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a b s t r a c t 

When using the conventional direction splitting method to calculate multidimensional high speed gas- 

dynamical flows, Riemann solvers capable of resolving contact surface and shear wave accurately will 

suffer from different forms of shock instability, such as the notorious carbuncle phenomenon. The stabil- 

ity analysis shows that the lack of dissipation in the direction transverse to the shock front leads to the 

shock instability of low-dissipation HLLEM solver. To overcome this defect, an accurate and carbuncle- 

free genuinely two-dimensional HLL-type Riemann solver is proposed. Using Zha-Bilgen splitting method, 

the flux vector of two-dimensional Euler equations is split into the convective flux and pressure flux. An 

algorithm similar to AUSM+ scheme is adopted to calculate the convective flux and the pressure flux is 

calculated by the low-dissipation HLLEM scheme. Following Balsara’s idea, the genuinely two-dimensional 

properties of the new solver are achieved by solving the two-dimensional Riemann problem that consid- 

ers transversal features of the flow at each vertex of the cell interface. Numerical results of benchmark 

tests demonstrate that the new solver has higher resolution and better robustness than the conventional 

HLLEM solver implemented in dimension by dimension. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

At present, the Godunov-type numerical method based on ap- 

roximate Riemann solvers has been widely used in simulations 

f compressible flows in both research and engineering applica- 

ions. Some renowned Riemann solvers include Roe [1] , HLL [2] , 

LLE [3] , HLLEM [4] , HLLC [5] and AUSM-family schemes [6–9] , 

tc. Among them, the HLL-type Riemann solvers are favored by 

any researchers due to their advantages in calculations, such as 

implicity, positivity, entropy satisfying property and so on [10] . 

lthough almost all HLL-type schemes can satisfactorily capture 

on-linear waves, shock wave or rarefaction wave, they can be di- 

ided into two categories according to their ability to resolve linear 

aves. The incomplete-wave HLL-type solvers, including HLL, HLLE, 

LL-CPS [11] , HLLEC and HLLES [12] , omit one or both of these lin-

ar waves and thus are incapable of resolving contact discontinu- 

ty or shear wave. The complete-wave HLL-type Riemann solvers, 

ncluding HLLEM, HLLC, HLLE+ [13] , HLLI [14] , are capable of re- 

olving contact wave and shear wave and thus can accurately cal- 
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ulate flow problems involving shear-dominated phenomena, vor- 

ices, flame fronts, material interfaces, mixing layers, etc [10] . 

Nevertheless, when calculating multidimensional strong shock 

ave problems these complete-wave HLL-type Riemann solvers 

ill suffer from different forms of shock instability, includ- 

ng the infamous carbuncle phenomenon. Some attempts to 

ave these low-dissipation HLL-type schemes from shock anoma- 

ies include hybridizations with dissipative schemes [15–18] , 

issipation-controlling technologies [10,12] , selective wave modifi- 

ation method [19] , artificial viscosity method [20,21] , addition of 

hear viscosity [22] , normal velocity reconstruction strategy [23] , 

tc. These strategies have successfully cured the shock instability 

y increasing the numerical dissipation of the original schemes. 

owever, they should be used with caution in calculations since 

he numerical dissipation out of place could sacrifice the accuracy 

or contact surface and shear layer. 

In calculations of multidimensional problems, these conven- 

ional low-dissipation schemes implemented in dimension by di- 

ension only consider the waves travelling orthogonal to the cell 

nterface and fail to provide sufficient crossflow dissipation to 

ampen the perturbations that trigger the shock instability. Thus, 

onstructing the genuinely multidimensional Riemann solvers that 

lso consider the waves transverse to the cell interface has become 

https://doi.org/10.1016/j.compfluid.2020.104719
http://www.ScienceDirect.com
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 good strategy to improve the resolution and robustness of nu- 

erical schemes [24,25] . Early attempts include the introduction 

f multidimensionality into one-dimensional solvers [26,27] , cor- 

er transport method by Collela [24] , Leveque’s multidimensional 

ave propagation algorithm [28] , weighted average flux method 

roposed by Billet and Toro [29] , Wendroff’s HLLE solver for mul- 

idimensional hypersonic conservative laws [30] , multidimensional 

inearized Roe schemes by Fey [31] and Brio [25] . Although these 

ultidimensional schemes exhibit some advantages over the con- 

entional one-dimensional schemes, they do not enjoy great pop- 

larity in practice due to their mathematical complexity and thus 

nsatisfactory computational efficiency. 

Recently, Balsara [32] proposes a genuinely two-dimensional 

LLE solver which is simple and easy to implement due to its 

losed form. The multidimensionality of the solver is achieved by 

efining and solving a two-dimensional Riemann problem at each 

ertex of the cell interface. A three-dimensional version is also pro- 

osed later by the author in [33] . In order to restore the con-

act wave omitted by the multidimensional HLLE solver, Balsara 

34] proposes a genuinely two-dimensional HLLC solver capable of 

esolving contact wave accurately by following the conventional 

ne-dimensional HLLC scheme. To avoid specifying the direction 

f contact discontinuity in calculations, Balsara later constructs 

he multidimensional Riemann solver with self-similarity variables 

o solve hyperbolic conservation laws [35,36] . Following Balsara’s 

dea, Gallardo et al. adopt the AVM (Approximate Viscosity Ma- 

rix) method to construct a class of genuinely two-dimensional 

ncomplete-wave Riemann solvers and apply them to the numeri- 

al simulations of magnetohydrodynamic flows [37] . Adopting Zha- 

ilgen convective-pressure flux splitting method [38] , Mandal and 

harma [39] propose a two-dimensional HLL-CPS scheme and the 

ersion in curvilinear coordinates is implemented successfully by 

u et al. [40] . The genuinely two-dimensional HLL-CPS solvers 

ased on Toro-Vázquez convective-pressure flux splitting method 

re developed in Cartesian coordinates [41] and curvilinear coordi- 

ates [42] . These multidimensional HLL-CPS Riemann solvers based 

n convective-pressure flux splitting method are simple and inex- 

ensive but their capabilities to resolve shear wave should be fur- 

her improved due to the incomplete wave structure of HLL-CPS 

cheme. 

In this paper, an accurate and carbuncle-free genuinely two- 

imensional HLLEM Riemann solver based on Zha-Bilgen splitting 

rocedure, called GT-HLLEM-Z, is proposed. The convective flux is 

alculated by an algorithm similar to AUSM+ scheme and the pres- 

ure flux is calculated by the complete-wave HLLEM solver. Follow- 

ng Balsara’s idea, the two-dimensional Riemann problem that con- 

iders the transversal features of the flow at each vertex of the cell 

nterface is solved to achieve the multidimensionality. The outline 

f the paper is as follows. After some preliminaries in Section 2 , 

he capability of two HLL-type Riemann solvers to capture invis- 

id shear wave is investigated in Section 3 . In Section 4 , the sta-

ility analysis to explore the causes of shock instability is con- 

ucted. Section 5 introduces the construction of a genuinely two- 

imensional HLLEM Riemann solver. The results of several numer- 

cal tests are presented in Section 6 . Finally, the conclusions are 

rawn in Section 7 . 

. Preliminaries 

The two-dimensional Euler equations that describe inviscid 

ompressible flows can be expressed as 

∂U 

∂t 
+ 

∂ F (U ) 

∂x 
+ 

∂ G (U ) 

∂y 
= 0 , (2.1) 
2 
ith 

 = 

⎡ 

⎢ ⎣ 

ρ
ρu 

ρv 
E 

⎤ 

⎥ ⎦ 

, F (U ) = 

⎡ 

⎢ ⎣ 

ρu 

ρu 

2 + p 
ρu v 

u (E + p) 

⎤ 

⎥ ⎦ 

, G (U ) = 

⎡ 

⎢ ⎣ 

ρv 
ρu v 

ρv 2 + p 
v (E + p) 

⎤ 

⎥ ⎦ 

, (2.2) 

here ρ , u, v, p and E denote density, x -velocity, y -velocity, pres- 

ure and total energy. The system is closed through the equation 

f state for ideal gas 

p = (γ − 1) 
[ 

E − 1 

2 

ρ
(
u 

2 + v 2 
)] 

, (2.3) 

here the specific heat ratio γ = 1 . 4 . 

.1. Finite volume discretization 

The integral form of (2.1) is 

d 

dt 

∫ 
�

U d� + 

∮ 
∂�

[ ( F , G ) · n ] dl = 0 , (2.4) 

here � denotes a control volume bounded by ∂�, dl denotes an 

nfinitesimal line element on ∂� and n is the outward unit normal 

ector to ∂�. 

Using the uniform Cartesian grid with mesh spacings �x and 

y to partition the computational domain, the finite volume dis- 

retization for (2.4) can be written as 

dU i, j 

dt 
= − 1 

�x 

(
F i +1 / 2 , j − F i −1 / 2 , j 

)
− 1 

�y 

(
G i, j+1 / 2 − G i, j−1 / 2 

)
, (2.5) 

here U i,j is the volume-averaged value of U , F i +1 / 2 , j and F i −1 / 2 , j 

enote numerical fluxes at cell interfaces (i + 1 / 2 , j) and (i −
 / 2 , j) , G i, j+1 / 2 and G i, j−1 / 2 are numerical fluxes at cell interfaces

i, j + 1 / 2) and (i, j − 1 / 2) . In the following, the flux functions of

wo HLL-type Riemann solvers are reviewed in brief. 

.2. HLLEM solver 

Einfeldt et al. [4] propose a complete-wave HLLEM solver that 

s capable of capturing contact discontinuity and shear wave. The 

ux function is as follows 

 1 / 2 = 

S R F L − S L F R 
S R − S L 

+ 

S L S R 
S R − S L 

(U R − U L − δ2 α2 R 2 − δ3 α3 R 3 ) , (2.6) 

here S L and S R are the smallest and largest wave speeds, R 2,3 

enote the right eigenvectors corresponding to linear degenerate 

elds, α2,3 denote the wave strengths and δ2,3 are coefficients to 

ontrol the amount of dissipation. Their expressions are as fol- 

ows 

S L = min (0 , u L − a L , ˜ u − ˜ a ) , S R = max (0 , u R + a R , ˜ u + 

˜ a ) , 

 2 = 

⎡ 

⎢ ⎣ 

1 

˜ u 

˜ v 
˜ u 2 + ̃ v 2 

2 

⎤ 

⎥ ⎦ 

, R 3 = 

⎡ 

⎢ ⎣ 

0 

0 

1 

˜ v 

⎤ 

⎥ ⎦ 

, 

2 = �ρ − �p 

˜ a 2 
, α3 = ˜ ρ�v , 

δ2 = δ3 = 

˜ a 

˜ a + | ̃  u | , (2.7) 

here �(·) = (·) R − (·) L and the Roe’s averaged variables ˜ (·) are 

iven by Roe [1] , 

˜ = 

√ 

ρ
L 
ρ

R 
, 

˜ u = 

√ 

ρL u L + 

√ 

ρR u R √ 

ρL + 

√ 

ρR 

, 

˜ v = 

√ 

ρL v L + 

√ 

ρR v R √ 

ρL + 

√ 

ρR 

, 
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 = 

√ 

ρL H L + 

√ 

ρR H R √ 

ρL + 

√ 

ρR 

, 

˜ a = 

√ 

(γ − 1) 
[ 

˜ H − 1 

2 

(
˜ u 

2 + ̃

 v 2 
)] 

, (2.8) 

ith H = (E + p) /ρ being the total enthalpy. 

.3. HLL-CPS solver 

Mandal and Panwar [11] propose a new incomplete-wave HLL- 

PS Riemann solver based on convective-pressure splitting method. 

dopting Zha-Bilgen splitting procedure [38] , the flux vector is 

plit into convective flux and pressure flux as follows 

 (U ) = 

⎡ 

⎢ ⎣ 

ρu 

ρu 

2 + p 
ρu v 

u (E + p) 

⎤ 

⎥ ⎦ 

= 

⎡ 

⎢ ⎣ 

ρu 

ρu 

2 

ρu v 
uE 

⎤ 

⎥ ⎦ 

+ 

⎡ 

⎢ ⎣ 

0 

p 
0 

up 

⎤ 

⎥ ⎦ 

= F 1 + F 2 . (2.9) 

The convective flux of the HLL-CPS solver is evaluated as fol- 

ows 

 1(1 / 2) = M ∗

⎡ 

⎢ ⎣ 

ρ
ρu 

ρv 
E 

⎤ 

⎥ ⎦ 

k 

a ∗, (2.10) 

here 

 ∗ = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

ū 

ū − S L 
if ū � 0 , 

ū 

ū − S R 
if ū < 0 , 

(2.11) 

 ∗ = 

{ 

u L − S L if ū � 0 , 

u R − S R if ū < 0 , (2.12) 

nd 

 = 

{
L if ū � 0 , 

R if ū < 0 , 
(2.13) 

ith ū = (u L + u R ) / 2 . 

The pressure flux of the HLL-CPS solver is evaluated based on 

LL solver but using the isentropic condition ā 2 = δp/δρ, the den- 

ity difference in the numerical diffusive term is replaced with the 

ressure difference for resolving contact discontinuity. The pres- 

ure flux can be expressed as 

 2(1 / 2) = 

1 

2 

(F 2 L + F 2 R ) + δU 2 , (2.14) 

here 

U 2 = 

S R + S L 
2(S R − S L ) 

(F 2 L − F 2 R ) 

− S L S R 
ā 2 (S R − S L ) 

⎡ 

⎢ ⎣ 

p L − p R 
(pu ) L − (pu ) R 
(pv ) L − (pv ) R 

ā 2 

γ −1 
(p L − p R ) + 

1 
2 

[(pu 2 + pv 2 ) L − (pu 2 + pv 2 ) R ] 

⎤ 

⎥ ⎦ 

. 

(2.15) 

he choices of wave speeds S L and S R are the same as HLLEM 

olver, defined in (2.7) . Thus, the total flux of HLL-CPS solver at 

 cell interface can be written as 

 = F + 

1 

(F + F ) + δU . (2.16) 
1 / 2 1(1 / 2) 
2 

2 L 2 R 2 

3 
. Numerical dissipation analysis of HLL-type Riemann solvers 

In this section, we discuss the ability of HLLEM and HLL-CPS 

olvers for preserving inviscid contact since it is a prerequisite for 

ccurate resolution of viscous flows. For this purpose, a simple 

wo-dimensional inviscid shear wave model is set up, i.e., 

ρ, u, v , p) K,J = 

{
(ρL , 0 , v L , p 0 ) K = I, 
( ρR , 0 , v R , p 0 ) K = I + 1 . 

(3.1) 

n order to investigate the dissipative property of HLLEM and HLL- 

PS solvers for this simple model problem, we rewrite the flux 

unction into a form that shows dissipation term explicitly 

 1 / 2 = 

1 

2 

(F L + F R ) + D 1 / 2 , (3.2) 

here D 1/2 denotes the numerical diffusion term. 

.1. Numerical dissipation of HLLEM scheme 

For the flux function of HLLEM solver in (2.6) , the numerical 

iffusion term D 1/2 can be written as 

 1 / 2 = 

S R + S L 
2(S R − S L ) 

(F L − F R ) + 

S L S R 
S R − S L 

(U R − U L − δ2 α2 R 2 − δ3 α3 R 3 ) . 

(3.3) 

or the model problem (3.1) , we have 

 L = 

⎡ 

⎢ ⎣ 

0 

p 0 
0 

0 

⎤ 

⎥ ⎦ 

= F R , U L = 

⎡ 

⎢ ⎣ 

ρL 

0 

ρL v L 
p 0 

γ −1 
+ 

1 
2 
ρL v 2 L 

⎤ 

⎥ ⎦ 

, U R = 

⎡ 

⎢ ⎣ 

ρR 

0 

ρR v R 
p 0 

γ −1 
+ 

1 
2 
ρR v 2 R 

⎤ 

⎥ ⎦ 

(3.4) 

nd 

δ2 = δ3 = 1 , 

α2 = �ρ, α3 = ˜ ρ�v , 

R 2 = 

⎡ 

⎢ ⎣ 

1 

0 
˜ v 
˜ v 2 
2 

⎤ 

⎥ ⎦ 

, R 3 = 

⎡ 

⎢ ⎣ 

0 

0 

1 
˜ v 

⎤ 

⎥ ⎦ 

. 

(3.5) 

ubstituting (3.4) and (3.5) into (3.3) , we obtain 

 1 / 2 = 

S L S R 
S R − S L 

⎡ 

⎢ ⎣ 

0 

0 

(ρR v R − ρL v L ) − ( ̃ v �ρ + ˜ ρ�v ) 
1 
2 
(ρR v 2 R − ρL v 2 L ) − 1 

2 
( ̃ v 2 �ρ + 2 ̃  ρ ˜ v �v ) 

⎤ 

⎥ ⎦ 

. (3.6) 

onsidering the definitions of Roe’s averaged variables given by 

2.8) , we have 

˜ 
 �ρ + ˜ ρ�v = 

√ 

ρL v L + 

√ 

ρR v R √ 

ρL + 

√ 

ρR 

· �ρ + 

√ 

ρL ρR · �v 

= 

( 
√ 

ρL v L + 

√ 

ρR v R )( 
√ 

ρR − √ 

ρL ) 

( 
√ 

ρL + 

√ 

ρR )( 
√ 

ρR − √ 

ρL ) 
· �ρ+ 

√ 

ρL ρR · �v 

= 

ρR v R −ρL v L − √ 

ρL ρR (v R − v L ) 
�ρ

· �ρ + 

√ 

ρL ρR · �v 

= ρR v R − ρL v L (3.7) 

nd 

R v 2 R − ρL v 2 L = ( 
√ 

ρR v R + 

√ 

ρL v L )( 
√ 

ρR v R −
√ 

ρL v L ) 

= 

√ 

ρR v R + 

√ 

ρL v L √ 

ρL + 

√ 

ρR 

( 
√ 

ρL + 

√ 

ρR )( 
√ 

ρR v R −
√ 

ρL v L ) 

= 

˜ v [ ρR v R − ρL v L + 

√ 

ρL ρR (v R − v L ) ] 
= 

˜ v ( ̃ v �ρ + ˜ ρ�v + ˜ ρ�v ) 
= 

˜ v 2 �ρ + 2 ̃  ρ ˜ v �v , (3.8) 
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hen D 1 / 2 = 0 in (3.6) and thus HLLEM solver can resolve this in-

iscid shear wave exactly. 

.2. Numerical dissipation of HLL-CPS scheme 

For the flux function of HLL-CPS solver in (2.16) , the numerical 

iffusion term D 1/2 can be written as 

 1 / 2 = 

S R + S L 
2(S R − S L ) 

(F 2 L − F 2 R ) 

− S L S R 
ā 2 (S R − S L ) 

⎡ 

⎢ ⎣ 

p L − p R 
(pu ) L − (pu ) R 
(pv ) L − (pv ) R 

ā 2 

γ −1 
(p L − p R ) + 

1 
2 

[(pu 2 + pv 2 ) L − (pu 2 + pv 2 ) R ] 

⎤ 

⎥ ⎦ 

.

(3.9)

For the model problem (3.1) , we have 

 L = 

⎡ 

⎢ ⎣ 

0 

p 0 
0 

0 

⎤ 

⎥ ⎦ 

= F R . (3.10) 

Substituting (3.10) and the initial distribution (3.1) into (3.9) , we 

an obtain 

 1 / 2 = 

S L S R 
ā 2 (S R − S L ) 

⎡ 

⎢ ⎣ 

0 

0 

p 0 (v R − v L ) 
1 
2 

p 0 (v 2 R − v 2 L ) 

⎤ 

⎥ ⎦ 

, (3.11) 

hen D 1/2 � = 0 in (3.11) and thus HLL-CPS solver fails to capture

his inviscid shear wave. Therefore, the genuinely two-dimensional 

iemann solvers based on HLL-CPS method in [39–42] need to be 

urther improved for the resolution of shear wave, which is also 

emonstrated by results of numerical experiment in Section 6.7 . 

. Mechanism analysis of numerical shock instability 

The above numerical dissipation analysis shows that the HLLEM 

olver can capture contact discontinuity and shear wave accurately. 

owever, the disgusting shock instability will occur when using 

t to calculate multidimensional strong shock wave problems. In 

hat follows, the causes of shock instability in the HLLEM scheme 

ill be analyzed in depth. 

.1. Local stability analysis 

The odd-even decoupling problem proposed by Quirk [15] is a 

enchmark test for robustness of numerical schemes and thus the 

apability to dampen perturbations with saw-tooth initial profile 

as become a standard for judging the shock stability of schemes. 

ifferent from analyses conducted in [10,12,15,43] where only the 

volution patterns of perturbations in the transverse direction are 

iscussed, the evolution patterns of perturbations in both stream- 

ise and transverse directions are sought for in the present work. 

Suppose at t n , a plane uniform flow travels in the x -direction 

ith velocity u 0 = M 0 a 0 while the velocity in the y -direction v 0 =
 , where M 0 and a 0 are Mach number and sound speed. The den-

ity and pressure of the fluid are ρ0 and p 0 , respectively. 

.1.1. Evolution patterns of perturbations in the streamwise direction 

Firstly, the perturbations with saw-tooth profile are introduced 

n the x -direction (streamwise direction). The perturbed flow field 

s set as 
 

(ρ, u, v , p) i −1 , j = (ρ0 , u 0 , 0 , p 0 ) − ( ̂  ρn , ˆ u 

n , ̂  v n , ˆ p n ) , 
(ρ, u, v , p) i, j = (ρ0 , u 0 , 0 , p 0 ) + ( ̂  ρn , ˆ u 

n , ̂  v n , ˆ p n ) , 
(ρ, u, v , p) i +1 , j = (ρ0 , u 0 , 0 , p 0 ) − ( ̂  ρn , ˆ u 

n , ̂  v n , ˆ p n ) , 
(4.1) 
4 
here ˆ ρn , ˆ u n , ˆ v n and ˆ p n are perturbation variables at t n . Since 

here is no perturbation in the y -direction, both G i, j−1 / 2 and 

 i, j+1 / 2 are equal to zero. Using the forward Euler method to dis- 

rete time, then the semi-discrete Eq. (2.5) can be written as 

 

n +1 
i, j 

= U 

n 
i, j − σx 

(
F i +1 / 2 , j − F i −1 / 2 , j 

)
, (4.2) 

here σx = �t/ �x and �t is the time step. 

Calculating numerical fluxes F i −1 / 2 , j and F i +1 / 2 , j with the 

LLEM solver and substituting them into (4.2) , the evolution pat- 

erns of perturbation variables can be obtained. 

In the case of supersonic condition ( M 0 > 1), the evolutionary 

quations of perturbation variables are as follows 

 

 

 

ˆ ρ
ˆ u 
ˆ v 
ˆ p 

⎤ 

⎥ ⎦ 

n +1 

= 

⎛ 

⎜ ⎝ 

1 − 2 σx u 0 −2 σx ρ0 0 0 

0 1 − 2 σx u 0 0 − 2 σx 

ρ0 

0 0 1 − 2 σx u 0 0 

0 −2 σx ρ0 a 
2 
0 0 1 − 2 σx u 0 

⎞ 

⎟ ⎠ 

⎡ 

⎢ ⎣ 

ˆ ρ
ˆ u 
ˆ v 
ˆ p 

⎤ 

⎥ ⎦ 

n 

. 

(4.3) 

he eigenvalues of the amplification matrix in (4.3) are 

sup 
1 

= 1 − 2 σx u 0 , λsup 
2 

= 1 − 2 σx (u 0 + a 0 ) , 
sup 
3 

= 1 − 2 σx u 0 , λsup 
4 

= 1 − 2 σx (u 0 − a 0 ) . 
(4.4) 

q. (4.4) indicates that | λsup 
i 

| < 1(i = 1 , 2 , 3 , 4) and thus each per-

urbation variable can be effectively damped if σx < 1 / (u 0 + a 0 ) . 

In the case of subsonic condition (0 < M 0 < 1), the evolutionary 

quations of perturbation variables are as follows 

 

 

 

ˆ ρ
ˆ u 
ˆ v 
ˆ p 

⎤ 

⎥ ⎦ 

n +1 

= 

⎛ 

⎜ ⎜ ⎝ 

1 − 2 σx u 0 − 2 σx ρ0 u 0 
a 0 

0 2 σx (u 0 −a 0 ) 
a 2 

0 

0 1 − 2 σx a 0 0 − 2 σx u 0 
ρ0 a 0 

0 0 1 − 2 σx u 0 0 

0 −2 σx ρ0 u 0 a 0 0 1 − 2 σx a 0 

⎞ 

⎟ ⎟ ⎠ 

⎡ 

⎢ ⎣ 

ˆ ρ
ˆ u 
ˆ v 
ˆ p 

⎤ 

⎥ ⎦ 

n 

. 

(4.5) 

he eigenvalues of the amplification matrix in (4.5) are 

sub 
1 

= 1 − 2 σx u 0 , λsub 
2 

= 1 − 2 σx (a 0 + u 0 ) , 

sub 
3 

= 1 − 2 σx u 0 , λsub 
4 

= 1 − 2 σx (a 0 − u 0 ) . 
(4.6) 

q. (4.6) indicates that | λsub 
i 

| < 1(i = 1 , 2 , 3 , 4) and each perturba-

ion variable can be effectively damped if σx < 1 / (a 0 + u 0 ) . 

.1.2. Evolution patterns of perturbations in the transverse direction 

The perturbations with saw-tooth profile are introduced in the 

 -direction (transverse direction) and the perturbed flow field is 

et as 
 

(ρ, u, v , p) i, j−1 = (ρ0 , u 0 , 0 , p 0 ) − ( ̂  ρn , ˆ u 

n , ̂  v n , ˆ p n ) , 
(ρ, u, v , p) i, j = (ρ0 , u 0 , 0 , p 0 ) + ( ̂  ρn , ˆ u 

n , ̂  v n , ˆ p n ) , 
(ρ, u, v , p) i, j+1 = (ρ0 , u 0 , 0 , p 0 ) − ( ̂  ρn , ˆ u 

n , ̂  v n , ˆ p n ) . 
(4.7) 

ince there is no perturbation in the x -direction, both F i −1 / 2 , j 

nd F i +1 / 2 , j are equal to zero. After time discretization, the semi- 

iscrete Eq. (2.5) becomes 

 

n +1 
i, j 

= U 

n 
i, j − σy 

(
G i, j+1 / 2 − G i, j−1 / 2 

)
, (4.8) 

here σy = �t/ �y . 

Calculating numerical fluxes G i, j−1 / 2 and G i, j+1 / 2 with HLLEM 

olver and substituting them into (4.8) , then the evolutionary 

quations of perturbation variables are as follows 

 

 

 

ˆ ρ
ˆ u 

ˆ v 
ˆ p 

⎤ 

⎥ ⎦ 

n +1 

= 

⎛ 

⎜ ⎝ 

1 0 0 − 2 σy 

a 0 
0 1 0 0 

0 0 1 − 2 σy a 0 0 

0 0 0 1 − 2 σy a 0 

⎞ 

⎟ ⎠ 

⎡ 

⎢ ⎣ 

ˆ ρ
ˆ u 

ˆ v 
ˆ p 

⎤ 

⎥ ⎦ 

n 

. (4.9) 

he eigenvalues of the amplification matrix in (4.9) are 

1 = λ2 = 1 , λ3 = λ4 = 1 − 2 σy a 0 . (4.10) 
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q. (4.10) indicates that ˆ v and ˆ p can be damped effectively if 

y < 1/ a 0 while ˆ ρ and ˆ u will not be damped since their ampli- 

cation factors are equal to 1.0 for any σ y . 

To sum up, all perturbations in the streamwise direction can be 

ffectively dam ped but perturbations of density and shear velocity 

n the transverse direction will not be damped. These accumulated 

rrors in the transverse direction will trigger the shock instability 

nd ultimately destroy the calculation of strong shock waves. 

.2. Global stability analysis 

The above local stability analysis is based on a uniform flow 

hat does not involve the shock wave and only considers the evo- 

ution of perturbations at a local cell. To reflect the effect of shock 

ave and consider the evolution of perturbations in the whole 

ow field, a global stability analysis of the HLLEM scheme for a 

teady standing shock is carried out. 

.2.1. Steady standing shock problem 

The domain [0, 1] × [0, 1] is covered by 20 × 20 uniform 

artesian grid. A steady standing shock with Mach number M 0 = 7 

s located at the cell interfaces shared by the tenth and eleventh 

olumns. The upstream states of the shock are given as 

 (0) = 

(
1 , 1 , 0 , 

1 

γ (γ − 1) M 

2 
0 

+ 

1 

2 

)T 

(4.11) 

nd the downstream states are obtained through the Rankine- 

ugoniot relations 

U (1) = 

(
f (M 0 ) , 1 , 0 , 

g(M 0 ) 

γ (γ − 1) M 

2 
0 

+ 

1 

2 f (M 0 ) 

)T 

, 

f (M 0 ) = 

(
2 

γ + 1 

1 

M 

2 
0 

+ 

γ − 1 

γ + 1 

)−1 

, 

g(M 0 ) = 

2 γ

γ + 1 

M 

2 
0 −

γ − 1 

γ + 1 

. (4.12) 

The following random perturbations are introduced into the en- 

ire flow field through conserved variables 

ˆ 
 

0 
i, j = (1 + αi, j · 10 

−7 ) U 

0 
i, j , (4.13) 

here ˆ U 

0 
i, j 

is the vector of perturbed conserved variables, U 

0 
i, j 

is 

he initial states given by (4.11) and (4.12) , αi,j is a random num- 

er between 0 and 1. The exact upstream and downstream condi- 

ions are imposed at the left and right boundaries, and the periodic 

oundary conditions are used for the top and bottom. In what fol- 

ows, a global matrix-based stability analysis for this steady stand- 

ng shock with random perturbations is implemented. 

.2.2. Global matrix-based stability analysis 

The implementation procedure of the matrix-based stability 

nalysis method is described detailedly in the creative paper by 

umbser et al. [44] . Here we give a brief introduction for conve- 

ience. The flow field given by (4.13) can be rewritten as the fol- 

owing form 

 m 

= U 

0 
m 

+ δU m 

, (4.14) 

here U 

0 
m 

and δU m 

denote the steady mean value and the error, 

espectively, the subscript m represents the global cell index. The 

ux function at the interface shared by cells with index m and k 

an be linearized as follows 

mk (U m 

, U k ) = �mk (U 

0 
m 

, U 

0 
k ) + 

∂�mk 

∂U m 

δU m 

+ 

∂�mk 

∂U 

δU k . (4.15)

k 

5 
ubstituting the linearized flux function (4.15) into the integral 

orm (2.4) of Euler equations, we can obtain the evolution equa- 

ions of the error 

d(δU m 

) 

dt 
= − 1 

| �m 

| 
∑ 

�mk ⊂∂�m 

| �mk | 
[
∂�mk 

∂U m 

δU m 

+ 

∂�mk 

∂U k 

δU k 

]
, (4.16) 

here | �m 

| is the area of cell �m 

and | �mk | is the length of cell

nterface �mk . The matrix form of (4.16) is as follows 

d 

dt 

⎡ 

⎣ 

δU 1 

. . . 
δU q 

⎤ 

⎦ = S 

⎡ 

⎣ 

δU 1 

. . . 
δU q 

⎤ 

⎦ , (4.17) 

here q = 20 × 20 is the total number of cells, S denotes the sta-

ility matrix. Solving Eq. (4.17) , we can obtain the evolutionary 

quations of initial errors 
 

 

δU 1 

. . . 
δU q 

⎤ 

⎦ (t) = e S t 

⎡ 

⎣ 

δU 1 

. . . 
δU q 

⎤ 

⎦ 

t=0 

(4.18) 

hich is bounded if 

ax (Re (λ(S ))) � 0 , (4.19) 

here Re ( λ( S )) represents the real part of eigenvalues of the sta-

ility matrix S . 

Fig. 4.1 shows the distribution of eigenvalues of the stability 

atrix S in a complex plane. The maximum value of the real part 

f eigenvalues obtained from the HLLEM solver is 14.9204, which 

s corresponding to a destabilized solution. If the transverse flux 

s replaced by the dissipative HLLE flux but the longitudinal flux 

s still calculated by the HLLEM scheme, a stable solution will be 

btained. However, it is worth noting that if the longitudinal flux 

s replaced by the HLLE flux and the HLLEM flux is used in the 

ransverse direction, it still gives an unstable pattern. The density 

rofiles shown in Fig. 4.2 also illustrate that the insufficiency of 

ransverse dissipation in the HLLEM solver leads to the occurrence 

f shock instability. 

. G enuinely T wo-dimensional HLLEM solver based on 

 ha-Bilgen splitting procedure (GT-HLLEM-Z) 

A local cell ( i, j ) and its neighbors in 2D Cartesian grid 

re shown in Fig. 5.1 (a). The conventional direction splitting 

ethod only considers the one-dimensional flux at the mid- 

oint of a cell interface involving states L (Left) and R (Right), 

ut Balsara’s genuinely two-dimensional framework also consid- 

rs the flux at each vertex of a cell interface [32] . For ex- 

mple, there is a two-dimensional Riemann problem at vertex 

 1 where four states (named as LU, LD, RU, RD) interact with 

ach other and the solution of this Riemann problem contributes 

he genuinely two-dimensional flux. The evolution of this two- 

imensional Riemann problem with time is shown in Fig. 5.1 (b), 

here S L , S R , S U and S D are the fastest ‘left’, ‘right’ ‘up’ and

down’ moving waves whose definitions are given in Section 5.3.3 . 

n this paper, F i +1 / 2 , j and G i, j+1 / 2 denote numerical fluxes in 

he x - and y -directions at the midpoint of the cell interface, 

 i +1 / 2 , j+1 / 2 and G i +1 / 2 , j+1 / 2 represent numerical fluxes in the x - 

nd y -directions at the vertex of the cell interface. 

.1. Zha-Bilgen splitting 

Zha and Bilgen [38] split the flux vector of Euler equations into 

onvective part and pressure part as follows 

 (U ) = 

⎡ 

⎢ ⎣ 

ρu 

ρu 

2 

ρu v 
uE 

⎤ 

⎥ ⎦ 

+ 

⎡ 

⎢ ⎣ 

0 

p 
0 

pu 

⎤ 

⎥ ⎦ 

= F c + F p . (5.1) 
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Fig. 4.1. Distribution of eigenvalues of the stability matrix S in complex plane. 
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λ

w
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F
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F

The Jacobian matrix of convective flux F c is 

 = 

⎛ 

⎜ ⎝ 

0 1 0 0 

−u 

2 2 u 0 0 

−u v v u 0 

− uE 
ρ

E 
ρ 0 u 

⎞ 

⎟ ⎠ 

. (5.2) 

our eigenvalues of M are as follows 

c 
1 = λc 

2 = λc 
3 = λc 

4 = u. (5.3) 

The Jacobian matrix of pressure flux F p is 

 = 

⎛ 

⎜ ⎝ 

0 0 0
γ −1 

2 
(u 

2 + v 2 ) −(γ − 1) u −(γ
0 0 0

(γ − 1) u (u 

2 + v 2 − E 
ρ ) (γ − 1)( E ρ − 3 

2 
u 

2 − 1 
2 
v 2 ) −(γ −

Four eigenvalues of N are as follows 

p 
1 

= −a 

√ 

γ − 1 

γ
, λp 

2 
= λp 

3 
= 0 , λp 

4 
= a 

√ 

γ − 1 

γ
, (5.5) 

here a = 

√ 

γ p/ρ is the local speed of sound. 
6 
0 

 v γ − 1 

0 

 v (γ − 1) u 

⎞ 

⎟ ⎠ 

. (5.4) 

.2. Calculation of interface flux at the midpoint 

After Zha-Bilgen splitting procedure, the interface flux at the 

idpoint can be written as 

 i +1 / 2 , j = F c i +1 / 2 , j + F p 
i +1 / 2 , j 

, G i, j+1 / 2 = G 

c 
i, j+1 / 2 + G 

p 
i, j+1 / 2 

. (5.6) 

.2.1. Calculation of convective flux at the midpoint 

The upwind method similar to AUSM+ [6] scheme is adopted to 

alculate the convective flux at the midpoint 

 

c 
i +1 / 2 , j = M 1 / 2 

⎡ 

⎢ ⎢ ⎣ 

ρa 
ρau 

ρa v 
aE 

⎤ 

⎥ ⎥ ⎦ 

, (5.7) 
k 
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Fig. 4.2. Density profiles of two-dimensional steady standing shock with random perturbations at t = 10 . 
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 1 / 2 = M 

+ 
L + M 

−
R , (5.8) 

nd 

 

± = 

{
± 1 

4 
(M ± 1) 2 ± 1 

8 
(M 

2 − 1) 2 if | M| � 1 , 
1 
2 
(M ± | M| ) if | M| > 1 , 

(5.9) 

here M = u/a is Mach number. The subscript k denoting the state 

elected for upwinding is given as 

 = 

{
L if M 1 / 2 � 0 , 

(5.10) 

R if M 1 / 2 < 0 . 

7 
.2.2. Calculation of pressure flux at the midpoint 

An algorithm similar to the conventional HLLEM solver is used 

o calculate the pressure flux at the midpoint 

 

p 
i +1 / 2 , j 

= 

S M 

R F 
p 
L 

− S M 

L F 
p 
R 

S M 

R 
− S M 

L 

+ 

S M 

L S 
M 

R 

S M 

R 
− S M 

L 

(U R − U L − δ2 α2 R 2 − δ3 α3 R 3 ) . 

(5.11) 

he expressions of δ2,3 , α2,3 and R 2,3 are given in (2.7) . The 

ave speeds S M 

L and S M 

R are selected according to the conventional 

LLEM scheme 

 

M 

L = min (0 , u L − a L , ˜ u − ˜ a ) , S M 

R = max (0 , u R + a R , ˜ u + 

˜ a ) . 
(5.12) 
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Fig. 5.1. Two-dimensional Cartesian grid and the wave model for the 2D Riemann problem at a vertex. 
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.3. Calculation of flux at the vertex of cell interface 

After Zha-Bilgen splitting procedure, the fluxes at the vertex of 

ell interface can be written as 

F i +1 / 2 , j+1 / 2 = F c i +1 / 2 , j+1 / 2 + F p 
i +1 / 2 , j+1 / 2 

, 

 i +1 / 2 , j+1 / 2 = G 

c 
i +1 / 2 , j+1 / 2 + G 

p 
i +1 / 2 , j+1 / 2 

. (5.13) 

.3.1. Calculation of convective flux at the vertex 

An algorithm similar to AUSM+ scheme is also used to calculate 

he convective flux at the vertex and the influence of waves from 

ransverse cells is also considered. Take the x -flux as example, 

 

c 
i +1 / 2 , j+1 / 2 = M̄ x 

S U 

⎡ 

⎢ ⎣ 

ρa 
ρau 

ρa v 
aE 

⎤ 

⎥ ⎦ 

k 1 

− S D 

⎡ 

⎢ ⎣ 

ρa 
ρau 

ρa v 
aE 

⎤ 

⎥ ⎦ 

k 2 

S U − S D 
, (5.14) 

ith 

¯
 x = M̄ 

+ 
L + M̄ 

−
R , (5.15) 

¯
 

± = 

{ ± 1 
4 
( M̄ ± 1) 2 ± 1 

8 
( M̄ 

2 − 1) 2 if | M̄ | � 1 , 
1 
2 
( M̄ ± | M̄ | ) if | M̄ | > 1 , (5.16) 

here 

¯
 L = 

ū L 

ā L 
, M̄ R = 

ū R 

ā R 
, (5.17) 

¯
 L = 

u LU S U − u LD S D 
S U − S D 

, ū R = 

u RU S U − u RD S D 
S U − S D 

, (5.18) 

¯
 L = 

a LU S U − a LD S D 
S U − S D 

, ā R = 

a RU S U − a RD S D 
S U − S D 

. (5.19) 

ubscripts k 1 and k 2 denoting the states selected for upwinding are 

iven as follows 

k 1 = LU , k 2 = LD if M̄ x � 0 , 

k 1 = RU , k 2 = RD if M̄ x < 0 . 
(5.20) 
8 
Similarly, the convective flux in the y -direction at the vertex is 

alculated as follows 

 

c 
i +1 / 2 , j+1 / 2 = M̄ y 

S R 

⎡ 

⎢ ⎣ 

ρa 

ρau 

ρa v 
aE 

⎤ 

⎥ ⎦ 

k 1 

− S L 

⎡ 

⎢ ⎣ 

ρa 

ρau 

ρa v 
aE 

⎤ 

⎥ ⎦ 

k 2 

S R − S L 
, (5.21) 

ith 

¯
 y = M̄ 

+ 
D + M̄ 

−
U , (5.22) 

¯
 

± = 

{ ± 1 
4 
( M̄ ± 1) 2 ± 1 

8 
( M̄ 

2 − 1) 2 if | M̄ | � 1 , 
1 
2 
( M̄ ± | M̄ | ) if | M̄ | > 1 , (5.23) 

here 

¯
 D = 

v̄ D 
ā D 

, M̄ U = 

v̄ U 
ā U 

, (5.24) 

¯
 D = 

v RD S R − v LD S L 
S R − S L 

, v̄ U = 

v RU S R − v LU S L 
S R − S L 

, (5.25) 

¯ D = 

a RD S R − a LD S L 
S R − S L 

, ā U = 

a RU S R − a LU S L 
S R − S L 

, (5.26) 

nd 

k 1 = RD , k 2 = LD if M̄ y � 0 , 

k 1 = RU , k 2 = LU if M̄ y < 0 . 
(5.27) 

.3.2. Calculation of pressure flux at the vertex 

Following ideas of genuinely two-dimensional HLL solver by 

alsara [34] and AVM (Approximate Viscosity Matrix) solver by 

allardo et al. [37] , a genuinely two-dimensional HLLEM solver is 

roposed here to calculate the pressure flux at the vertex. Take the 

 -flux as example, 

 

p 
i +1 / 2 , j+1 / 2 

= 

S U 
S U − S D 

(
F p, ∗

L 
+ F p, ∗

R 

2 
− 1 

2 

(
b 0 
(
U RU − U LU − δU 

2 α
U 
2 R 

U 
2 

−δU 
3 α

U 
3 R 

U 
3 

)
+ b 1 (F p, ∗

R 
− F p, ∗

L 
) 
))

− S D 
S U −S D 

(
F p, ∗

L 
+ F p, ∗

R 

2 
− 1 

2 

(
b 0 
(
U RD − U LD − δD 

2 α
D 
2 R 

D 
2 

−δD 
3 α

D 
3 R 

D 
3 

)
+ b 1 (F p, ∗

R 
− F p, ∗

L 
) 
))

+ 

b 0 
2(S − S ) 

(G 

p 
RU 

− G 

p 
LU 

+ G 

p 
LD 

− G 

p 
RD 

) , (5.28) 

U D 
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here δU 
2 , 3 

, αU 
2 , 3 

and R 

U 
2 , 3 

that denote dissipation-controlling co- 

fficients, wave strengths and right eigenvectors corresponding to 

inear degenerate fields are calculated between states U LU and U RU , 
D 
2 , 3 

, αD 
2 , 3 

and R 

D 
2 , 3 

are calculated between states U LD and U RD . Co- 

fficients b 0 and b 1 are given as 

 0 = −2 

S L S R 
S R − S L 

, b 1 = 

S R + S L 
S R − S L 

. (5.29) 

The essential three steps in calculations of transverse fluxes 

 

p, ∗
β

(β = L, R ) are as follows 

(1) Calculate the resolved states U 

∗
β

between states U βD and 

 βU 

 

∗
β = 

S U U βU − S D U βD + G βD − G βU 

S U − S D 
. (5.30) 

(2) Calculate one-dimensional HLLEM fluxes G 

∗
β

between states 

 βD and U βU 

 

∗
β = 

S U G βD − S D G βU 

S U − S D 
+ 

S D S U 
S U − S D 

(U βU − U βD − δ2 α2 R 2 − δ3 α3 R 3 ) . 

(5.31) 

(3) The required x -velocity u ∗
β

and pressure p ∗
β

for F 
p, ∗
β

are ob- 

ained as follows 

 

∗
β = 

G 

∗
β
(2) 

G 

∗
β
(1) 

, p ∗β = G 

∗
β (3) − G 

∗
β (1) ·

U 

∗
β
(3) 

U 

∗
β
(1) 

, (5.32) 

here U 

∗
β
(k ) and G 

∗
β
(k ) represent the k th components of U 

∗
β

and

 

∗
β
, respectively. 

Similarly, the pressure flux in the y -direction at the vertex is 

alculated as follows 

 

p 
i +1 / 2 , j+1 / 2 

= 

S R 
S R − S L 

(
G 

p, ∗
D 

+ G 

p, ∗
U 

2 

− 1 

2 

(
c 0 
(
U RU − U RD − δR 

2 α
R 
2 R 

R 
2 

−δR 
3 α

R 
3 R 

R 
3 

)
+ c 1 (G 

p, ∗
U 

− G 

p, ∗
D 

) 
))

− S L 
S R − S L 

(
G 

p, ∗
D 

+G 

p, ∗
U 

2 

− 1 

2 

(
c 0 
(
U LU − U LD − δL 

2 α
L 
2 R 

L 
2 

−δL 
3 α

L 
3 R 

L 
3 

)
+ c 1 (G 

p, ∗
U 

− G 

p, ∗
D 

) 
))

+ 

c 0 
2(S R − S L ) 

(F p 
RU 

− F p 
LU 

+ F p 
LD 

− F p 
RD 

) , (5.33) 

here δR 
2 , 3 

, αR 
2 , 3 

and R 

R 
2 , 3 

are calculated between states U RD and 

 RU , δ
L 
2 , 3 

, αL 
2 , 3 

and R 

L 
2 , 3 

are calculated between states U LD and U LU . 

oefficients c 0 and c 1 are given as 

 0 = −2 

S D S U 
S U − S D 

, c 1 = 

S U + S D 
S U − S D 

. (5.34) 

The mechanism analysis of shock instability in 

ection 4 demonstrates that the conventional HLLEM solver 

mplemented in dimension by dimension fails to provide suffi- 

ient dissipation in the direction transverse to the shock front 

o dampen perturbations and these perturbations will trigger the 

hock instability and produce the spurious solutions for multidi- 

ensional strong shock waves. By contrast, the flux of genuinely 

wo-dimensional GT-HLLEM-Z solver includes the contribution 

rom transverse cells. For example, in (5.14) for the x -directional 

onvective flux at the vertex, the average fluid velocity and sound 

peed defined in (5.18) and (5.19) consider the information from 

ransverse cells. The pressure flux at the vertex of the GT-HLLEM-Z 

olver also includes the contribution from transverse cells. For 

xample, in (5.28) for the x -directional pressure flux at the vertex, 

M

9 
he pressure in F 
p, ∗
β

is from the transverse HLLEM flux G 

∗
β

and 

he last term on the right hand side consists of cross derivative 

f transverse pressure flux G 

p 
RU 

, G 

p 
LU 

, G 

p 
LD 

and G 

p 
RD 

. Therefore, 

he genuinely two-dimensional GT-HLLEM-Z solver can success- 

ully suppress the shock instability by virtue of the effect from 

ransversal waves, which is demonstrated later through a series of 

umerical experiments. 

.3.3. Selection of wave speeds for 2D Riemann problem at the vertex 

With respect to wave speeds for calculating the convective 

ux and pressure flux at the vertex, the choices in [39] are 

dopted 

 L = min 

(
0 , λ0 

x (U LU ) , λ
0 
x (U LD ) , ̃  λ0 

x (U LU , U RU ) , ̃  λ0 
x (U LD , U RD ) 

)
, 

 R = max 
(
0 , λ1 

x (U RU ) , λ1 
x (U RD ) , ̃  λ1 

x (U LU , U RU ) , ̃  λ1 
x (U LD , U RD ) 

)
, 

 D = min 

(
0 , λ0 

y (U RD ) , λ
0 
y (U LD ) , ̃  λ0 

y (U RD , U RU ) , ̃  λ0 
y (U LD , U LU ) 

)
, 

 U = max 
(
0 , λ1 

y (U RU ) , λ1 
y (U LU ) , ̃  λ1 

y (U RD , U RU ) , ̃  λ1 
y (U LD , U LU ) 

)
, 

(5.35) 

here, 

λ0 
x (U LU ) is the smallest x -directional wave speed calculated in 

tate U LU ; 

λ1 
x (U RU ) is the largest x -directional wave speed calculated in 

tate U RU ; 

λ0 
x (U LU , U RU ) is the smallest x -directional wave speed calculated 

n Roe averaged state between U LU and U RU ; 

λ1 
x (U LU , U RU ) is the largest x -directional wave speed calculated 

n Roe averaged state between U LU and U RU . 

The remaining terms can be defined in a similar way. 

.4. Calculation of total normal flux at a cell interface 

As shown in Fig. 5.1 (a), the total normal flux through the cell 

nterface (i + 1 / 2 , j) consists of conventional one-dimensional flux 

t the midpoint and the x -directional two-dimensional fluxes at 

ertices C 1 (i + 1 / 2 , j + 1 / 2) and C 4 (i + 1 / 2 , j − 1 / 2) . Simpson for-

ula is used to assemble these three fluxes and obtain the total 

ormal flux at the cell interface 

 i +1 / 2 , j = 

1 

6 

F i +1 / 2 , j+1 / 2 + 

4 

6 

F i +1 / 2 , j + 

1 

6 

F i +1 / 2 , j−1 / 2 . (5.36) 

imilarly, the total normal flux through the cell interface (i, j + 

 / 2) is given by 

 i, j+1 / 2 = 

1 

6 

G i +1 / 2 , j+1 / 2 + 

4 

6 

G i, j+1 / 2 + 

1 

6 

G i −1 / 2 , j+1 / 2 . (5.37) 

. Numerical results 

In this section, several multidimensional test problems are 

alculated to validate the accuracy and robustness of the new 

olver. Since the higher order accuracy can stabilize the shock 

o some extent [45] , some test cases showing the improve- 

ent of robustness are calculated with plain first-order accu- 

acy while others are calculated with second-order accuracy. In 

rder to achieve the second-order accuracy, the solution de- 

endent weighted least squares (SDWLS) reconstruction method 

46] is implemented in space discretization and the second- 

rder TVD Runge-Kutta method is implemented in time discretiza- 

ion. Unless specifically noted, the plain first-order accuracy is 

dopted. 

.1. Two-dimensional steady standing shock problem 

A two-dimensional steady standing shock with Mach number 

 = 7 is calculated [47] . The computational domain [0, 1] × [0, 
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Fig. 6.1. Density profiles of Mach 7 two-dimensional steady standing shock. 

Fig. 6.2. Maximum magnitude of y -velocity of the steady standing shock problem. 
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] is covered by 20 × 20 Cartesian grid and the standing shock 

s initially located at the cell interfaces shared by the tenth and 

leventh columns. The initial states on the supersonic side are 

et as (ρ, u, v , p) L = (1 , 1 , 0 , 0 . 014573) and the states on the sub-

onic side are (ρ, u, v , p) R = (5 . 44 , 0 . 183673 , 0 , 0 . 830903) . There is

o perturbation on the initial conditions and the round-off er- 

ors act as the trigger for instability. The supersonic and sub- 

onic conditions are imposed at the left and right boundaries while 

he top and bottom use the periodic boundary conditions. The 

ensity profiles at t = 20 are plotted in Fig. 6.1 . The shock front

iven by HLLEM solver is completely destroyed while the gen- 

inely two-dimensional GT-HLLEM-Z solver gives a stable solution 

ith clean shock front. The destabilized behaviour of HLLEM solver 

s also confirmed by the spurious tangential velocity v shown 

n Fig. 6.2 . 
10 
.2. Moving normal shock problem 

A normal shock with Mach number 10 initially located at x = 5 

ropagates in a duct that covers a domain [0, 1500] × [0, 20]. 

he uniform cells with mesh spacing �x = �y = 1 are adopted. 

he upstream conditions are set as (ρ0 , u 0 , v 0 , p 0 ) L = (1 . 4 , 0 , 0 , 1)

nd the downstream conditions are given by the relation between 

hock wave and Mach number. Different from Quirk’s moving nor- 

al shock problem [15] where the shock instability is triggered by 

he small perturbation of gridline, numerical random noise ranging 

rom −0 . 5 × 10 −6 to 0 . 5 × 10 −6 is introduced into the initial up-

tream states while the gridline is free from any perturbation. The 

ensity profiles at t = 150 are plotted in Fig. 6.3 . The conventional

ne-dimensional HLLEM solver produces an unstable solution and 

he shock front is distorted completely while the genuinely two- 

imensional GT-HLLEM-Z solver eliminates the instability and ob- 

ains the clear shock front. The tangential velocities v shown in 

ig. 6.4 also confirm the instability of HLLEM scheme and the ro- 

ustness of GT-HLLEM-Z scheme. 

.3. Double Mach reflection problem 

A well-known benchmark test problem called double Mach re- 

ection problem is calculated to examine the robustness of the 

roposed scheme against shock anomalies. Woodward and Colella 

48] formulate this problem and provide suitable initial conditions 

o that the problem can be simulated in a rectangular domain. A 

ach 10 oblique shock, making a 60 ◦ angle with the bottom wall 

t x = 1 / 6 , propagates through the domain [0, 4] × [0, 1]. For the

resent test, 480 × 120 Cartesian grid is adopted. The initial con- 

itions of the whole domain are set as 

ρ0 , u 0 , v 0 , p 0 ) = 

{
(1 . 4 , 0 , 0 , 1) if y < 

√ 

3 (x − 1 
6 
) ,

(8 , 33 
√ 

3 
8 

, −4 . 125 , 116 . 5) else . 

(6.1) 

The post-shock conditions are maintained at the left bound- 

ry while all gradients are set to zero at the right boundary. The 

oundary conditions at the top are set to follow the propagation 

f the shock. As for the bottom, post-shock conditions are assigned 
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Fig. 6.3. Density profiles of Mach 10 moving normal shock. 

Fig. 6.4. Maximum magnitude of y -velocity of the moving normal shock problem. 
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rom x = 0 to x = 1 / 6 while reflective conditions are adopted from

 = 1 / 6 to x = 4 . The density profiles of HLLEM and GT-HLLEM-Z

olvers are displayed in Fig. 6.5 . Like other complete-wave Riemann 

olvers, the conventional one-dimensional HLLEM solver gives rise 

o severely kinked Mach stem and a spurious triple point while 

he GT-HLLEM-Z solver eliminates these unphysical features and 

ives a solution without any instability. It is worth noting that the 

FL number adopted by the conventional HLLEM solver can not be 

ore than 0.5 while the genuinely two-dimensional GT-HLLEM-Z 

olver performs well with CFL number up to 0.9. This also con- 

rms another advantage remarked in [32,37] that the genuinely 

wo-dimensional schemes allow the use of a maximal CFL number 

f unity while the conventional solvers applied in dimension by 

imension only allow the maximal CFL number of 0.5 [24,37] . Al- 

hough the CPU time of the GT-HLLEM-Z solver in a single timestep 

s about 1.89 times that of the HLLEM solver, its computational 

fficiency is comparable to that of the one-dimensional HLLEM 
Fig. 6.5. Density profiles of the double M

11 
olver since it permits a larger CFL number and therefore larger 

imesteps. 

.4. 2D Sedov blast wave problem 

A spherically symmetric explosion, known as Sedov blast wave 

roblem, is calculated here to examine the robustness of GT- 

LLEM-Z solver in calculation of problems involving high pres- 

ure ratio and strong shock waves. The computational domain [0, 

.4] × [0, 2.4] is covered by 4 80 × 4 80 uniform cells. The initial 

onditions are set as (ρ0 , u 0 , v 0 , p 0 ) = (1 , 0 , 0 , 10 −10 ) except the

ressure of the central domain that consists of one cell in each 

f four quadrants is 3.5 · 10 5 . All four boundaries adopt the re- 

ective conditions. The pressure profiles of HLLEM and GT-HLLEM- 

 solvers with second-order accuracy are shown in Fig. 6.6 . Four 

isible carbuncles are produced by the conventional HLLEM solver 

hile the genuinely two-dimensional GT-HLLEM-Z solver elimi- 

ates these unphysical carbuncles and gives a clear shock front. 

he CFL number adopted by the conventional HLLEM solver can 

ot be more than 0.4 but it can be up to 0.95 in GT-HLLEM-Z 

olver. 

.5. Forward facing step problem 

This problem, extensively studied by Woodward and Colella 

48] , involves a Mach 3 supersonic flow passing through a domain 

0, 3] × [0, 1] including a step with the corner locating at (x, y ) =
0 . 6 , 0 . 2) . The 240 × 80 uniform Cartesian grid is adopted. The

nitial conditions of the whole domain are set as (ρ0 , u 0 , v 0 , p 0 ) =
1 . 4 , 3 , 0 , 1) . The inflow conditions are imposed at the left bound-

ry while the outlet conditions with all gradients vanishing are 

sed at the right boundary. The top and bottom boundaries are in- 

iscid walls where the reflective conditions are imposed. The den- 

ity profiles of HLLEM and GT-HLLEM-Z solvers with second-order 

ccuracy are shown in Fig. 6.7 . The oscillations at the front of the 

tep and the normal shock stem near the top are clearly visible in 

he solution obtained from the conventional HLLEM scheme while 

he genuinely two-dimensional GT-HLLEM-Z scheme eliminates the 

nstability and produces a stable solution without any oscillation. 

he CFL number adopted by the conventional HLLEM solver can 

ot be more than 0.5 but it can be up to 0.9 in the GT-HLLEM-Z

olver. 
ach reflection problem at t = 0 . 2 . 
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Fig. 6.6. Pressure profiles of the 2D Sedov blast wave problem at t = 0 . 1 . 

Fig. 6.7. Density profiles of the forward facing step problem at t = 4 . 

Fig. 6.8. Density profiles of the two-dimensional Riemann problem. 

12 
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Fig. 6.9. Density profiles and the density distributions at x = 0 . 5 of the two-dimensional supersonic shear flow problem. 
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.6. Two-dimensional Riemann problem 

A two-dimensional Riemann problem described in [25] is cal- 

ulated here to examine the resolution of the proposed solver. 

he computational domain [ −1 , 1] × [ −1 , 1] is partitioned into

0 0 0 × 20 0 0 uniform cells and the initial conditions are set as

ρ0 , u 0 , v 0 , p 0 ) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

(0 . 5313 , 0 . 0 , 0 . 0 , 0 . 4) if x > 0 , y > 0 , 

(1 . 0 , 0 . 0 , 0 . 7276 , 1 . 0) if x > 0 , y < 0 , 

(1 . 0 , 0 . 7276 , 0 . 0 , 1 . 0) if x < 0 , y > 0 , 

(0 . 8 , 0 . 0 , 0 . 0 , 1 . 0) if x < 0 , y < 0 . 

(6.2) 

ree-flow conditions are used at all four boundaries. The compu- 

ation lasts until t = 0 . 5 . The density profiles of HLLEM and GT-

LLEM-Z solvers with second-order accuracy are shown in Fig. 6.8 . 

t can be clearly observed that the genuinely two-dimensional GT- 

LLEM-Z solver can resolve the flow features with greater details 
13 
nd exhibits the visible Kelvin-Helmholtz instability roll-up as re- 

orted in [39,40] while the conventional one-dimensional HLLEM 

olver fails to do so even on the finer grid of size 40 0 0 × 40 0 0.

he Kelvin-Helmholtz instability is caused by the discontinuity in 

he flow field and it can be regarded as valid and accurate solu- 

ions to the Euler equations [49] . So this test case highlights the 

igher resolution afforded by the genuinely two-dimensional GT- 

LLEM-Z solver over the conventional one-dimensional solver. The 

FL number adopted by the conventional HLLEM solver can not be 

ore than 0.5 but it can be up to 0.95 in the GT-HLLEM-Z solver. 

.7. Two-dimensional supersonic shear flow problem 

This test case is calculated to examine the capability of a given 

cheme to capture the inviscid shear wave. It is an invaluable prop- 

rty for accurately resolving the shear layer in calculations of vis- 
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[  
ous flows. The computational domain [0, 1] × [0, 1] is covered by 

0 × 20 uniform cells and the initial conditions of two fluids in 

he upper and lower parts of the domain are set as 

ρ0 , u 0 , v 0 , p 0 ) = 

{
(1 , 2 

√ 

1 . 4 , 0 , 1) if y > 0 . 5 , 

(10 , 
√ 

16 . 94 
10 

, 0 , 1) if y � 0 . 5 . 
(6.3) 

ig. 6.9 shows the density profiles and the density distribution at 

 = 0 . 5 after 10 0 0 iterations. As analyzed in Section 3.2 , two gen-

inely two-dimensional schemes based on HLL-CPS solver, i.e., GM- 

LL-CPS-Z [39] and MULTV [42] , fail to preserve the shear wave 

hile the present GT-HLLEM-Z solver can capture it exactly. 

. Conclusions 

This work proposes a genuinely two-dimensional HLLEM Rie- 

ann solver based on Zha-Bilgen splitting procedure. Using Zha- 

ilgen splitting method, the flux vector of two-dimensional Euler 

quations is split into two parts, the convective flux and the pres- 

ure flux. An algorithm similar to AUSM+ scheme is used to calcu- 

ate the convective flux and the pressure flux is calculated by the 

ow-dissipation HLLEM scheme. Following Balsara’s idea, the mul- 

idimensionality of the new solver is achieved by solving a two- 

imensional Riemann problem involving four states at each vertex 

f the cell interface and thus the total flux through a cell inter- 

ace is constructed by assembling a one-dimensional flux at the 

iddle point with two genuinely two-dimensional fluxes at ver- 

ices. Stability analysis shows that the genuinely two-dimensional 

ux at the vertex that consider transversal features of the flow can 

ffectively suppress the shock anomalies in the vicinity of strong 

hock waves. The performance of the new solver has been assessed 

n a number of test problems. The calculations of several strong 

hock wave problems fully demonstrate the robustness of the new 

olver and the capability to capture the Kelvin-Helmholtz instabil- 

ty in the 2D Riemann problem also indicates its higher resolution 

han the conventional HLLEM solver implemented in dimension by 

imension. The capability of the new solver to accurately resolve 

ontact discontinuities and shear waves makes it very suitable for 

alculating viscous flow problems. In addition, numerical experi- 

ents also confirm that the permissible CFL number of the present 

olver is up to unity while that of the one-dimensional HLLEM 

olver can not be more than 0.5. The present solver is easy to im- 

lement and is promising to be applied to numerical simulations 

f compressible flows that involve complex flow phenomena, such 

s strong shock waves, shock-shock interactions and shear layers. 
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