reconstructed edge-averaged values satisfy

Ui+ 1
2 , j = ui+ 1

2 , j + O(�x p), Ui, j+ 1
2

= ui, j+ 1
2

+ O(�y p),

∂xUi+ 1
2 , j = ∂xui+ 1

2 , j + O(�x p−1), ∂yUi, j+ 1
2

= ∂yui, j+ 1
2

+ O(�y p−1), (2.8)

In the dimension-by-dimension approach, the numerical viscous flux in Eq. (2.2) is com-
puted by F̂v

i+1/2, j = f v(Ui+1/2, j , ∂xUi+1/2, j , ∂yUi+1/2, j ). We assume that the viscous flux
function f v is Lipschitz continuous. For variable diffusion coefficient cases, this numeri-
cal viscous flux F̂v

i+1/2, j generally leads to only second-order accuracy. It should be noted
that the third argument (the cross derivative ∂yUi+1/2, j in f v) does not affect the following
second-order accuracy conclusion; thus, it is omitted in the following analysis. The accuracy
analysis proceeds as follows. By the Lipschitz continuity, we have

|F̂v
i+ 1

2 , j
− f v(ui+ 1

2 , j , ∂xui+ 1
2 , j )| = | f v(Ui+ 1

2 , j , ∂xUi+ 1
2 , j ) − f v(ui+ 1

2 , j , ∂xui+ 1
2 , j )|

≤ | f v(Ui+ 1
2 , j , ∂xUi+ 1

2 , j ) − f v(Ui+ 1
2 , j , ∂xui+ 1

2 , j )|
+| f v(Ui+ 1

2 , j , ∂xui+ 1
2 , j ) − f v(ui+ 1

2 , j , ∂xui+ 1
2 , j )|

≤ L
(
|Ui+ 1

2 , j − ui+ 1
2 , j | + |∂xUi+ 1

2 , j − ∂xui+ 1
2 , j |

)

= O(�x p) + O(�x p−1)

= O(�x p−1).

That is,

F̂v
i+ 1

2 , j
= f v

(
ui+ 1

2 , j , ∂xui+ 1
2 , j

)
+ O(�x p−1). (2.9)

Assuming that the leading term in the error O(�x p−1) is smooth, we have

F̂v
i+ 1

2 , j
− F̂v

i− 1
2 , j

�x
=

f v
(
ui+ 1

2 , j , ∂xui+ 1
2 , j

)
− f v

(
ui− 1

2 , j , ∂xui− 1
2 , j

)

�x
+ O(�x p−1).

(2.10)

From Eq. (2.7) and noting that the edge-averaged value of any space-dependent function
generally agrees with the point value at the edge center point to second order, we have

ui+ 1
2 , j = ui+ 1

2 , j +
uyy(xi+ 1

2
, ξ)

24
�y2 + O (

�y4
)
, ξ ∈ (y j− 1

2
, y j+ 1

2
),

∂xui+ 1
2 , j = ∂xui+ 1

2 , j +
uxyy(xi+ 1

2
, ξ)

24
�y2 + O (

�y4
)
, ξ ∈ (y j− 1

2
, y j+ 1

2
), (2.11)
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and similarly,

f vi+ 1
2 , j = f v

i+ 1
2 , j

+
f vyy

(
u(xi+ 1

2
, ξ), ∂xu(xi+ 1

2
, ξ)

)

24
�y2

+O (
�y4

)
, ξ ∈ (y j− 1

2
, y j+ 1

2
). (2.12)

The function f v can be expanded using Taylor series expansion, and the use of (2.11) gives

f v
(
u
i+ 1

2 , j
, ∂x ui+ 1

2 , j

)
= f v

i+ 1
2 , j

+
f vu |(x

i+ 1
2

,y j )uyy(xi+ 1
2
, ξ) + f v

∂x u
|(x

i+ 1
2

,y j )uxyy(xi+ 1
2
, ξ)

24
�y2

+O
(
�y4

)
. (2.13)

From Eqs. (2.13), (2.12) and (2.9), we have

f vi+ 1
2 , j = f v

(
ui+ 1

2 , j , ∂xui+ 1
2 , j

)
+ O (

�y2
)

= F̂v
i+ 1

2 , j
+ O (

�y2
) + O (

�x p−1) , (2.14)

which is the crucial source of second-order error regardless of the order of reconstruction.
Assuming that the leading term in the error O(�y2) is smooth, we have

f vi+ 1
2 , j − f vi− 1

2 , j

�x
−

F̂v
i+ 1

2 , j
− F̂v

i− 1
2 , j

�x

=
f vi+ 1

2 , j − f vi− 1
2 , j

�x
−

f v(ui+ 1
2 , j , ∂xui+ 1

2 , j ) − f v(ui− 1
2 , j , ∂xui− 1

2 , j )

�x
+ O(�x p−1)

=
f vi+ 1

2 , j − f v(ui+ 1
2 , j , ∂xui+ 1

2 , j )

�x
−

f vi− 1
2 , j − f v(ui− 1

2 , j , ∂xui− 1
2 , j )

�x
+ O(�x p−1)

= O(�y2 + �x p−1). (2.15)

Similar result holds for Ĝv in the y-direction.
Thus, the dimension-by-dimension FV method for the diffusion terms with space-

dependent diffusion coefficients is generally only second-order accurate in space. But in
the “linear” case, i.e., if f v(u, ux , uy) = Aux + Buy with constant matrices A, B ∈ R

m×m ,
then
∫ y

j+ 1
2

y
j− 1

2

f v(u, ux , uy)
∣∣
x
i+ 1

2

dy = A
∫ y

j+ 1
2

y
j− 1

2

∂xu(xi+ 1
2
, y)dy + B

∫ y
j+ 1

2

y
j− 1

2

∂yu
(
xi+ 1

2
, y

)
dy,

that is, instead of (2.14), we now have

f vi+ 1
2 , j = A∂xui+ 1

2 , j + B∂yui+ 1
2 , j , (2.16)

therefore, avoiding the crucial second-order error O(�y2). From (2.15), we can get

f vi+ 1
2 , j − f vi− 1

2 , j

�x
−

F̂v
i+ 1

2 , j
− F̂v

i− 1
2 , j

�x
= O(�x p−1), (2.17)

which leads to (p − 1)th order in the local truncation error for this linear case.
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3 Modified finite-volumemethod

3.1 Conversion between average values and point values

To improve the accuracy of the classical dimension-by-dimension FV method, we adopt
high-order conversions between edge-averaged values and edge center point values of any
sufficiently smooth function (Buchmüller and Helzel 2014). We first compute fourth-order
accurate point values of the conserved quantity and their normal derivatives at the center of
the grid cell interface from reconstructed edge-averaged values using the conversion formulas
(Buchmüller and Helzel 2014; Buchmüller et al. 2016, 2018) for Eqs. (2.7) and (2.8), which
gives

u
(
xi+ 1

2
, y j

)
= ūi+ 1

2 , j − �y2

24
uyy

(
xi+ 1

2
, y j

)
− �y4

1920
uyyyy

(
xi+ 1

2
, y j

)
+ · · ·

= Ui+ 1
2 , j − �y2

24
uyy

(
xi+ 1

2
, y j

)
− �y4

1920
uyyyy

(
xi+ 1

2
, y j

)
+ · · · + O (

�x p) ,

∂xu
(
xi+ 1

2
, y j

)
= ∂xui+ 1

2 , j − �y2

24
(ux )yy

(
xi+ 1

2
, y j

)
− �y4

1920
(ux )yyyy

(
xi+ 1

2
, y j

)
+ · · ·

= ∂xUi+ 1
2 , j − �y2

24
(ux )yy

(
xi+ 1

2
, y j

)
− �y4

1920
(ux )yyyy

(
xi+ 1

2
, y j

)

+ · · · + O(�x p−1). (3.1)

Analogous formulas exist for edge center values and edge-averaged values of the conserved
quantity and its normal derivative at the grid cell interface in the y-direction.

To achieve fourth-order accuracy, we need to approximate the derivatives uyy and (ux )yy
in the second terms of the RHS of Eq. (3.1) with second-order accuracy. Thanks to the
observation (Tamaki and Imamura 2017) that the differentiation and the averaging operation
are exchangeable, e.g., ū yy = uyy . We can simply get a conversion formula similar to (3.1)

uyy(xi+1/2, y j ) = (uyy)i+1/2, j − �y2

24
uyyyy(xi+ 1

2
, y j ) + O(�y4)

= (ū yy)i+1/2, j + O(�y2)

= (Uyy)i+1/2, j + O(�y2) + O(�x p). (3.2)

Thus, the first equality of (3.1) becomes

u(xi+ 1
2
, y j ) = Ui+ 1

2 , j − �y2

24

(
(Uyy)i+ 1

2 , j + O(�y2) + O(�x p)
)

+ O(�y4) + O(�x p)

= Ui+ 1
2 , j − 1

24

(
Ui+ 1

2 , j−1 − 2Ui+ 1
2 , j +Ui+ 1

2 , j+1

)
+ O(�y4) + O(�x p).

(3.3)

The same procedure can be applied to the normal derivative ux , so that the second equality
of (3.1) becomes

∂xu(xi+ 1
2
, y j ) = ∂xUi+ 1

2 , j − 1

24

(
∂xUi+ 1

2 , j−1 − 2∂xUi+ 1
2 , j + ∂xUi+ 1

2 , j+1

)

+O(�y4) + O(�x p−1). (3.4)

To computer point values of the cross derivative ∂yui+1/2, j at the center of the grid cell
interface as needed by the viscous flux f vi+1/2, j , we use point values of the conserved quantity
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ui+1/2, j which have been obtained by Eq. (3.3) to approximate this cross derivative by a
standard fourth-order accurate finite difference formula as the following:

∂yui+ 1
2 , j =

8
(
ui+ 1

2 , j+1 − ui+ 1
2 , j−1

)
−

(
ui+ 1

2 , j+2 − ui+ 1
2 , j−2

)

12�y
+ O(�y4). (3.5)

Now the approximated point values, still denoted as ui+1/2, j , ∂xui+1/2, j , and ∂yui+1/2, j ,
are directly used to compute the edge center point value of numerical viscous flux f̂ vi+1/2, j

f̂ vi+1/2, j = f v
(
ui+ 1

2 , j , ∂xui+ 1
2 , j , ∂yui+ 1

2 , j

)
. (3.6)

Analogous formulas similar to Eqs. (3.3)–(3.6) can be obtained in the y direction to get point
value of the numerical viscous flux ĝvi, j+1/2.

Finally, by substituting these point values of numerical viscous fluxes into Eq. (3.1) which
is also valid for sufficiently smooth viscous flux function, we can compute fourth-order
accurate edge-averaged numerical viscous fluxes as

F̂v
i+ 1

2 , j
= f̂ v

i+ 1
2 , j

+ 1

24

(
f̂ v
i+ 1

2 , j−1
− 2 f̂ v

i+ 1
2 , j

+ f̂ v
i+ 1

2 , j+1

)

= f v
i+ 1

2 , j
+ 1

24

(
f v
i+ 1

2 , j−1
− 2 f v

i+ 1
2 , j

+ f v
i+ 1

2 , j+1

)

= f vi+ 1
2 , j + O(�y4) + O(�x p−1),

Ĝv
i, j+ 1

2
= ĝv

i, j+ 1
2

+ 1

24

(
ĝv
i−1, j+ 1

2
− 2ĝv

i, j+ 1
2

+ ĝv
i+1, j+ 1

2

)

= gv
i, j+ 1

2
+ 1

24

(
gv
i−1, j+ 1

2
− 2gv

i, j+ 1
2

+ gv
i+1, j+ 1

2

)

= gvi, j+ 1
2

+ O(�x4) + O(�y p−1). (3.7)

Comparing Eqs. (3.7) and (2.14), we see that the present numerical viscous fluxes are fourth-
order accurate in space, while the original ones (2.14) are second-order accurate. The key
to enhance accuracy is to use the transformations (3.3) and (3.4) from edge-averaged values
to edge center values, a high-order finite difference for point values of the cross derivative,
(3.5), and the transformation (3.7) from point values to edge-averaged values.

Figure 1 shows the stencil for computing the edge center point values ofui+1/2, j using (3.3)
, ∂xui+1/2, j using (3.4), and the cross derivative ∂yui+1/2, j using (3.5). The transformations
(3.3) and (3.4) require three edge-averaged values ofUi+1/2, j and ∂xUi+1/2, j marked as three
green edges on the i + 1/2 line, each of which is obtained using the 1D sixth-order central
reconstruction in the i direction using cell averages from i−2 to i+3. The cross derivative at
the edge center ∂yui+1/2, j computed by the standard fourth-order accurate finite difference
formula (3.5) requires four nearby edge center point values (ui+1/2, j±1, ui+1/2, j±2).

Figure 2 shows the stencil for computing the edge-averaged value of the viscous flux
F̂v
i+1/2, j marked as the red edge using the transformation (3.7). This requires three point

values of fluxes f̂ vi+1/2, j marked as red points, and each point resides values of ui+1/2, j ,
∂xui+1/2, j and ∂yui+1/2, j that further involve seven i-direction central reconstructions as
required by Eqs. (3.3), (3.4) and (3.5). All the shaded cells compose the stencil for computing
the edge-averaged flux F̂v

i+1/2, j .
We remark that similar transformations between edge-averaged values and point values

are used to obtain fourth-order accurate numerical convective fluxes F̂i+1/2, j and Ĝi, j+1/2

for the FV method as done in Buchmüller and Helzel (2014). We will not repeat them here.
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Fig. 1 The stencil for computing
the edge center point values
ui+1/2, j , ∂x ui+1/2, j and
∂yui+1/2, j marked as the red
point. The three green edges
denote edge-averaged values of
Ui+1/2, j and ∂xUi+1/2, j
obtained from 1D central
reconstructions and required by
Eqs. (3.3) and (3.4). Four nearby
point values of
(ui+1/2, j±1, ui+1/2, j±2)
marked as the blue points are
used to computed the point
values of the cross derivative
∂yui+1/2, j by Eq. (3.5)

Fig. 2 The stencil for computing
the edge averaged flux F̂v

i+1/2, j
marked as red edge. Three red
point viscous flux values of
f̂ vi+1/2, j are required to compute

F̂v
i+1/2, j by Eq. (3.7). The three

red viscous flux points require
point values of ui+1/2, j ,
∂x ui+1/2, j and ∂yui+1/2, j
residing at the red and blue points
that further need seven
reconstructed Ui+1/2, j and
∂xUi+1/2, j on the green line,
which involve all the grey cells

3.2 Algorithm for modified FVmethod

When combined with the improved fifth-order WENO FV method for hyperbolic conserva-
tion laws (Buchmüller andHelzel 2014), the present conversion formulas (3.3)–(3.7) between
point values and edge-averaged vales for the viscous fluxes suggest the following modified
dimension-by-dimension FV method for convection–diffusion equations.

Algorithm: modified FVmethod for convection–diffusion equation

(1) Compute edge-averaged values of the conserved quantity and its spatial derivatives at
cell interfaces using 1DWENO reconstructions for the convection terms and 1D central
reconstructions (CR) for the diffusion terms, respectively, i.e., compute

U±
i+ 1

2 , j
, U±

i, j+ 1
2
, and Ui+ 1

2 , j , ∂xUi+ 1
2 , j , Ui, j+ 1

2
, ∂yUi, j+ 1

2

at all cell interfaces.
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Table 1 Predicted convergence rate for different methods

Method WENOZ5+CR6+RK5

Linear convection
and diffusion terms

Nonlinear
convection term

Varying coefficient
diffusion term

Classical method 5 2 2

Modified method 4 4 4

(2) Compute point values of the conserved quantity and its derivatives at the center points
of grid cell interfaces for the convective and viscous terms, respectively, i.e., compute

u±
i+ 1

2 , j
, u±

i, j+ 1
2
, and ui+ 1

2 , j , ∂xui+ 1
2 , j , ∂yui+ 1

2 , j ,

ui, j+ 1
2
, ∂yui, j+ 1

2
, ∂xui, j+ 1

2

using the conversion formulas (3.3)–(3.5).
(3) Compute convective and viscous numerical fluxes at center points of the cell interfaces

f̂i+ 1
2 , j = F

(
u−
i+ 1

2 , j
, u+

i+ 1
2 , j

)
, ĝi, j+ 1

2
= F

(
u−
i, j+ 1

2
, u+

i, j+ 1
2

)
,

f̂ v
i+ 1

2 , j
= f v

(
ui+ 1

2 , j , ∂xui+ 1
2 , j , ∂yui+ 1

2 , j

)
,

ĝv
i, j+ 1

2
= gv

(
ui, j+ 1

2
, ∂xui, j+ 1

2
, ∂yui, j+ 1

2

)
,

where F(u−, u+) is a numerical flux function which is either the Lax–Friedrichs or
HLLC flux in this work, and f v(u,∇u) and gv(u,∇u) are the viscous flux functions
defined in differential equations.

(4) Compute edge-averaged values of convective and viscous numerical fluxes at grid cell
interfaces, i.e., compute

F̂i+ 1
2 , j , Ĝi, j+ 1

2
and F̂v

i+ 1
2 , j

, Ĝv
i, j+ 1

2

using the conversion formula (3.7).
(5) Solve the semi-discrete system (2.2), using a high-order accurate Runge–Kutta method.

In Table 1, we summarize the expected convergence rates of the standard dimension-
by-dimension FV method and the modified FV method for the approximation of linear and
nonlinear convection–diffusion equations. We use the fifth-order accurate WENO-Z recon-
struction (WENOZ5) (Borges et al. 2008; Don and Borges 2013) with the parameters q = 1
and ε = 10−40 for the convection terms, and sixth-order accurate central reconstruction
(CR6) (Vevek et al. 2019) for Ui+1/2, j (the corresponding ∂xUi+1/2, j is fifth-order accu-
rate) for the diffusion terms. To match the order of spatial accuracy, a fifth-order explicit
Runge–Kutta scheme (RK5) [see Appendix 1 in Buchmüller and Helzel (2014)] is used.

4 Numerical results

In this section, several 2D numerical examples are used to compare the performance of
the present modified dimension-by-dimension FV method and the classic dimension-by-
dimension FV method for convection–diffusion equations.
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Table 2 Convergence study for problem (4.1) with WENOZ5, CR6 and RK5

Grid Classical method Modified method

‖ū − ūexact‖1 EOC ‖ū − ūexact‖∞ EOC ‖ū − ūexact‖1 EOC ‖ū − ūexact‖∞ EOC

102 1.359 × 10−3 1.956 × 10−3 1.361 × 10−3 1.961 × 10−3

202 4.004 × 10−5 5.09 6.169 × 10−5 4.99 4.007 × 10−5 5.08 6.267 × 10−5 4.97

402 1.196 × 10−6 5.07 1.879 × 10−6 5.04 1.284 × 10−6 4.96 2.009 × 10−6 4.96

802 3.708 × 10−8 5.01 5.826 × 10−8 5.01 5.486 × 10−8 4.55 8.611 × 10−8 4.54

1602 1.159 × 10−9 5.00 1.820 × 10−9 5.00 3.102 × 10−9 4.14 4.872 × 10−9 4.14

In the following tables to show convergence studies, the norms of errors ‖ · ‖1 =∑
i, j |ūi, j − ūexacti, j |�x�y and ‖ · ‖∞ = maxi, j |ūi, j − ūexacti, j | are considered for that ‖ · ‖1

provides a global view of the errors in average and ‖ · ‖∞ gives an assessment of the very
local errors, where ū represents the numerical cell average. We compute the experimental
order of convergence (EOC) using the formula

EOC = log (‖ūm − ūexact‖/‖ū2m − ūexact‖)
log 2

,

where the index m indicates the number of grid cells in the x or y direction.

4.1 Scalar convection–diffusion problems

Several scalar convection–diffusion equations are given to verify the theoretical convergence
order of accuracy for the modified FV method as expected in Table 1. In this subsection, the

time step �t is defined by CFL�2

λ�+μ
(Chou and Shu 2007), where � = min{�x,�y} , λ is

the maximum convection speed, μ is the maximum diffusion coefficient, and CFL number
is taken to be 0.2. The Lax–Friedrichs flux for the convective terms is used.

4.1.1 Linear convection–diffusion equation

We consider the 2D linear convection–diffusion problem (Sun et al. 2006) given by

{
ut + ux + uy − μ(uxx + uyy) = 0
u(x, y, 0) = sin π (x + y)

, −1 ≤ x, y ≤ 1 (4.1)

with periodic boundary conditions.The exact solution isu(x, y, t) = exp(−2π2μt) sin π(x+
y − 2t). The final time is T = 0.5 and the diffusion coefficient μ = 0.1.

In Table 2, we show the ‖ · ‖1 and ‖ · ‖∞ errors and orders of convergence for the problem
(4.1) computed with the two FV methods. Because both the convection terms and diffusion
terms are linear in (4.1), as expected inTable 1, the classicalmethod convergeswith fifth-order
accuracy, but the modified method has achieved a little higher than the theoretical fourth-
order of accuracy on the fine grids mainly due to the interaction between the fourth-order
conversion and the sixth-order 1D reconstruction.
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Table 3 Convergence study for problem (4.2) with WENOZ5, CR6 and RK5

Grid Classical method Modified method

‖ū − ūexact‖1 EOC ‖ū − ūexact‖∞ EOC ‖ū − ūexact‖1 EOC ‖ū − ūexact‖∞ EOC

102 2.626 × 10−4 1.007 × 10−3 4.349 × 10−5 1.952 × 10−4

202 5.876 × 10−5 2.16 2.133 × 10−4 2.24 3.298 × 10−6 3.72 1.340 × 10−5 3.87

402 1.397 × 10−5 2.07 5.017 × 10−5 2.09 2.280 × 10−7 3.85 8.610 × 10−7 3.96

802 3.388 × 10−6 2.04 1.223 × 10−5 2.04 1.491 × 10−8 3.93 5.352 × 10−8 4.01

1602 8.325 × 10−7 2.03 3.019 × 10−6 2.02 9.515 × 10−10 3.97 3.347 × 10−9 4.00

4.1.2 Nonlinear convection–linear diffusion equation

We consider the 2D steady-state nonlinear convection–linear diffusion problem (Chou and
Shu 2007) given by

uux + uy − uxx = 0, 0 ≤ x, y ≤ 1. (4.2)

This problem has the steady-state solution

u(x, y,∞) = −4 tanh(y + 2x) − 1

2
,

with the exact solution imposed on the boundaries. We start from the initial condition
u(x, y, 0) = u(x, 0, 0) and compute steady-state solution by a pseudo-time marching. The
residual is defined as (Zhang and Shu 2007)

Res =
∑

i, j=1

∣∣Ri, j
∣∣

M × N
,

where Ri, j is the local residual defined as

Ri, j = ūn+1
i, j − ūni, j

�t
,

and M × N is the total number of grid cells. When Res < 10−14, the steady state is assumed
to be obtained.

In Table 3, we show the errors and grid convergence rates for problem (4.2) using the two
different methods. In this problem, the convection term is nonlinear and the diffusion term is
linear. Thus, the convergence rate of the classical method is only second order as expected in
Table 1. In comparison, the order of convergence of the modified method has nearly reached
fourth as shown in Table 3.

4.1.3 Nonlinear diffusion equation

We consider the 2D nonlinear diffusion problem (Cui et al. 2016; Sun et al. 2006) given by
⎧
⎨

⎩

ut − (uux )x − (uuy)y = s(x, y, t),
s(x, y, t) = − exp(−t) exp (x + y) − 4 exp(−2t) exp (2(x + y)) ,

u(x, y, 0) = exp(x + y),
0 ≤ x, y ≤ 1. (4.3)
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Table 4 Convergence study for problem (4.3) with WENOZ5, CR6 and RK5

Grid Classical method Modified method

‖ū − ūexact‖1 EOC ‖ū − ūexact‖∞ EOC ‖ū − ūexact‖1 EOC ‖ū − ūexact‖∞ EOC

102 3.197 × 10−4 5.791 × 10−4 1.457 × 10−6 2.639 × 10−6

202 6.859 × 10−5 2.22 1.335 × 10−4 2.12 7.794 × 10−8 4.22 1.517 × 10−7 4.12

402 1.580 × 10−5 2.12 3.192 × 10−5 2.06 4.485 × 10−9 4.12 9.062 × 10−9 4.07

802 3.785 × 10−6 2.06 7.794 × 10−6 2.03 2.684 × 10−10 4.06 5.553 × 10−10 4.03

1602 9.259 × 10−7 2.03 1.926 × 10−7 2.02 1.634 × 10−11 4.04 3.404 × 10−11 4.02

Table 5 Convergence study for problem (4.4) with WENOZ5, CR6 and RK5

Grid Classical method Modified method

‖ū − ūexact‖1 EOC ‖ū − ūexact‖∞ EOC ‖ū − ūexact‖1 EOC ‖ū − ūexact‖∞ EOC

102 1.920 × 10−3 5.673 × 10−3 1.348 × 10−4 3.345 × 10−4

202 5.060 × 10−4 1.92 1.666 × 10−3 1.77 8.068 × 10−6 4.06 2.442 × 10−5 3.78

402 1.290 × 10−4 1.97 4.806 × 10−4 1.80 5.008 × 10−7 4.01 1.653 × 10−6 3.88

802 3.251 × 10−5 1.99 1.266 × 10−4 1.93 3.131 × 10−8 4.00 1.060 × 10−7 3.96

1602 8.158 × 10−6 1.99 3.212 × 10−5 1.98 1.958 × 10−9 4.00 6.753 × 10−9 3.97

Dirichlet boundary conditions are implemented based on the exact solution u(x, y, t) =
exp(−t) exp(x + y). The final time is T = 0.5.

In Table 4, we show the errors and grid convergence rates for problem (4.3) obtained by the
two different methods. Equation (4.3) has only nonlinear diffusion terms. One can observe
that the computed EOCs agree with the expectations in Table 1. The convergence rate for the
classical method is second order, while that for the modified method attains fourth order as
shown in Table 4.

4.1.4 Linear diffusion equation with space-dependent coefficients

We consider the 2D linear diffusion problem with space-dependent coefficients (Xie and
Zhang 2018) given by
⎧
⎨

⎩

ut − [(x + y)ux ]x − [
(x + y)uy

]
y = s(x, y, t),

s(x, y, t) = − exp(−2t) [2(x + y − 1) sin(x + y) − 2 cos(x + y)] ,
u(x, y, 0) = sin(x + y),

0 ≤ x, y ≤ 2π,

(4.4)

with periodic boundary conditions. The exact solution is u(x, y, t) = exp(−2t) sin(x + y).
The final time is T = 0.5.

We remark that while the pure space-dependent coefficients can lead to loss of accuracy in
the classic dimension-by-dimension FV method, they can be easily evaluated at edge center
points and used in the conversion (3.7) from edge center values to edge averaged vales for
the viscous fluxes.

In Table 5, we show the errors and grid convergence rates for problem (4.4) calculatedwith
the two different methods. Note that the diffusion terms are linear, however, they are with
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Table 6 Convergence study for problem (4.5) with WENOZ5, CR6 and RK5

Grid Classical method Modified method

‖ū − ūexact‖1 EOC ‖ū − ūexact‖∞ EOC ‖ū − ūexact‖1 EOC ‖ū − ūexact‖∞ EOC

102 3.226 × 10−3 9.202 × 10−3 1.735 × 10−4 5.365 × 10−4

202 8.508 × 10−4 1.92 2.487 × 10−3 1.89 1.179 × 10−5 3.88 3.786 × 10−5 3.82

402 2.152 × 10−4 1.98 6.344 × 10−4 1.97 7.469 × 10−7 3.98 2.428 × 10−6 3.96

802 5.397 × 10−5 2.00 1.592 × 10−4 1.99 4.680 × 10−8 4.00 1.546 × 10−7 3.97

1602 1.350 × 10−5 2.00 3.981 × 10−5 2.01 2.927 × 10−9 4.00 9.751 × 10−9 3.99

space-dependent diffusion coefficient in Eq. (4.4). As expected in Table 1, the convergence
rate for the classical method is second order and that for the modified method is fourth order
as shown in Table 5.

4.1.5 Nonlinear convection–diffusion equation

We consider the 2D nonlinear convection–diffusion problem (Sun et al. 2006; Cui et al. 2016)
given by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut + uux + uuy − [(1 + xy + u)ux ]x − [
(1 + xy + u)uy

]
y = s(x, y, t),

s(x, y, t) = − exp(−t) sin(πx) sin(π y) + 2π2 exp(−t)(1 + xy) sin(πx) sin(π y)

−π y exp(−t) cos(πx) sin(π y) − πx exp(−t) sin(πx) cos(π y)

−π2 exp(−2t)
[
cos(2πx) sin2(π y) + sin2(πx) cos(2π y)

]

+ π
2 exp(−2t)

[
sin(2πx) sin2(π y) + sin2(πx) sin(2π y)

]
,

u(x, y, 0) = sin(πx) sin(π y),

0≤ x, y≤2

(4.5)

with periodic boundary conditions. The exact solution is u(x, y, t) = exp(−t) sin(πx) sin
(π y). The final time is T = 0.5.

In Table 6, we show the errors and grid convergence rates for problem (4.5) using the
two different methods. In Eq. (4.5), both the convection terms and the diffusion terms are
nonlinear. Thus, as expected in Table 1, the convergence rates for the classical method and
the modified method are second and fourth order separately. The results in Table 6 confirm
the above prediction.

4.2 2D Navier–Stokes equations

In this subsection, we consider the 2D compressible Navier–Stokes equations

Ut + ∇ · F(U ) = ∇ · Fv(U ,∇U ) + S, (4.6)

with the vector of the conservative variables U , the inviscid fluxes F = (
F1, F2

)T
and the

viscous fluxes Fv = (
Fv
1 , Fv

2

)T
are given by
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U =

⎛

⎜
⎜
⎝

ρ

ρv1
ρv2
ρE

⎞

⎟
⎟
⎠ , F	(U ) =

⎛

⎜
⎜
⎝

ρv	

ρv1v	 + δ1	 p
ρv2v	 + δ2	 p
v	(ρE + p)

⎞

⎟
⎟
⎠ , Fv

	 (U ,∇U ) =

⎛

⎜
⎜
⎝

0
τ1	
τ2	

τ	1v1 + τ	2v2 − q	

⎞

⎟
⎟
⎠ ,

(4.7)

with 	 = 1, 2. The viscous stress tensor is given by

ø = μ

(
∇v + (∇v)T − 2

3
(∇ · v)I

)
, (4.8)

where I is the identity matrix, and the heat flux is by q = (
q1, q2

)T
with

q1 = −k
∂T

∂x
, q2 = −k

∂T

∂ y
, with k = μcp

Pr
. (4.9)

In this paper, the dynamic viscosity μ, the Prandtl number Pr , the ratio of specific heats
γ = cp

cν
with the specific heats cp and cν are all supposed to be constant. The system is closed

with the equation of state of perfect gas

p = ρRT = (γ − 1)ρ

(
E − 1

2
v · v

)
, and E = 1

2
v · v + cνT , (4.10)

with the specific gas constant R = cp − cν . And the viscous fluxes are rewritten in the form

Fv(U ,∇U ) = D∇U = (
D11Ux + D12Uy, D21Ux + D22Uy

)
, (4.11)

where the solution-dependent matrix D is given by (Gassner et al. 2008; Yue et al. 2017)

D =
(
D11 D12

D21 D22

)
with

D11 = μ

ρ

⎛

⎜⎜
⎝

0 0 0 0
− 4

3v1
4
3 0 0

−v2 0 1 0( 4
3v

2
1 + v22 + γ

Pr (E − v2)
)

( 43 − γ
Pr )v1 (1 − γ

Pr )v2
γ
Pr

⎞

⎟⎟
⎠ ,

D12 = μ

ρ

⎛

⎜⎜
⎝

0 0 0 0
2
3v2 0 − 2

3 0
−v1 1 0 0

− 1
3v1v2 v2 − 2

3v1 0

⎞

⎟⎟
⎠ , D21 = μ

ρ

⎛

⎜⎜
⎝

0 0 0 0
−v2 0 1 0
2
3v1 − 2

3 0 0
− 1

3v1v2 − 2
3v2 v1 0

⎞

⎟⎟
⎠ ,

D22 = μ

ρ

⎛

⎜⎜
⎝

0 0 0 0
−v1 1 0 0
− 4

3v2 0 4
3 0

− (
v21 + 4

3v
2
2 + γ

Pr (E − v2)
)

(1 − γ
Pr )v1 ( 43 − γ

Pr )v2
γ
Pr

⎞

⎟⎟
⎠ , (4.12)

which indicates that the viscous fluxes Fv(U ,∇U ) are nonlinear about U .
For the numerical solution of the system (4.6) on Cartesian grids, the time step is evaluated

from (Blazek 2005)

�t = CFL · �x�y

max∀i, j

[
λx
i, j�y + λ

y
i, j�x + 2max

(
4

3ρi, j
,

γ
ρi, j

)
μ
Pr

] , (4.13)
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Table 7 Convergence study for exact solution (4.14) of N–S equations (4.6) with WENOZ5, CR6 and RK5

Grid Classical method Modified method

‖ū − ūexact‖1 EOC ‖ū − ūexact‖∞ EOC ‖ū − ūexact‖1 EOC ‖ū − ūexact‖∞ EOC

102 2.553 × 10−3 6.248 × 10−3 3.427 × 10−3 7.507 × 10−3

202 3.863 × 10−4 2.72 7.024 × 10−4 3.15 1.324 × 10−4 4.69 2.604 × 10−4 4.85

402 1.223 × 10−4 1.66 2.111 × 10−4 1.73 3.262 × 10−6 5.34 6.607 × 10−6 5.30

802 3.169 × 10−5 1.95 5.414 × 10−5 1.96 5.952 × 10−8 5.78 1.370 × 10−7 5.59

1602 7.945 × 10−6 2.00 1.358 × 10−5 2.00 2.430 × 10−9 4.61 6.187 × 10−9 4.47

where λx
i, j and λ

y
i, j denote the maximum local eigenvalues of the inviscid Jacobian matrices

in the x and y directions, respectively. CFL number is taken to be 0.5. The HLLC numerical
flux for the convective terms is used in this section.

4.2.1 Smooth nonlinear problem

To investigate the experimental order of convergence of the proposed modified method, an
inhomogeneous problem for the 2D Navier–Stokes equations with source terms is chosen
(Gassner et al. 2008). The exact solution to Eq. (4.6) is chosen to be

U =

⎛

⎜⎜
⎝

sin (2(x + y) − t) + 4
sin (2(x + y) − t) + 4
sin (2(x + y) − t) + 4

(sin (2(x + y) − t) + 4)2

⎞

⎟⎟
⎠ (4.14)

with the source terms given as follows:

S =

⎛

⎜⎜
⎝

3 cos (2(x + y) − t)
cos (2(x + y) − t) (14γ − 9) + sin (4(x + y) − 2t) (2γ − 2)
cos (2(x + y) − t) (14γ − 9) + sin (4(x + y) − 2t) (2γ − 2)

cos (2(x + y) − t) (28γ − 4) + sin (4(x + y) − 2t) (4γ − 1) + 8μγ
Pr sin (2(x + y) − t)

⎞

⎟⎟
⎠ .

(4.15)

Additionally, the computational domain is chosen to be [0, π]2, γ = 1.4, Pr = 0.72 andμ =
1.0 with periodic boundary conditions. The final time is T = 0.5.

Table 7 shows the errors and grid convergence rates of the two FVmethods for computing
the N–S equations (4.6) with the source term (4.15). It is known that the N–S equations (4.6)
have nonlinear convection terms and nonlinear diffusion terms. Thus the classical dimension-
by-dimension FV method has only second order of accuracy. In comparison, the modified
FV method can attain fourth order of accuracy. But we observe that the convergence rate of
the modified FV method is more than fourth order because of the interaction between the
conversion formula and the 1D reconstruction. One can conclude that the numerical results
completely achieve the theoretically expected order of accuracy.

4.2.2 Shock/mixing layer interaction

We test the performance of ourmodified FVmethod for the interactions between shockwaves
and shear layers (Yee et al. 1999; Lo et al. 2010).

123



A high-order modified finite-volume method… Page 17 of 20   214 

Fig. 3 Comparison of the classic methodwith themodifiedmethod for shock/mixing layer interaction problem
at T = 120 on the 400 × 80 grid. Density contours and numerical schlieren |∇ρ| are shown, and WENOZ5
and sixth-order central reconstructions (CR6) as well as RK5 are used in both methods

A spatially developing mixing layer has an initial convective Mach number of 0.6, and a
12◦ oblique shock originating from the upper-left corner interacts with the vortices developed
from the instability of the shear layer. The initial conditions are given in Table 3.2 of Yee
et al. (1999). The oblique shock is refracted by the shear layer and then reflects from the
bottom slip wall, and transmits the shear layer again. To avoid boundary layer formation, the
lower wall uses a slip condition, the upper boundary condition is taken from the flow states
behind the oblique shock, and the outflow boundary is arranged to be supersonic.
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The inflow boundary condition has a velocity profile with fluctuations,

v1 = 2.5 + 0.5 tanh(2y), v2 = v′
2,

v′
2 =

2∑

k=1

ak cos(2πkt/τ + φk) exp(−y2/b) (4.16)

with period τ = λ/uc, wavelength λ = 30, and convective velocity uc = 2.68. Other
constants are a1 = a2 = 0.05, φ1 = 0, φ2 = π/2 and b = 10. The Prandtl number Pr
= 0.72, and the Reynolds number Re = 500. This case was run on a [0, 200] × [−20, 20]
domain with a 400 × 80 uniform grid, and the finial output time is t = 120.

Figure 3 shows the density contours and numerical Schlieren |∇ρ| for this example com-
puted using the two different methods. We can observe that the shock makes the bulk of
the vortices shift towards the lower side due to high pressure after the shock. The results
computed by the two methods are in good agreement with other simulations (Yee et al. 1999;
Lo et al. 2010). We also see that the modified method has almost the same resolution as the
classical method on the uniform grid, which suggests that the conversion formulas do not
cause any numerical difficulty for the interactions of shock wave and shear layer.

5 Conclusions

We have extended the modified dimension-by-dimension finite-volume method on Cartesian
grids to nonlinear convection–diffusion equations. The present modified finite-volume (FV)
method uses one-dimensional central reconstruction of conservative variables for diffusion
terms. Fourth-order conversions between edge-averaged values and edge center values of
the conservative variables, their gradients and viscous fluxes guarantee that edge-averaged
numerical viscous fluxes have fourth-order accuracy. Moreover, it only needs one flux eval-
uation per grid cell interface such that the method is slightly more expensive than the
classical dimension-by-dimension FV method. The numerical tests show that the modi-
fied FV method achieves the expected order of accuracy when applied to smooth nonlinear
convection–diffusion problems and is robust for calculating non-smooth nonlinear problems
like shock/mixing layer interaction. The proposed modified FV method on Cartesian grids
is suitable for high-order accurate numerical simulation of viscous shocked flows.
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