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Abstract
We study the existence regime of symmetric and asymmetric Taylor vortices in wide-gap spherical Couette flow by time

marching the three-dimensional incompressible Navier–Stokes equations numerically. Three wide-gap clearance ratios,

b ¼ R2 � R1ð Þ=R1 ¼ 0:33, 0.38 and 0.42 are investigated for a range of Reynolds numbers respectively. Using the 1-vortex

flow for clearance ratio b ¼ 0:18 at Reynolds number Re ¼ 700 as the initial conditions and suddenly increasing b to the

target value, we can compute Taylor vortices for the three wide gaps. For b ¼ 0:33, Taylor vortices exist in the range

450�Re� 2050. With increasing Re the steady symmetric 1-vortex flow becomes steady asymmetric at Re ¼ 1850, and

then become periodic at Re ¼ 2000. When Re[ 2050 the flow returns back to the steady basic flow state with no Taylor

vortices. For b ¼ 0:38, Taylor vortices can exist in the range 500�Re� 1400. With increasing Re, the steady symmetric

1-vortex flow become steady asymmetric at Re ¼ 1200, and then the flow evolves into the steady basic flow for Re[ 1400.

For b ¼ 0:42, Taylor vortices can exist in the range 650�Re� 1300. With increasing Re, steady asymmetric Taylor

vortices occur at Re ¼ 1150, and then the flow evolves into the steady basic flow for Re[ 1300. The present numerical

results are in good agreement with available numerical and experimental results. Furthermore, the existence regime of

Taylor vortices in the ðb;ReÞ plane for b� 0:33 and the three-dimensional transition process from periodic asymmetric

vortex flow to steady basic flow with increasing Re are presented for the first time.
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List of symbols
J Determinant of coordinate

transformation Jacobian

p Pressure

R1 Radius of inner sphere

R2 Radius of outer sphere

r; h;/ Spherical coordinates

Re ¼ XR2
1=m Reynolds number

Rec Critical Reynolds number

t Physical time

U, V, W Contra-variant velocity components

a Artificial compressibility factor

b ¼ R2 � R1ð Þ=R1 Clearance ratio

bW Lower bound value for wide-gap

clearance ratio

m Kinematic viscosity

s Pseudo time

x/ Azimuthal vorticity component

X Angular velocity

1 Introduction

Spherical Couette flow is induced between the annulus of

two concentric spheres by rotating one sphere or both.

When we look at the geometry of the spherical Couette

flow, it is similar to a rotating disk in a stationary casing in

the polar region while it is similar to a cylindrical circular
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Couette flow in the equatorial region. The spherical Cou-

ette flow is a typical problem in the study of hydrodynamic

instabilities, and is relevant to a wide range of applications

in planetary atmospheres, geophysics, astrophysics, and

engineering problems [1–3].

A lot of work has been done on the spherical Couette

flow in the past, but most of them were restricted to nar-

row- and medium-gap clearance ratios [4–22]. A limited

number of studies were conducted for wide-gap clearance

ratios [3, 9, 23–33]. The flow instabilities occurring

strongly depend on the Reynolds number (Re) and the gap

clearance ratio (b). Nakabayashi et al. [34] summarized

the classification of spherical gaps in detail. They took

bW � 0:3 as the boundary between medium and wide gaps.

This value of bW is adopted in this paper. Many experi-

mental studies showed that the Taylor instability occurs as

the first instability for narrow and medium gaps (b\bW),
and the cross-flow instability occurs as the first instability

for wide gaps (b[ bW).
The occurrence of the Taylor instability for wide-gap

clearance ratios was studied by a few researchers. For

example, Schrauf [9] first obtained one pair of Taylor

vortices for wide gaps (b ¼ 0:45� 0:48) using an

axisymmetric continuation solver. Hollerbach [30] used a

spectral code to compute symmetric and asymmetric

1-vortex flows for b ¼ 0:336 in the range 415�Re� 2040

using the 1-vortex flow easily obtained for b ¼ 0:154 as the

initial conditions and increasing b gradually to b ¼ 0:336.

They noticed that the asymmetric vortices become time

dependent for 1940�Re� 2035, and for Re[ 2040 the

time dependent asymmetric vortex flow collapses back to

the basic flow. Loukopoulos and Karahalios [32] numeri-

cally investigated the symmetric and asymmetric 1-vortex

flows for b ¼ 0:38; 0:42 and 0.48 by counter-rotating the

outer sphere temporarily and then reducing its angular

velocity to zero. They have provided the range of Reynolds

number in which these symmetric and asymmetric 1-vortex

flows exist. However, these numerical studies used the

axisymmetric assumption.

The first experimental Taylor vortices for b ¼ 0:33 were

obtained by Liu et al. [31]. They used special initial con-

ditions, i.e., rotating the outer sphere temporarily. They

found that stable 1-vortex flows coexist in the range Re 2
½470; 2100� with the basic flow state. Their work motivated

the numerical work of Hollerbach [30]. Junk and Egbers

[29] also got one pair of symmetric and asymmetric Taylor

vortices experimentally by counter-rotating the outer

sphere for a short period of time. They found that the

1-vortex flow remains stable in the range Re 2 ½470; 1850�,
and with further increase of the Reynolds number the flow

returns back to the basic flow state having no Taylor vor-

tices at all.

Despite the fact that some numerical and experimental

studies have verified the existence of symmetric and

asymmetric Taylor vortices in wide gaps (b[ 0:3), yet

three-dimensional numerical simulations of Taylor vortices

in wide gaps are few even if the laminar–turbulent transi-

tion for b ¼ 1 had been simulated by Zhilenko [35]. The

aim of this study is to investigate the existence regime in

the ðb;ReÞ plane for Taylor vortices in wide gaps and the

transition detail from asymmetric vortex to basic flows

with increasing Re via numerical solution of the three-di-

mensional incompressible Navier–Stokes equations. We

use the artificial compressibility method incorporated with

the weighted essentially non-oscillatory (WENO) finite

difference scheme [36] and a line GS method [37]. The

numerical results reveal that with increasing b, the upper

bound of Re for the existence of Taylor vortices decreases

while the lower bound increases so that the two bounds will

merge into each other at a large value of b (� 0.48), after

which only the cross-flow instability [23] occurs as the first

instability. Further, the three-dimensional transition detail

from asymmetric vortex flows to basic flows with

increasing Re is given for the first time. Our numerical

results also provide the detail of the vortex fluctuations in

the equatorial region as first found by Hollerbach [30].

2 Geometrical configuration, governing
equations and numerical method

2.1 Geometrical configuration

We consider the spherical Couette flow as shown in Fig. 1,

where the inner sphere is rotating and the outer one is

stationary. The flow behaviour can be characterized by two

Fig. 1 The geometry of spherical Couette flow system
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control parameters, the gap clearance ratio b �
R2 � R1ð Þ=R1 and the Reynolds number Re � XR2

1=m,
where R1, R2 are the radii of the inner and outer spheres,

respectively, X is the angular velocity of the inner sphere, m
is the kinematic viscosity of the fluid.

2.2 Governing equations and numerical method

The governing equations are the three-dimensional

incompressible Navier–Stokes equations, which are written

in strong conservative form in the generalized orthogonal

curvilinear coordinates n; g and f using the artificial com-

pressibility method [38],

osQ̂þ ImotQ̂þ onðÊ� ÊvÞ þ ogðF̂� F̂vÞ þ ofðĜ� ĜvÞ ¼ 0;

ð1Þ

where

Q̂ ¼ Q

J
¼ 1

J

p

u

v

w

2
6664

3
7775; Ê ¼ 1

J

aU

Uuþ nxp

Uvþ nyp

Uwþ nzp

2
6664

3
7775;

F̂ ¼ 1

J

aV

Vuþ gxp

Vvþ gyp

Vwþ gzp

2
6664

3
7775; Ĝ ¼ 1

J

aW

Wuþ fxp

Wvþ fyp

Wwþ fzp

2
6664

3
7775;

Im ¼ diag 0; 1; 1; 1ð Þ; Êv ¼ 1

ReJ
rn � rnð ÞIm

oQ

on
;

F̂v ¼ 1

ReJ
rg � rgð ÞIm

oQ

og
; Ĝv ¼ 1

ReJ
rf � rfð ÞIm

oQ

of
;

U ¼ nxuþ nyvþ nzw;V ¼ gxuþ gyvþ gzw;

W ¼ fxuþ fyvþ fzw:

ð2Þ

Q ¼ p; u; v;wð ÞT is the solution vector, u, v, w are the

Cartesian velocity components, t is the physical time, s is

the pseudo-time, a is the artificial compressibility factor,

U, V and W are the contra-variant velocity components in

the n; g and f directions, respectively. J is the Jacobian

determinant of coordinate transformation. Further detail of

the formulations can be found in Refs. [37, 39–41].

We use a finite difference weighted non-oscillatory

(WENO) scheme [36, 42] for the convective terms, and a

second-order central finite difference scheme for the vis-

cous terms. An implicit backward difference scheme is

used for the pseudo-time derivative and a second order,

three-point backward difference scheme is used for the

physical time derivative. The discretized equations are

solved using the line Gauss–Seidel method as detailed in

[37, 40]. The GS sweep process is parallelized with a

pipeline method using OpenMP.

No-slip boundary conditions are applied to the velocities

on the outer and inner spheres. Pressure on the wall is

obtained from the radial component of the momentum

equations in the spherical coordinate system. A reference

pressure is taken at a fixed point in the interior of the

computational domain. The boundary condition on the

polar axis is treated by setting values on the axis equal to

averaging the neighboring points next to the axis.

2.3 Grid convergence

The spherical annulus is divided into grid points in the

radial rð Þ, meridional hð Þ and azimuthal /ð Þ directions,

respectively. The grids points are clustered near the two

walls along the radial direction where there are boundary

layers. We have performed a grid convergence test to find a

Fig. 2 Grid convergence of the pressure distribution on the inner wall

with four different grid points for the steady symmetric 1-vortex flow

at b ¼ 0:42, Re ¼ 650

Fig. 3 Comparison of the lower boundary of the existence regime of

Taylor vortices in the ðb;ReÞ plane
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grid-independent solution. We tested four different grids,

i.e., 31ðrÞ 	 361ðhÞ 	 129ð/Þ, 41ðrÞ 	 361ðhÞ 	 153ð/Þ,
51ðrÞ 	 361ðhÞ 	 153ð/Þ and 61ðrÞ 	 361ðhÞ 	 153ð/Þ
in the steady 1-vortex flow for b ¼ 0:42 at Re ¼ 650.

Figure 2 shows the inner wall pressure distribution along

the meridional direction on four different grids. Clearly the

difference between solutions on grids C and D is negligi-

ble, and therefore, any grid resolution greater than or equal

to 51ðrÞ 	 361ðhÞ 	 153ð/Þ can be used for simulation.

In this work, we use a grid number of

51ðrÞ 	 361ðhÞ 	 153ð/Þ. The non-dimensional physical

time step Dt ¼ 0:05 and the artificial compressibility factor

Fig. 4 Streamlines of symmetric 0-vortex and 1-vortex flows in the

meridional plane (/ ¼ p) in the equatorial region 3p
8
� h� 5p

8
at

Rec1 ¼ 450 for b ¼ 0:33 on the left column, the middle column is

side-view of color contours of the azimuthal vorticity component

ðx/Þ at r ¼ 1þ 0:5b, and the right column is the north pole view of it

Fig. 5 Distributions of the ur velocity (left) and the u/ velocity (right) across the spherical gap for Re ¼ 450 and 1400 respectively, b ¼ 0:33
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a ¼ 10 are used. The sub-iteration (pseudo-time marching)

is terminated when the sub-iteration number exceeds 21.

This is found sufficient to reduce the residual of the sub-

iteration by two to three orders of magnitude.

3 Numerical results on boundary
of existence of Taylor vortices

In this work, we focused on three clearance ratios, b ¼
0:33; 0:38 and 0.42. For each b, by scanning the Reynolds

number range with DRe ¼ 100 in a coarse search and with

DRe ¼ 10 in a fine search, we have determined the range

450�Re� 2050 for b ¼ 0:33, 500�Re� 1400 for b ¼
0:38 and 650�Re� 1300 for b ¼ 0:42 as the existence

ranges for symmetric and asymmetric Taylor vortex flows

respectively. It is observed that the upper boundary of Re

decreases, while the lower boundary of Re increases with

increasing b. These trends predict that the existence regime

of Taylor vortices will shrink to a point in the (b;Re) plane
at a larger b (� 0:48). The trend that the lower boundary of

Re for the occurrence of Taylor vortex increases with

increasing b for wide-gap cases agrees with Fig. 8 given in

Schrauf [9].

Figure 3 shows comparison of our numerical result for

the lower boundary of existence of Taylor vortices in the

ðb;ReÞ plane with the numerical results of Liu et al. [31]

and Schrauf [9]. The agreement is fairly good. The highest

vale of b for which we can obtain Taylor vortex flow is

b ¼ 0:48 at Re ¼ 1380, which is very close to that of Liu

et al. [31]. It can be seen that our lower boundary curve lies

above those of Schrauf [9] and Liu et al. [31]. The reason is

that we have used a finer grid, which is consistent with the

estimate of Schrauf [9] that high grid resolution shifts the

curve upward. In figure 18, we also show the upper

boundary of Re beyond which Taylor vortices collapse

back to the basic flow for b� 0:33.

In the following context, we adopt the notations used by

Loukopoulos and Karahalios [32] for describing the tran-

sition. The 1a ! 1s represents the transition from 1-vortex

asymmetric flow to 1-vortex symmetric flow, 1a ! 0

represents from 1-vortex asymmetric flow to symmetric

0-vortex basic flow, 1s ! 1a represents from 1-vortex

symmetric flow to 1-vortex asymmetric flow, and 1s ! 0

represents from 1-vortex symmetric flow to symmetric

0-vortex basic flow.

Fig. 6 Streamlines of the symmetric 1-vortex flow at Re ¼ 1400 and

the asymmetric 1-vortex flow at Re ¼ 1900 in the meridional plane

(/ ¼ p) in the equatorial region 3p
8
� h� 5p

8
for b ¼ 0:33 on the left

column, the middle column is the side view of flooded contours of the

azimuthal vorticity component ðx/Þ at r ¼ 1þ 0:5b and the right

column shows its north pole view
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4 Numerical results on flow structures
during flow transitions

4.1 b= 0:33

For this clearance ratio, we have found that Taylor vortices

can exist in the range 450�Re� 2050. We computed the

flow using the 1-vortex flow easily produced for b ¼ 0:18

at Re ¼ 700 as the initial conditions and suddenly

increasing b from 0.18 to 0.33. The approach is similar to

that of Hollerbach [30], who computed symmetric and

asymmetric 1-vortex flows in the range 415�Re� 2040

for b ¼ 0:336 by starting with the stable Taylor vortex flow

for b ¼ 0:154 and then gradually increasing b up to a

desired value. Once we have obtained the stable 1-vortex

flow for b ¼ 0:33 at Re ¼ 700, we change to another

Reynolds number with increment DRe and march the

solution for a long time until a new stable state is reached.

Using increments DRe ¼ 100 and 10 we have found that

the symmetric 1-vortex flow exists in 450�Re\1850, and

the asymmetric 1-vortex flow exists in 1850�Re� 2050.

On the other hand, direct computation using the Stokes

flow [7, 8] as the initial conditions can easily obtain the

basic flow in the same range 450�Re� 2050. Thus,

multiple solutions exist. Figure 4 shows the basic flow and

the steady 1-vortex flow at Rec1 ¼ 450. Both flows are

symmetric with respect to the equator. The side view on the

middle column shows that the vortices are toroidal, and the

north pole view on the right column shows that the flow is

fully axisymmetric.

As we increase the Reynolds number, the 1-vortex flow

becomes more strong. To verify this, we have plotted ur
and u/ velocity distributions across the spherical gap on the

equator at Rec1 ¼ 450 and Re ¼ 1400, respectively, in

Fig. 5. From the left panel it can be seen that with

increasing Reynolds number, the ur velocity increases

negatively. From the right panel one can see that the por-

tion with larger value of u/ shifts left because the slowly

rotating fluid near the outer sphere is convected more close

to the inner sphere by the jet at the equator formed between

the two stronger vortices.

When we further increase the Reynolds number to

Rec2 � 1850, the symmetric 1-vortex flow becomes

asymmetric ð1s ! 1aÞ with respect to the equator, but this

transition does not break the axial symmetry of the flow,

and the asymmetric flow can become steady state. Figure 6

shows the symmetric vortex flow at Re ¼ 1400 and the

asymmetric 1-vortex flow at Re ¼ 1900, respectively. The

meridional streamlines on the left column is in qualitative

agreement with Fig. 1 in Hollerbach [30].

When we further increase the Reynolds number, the

asymmetric 1-vortex flow will become time-dependent at a

critical point Rec3 � 2000, and if we observe the motion in

a fixed meridional plane (/ ¼ p) the Taylor vortices look

to be fluctuating. Figure 7 shows meridional streamlines, ur
and uh velocity contours at three time instants, t ¼ 66p,
100p, and 116p for the Re ¼ 1900 ! 2000 transition. The

oscillation confirms the fluctuating nature of Taylor vor-

tices as mentioned by the axisymmetric numerical simu-

lation of Hollerbach [30].

The fluctuations get stronger with increasing Reynolds

number, but when Re[Rec4 ¼ 2050 the flow will collapse

back to the basic state having no Taylor vortex. Figure 8

shows the four snapshots in the transition from 1-vortex

asymmetric flow to 0-vortex basic flow ð1a ! 0Þ at t ¼
223p; 240p; 242p and 260p, respectively, for a sudden

increase of Re from 2000 to 2100. It can be seen that the

streamlines on the left column are similar to the streamli-

nes in Fig. 5 of Hollerbach [30]. Furthermore, the present

Fig. 7 From top to bottom show the change of streamlines (left

column), ur (middle column) and uh (right column) in the meridional

plane (/ ¼ p) in the equatorial region 3p
8
� h� 5p

8
for three times

t ¼ 66p; 100p and 116p during the Re ¼ 1900 ! 2000 transition,

b ¼ 0:33
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Fig. 8 From top to bottom show snapshots at t ¼ 223p; 240p; 242p
and 260p for the transition from asymmetric 1-vortex flow at Re ¼
2000 to 0-vortex flow at Re ¼ 2100 for b ¼ 0:33. The left column is

the streamlines in the meridional plane (/ ¼ p) in the equatorial

region 3p
8
� h� 5p

8
, the middle column is the side view of flooded

contours of the azimuthal vorticity component ðx/Þ at r ¼ 1þ 0:5b
and the right column shows its north pole view
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3D views of the azimuthal vorticity component x/ on the

middle and right columns show that non-axisymmetric flow

structures occur in the equatorial and middle latitude

regions. At t ¼ 223p in Fig. 8 the Taylor vortex flow is

asymmetric about the equator and symmetric about the

rotation axis. At t ¼ 240p we can see that the meridional

streamlines do not have complete ‘‘vortices’’ on the left

column, the contours of the vorticity component x/ on the

middle column are distorted, and the north pole view of it

on the right column shows three spiral waves. At t ¼ 242p,
the streamlines on the left column has almost relaxed back

to the basic state, and the side view on the middle column

shows regular equatorial flow again, but the north polar

view on the right column shows the three spiral waves in

Fig. 9 Streamlines of symmetric 0-vortex and 1-vortex flows in the

meridional plane (/ ¼ p) in the equatorial region 3p
8
� h� 5p

8
at

Rec1 ¼ 500 for b ¼ 0:38 on the left column, middle column is the

side view of color contours of the azimuthal vorticity component

ðx/Þ at r ¼ 1þ 0:5b, and the right column is the north pole view of it

Fig. 10 Streamlines of asymmetric 1-vortex flow in the meridional

plane (/ ¼ p) in the equatorial region 3p
8
� h� 5p

8
at Re ¼ 1360 for

b ¼ 0:38 on the left, the middle is the side view of flooded contours of

the azimuthal vorticity component ðx/Þ at r ¼ 1þ 0:5b and the right

one shows its north polar view
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the polar region are still changing. Finally at t ¼ 260p, the
flow collapses back to the basic state having no Taylor

vortices and becomes completely axisymmetric. The 1a !
0 transition is due to the instabilities occurring in a smaller

vortex between two oppositely directed large vortices when

it is looked at from a fluid dynamics point of view, or is due

to the expansion of chaotic solutions when it is looked at

from a dynamical system point of view [30].

4.2 b= 0:38

For this clearance ratio, Taylor vortices exist in the range

500�Re� 1400. To get Taylor vortices we have used the

1-vortex flow obtained for b ¼ 0:18 at Re ¼ 700 as the

initial conditions the same as for b ¼ 0:33. By varying the

Reynolds number, we found that steady 1-vortex flow starts

to appear at Rec1 � 500, and can exist up to Rec3 � 1400.

Figure 9 shows symmetric 0-vortex and 1-vortex flows

coexisting at Rec1 ¼ 500. The steady 0-vortex flow is

obtained using the Stokes flow as the initial conditions.

Fig. 11 Frames from left to right show the transition from symmetric 1-vortex flow to asymmetric 1-vortex flow as Re ¼ 1200 ! 1360 in times

t ¼ 20p; 63p; 108p; 145p; 197p and 230p on the meridional plane (/ ¼ p) in the equatorial region 3p
8
� h� 5p

8

Fig. 12 From left to right the transition of asymmetric 1-vortex flow to symmetric 1-vortex flow as Re ¼ 1360 ! 1100 in times t ¼
8p; 51p; 160p; 258p; 410p and 600p on the meridional plane (/ ¼ p) in the equatorial region 3p

8
� h� 5p

8
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Fig. 13 From top to bottom transition from asymmetric 1-vortex flow

at Re ¼ 1360 to 0-vortex basic state at Re ¼ 1450 at t ¼
36p; 51p; 57p and 72p on the meridional plane (/ ¼ p) in the

equatorial region 3p
8
� h� 5p

8
for b ¼ 0:38 in the left column, the

middle column is the side view of color contours of the azimuthal

vorticity component ðx/Þ at r ¼ 1þ 0:5b and the right column shows

its north pole view
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By increasing the Reynolds number a bit larger than

Rec2 � 1210 the steady symmetric 1-vortex flow becomes

steady asymmetric 1-vortex flow. This bifurcation is

characterized as pitchfork bifurcation by Vassilios and

George [32] because at this point the symmetric flow

exchanges stability with a pair of asymmetric flows. In

fluid mechanical systems, this sudden symmetric branching

is given the name of pitchfork symmetry breaking bifur-

cation. Figure 10 shows a typical steady asymmetric

1-vortex flow at Re ¼ 1360, and it is observed that this

asymmetric flow state has a good resemblance to figure 1c

of Loukopoulos and Karahalios [32].

Figure 11 shows the time evolution from the symmetric

Taylor vortex flow at Re ¼ 1200 to asymmetric one ð1s !

Fig. 14 Streamlines of symmetric 0-vortex and 1-vortex flows in the

meridional plane (/ ¼ p) in the equatorial region 3p
8
� h� 5p

8
at

Rec1 ¼ 650 for b ¼ 0:42 on the left column, the middle column is the

side view of color contours of the azimuthal vorticity component

ðx/Þ at r ¼ 1þ 0:5b, and the right column is the north pole view of it

Fig. 15 Streamlines of asymmetric 1-vortex flow in the meridional

plane (/ ¼ p) in the equatorial region 3p
8
� h� 5p

8
at Rec2 ¼ 1150 for

b ¼ 0:42 on the left, the middle is the side view of flooded contours of

the azimuthal vorticity component ðx/Þ at r ¼ 1þ 0:5b and the right

one shows its north polar view
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1aÞ at Re ¼ 1360. The Reynolds number is increased to

1360 abruptly, the flow becomes asymmetric with respect

to the equator. We can see that the Taylor vortices keep the

shape in the transition. This is because there is no breaking

of axisymmetry in the transition.

To connect the regions of supercritical flows with pos-

sible transition, we start from the steady asymmetric flow

state at Re ¼ 1360 and abruptly reduce the Reynolds

number to 1100. We find that the asymmetric Taylor vortex

flow becomes steady-state symmetric Taylor vortex flow

after a very long time period of 600p. Figure 12 shows the

transition from asymmetric state to symmetric state

ð1a ! 1sÞ.
Next, to simulate the 1a ! 0 transition with increasing

Reynolds number, we start with the asymmetric flow state

at Re ¼ 1360 and increase the Reynolds number to Re ¼
1450[Rec3 � 1400 suddenly. Four instants spanning 72p
of time in the 1a ! 0 transition are shown in Fig. 13. The

left column shows meridional streamlines in a meridional

plane, the middle and right columns show 3D views of the

azimuthal vorticity components x/. At t ¼ 0, the Reynolds

number is suddenly increased to Re ¼ 1450 from

Re ¼ 1360. At the first instant t ¼ 36p the flow has some

3D disturbances in the middle latitude region. The north

pole view of the vorticity in the right column shows a

symptom of three spiral waves. At the second instant t ¼
51p we can see that the three spiral waves are going toward

the equatorial region on the middle and right columns. At

the third instant t ¼ 57p the streamlines in the left column

is rather temporal because there are transient structures as

shown on the middle and right columns, where the spiral-

like waves in the high latitude region become weaker. As

time goes on, the waves in the middle latitude region

becomes more irregular and weaker and then the flow

collapses back to basic state having no Taylor vortices, and

then gradually recover equatorial and axial symmetry at the

fourth instant t ¼ 72p.

4.3 b= 0:42

For this clearance ratio, the Taylor vortex flow exists in

650�Re� 1300. The technique to get the Taylor vortices

is the same as for b ¼ 0:33. Figure 14 shows the 0-vortex

basic flow and symmetric 1-vortex flow coexisting at

Rec1 � 650.

By increasing the Reynolds number the symmetric

1-vortex flow at Rec1 ¼ 650 becomes steady asymmetric

1-vortex flow at Rec2 ¼ 1150 as shown in Fig. 15.

To connect the regions of supercritical flows with pos-

sible transitions we start from the asymmetric flow at

Rec2 ¼ 1150 in Fig. 15 and then abruptly reduce the Rey-

nolds number to 1050. We found that the asymmetric flows

becomes steady symmetric flow after a long time of 300p.
Figure 16 shows the transition from asymmetric state to

symmetric state ð1a ! 1sÞ. Our calculations verified that

the critical Reynolds number is the same for ð1s ! 1aÞ and
ð1a ! 1sÞ transitions. So the 1s ! 1a transition is related

to a pitchfork bifurcation.

To simulate the 1a ! 0 transition with increasing Re,

we start from the asymmetric 1-vortex flow at Rec2 ¼ 1150

in Fig. 15, and suddenly increase the Reynolds number to

1350[Rec3 � 1300. The 1a ! 0 transition is finished

after a time period of 134p as shown in Fig. 17. The 3D

patterns in terms of the azimuthal vorticity components x/

Fig. 16 From left to right the transition from asymmetric 1-vortex flow to symmetric 1-vortex flow as the Reynolds number Re ¼ 1150 ! 1050

in time instants, t ¼ 10p; 26p; 85p; 128p; 192p and 300p on the meridional plane (/ ¼ p) in the equatorial region 3p
8
� h� 5p

8
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Fig. 17 From top to bottom transition from asymmetric 1-vortex flow

at Rec2 ¼ 1150 to 0-vortex basic flow at Re ¼ 1350 at t ¼
94p; 97p; 100p and 134p on the meridional plane (/ ¼ p) in the

equatorial region 3p
8
� h� 5p

8
for b ¼ 0:42 in the left column, the

middle column is the side view of flooded contours of the azimuthal

vorticity component ðx/Þ at r ¼ 1þ 0:5b and the right column shows

its north pole view
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on the middle and right columns are similar to those for

b ¼ 0:33 and b ¼ 0:38, so we will not describe them in

detail here.

Finally, Fig. 18 gives the existence regimes in the

ðb;ReÞ plane for the basic flow and the symmetric and

asymmetric Taylor vortex flows. This graph may be a

supplement to the well-known regime graph of various

disturbances in the ðb;ReÞ plane as given by Nakabayashi

et al. [34].

5 Conclusions

We have investigated the existence regime of symmetric

and asymmetric Taylor vortices in wide-gap spherical

Couette flow with only the inner sphere rotating. Using the

1-vortex flow for a medium gap b ¼ 0:18 as the initial

conditions, we have obtained the existence regime of

Taylor vortices for b[ 0:33 in the ðb;ReÞ plane.
Three wide-gap clearance ratios b ¼ 0:33, 0.38 and 0.42

have been studied in detail. For b ¼ 0:33, Taylor vortices

can exist in the range of 450�Re� 2050. Symmetric

steady 1-vortex flow can exist at Rec1 ¼ 450. With

increasing Re, the symmetric flow becomes steady asym-

metric Taylor vortex flow at Rec2 ¼ 1850 through a tran-

sition without breaking the axial symmetry. Increasing Re

further, the asymmetric flow becomes unsteady at

Rec3 ¼ 2050. This confirms the time-dependent behavior in

the meridional flow in [30]. With increasing Reynolds

number further the flow returns back to the 0-vortex basic

flow state via a fully three-dimensional transition. The

critical Reynolds numbers (Rec1 ¼ 450, Rec3 ¼ 2050) and

the meridional streamline patterns are in good agreement

with available numerical and experimental results of

(470, 1850), (415, 2040), (467, 2100) in [29–31]

respectively.

For b ¼ 0:38, Taylor vortices can exist in

500�Re� 1400. The steady symmetric 1-vortex flow

becomes steady asymmetric at Rec2 ¼ 1200. Further

increasing the Reynolds number above Rec3 ¼ 1400 the

asymmetric 1-vortex flow undergoes a fully 3D transition

and then collapses back to the steady basic state. No time-

dependent flow regime is found. The meridional streamli-

nes are similar to the numerical results of Loukopoulos and

Karahalios [32].

For b ¼ 0:42, Taylor vortices exist in the range

650�Re� 1300. With increasing Reynolds number, the

steady symmetric 1-vortex flow becomes steady asym-

metric at Rec2 ¼ 1150. Further increasing the Reynolds

number above Rec3 ¼ 1300 the asymmetric flow undergoes

a fully 3D stage and returns back to the steady basic flow.

The critical Reynolds numbers and the meridional

streamlines are found in good agreement with the numer-

ical results [32].
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