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Abstract Current shallow granular flow models suited to
arbitrary topography can be divided into two types, those
formulated in bed-fitted curvilinear coordinates and those
formulated in global Cartesian coordinates. The shallow
granular flow model of Denlinger and Iverson (J. Geophys.
Res. 109, F01014, 2004) and the Boussinesq-type shallow
granular flow theory of Castro-Orgaz et al. (2014) are for-
mulated in a Cartesian coordinate system (with z vertical),
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and both account for the effect of nonzero vertical accelera-
tion on depth-averaged momentum fluxes and stress states.
In this paper, we first reformulate the vertical normal stress
of Castro-Orgaz et al. (2014) in a quadratic polynomial
in the relative elevation η. This form allows for analytical
depth integration of the vertical normal stress. We then cal-
culate the basal normal stress based on the basal friction
law and scaling analysis. These calculations, plus certain
constitutive relations, lead to a refined full non-hydrostatic
shallow granular flow model, which is further rewritten in
a form of Boussinesq-type water wave equations for future
numerical studies. In the present numerical study, we apply
the open-source code TITAN2D for numerical solution of a
low-order version of the full model involving only a mean
vertical acceleration correction term. To cure the numerical
instability related with discretization of the enhanced grav-
ity, we propose an approximate formula for the enhanced
gravity by utilizing the hydrostatic pressure assumption in
the bed normal direction. Numerical calculations are con-
ducted for several test cases involving steep slopes. Compar-
ison with a bed-fitted model shows that even the simplified
non-hydrostatic Cartesian model can be used to simulate
shallow granular flows over arbitrary topography.

Keywords Granular flow · Depth average · Cartesian
coordinate · Arbitrary topography · Non-hydrostatic
pressure · Basal normal stress

1 Introduction

Reliable prediction of gravity-driven geophysical mass
movements like landslides, debris flows, and rock avalan-
ches can be an invaluable tool in assessing hazard risks
and planning strategies for hazard mitigation. It is widely
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recognized that the basic ingredients in geophysical mass
movements in natural hazards are granular materials, a col-
lection of a larger number of discrete solid particles with
interstices filled with a fluid or gas [3]; thus, granular
avalanche flows constitute a fundamental case. The rela-
tive simplicity of this case makes it an attractive object for
developing and testing various predictive models [1].

During a granular avalanche, granular materials slide and
flow over topographies and may travel very long distances.
The characteristic length in the flowing direction is gener-
ally much larger than that in the normal-to-bed direction,
e.g., the avalanche thickness. Such a shallowness argument,
which originated in the derivation of Saint-Venant equations
for modeling shallow water flows, has been widely used in
the derivation of continuum flow models for granular ava-
lanches. Earlier shallow granular flow models were formu-
lated by direct analogy with the shallow water equations [4].
Later, Savage and Hutter [5] introduced a depth-integrated
theory obeying Coulomb-type yield by which the rapid flow
of a finite mass of granular material down a plane slope
could be analyzed. Their shallow granular flow model is
called the Savage-Hutter (SH) equations. Over the past three
decades there has been great progress in shallow granular
flow models. The developed models have been shown to be
able to reproduce the basic features of both experimental
dense granular flows along inclined planes with appropriate
constitutive relations [6–12], and some of which have been
used to simulate real avalanche flows over natural terrains
[13–15].

In describing debris flows over natural terrains, some
researchers [16, 17] used the Saint-Venant equations that is
referenced in horizontal Cartesian coordinates with a hydro-
static basal pressure of ρgh (where ρ is the bulk density, h

is the vertical flow depth, and g is the gravity of the Earth).
However, such global Cartesian formulations are only appli-
cable to topography with small slopes because the usual
hypothesis of hydrostatic pressure in the vertical direction in
the shallow water equations is no longer valid for steep ter-
rain even if it is admissible in the normal-to-bed direction.
A few studies [18, 19] directly used formulations in a local
Cartesian coordinate system in cell-by-cell way to com-
pute granular flows over natural terrains. However, such a
numerical approach is problematic in aligning velocity vari-
ables and balancing numerical fluxes of conserved variables
between adjacent cells on curved bed as remarked by Den-
linger and Iverson [1]. A more elaborate work was to correct
both acceleration and friction terms in the Saint-Venant
equations in Cartesian coordinates for large slope gradients
[20]. Nevertheless, the corrections are based on mechanical
considerations rather than mathematical derivations. On the
other hand, the SH theory has been generalized rigorously in
general curvilinear coordinate systems to describe granular
avalanches over general terrains [14, 21, 22]. Although the

bed-fitted formulations are more accurate, they are compli-
cated and need non-trivial grid generation on natural terrains
for numerical solution. In order to develop viable shallow
water/granular flow models suitable for a general topogra-
phy, Refs. [23, 24] derived a form of shallow water/granular
flow equations that is referenced to a fixed global Carte-
sian coordinate system but uses thickness in the direction
normal to the topography and a parameterized Cartesian
velocity field as solution variables. The equations [24] take
into account the curvature tensor with all its components and
the Coulomb basal friction while ignoring the internal fric-
tion effects. Numerical solution using this model has been
carried out for a landslide over general terrains [15].

For modeling gravity-driven granular avalanche flows
across irregular terrains, Denlinger and Iverson [1] devel-
oped depth-averaged governing equations in a global Carte-
sian coordinate system (with z vertical) that account
explicitly for the effect of nonzero vertical accelerations on
depth-averaged momentum fluxes and stress states. They
used stress transformation between the bed-fitted local
Cartesian and the horizontal global Cartesian coordinate
systems to get the Coulomb stress states independent of
the orientation of the coordinate system. While this model
provides familiar conservative fluxes suitable for a finite
volume method, the source terms containing the internal
stresses are calculated with the otherwise finite element
method, and this will introduce extra work.

More recently, Castro-Orgaz et al. [2] developed a non-
hydrostatic depth-averaged granular flow theory in the
global horizontal-vertical Cartesian coordinate system by
making use of the non-hydrostatic Boussinesq-type water
wave theory widely used in water wave field (e.g., [25]).
In their theory, the effect of vertical motion is taken
into account rigorously, and the vertical velocity, vertical
acceleration, and vertical normal stresses are determined
mathematically using mass and momentum conservation
equations without any ad hoc simplification. Some basic
features of this theory were explored and analytical solu-
tions of simplified flow cases were obtained, and numerical
approaches for treating the additional dispersive terms in
the fluxes of the depth-averaged momentum equations were
outlined [2]. In almost the same time, Ref. [26] also derived
a non-hydrostatic shallow water-type model by a mini-
mal energy constraint and depth-averaging process of the
Euler or Navier-Stokes system, and the model is similar to
the non-hydrostatic shallow granular flow theory [2] in a
sense that the non-hydrostatic part of the pressure will be
determined using additional differential equations.

In this paper, we further develop the non-hydrostatic
depth-averaged granular flow theory [2]. First, we reformu-
late the vertical normal stress [2] in a polynomial form in the
relative elevation η = z − b(x, y, t) (b is the topography).
The resulting quadratic form is convenient for analytical
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depth integration, and it also reveals the difference between
the model [1] and the theory [2]. Second, we compute the
basal traction vector from the Coulomb friction law as Refs.
[27, 28] did. In this step, we find the vertical component of
the basal traction vector is linked to the integration of the
z−momentum equation such that an accurate expression for
the basal normal stress in terms of the enhanced gravity can
be obtained under some scaling arguments. With the above
two revisions, a refined complete non-hydrostatic shallow
granular flow model is obtained under certain constitutive
relations, in which the earth pressure coefficient notation for
the lateral normal stresses in soil mechanics and the rela-
tion between the lateral shear and normal stresses [8] are
adopted. These relations can be replaced or improved in
future work. The resultant full model is further rewritten in a
form of Boussinesq-type water wave equations presumedly
more suitable for implementing available numerical meth-
ods developed by the water wave community.

Since the present full non-hydrostatic shallow granu-
lar flow equations are still complicated, we only carry out
numerical solution of its low-order version, which is simi-
lar to the differential form of the model [1]. We implement
the lower order model in the open-source shallow granu-
lar flow simulation code TITAN2D [29]. In the process,
we encountered a numerical instability problem caused
by discretizing ∂w̄/∂t in the enhanced gravity defined as
g′ = g + Dw̄/Dt . To overcome this problem, we derive
an approximate formula for g′ by using the hypothesis of
hydrostatic pressure in the bed normal direction and the Tay-
lor expansion. This formula takes into account the effects
of bed slope, basal friction, and variation of flow height,
and is found to be numerically more stable than the original
enhanced gravity. In addition, a more delicate “centripetal
normal stress” by using the curvature tensor [11, 24] is
added to the basal normal stress in the basal friction and bed
slope terms. The resultant simplified non-hydrostatic model
is implemented in TITAN2D and tested in several numerical
examples. Numerical comparisons with analytical solutions
and bed-fitted model show a satisfactory agreement.

2 A survey of two non-hydrostatic models

For later reference in this paper, we briefly review the basic
equations of granular avalanche motions and the shallow
granular flow equations of Denlinger and Iverson [1] and of
Castro-Orgaz et al. [2], respectively.

2.1 Conservation equations

In a horizontal-vertical Cartesian coordinate system where
the z direction is opposite to the gravitational acceleration
vector g (Fig. 1), the motion of a fluidized granular mass

g

s

Fig. 1 Sketch illustrating the global coordinate system and variables
used to calculate avalanche motion (courtesy of Denlinger and Iverson
[1])

is described with the mass and momentum conservation
equations

div v = 0, (1)

ρ

[
∂v
∂t

+ div (v ⊗ v)
]

= −div τ + ρg, (2)

where t is the time, ρ is the bulk density of the granular
mass assumed to be constant in this paper, v(x, y, z, t) =
(u(x, y, z, t), v(x, y, z, t), w(x, y, z, t)) denotes the three-
dimensional velocity vector inside the avalanche, ⊗ is the
tensor (or dyadic) product, τ (x, y, z, t) is the negative
Cauchy stress tensor.

Kinematic boundary conditions are imposed on the free
surface z = s(x, y, t) and the basal surface z = b(x, y, t),
that specify that mass neither enters nor leaves at the free
surface or at the base:(

∂s

∂t
+ u

∂s

∂x
+ v

∂s

∂y
− w

)∣∣∣∣
z=s

= 0, (3)

(
∂b

∂t
+ u

∂b

∂x
+ v

∂b

∂y
− w

)∣∣∣∣
z=b

= 0. (4)

The dynamic boundary conditions include a traction-free
boundary condition at the free surface, and a Coulomb
sliding friction law at the basal surface [27]:

τ s · ns =0, (5)

τ b · nb = vr

|vr | tan φbed(nb · τ b · nb)+nb(nb · τ b · nb), (6)

where the outward unit normals (pointing to the out-
side of the granular mass) are defined as ns = (−∂xs,

−∂ys, 1)/

√
1 + (∂xs)2 + (∂ys)2 and nb=(∂xb, ∂yb, −1)

/

√
1 + (∂xb)2 + (∂yb)2, respectively, φbed is the basal angle

of friction and vr = vb+ − vb− is the velocity difference
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(satisfying vr · nb = 0) between the fluid on the upper side
of the basal surface, vb+, and the basal topography on the
lower side of the interface, vb−. The factor vr/|vr | ensures
that the Coulomb friction opposes the avalanche motion. For
a fixed bed, vb− = 0.

2.2 Shallow granular flow model of Denlinger
and Iverson (2004) [1]

Denlinger and Iverson [1] derived a depth-averaged gran-
ular flow model in the global Cartesian coordinate system
as shown in Fig. 1. They started from conservation Eqs.
1–2 and boundary conditions (3)–(5) and noted that the
length scale for avalanche thickness in the z direction is
H , whereas the length scale for typical planimetric zone of
the avalanche in the x and y directions is L. They assumed

H � L typically so that the parameter ε = H/L is much
less than unity. By scaling considerations and integration of
the z-component momentum equation across the avalanche
thickness with a stress-free condition τzz(s) = 0 at the free
surface, they obtained the vertical normal stress τzz(b) at the
bed in terms of a hydrostatic pressure plus a depth-averaged
vertical acceleration correction term. Then, they assumed
that τzz(z) varies linearly from τzz(b) at the basal surface
to 0 at the free surface and that the lateral normal stresses
τxx and τyy are proportional to τzz, and assumed a con-
stant velocity profile for the horizontal velocity components
(u, v) across the vertical thickness. With these assumptions,
they derived following depth-averaged mass and horizon-
tal momentum equations (we correct the signs and the bed
slope term typos in [1] in the right-hand side (RHS) of
Eqs. 8 and 9)

∫
A

[
∂h

∂t
+ ∂(hū)

∂x
+ ∂(hv̄)

∂y

]
dA = 0, (7)

∫
A

[
∂(hū)

∂t
+ ∂

∂x

(
hū2 + 1

2
kxg

′h2
)

+ ∂(hūv̄)

∂y

]
dA = −

∫
A

kxg
′h∂b

∂x
dA (8)

−
∫

V

∂τyx

∂y
dV +

∫
A

τzx(b)dA,

∫
A

[
∂(hv̄)

∂t
+ ∂(hūv̄)

∂x
+ ∂

∂y

(
hv̄2 + 1

2
kyg

′h2
)]

dA = −
∫

A

kyg
′h∂b

∂y
dA (9)

−
∫

V

∂τxy

∂x
dV +

∫
A

τzy(b)dA,

where V is an arbitrary control volume, A is its projected
area on the horizontal Oxy plane, h = s − b is the flow
thickness, measured vertically from the bed at z = b to
the free surface at z = s, ū, v̄ and w̄ are velocity com-
ponents in the x, y, and z directions, averaged over the
vertical thickness h like ū = ∫ s

b
udz/h, kx = τxx/τzz and

ky = τyy/τzz are lateral normal stress coefficients that have
values directly derived from Coulomb stress calculations
and are independent of the orientation of the coordinate
system, τij are Cartesian components of the stress tensor,
and g′ is the “total vertical acceleration” [1] (we adopt the
term “enhanced gravity” [2] as additional terms due to the
vertical acceleration are not included in g′) defined by

g′ ≡ g + Dw̄

Dt
, (10)

Dw̄

Dt
≡ ∂w̄

∂t
+ ū

∂w̄

∂x
+ v̄

∂w̄

∂y
, (11)

w̄ = 1

2
(ws + wb) =

(
∂b

∂t
+ ū

∂b

∂x
+ v̄

∂b

∂y

)

+1

2

(
∂h

∂t
+ ū

∂h

∂x
+ v̄

∂h

∂y

)
. (12)

The governing Eqs. 7–9 are closed by Eqs. 10–12.
Denlinger and Iverson [1] solved the equations with finite
volume methods using stresses from the previous time step
in the RHS source terms. Once a flow solution was obtained,
a finite element method was used to calculate internal
stresses with dynamic boundary conditions (5)–(6) and to
modify these source terms for the next time step.

We will show in Section 3.1 that the differential form
of Eqs. 7–9 plus (10)–(12) is a low-order version of a full
model refined from the following non-hydrostatic shallow
granular flow theory [2]. And a substitute for g′ seems to be
necessary for curing the numerical instability in discretizing
Eq. 10.

2.3 Non-hydrostatic shallow granular flow theory
of Castro-Orgaz (2014) [2]

Castro-Orgaz et al. [2] derived a non-hydrostatic
Boussinesq-type gravity wave theory for granular media in
the same Cartesian coordinate system as shown in Fig. 1.
They adopted the same assumptions of shallowness for
the vertical depth and constant velocity profile for the
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horizontal velocity components (u, v) across the vertical
thickness [1]. Starting from Eqs. 1–5, they derived the
following governing equations

∂h

∂t
+ ∂(hū)

∂x
+ ∂(hv̄)

∂y
= 0, (13)

∂(hū)

∂t
+

∂

(
hū2 + hτ̄xx

ρ

)

∂x
+

∂

(
hūv̄ + hτ̄yx

ρ

)

∂y

= − 1

ρ

(
τxx

∂b

∂x
+ τyx

∂b

∂y
− τzx

)
b

,

(14)

∂(hv̄)

∂t
+

∂

(
hūv̄ + hτ̄xy

ρ

)

∂x
+

∂

(
hv̄2 + hτ̄yy

ρ

)

∂y

= − 1

ρ

(
τxy

∂b

∂x
+ τyy

∂b

∂y
− τzy

)
b

,

τzz = ρg(h − η) + ρ

[
∂I

∂t
+ ∇ · (ūI )

]
− ρw2, (15)

w = wb − (∇ · ū)η, (16)

I ≡
∫ s

z

wdz=(h−η)
∂b

∂t
−∇ ·

[(
h2−η2

)
2

ū

]
+hū · ∇(h+b),

(17)

where η = z − b, ∇ = (∂x, ∂y), ū = (ū, v̄), and a quantity
with bar is the depth-averaged quantity. Note that Eqs. 13,
14 and 15 are the usual depth-averaged mass and horizontal
momentum equations. But Eq. 15 results from integration
of the z−momentum equation from a generic elevation z

to the free surface z = s where a stress-free condition
τzz(s) = 0 is used (the same as [1]), and a constant profile of
ū across the vertical thickness and negligence of high-order
shear stress contributions in Eq. 15 are implied. The verti-
cal velocity component w in (16) results from integration of
the continuity Eq. 1 from the bed with the kinematic bound-
ary condition (4) to a generic elevation z. Equation 17 is a
definition of I and is calculated from vertical integration of
Eq. 16 together with the boundary condition (4).

The system of Eqs. 13–16 are closed if parameteriza-
tions of the stress tensor τ are given. Equations 15, 16, and
17 are said to be the core for modeling dispersion effects
in depth-averaged models [2]. Castro-Orgaz et al. [2] com-
pared their theory with the Denlinger and Iverson model [1]
in 1D steady dry granular flow over a horizontal plane and
shown that the latter model introduces a factor (1/4) into the
dispersive terms in the momentum flux as compared with
the exact factor (1/3) in their full non-hydrostatic shallow
granular flow theory. As for numerical solution of the full
non-hydrostatic shallow granular flow equations, they men-
tioned numerical difficulties introduced by dispersion terms
and suggested some solution methods developed in water
wave simulations.

We remark that integral forms (7)–(9) can be transformed
into differential forms (13)–(15) by removing the surface
integral, utilizing τxx = kxτzz, τyy = kyτzz, τzz = g′(h−η),
and applying Leibnitz’s rule to the second terms in the RHS
of Eqs. 8 and 9.

In the following section, we further develop Castro-
Orgaz et al.’s theory into a refined full non-hydrostatic
shallow granular flow model.

3 Further development of non-hydrostatic shallow
granular flow theory

We first reduce the vertical normal stress formula (15) to a
polynomial form in the relative elevation η. The result will
show that Denlinger and Iverson’s model [1] is a special
case of Castro-Orgaz et al.’s theory [2]. Then we calculate
the normal stress acting on the bed according to the pre-
scribed friction law. These calculations will lead to a refined
full non-hydrostatic shallow granular flow model provided
that the required constitutive relations are prescribed. In
the end we transform the full model into a form similar
to Boussinesq-type water wave equations presumedly more
convenient for future numerical studies.

3.1 Simplification of vertical normal stress

The role of τzz(η) in Eq. (15) is for evaluating τ̄xx , τ̄yy and
τ̄xy , but this form is not convenient for analytical integra-
tion in η, so we consider to simplify it. The depth-averaged
vertical velocity w̄ is computed out from Eq. 16 for use in
subsequent derivation,

w̄ ≡ 1

h

∫ s

b

wdz = wb − (∇ · ū)
h

2
. (18)

Define Î ≡ ∫ z

b
wdz = ∫ s

b
wdz − ∫ s

z
wdz = hw̄ − I , and

rewrite Eq. 15 as

τzz = ρg(h−η)+ρh

(
∂w̄

∂t
+ū · ∇w̄

)

−ρ

[
∂Î

∂t
+∇ · (ūÎ )

]
−ρw2, (19)

where the volume conservation Eq. 13 has been used. Î is
computed by inserting (16) into the definition of Î as

Î = wbη − (∇ · ū)
η2

2
. (20)
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Insert (20) into (19), and denote D/Dt = ∂t + ū · ∇, we
obtain

τzz = ρg(h − η) + ρh
Dw̄

Dt
− ρ

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂wb

∂t
η︸ ︷︷ ︸

to 1

− wb

∂b

∂t︸ ︷︷ ︸
to 2

+(∇ · ū)wbη + ū
∂(wbη)

∂x
+ v̄

∂(wbη)

∂y︸ ︷︷ ︸
expand and to 1 and 2

− ∂(∇ · ū)

∂t

η2

2︸ ︷︷ ︸
to 3

+ (∇ · ū)η
∂b

∂t︸ ︷︷ ︸
to 4

−(∇ · ū)2 η2

2
− ū

2

∂
[
(∇ · ū)η2

]
∂x

− v̄

2

∂
[
(∇ · ū)η2

]
∂y︸ ︷︷ ︸

expand and to 3 and 4

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

−ρw2

= ρg(h − η) + ρh
Dw̄

Dt
− ρ

⎡
⎢⎢⎣Dwb

Dt
η︸ ︷︷ ︸

1

− w2
b︸︷︷︸

2

− D(∇ · ū)

Dt

η2

2︸ ︷︷ ︸
3

+ (∇ · ū)ηwb︸ ︷︷ ︸
4

+(∇ · ū)wbη − (∇ · ū)2 η2

2

⎤
⎥⎥⎦− ρw2

= ρg(h − η) + ρ
Dw̄

Dt
(h −η)︸︷︷︸

from 1

−ρ

⎡
⎢⎢⎣D(h∇ · ū)

Dt

η

2︸ ︷︷ ︸
from 1 by (18)

−w2
b + 2(∇ · ū)wbη − (∇ · ū)2η2︸ ︷︷ ︸

=−w2 by (16)

−D(∇ · ū)

Dt

η2

2
+ (∇ · ū)2 η2

2

⎤
⎥⎥⎦− ρw2

= ρg(h − η)︸ ︷︷ ︸
hydrostatic

+ ρ
Dw̄

Dt
(h − η)︸ ︷︷ ︸

mean acceleration

− ρ

2

[
D(h∇ · ū)

Dt
η − D(∇ · ū)

Dt
η2 + (∇ · ū)2η2

]
︸ ︷︷ ︸

high-order acceleration correction

. (21)

It is seen that τzz equals to a hydrostatic pressure of the
order of ρgH plus a mean vertical acceleration correction
term of the order of ρgH and a high-order acceleration
correction term of the order of ρgHε. The last term is
parabolic in η and becomes zero at both the basal surface
η = 0 and the free surface η = h. Note that the first two
terms are the same linear distribution of τzz as in [1]. Fur-
ther, the depth-averaged vertical velocity (18) is identical
to the arithmetic average of vertical velocities at the basal
and free surfaces, Eq. 12. Therefore, the first two terms
are completely identical to Denlinger and Iverson’s τzz(z).
The difference between model [1] and model [2] lies in that
the latter has a high-order acceleration correction term in
Eq. 21.

3.2 Basal traction vector calculation

Noting that the outward unit vector normal to the bed is
nb = (∂xb, ∂yb, −1)/�b, where �b = [1 + (∂b/∂x)2 +
(∂b/∂y)2]1/2 is the normalization factor, the basal traction
vector T = (Tx, Ty, Tz) = τ b · nb can be written as

τ b · nb = 1

�b

⎛
⎜⎜⎜⎜⎜⎝

τxx

∂b

∂x
+ τyx

∂b

∂y
− τzx

τxy

∂b

∂x
+ τyy

∂b

∂y
− τzy

τxz

∂b

∂x
+ τyz

∂b

∂y
− τzz

⎞
⎟⎟⎟⎟⎟⎠

b

. (22)
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As noted in Refs. [27, 28], the RHS terms in Eqs. 14 and 15
are horizontal components of the basal traction vector. The
vertical component of the basal traction vector appears in
the integration of the z-component equation of (2) from z =
b to z = s by using Leibnitz’s rule and boundary conditions
(3), (4), and (5),

(
τzz−τxz

∂b

∂x
−τyz

∂b

∂y

)
b

= ρgh+ρ

[
∂

∂t

∫ s

b

wdz + ∂

∂x

∫ s

b

uwdz

+ ∂

∂y

∫ s

b

vwdz

]

+ ∂

∂x

∫ s

b

τxzdz + ∂

∂y

∫ s

b

τyzdz. (23)

With the assumption of constant profile for u and v, Eq. 23
becomes

(
τzz−τxz

∂b

∂x
−τyz

∂b

∂y

)
b

= ρgh+ρh
Dw̄

Dt
+ ∂(hτ̄xz)

∂x
+ ∂(hτ̄yz)

∂y
.

(24)

If τzz|b, τxz|b, τyz|b, τ̄xz and τ̄yz are O(ρgH), ū, v̄, and w̄

are O(
√

gL), t is O(
√

L/g), and ∂b/∂x and ∂b/∂y are
O(1), then only the last two terms in the RHS in Eq. 24 are
O(ρgHε), while all other terms are O(ρgH). Therefore,
the last two terms in the RHS in Eq. 24 can be neglected and
the equation becomes
(

τzz − τxz

∂b

∂x
− τyz

∂b

∂y

)
b

= ρh

(
g + Dw̄

Dt

)
= ρg′h.

(25)

Multiply the Coulomb friction law (6) with �b and expand
the three components in the x, y and z directions, respec-
tively,
(

τxx

∂b

∂x
+τyx

∂b

∂y
−τzx

)
b

= (nb · τ b · nb)

[
�bur

|vr | tan φbed+ ∂b

∂x

]
, (26)

(
τxy

∂b

∂x
+τyy

∂b

∂y
−τzy

)
b

= (nb · τ b · nb)

[
�bvr

|vr | tan φbed + ∂b

∂y

]
, (27)

(
τxz

∂b

∂x
+τyz

∂b

∂y
−τzz

)
b

= (nb · τ b · nb)

[
�bwr

|vr | tan φbed−1

]
, (28)

where nb · τ b · nb = nb · T is the normal stress acting on
the basal surface in the outward normal direction, and vr =
(ur , vr , wr) is the (tangential) velocity difference at the bed.
By combining Eq. (28) with Eq. (25), we obtain the bed
normal stress

nb · τ b · nb = ρg′h

1 − �bwr

|vr | tan φbed

= ρβg′h, (29)

where

β = 1

1 − �bwr

|vr | tan φbed

. (30)

Consequently, the horizontal components of the basal trac-
tion vector in Eqs. 26 and 27 are

(
τxx

∂b
∂x

+ τyx
∂b
∂y

− τzx

)
b

= βρg′h
(

�bur|vr | tan φbed + ∂b
∂x

)
,

(
τxy

∂b
∂x

+ τyy
∂b
∂y

− τzy

)
b

= βρg′h
(

�bvr|vr | tan φbed + ∂b
∂y

)
.

(31)

We remark that the normal stress acting on the bed can also
be calculated directly from expansion of nb · τ b · nb rather
than from Eq. 29 as long as a constitutive equation and a
velocity profile in z are given. In cases when a basal fric-
tion law (Coulomb, Manning) is given, the use of Eq. 29 for
calculating the basal normal stress is natural and simpler.

3.3 A refined full non-hydrostatic shallow granular flow
model

To close Eqs. 14 and 15, lateral normal and shear stresses,
τxx, τyy, τxy and τyx have to be parameterized. Savage and
Hutter [5] proposed to use the Mohr-Coulomb soil consti-
tutive law for the avalanche materials in the shallow-water
continuum model, in which the lateral shear stresses τxy and
τyx are omitted, and the lateral normal stresses τxx and τyy

are related to the normal stress τzz in the depth direction in
standard fashion through the earth pressure coefficients kx

and ky respectively. However, the method of determining kx

and ky [5, 7, 30] assumes that two principal axes of the stress
tensor are in the x and y directions, This ad hoc assump-
tion destroys the rotational invariance of the equations about
the z direction perpendicular to the tangential plane. To
amend this deficit, a variety of models have been proposed
[14, 31, 32]. For example, Ref. [33], based on Ref. [31],
used a symmetric earth pressure coefficient matrix K that is
diagonalizable by rotating the coordinates with an invertible

rotation matrix T =
(

cos γ − sin γ

sin γ cos γ

)
such that

K = T
(

k1 0
0 k2

)
T−1, and

(
τxx τxy

τyx τyy

)
= τzzK.

Here, γ is the angle between the primary principal axis
(assumed parallel to the local flow velocity [31]) and the
x-axis, and k1 and k2 are the primary and secondary
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earth pressure coefficients depending on the basal and
internal friction angles and the dilation/compaction states
in principal axis directions. In this work, we adopt the

isotropic depth averaged lateral normal stresses and a rela-
tion between the lateral shear and normal stresses deduced
from the Coulomb equation [34],

τ̄xx = τ̄yy =kapτ̄zz, kap =kx =ky =2
1 ∓√

1−cos2 φint/ cos2 φbed

cos2 φint
−1,

∂ū

∂x
+ ∂v̄

∂y
≷ 0,

τ̄xy = τ̄yx =−sgn

(
∂ū

∂y
+ ∂v̄

∂x

)
kapτ̄zz sin φint = Sτ̄zz, (32)

where S = −sgn
(

∂ū
∂y

+ ∂v̄
∂x

)
kap sin φint. The argument in

the sign function in Eq. 32 is slightly modified from Ref.
[34] in order to ensure τ̄xy = τ̄yx . Equation 32 is rotationally
invariant with respect to the z-axis. With these stress rela-
tions, the depth-averaged lateral normal and shear stresses
τ̄xx , τ̄yy , τ̄xy and τ̄yx in momentum Eqs. 14 and 15 only
require depth integration of τzz(η) from Eq. 21, which can
be done analytically after denoting � = ∇ · ū. The basal
traction horizontal components in the RHS of Eqs. 14 and
15 are evaluated with Eq. 31. With these terms available
and a constant bulk density, we transform Eqs. 13-15 into
refined full non-hydrostatic shallow granular flow equations

∂

∂t

[
h
hū
hv̄

]
+ ∂

∂x

⎡
⎢⎢⎢⎢⎢⎢⎣

hū

hū2 + kx

[
1

2
g′h2 + h3

12

(
�2 − D�

Dt

)]

hūv̄ + S

[
1

2
g′h2 + h3

12

(
�2 − D�

Dt

)]

⎤
⎥⎥⎥⎥⎥⎥⎦

+ ∂

∂y

⎡
⎢⎢⎢⎢⎢⎢⎣

hv̄

hūv̄ + S

[
1

2
g′h2 + h3

12

(
�2 − D�

Dt

)]

hv̄2 + ky

[
1

2
g′h2 + h3

12

(
�2 − D�

Dt

)]

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣

0

−βg′h
(

�bur

|vr | tan φbed + ∂b

∂x

)

−βg′h
(

�bvr

|vr | tan φbed + ∂b

∂y

)

⎤
⎥⎥⎥⎦ , (33)

where the h3 terms in the depth-averaged vertical normal
stress has been simplified by using the volume conservation
Eq. 13. System (33) can be further cast into a frequently
used form of Boussinesq-type water wave equations (e.g.,
[35, 36]) as follows. If we absorb time partial derivatives
in the convective fluxes into ∂t (hū, hv̄) by utilizing Eq. 13
and assuming that kx, ky and S can be extracted out of the
differential operators, we can obtain (overbars in ū, v̄ and
w̄ have been omitted in the following context to simplify
notations)

∂U
∂t

+ ∂F
∂x

+ ∂G
∂y

= Sf −b + Sd, (34)

where

U=
⎡
⎣ h

U

V

⎤
⎦=

⎡
⎢⎢⎢⎢⎣

h

hu+ kx

2

∂
(
h2w

)
∂x

+ S

2

∂
(
h2w

)
∂y

− kx

12

∂
(
h3�

)
∂x

− S

12

∂
(
h3�

)
∂y

hv+ S

2

∂
(
h2w

)
∂x

+ ky

2

∂
(
h2w

)
∂y

− S

12

∂
(
h3�

)
∂x

− ky

12

∂
(
h3�

)
∂y

⎤
⎥⎥⎥⎥⎦,

(35)

F =
⎡
⎢⎣

hu

hu2 + 1

2
gh2

huv

⎤
⎥⎦ , G =

⎡
⎢⎣

hv

huv

hv2 + 1

2
gh2

⎤
⎥⎦ , (36)

Sf −b =

⎡
⎢⎢⎢⎢⎣

0

−βg′h
(

�bur

|vr | tan φbed + ∂b

∂x

)

−βg′h
(

�bvr

|vr | tan φbed + ∂b

∂y

)

⎤
⎥⎥⎥⎥⎦, Sd = −

⎡
⎢⎢⎢⎣

0

kx

∂�

∂x
+ S

∂�

∂y

S
∂�

∂x
+ ky

∂�

∂y

⎤
⎥⎥⎥⎦ , (37)

� = 1

2

[
u

∂(h2w)

∂x
+ v

∂(h2w)

∂y
+ 2h2w�

]

− 1

12

[
u

∂
(
h3�

)
∂x

+ v
∂
(
h3�

)
∂y

+ 2h3�2

]
.

(38)

Here, Sf −b are the friction and bed slope terms, and Sd is
the dispersive terms. However, we can see that the lumped
conservative variable vector U and the dispersive terms are
complicated, so we leave numerical solution of Eq. 34 to
future research. In the remaining parts of this paper, we will
focus on numerical solution of a simplified model deduced
from system (33).

Here we summarize the assumptions made in deriving
the full model (33). The assumptions are (i) shallowness
of the vertical depth relative to the horizontal scale of the
avalanches, (ii) constant horizontal velocity profiles across
the vertical depth, and (iii) some relations between the lat-
eral normal and shear stresses and the vertical normal stress
like Eq. 32. From Eq. 33 to the Boussinesq-type Eq. 34, a
further assumption that kx, ky and S can be extracted out of
the differential operators is made. The full model is more
suitable for dry granular avalanches over steep terrains and
capable of simulating dispersive effects as illustrated for
simple 1D cases [2]. The shortcomings of the full model
are the mathematical complexity, the need to develop a new
numerical method and the resulting large computational
cost.
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In the simplified model to be given in Section 4, the h3

terms in Eq. 33 are neglected. Two further assumptions are
made: (i) the pressure is hydrostatic in the normal-to-bed
direction, and (ii) the variation of the bed slope is small such
that the basal surface can be regarded as a plane locally.
The two assumptions are utilized to obtain an approximate
enhanced gravity to make the reduced model work in the
framework of TITAN2D, and they are unnecessary if a
stable numerical method is available. Although the simpli-
fied model loses some non-hydrostatic effects compared to
Eq. 33, it is remedied by accounting for a centripetal force
involving the full curvature tensor [11, 24]. Therefore, the
simplified model is still more suitable for curved steep ter-
rains than shallow water-like SH equations in the global
Cartesian coordinate system with a constant gravity.

4 A simplified non-hydrostatic shallow granular
flow model

Our initial simplified non-hydrostatic shallow granular flow
model results from system (33) by neglecting all the h3

terms in the convective fluxes, which is the same as the
model [1] except slightly different lateral normal-shear
stress relation (32) and basal normal stress (29). However,
we encountered numerical instability problem when imple-
menting this initial model (also the model [1]) on TITAN2D
[29]. Therefore, we try to find an approximate formula for
the enhanced gravity to be given in Section 4.1, and cor-
respondingly, we add a “centripetal normal stress” due to
the curvature tensor to the original basal normal stress in
the RHS terms. Our final simplified model is presented in
Section 4.2.

4.1 Enhanced gravity

In implementing the original enhanced gravity g′ (Eq. 10)
in TITAN2D, we found that the finite difference approx-
imation for ∂w̄/∂t often causes numerical instability or
irregularity. Therefore, we derive an approximate formula
for g′ by letting the bed normal stress (29) equal to the
traditional hydrostatic bed normal stress obtained from the
shallow flow argument in a bed-fitted coordinate system, as
described below.

Based on scaling analysis of equations written in a local
Cartesian coordinate system with the z̃ axis normal to the
bed [5, 27, 34, 37], the bed normal stress balances the nor-
mal component of the mass weight if neglecting curvature
effects,

nb · τ b · nb = ρghn cos θ. (39)

Here, θ is the angle between the vertical z-axis and the
normal to the bed, and hn is the depth in the bed normal

direction, see Fig. 2. If the variation of the bed slope is
small, then the basal surface can be regarded as a planar sur-
face in proximity of position xs , thus there is a geometrical
relation between the vertical depth h(xs + �x) at xs + �x

and the normal depth hn at xs ,

hn = h(xs + �x) cos θ (40)

where �x = hn sin θ . Using the first order Taylor expansion
with respect to position xs , we obtain

hn ≈
(

h(xs) + hn sin θ
∂h

∂X

∣∣∣∣
xs

)
cos θ,

i.e.,

hn = h cos θ

1 − ∂h

∂X

∣∣∣∣
xs

tan θ cos2 θ

, (41)

where ∂/∂X = −
(

∂xb/

√
(∂xb)2 + (∂yb)2

)
∂/∂x −(

∂yb/

√
(∂xb)2 + (∂yb)2

)
∂/∂y is the directional derivative

in the horizontal plane in the steepest downslope direction.
Note that Eq. 41 takes account for variation of h in space,
thus is expected to be more accurate than hn = h cos θ valid
for uniform depth as given by Juez et al. [38].

Now, let Eq. 29 equal to Eq. 39 together with Eq. 41.

Noting that tan θ =
√

(∂xb)2 + (∂yb)2, we obtain an
approximate formula for the enhanced gravity

g′ =
g

(
1 − �bwr

|vr | tan φbed

)
cos2 θ

1 +
(

∂h

∂x

∂b

∂x
+ ∂h

∂y

∂b

∂y

)
cos2 θ

, (42)

z

X

θ

Δx

h(xs) hn

h(xs+Δx)

Fig. 2 Relation between vertical and normal depths, where �x =
hn sin θ , and X is in the horizontally projected steepest downslope
direction
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which does not involve time derivative occurred in Eq. 10.
We find this g′ is numerically more stable than Eq. 10 when
implemented in TITAN2D. The disadvantage of this g′ is
that when ∂h/∂x and ∂h/∂y are very large near shock waves
or initial jumps and the second term in the denominator
is negative, the denominator may approach zero during
the flow evolution. In our computation, to avoid this prob-
lem, a varying under-relaxation factor, exp(−ω|vr ||∇h|), is
multiplied in front of the second term in the denominator
of Eq. 42, where ω is a free parameter (tuned in 1 ∼ 3
in this work). It is seen that when the magnitude of basal
velocity difference vr or gradient ∇h is large (e.g., super-
critical flows with shocks or large initial jumps), this factor
becomes small so as to suppress destabilization. On the
other hand, when ∇h is small or vr approaches 0, this factor
becomes 1 so as to recover the original Eq. 42.

The rationale for bed normal stress (29) together with
enhanced gravity (42) can be verified by a simple one-
dimensional granular flow example of uniform thickness
descending a frictionless slope inclined at a constant angle
θ [1]. Since φbed = 0 and ∂h/∂x = 0, Eq. 42 gives
g′ = g cos2 θ which is the same as that in [1], and Eq. 29
gives nb · τ b · nb = ρgh cos2 θ = ρghn cos θ which is evi-
dently correct. Another example to verify the correctness
of Eqs. 29 and 42 is the 1D static steady state of shal-
low water flows. For such a state, h + b = const, hence
∂h/∂x = −∂b/∂x = tan θ , and Eq. 42 gives g′ = g

so that Eq. 29 recovers the traditional hydrostatic basal
pressure ρgh. The present approximate hn (41) along with
Eq. 39 also recovers ρgh. On the other hand, the approxima-
tion of hn = h cos θ as in Ref. [38] together with Eq. 39 will
lead to a basal pressure of ρgh cos2 θ , which is incorrect for
this state.

4.2 Governing equations of the simplified
non-hydrostatic model

We restrict ourself to a fixed bed (i.e., ∂b/∂t = 0) in
the following context. For the basal friction terms in the
RHS of system (33), the basal velocity difference in the
basal sliding friction law is ur ≈ ū, vr ≈ v̄, and wr =
wb = ūbx + v̄by , so that |vr | = √

u2
r + v2

r + w2
r =√

ū2 + v̄2 + (ūbx + v̄by)2. It is noted that the approximate
enhanced gravity (42) does not reflect the curvature effects
of terrains. One important effect of the curvature is to pro-
duce an additional friction force linked to centrifugal accel-
eration. Following Refs. [24] and [11], we account for the
curvature effects by adding a centripetal force term involv-
ing the curvature tensor H of the bed profile, (uT Hu)hn/c

2,
to the basal normal stress (βg′h) occurring in the RHS of the
momentum equations. Here, c = cos θ , hn is the avalanche

thickness in the bed normal direction estimated with Eq. 41,
and the curvature tensor [11] is

H = c3

⎡
⎢⎢⎣

∂2b

∂x2

∂2b

∂x∂y
∂2b

∂x∂y

∂2b

∂y2

⎤
⎥⎥⎦ . (43)

The final set of governing equations of the simplified non-
hydrostatic model result from system (33) by dropping all
h3 terms in the LHS and adding the centrifugal force due to
curvature only to the basal normal stress in the RHS. The
equations can be written in vector form (overbars in u, v

have been omitted for brevity)

∂U
∂t

+ ∂F
∂x

+ ∂G
∂y

= S(U), (44)

where

U =
⎛
⎝ h

hu

hv

⎞
⎠ , F =

⎛
⎜⎝

hu

hu2 + 1

2
kxg

′h2

huv

⎞
⎟⎠ ,

G =
⎛
⎜⎝

hv

huv

hv2 + 1

2
kyg

′h2

⎞
⎟⎠ , S(U) =

⎛
⎝ 0

sx
sy

⎞
⎠ , (45)

and

sx = −S

2

∂(g′h2)

∂y
−
(

βg′h + uT Hu
c2

hn

)
+

(
u

|vr |�b tan φbed + ∂b

∂x

)
,

sy = −S

2

∂(g′h2)

∂x
−
(

βg′h + uT Hu
c2

hn

)
+

(
v

|vr |�b tan φbed + ∂b

∂y

)
.

(46)

The subscript “+” stands for the positive part, x+ =
max(0, x), and u = (u, v)T . Note that the depth-averaged
lateral shear stress terms have been placed to the first terms
in the RHS of Eq. 46. They could be retained in con-
vective fluxes F and G, but we follow Refs. [18, 34] to
attribute them to the RHS internal friction source terms.
This arrangement makes Eq. 44 look like the traditional
shallow water equations in the horizontal-vertical Cartesian
coordinate system except a variable g′.

5 Numerical method

5.1 Finite volume method

The governing Eq. 44 is solved with a Godunov type finite
volume method for solving hyperbolic conservation laws.
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We use a horizontal Cartesian mesh to discretize the com-
putational domain. The flow solution variables (h, hu, hv)

are cell averages on each rectangular mesh cell. The finite
volume method used is a second-order predictor-corrector
Godunov method [39] with van Leer MUSCL reconstruc-
tion for U. The intercell numerical flux is computed with
the HLL flux. The wet/dry front is treated by using the Rie-
mann invariant of the wave emanating from the front [8].
The source term S is evaluated in a pointwise way using
cell average values. The predictor-corrector scheme used in
open-source code TITAN2D is listed as follows.

Equation 44 can be rewritten as

Ut + A · ∂xU + B · ∂yU = S(U), (47)

where A = (∂F/∂U)g′=Const and B = (∂G/∂U)g′=Const are
approximate Jacobian matrices of fluxes evaluated with g′
frozen at the previous time level, which have familiar forms
as in the literature (e.g., [8, 30]).

Given Un
i,j , the (i, j) cell average at time level n, the

middle time predictor step is:

U
n+ 1

2
i,j = Un

i,j − �t

2

(
An

i,j�xUn
i,j + Bn

i,j�yUn
i,j − Sn

i,j

)
,

(48)

where �t is the time step, �xU and �yU are limited slopes
of U in the x and y directions, respectively. The depth-
averaged lateral shear stress terms in S are expanded using
the chain rule, e.g., ∂(g′h2)/∂y = h2∂yg

′ + 2g′h�yh, and
the two partial derivatives are discretized like �yU.

In the corrector step, a conservation update of U is
computed as follows:

Un+1
i,j = Un

i,j − �t

�x

(
F

n+ 1
2

i+ 1
2

− F
n+ 1

2

i− 1
2

)

− �t

�y

[
G

n+ 1
2

j+ 1
2

− G
n+ 1

2

j− 1
2

]
+ �tS

n+ 1
2

i,j , (49)

where Fn+1/2
i+1/2 = FHLL(Ul

i+1/2,U
r
i+1/2), and the left and

right state values are obtained by the MUSCL reconstruc-
tion of the cell average values to the edge position; that
is, Ul

i+1/2 = Un+1/2
i,j + (�x/2)�xU

n+1/2
i,j , and Ur

i+1/2 =
Un+1/2

i+1,j − (�x/2)�xU
n+1/2
i+1,j . Notice that the mechanical

behavior of a Coulomb material has to be taken into account
when evaluating the friction force in S. The frictional
force will be treated by a special procedure to be given in
Section 5.2.

The above predictor-corrector scheme is implemented in
TITAN2D, which has been incorporated with parallel adap-
tive Cartesian meshes and geographic information system
(GIS) databases [18, 29].

5.2 Admissible friction and stopping criteria

The granular material can keep/attain static equilibrium
even with an inclined free surface if the tilt angle of the
free surface is less than the internal friction angle. This
equilibrium state is not automatically preserved by a finite
volume scheme discretized from the model solely using the
Coulomb friction threshold. Therefore, either a special pro-
cedure has to be introduced in the solution process [12, 28]
or a “well-balanced”-like numerical scheme has to be con-
structed to reserve this special steady state at rest [11]. In
this paper, we adopt a special procedure. This procedure
will invoke a modification to the momentum variables when
the magnitude of an admissible tangential stress vector Tt

[12] (or so-called net driving force [28]) is smaller than the
Coulomb friction threshold τmax = βg′h tan φbed. In the
following, we describe how to calculate the admissible tan-
gential stress vector Tt . The calculation is similar to that in
Ref. [28]. We take the corrector step (49) as an example. A
similar procedure also applies to the predictor step (48).

The mass and momentum components in Eq. 49 for any
mesh cell i are

hn+1
i = hn

i + Fn+ 1
2

hi ,

qn+1
i = qn

i + Fn+ 1
2

qi − �ts
n+ 1

2
bi + �tf

n+ 1
2

i , (50)

where q = (hu, hv), F is the flux difference terms, sb is the
bed slope source term, and fn+1/2

i is the sum of lateral shear
and basal friction terms in Eq. 46, which has to be quantified
in the following special procedure. Define

q̃n+1
i = qn

i + Fn+1/2
qi − �ts

n+ 1
2

bi , (51)

which is an intermediate solution without the friction terms.
q̃n+1

i /�t is the horizontal components of the net driv-
ing force [28] or the admissible basal shear stress vector
[12] which is in the basal tangential direction, Tn+1

t i . The
magnitude of Tn+1

t i is calculated based on the horizontal
components q̃n+1

i = (q̃n+1
x,i , q̃n+1

y,i ),

∣∣∣Tn+1
t i

∣∣∣ = 1

�t

√∣∣∣q̃n+1
i

∣∣∣2 +
(

q̃n+1
x,i

∂b

∂x
+ q̃n+1

y,i

∂b

∂y

)2

. (52)
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The special procedure is as follows.

1) If the magnitude of the net driving force Tt is less than
the Coulomb threshold τmax, and the tilt angle of the
free surface is less than the internal friction angle, i.e.,
∣∣∣Tn+1

t i

∣∣∣ < βg′hn+1/2
i tan φbed, and |∇(h

n+1/2
i + b)| < tan φint,

(53)

then the local mass stops, qn+1
i = 0. Actual values of

fn+1/2
i are not needed.

2) Otherwise, the momentums qn+1
i are computed using

scheme (50) with the friction force fn+1/2
i evaluated

with dynamic values as given in Eq. 46. The dynamic
quantity (u, v)

n+1/2
i /|vn+1/2

ri | in Eq. 46 is replaced by

(q̃x, q̃y)
n+1
i /|Tn+1

t i |�t when |un+1/2
i | ≤ εtol = 10−6 to

avoid division by zero.

6 Numerical examples

The present simplified model is implemented in TITAN2D
code and tested in a dam break problem having an analyti-
cal solution, an avalanche problem over simple topography,
and a granular avalanche problem in the laboratory. For con-
venience of discussion, we refer to model A as governing
Eq. 44 with g′ being (42), model B as Eq. 44 with g′ being
Eq. 10 but ∂w̄/∂t is set zero to make the model run stably,
and model C as Eq. 44 with g′ = 9.8 m/s2, β = �b = 1,
(u, v)/|vr | → (u, v)/|u|. All the models use kx = ky = 1
except stated explicitly in Fig. 7e. Actually, model C is
the conventional Saint-Venant equations in the horizontal
Cartesian coordinate system except having additional lateral
shear stress terms as in Eq. 46.

Determination of friction angles is a big problem in real-
istic applications. Friction angles depend on many factors
like granular and basal material types, even flow variables
and shear rates. Friction angles are often obtained from
experiments. Refs. [9, 10] gave variable friction angles
dependent on Froude number and flow height which seem
to be a better choice than constant friction angles. In this
paper, we adopt the same constant friction angles as given
in the literature for comparison purpose.

6.1 Analytical solution of dam break problem

Mangeney et al. [40] gave the analytical solution for a one-
dimensional dam break problem over an inclined plane in
terms of thickness h̃ normal to the bed and coordinate x̃ tan-
gential to the bed. Juez et al. [38] obtained the analytical
solution for a similar dam break problem but in terms of ver-
tical thickness h and horizontal coordinate x. We compare
our calculation with the analytical solution [38] since both

solutions are expressed in the same horizontal coordinate
system.

The considered problem is an inclined plane, on which a
granular mass of a constant thickness and infinite length in
the positive x direction is released from rest. Let θ be the
constant slope angle (θ > φbed) and u the horizontal veloc-
ity. For this slope, ∂xb = tan θ . Assuming g′ is constant and
φint = 0, β = 1, Eq. 44 reduces to

∂h

∂t
+ u

∂h

∂x
+ h

∂u

∂x
= 0,

∂u

∂t
+ u

∂u

∂x
+ g′ ∂h

∂x
= −g′(tan θ − tan φbed). (54)

Juez et al. [38] took g′ = g cos2 θ to obtain the analytical
solution. Denoting m = −g′(tan θ − tan φbed) and using the
following change of variables [40],

χ = x − 1

2
mt2, τ = t,

U = u − mt, H = h, (55)

Equation 54 can be transformed into a homogeneous sys-
tem of equations for a frictionless, horizontal dam break
problem with gravity acceleration of g′, of which the classic
Ritter solution [41] gives

(h, u)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(h0, mt), χ > c0t(
h0

9

(
2 + χ

c0t

)2

,
2

3

(χ

t
− c0

)
+ mt

)
, −2c0t ≤ χ ≤ c0t

(0, arbitrary value), χ < −2c0t

.

(56)

where c0 = √
g′h0, and h0 is the initial upstream vertical

thickness.
We compare our numerical results with the analytical

solution (56). The computational domain is [−1000,

1000]× [−250, 250] m2 and is partitioned with 1024 × 256
uniform meshes. g = 9.8 m/s2. Figure 3 depicts the com-
parison between the numerical solutions for two different
values of the bed friction angle and bed slope and the
analytical solutions.

In Fig. 3a, with bed slope angle θ = 0 and friction angles
φbed = φint = 0, a granular mass of 20 m high, infinitely
long in the positive x-direction on a flat bottom is suddenly
released. It can be seen that all the three models produce the
same results in good agreement with the analytical solution.
In the situation of a perfectly horizontal bottom, model A
is the same as model C since Eq. 42 gives g′

A = g and
Eq. 30 gives β = 1. For model B, since w̄ is varying in
the rarefaction zone, Dw̄/Dt is nonzero as seen from Eqs.
11–12, causing g′

B 
= g. Anyway, the numerical result has
no noticeable difference from those obtained by models A
and C.
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Fig. 3 Comparison of computed flow depth in the vertical direction
versus horizontal distance from the initial edge of the dam at x = 0
with the analytical solution. a Results for a tabular reservoir of sand
with zero bed slope, zero internal friction, and zero bed friction at

t = 10 s. b Results for a tabular reservoir of sand with a 30◦ bed slope,
zero internal friction, and 20◦ basal friction at t = 15 s. Meanings of
models A, B, and C are explained in the beginning of Section 6

In Fig. 3b with θ = 30◦, φbed = 20◦ and φint = 0◦, a
tabular reservoir of sand of 20/ cos θ m high in the vertical
direction on the inclined slope is released from the initial
position at x = 0 and the flow depth is shown at t = 15 s.
It can be seen that the result of model A is closer to the
analytical solution than models B and C. Particularly, the
avalanche motion predicted by model C is the quickest and
deviates most from the analytical solution.

The reason why model C gives quicker avalanche can be
explained as follows. From the momentum component of
Eq. 54, the driving force is

Fx = −g′(tan θ − tan φbed) − g′ ∂h

∂x
. (57)

Since (tan θ − tan φbed) > 0 and ∂h/∂x > 0 in the whole
domain, it is evident that larger g′ has larger driving force
to the negative x direction, making the sand collapse faster.
Thus, for model C, since g′

C = g > g cos2 θ , the computed
avalanche flow will be faster than the analytical solution.

For models A and B, since g′ depends on the solution,
it is difficult to analyze the motion generally. However,
model A can be analyzed here. Equation 42 for this problem
gives

g′
A =

⎛
⎜⎝ 1 + tan θ tan φbed

1 + tan θ cos2 θ
∂h

∂x

⎞
⎟⎠ g cos2 θ. (58)

Depending on whether cos2 θ(∂h/∂x) ≷ tan φbed in dif-
ferent locations, g′

A can be smaller or larger than g cos2 θ ,
making the computed avalanche motion lag behind or pre-
cede the analytical solution in different locations as shown
in Fig. 3(b).

6.2 One-dimensional granular avalanche over
simplified topography

The granular avalanches over a simple transversally uniform
2-D topography [28] is chosen here to illustrate the perfor-
mances of various models. The elevation of this topography
decreases from b = 0 m at x̃ = x = 0 m in the left end
with a maximum slope inclination of 35◦ to b ≈ −985.9 m
at x̃ = 5000 m in the right end with slope inclination of
about 2 degrees, where x̃ is a bed-fitted coordinate tan-
gential to the basal surface, and x is the global horizontal
Cartesian coordinate. The corresponding bed slope angle
and curvature are defined by

θ(x̃) = θ0 exp

(
− x̃

a

)
, κ = −dθ

dx̃
= θ(x̃)

a
, (59)

with θ0 = 35◦, a = 1750 m. The topography shape
zb = b(x) is parameterized with the local coordinate x̃ via
following relations

db

dx̃
= − sin (θ(x̃)) ,

dx

dx̃
= cos (θ(x̃)) . (60)

With the starting point chosen as b = 0, x = 0 at x̃ =
0, the topography shape can be integrated numerically. The
solid curve in Fig. 4 shows the bed topography in the global
Cartesian coordinates (x, z).

The dashed curve in Fig. 4 depicts the initial parabolic
shape of a pile over the topography represented in the bed-
fitted coordinate. The initial conditions of the flow are
defined by the instantaneous release of the granular mass,

h̃(x̃, t = 0) = K
[
l − (x̃ − x̃0)

2
]
,

ũ(x̃, t = 0) = 0, (61)

where K = 1.25 × 10−3 m−1, l = 1.6 × 105 m2, and
x̃0 = 500 m. Initially, the maximal thickness of the mass is
200 m in the basal normal direction with a length of 800 m
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Fig. 4 Bed topography in the horizontal Cartesian coordinates (x, z)
and initial shape of the granular mass in the topography-linked coordi-
nates (x̃, z̃)

in the tangential direction. In the horizontal Cartesian coor-
dinate system, the initial shape is the same parabolic shape
centered at the projected position of x̃0 and imposed on the
topography in the vertical z direction.

We simulate this problem by using Cartesian models A,
B, and C and the SH model in the bed-fitted curvilinear
coordinate system [30]. The solution domain is [0, 5000] ×
[0, 1250] m2 for the bed-fitted model, and [−100, 4840] ×
[0, 1235] m2 for the Cartesian models. The computational
meshes used have the same 512 cells in the streamwise
direction and 128 cells in transverse direction in both coor-
dinate systems.

Figure 5 shows comparison of the calculated results
between global Cartesian and bed-fitted models with φint =
φbed = 15◦. Various models produced different results of
which models A and B are in better agreement with the bed-
fitted results than model C, while model C gives the fastest
avalanches. The granular mass completely stops at t = 87,
85 and 82 s for models A, B, and C, respectively, and at
t = 86.5 s for the bed-fitted model. The maximum depth
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Fig. 5 Flow depth h̃ vs. x̃ on a simplified topography at t = 25 s,
45 s, and 87 s (t = 87 s is when the granular mass stops for model
A) computed by using various models for constant friction angles of
φint = φbed = 15◦. The downslope distance is measured along the
x̃ direction on the topography. The flow depth h̃ in the bed normal
direction in models A, B, and C is approximated with Eq. 41. Meanings
of models A, B, and C are explained in the beginning of Section 6

of the final deposit for model A is h̃max = 68.4 m, which is
close to h̃max = 67.3 m for the bed-fitted model. These data
are also close to those (tstop = 86 s and h̃max = 68 m) cal-
culated in Ref. [28] using a topography-linked coordinate
model. However, as different definitions in “flow depth” and
“depth-averaged velocity” exist between the global Carte-
sian and the bed-fitted models, these intrinsic differences
lead to different equations, thus quantitative differences
between the global Cartesian and the bed-fitted models are
expectable. In general, the downstream flow front predicted
by the Cartesian models propagates faster than the bed-fitted
model.

6.3 Avalanche over an inclined plane merging
continuously into a horizontal plane

In this subsection we present a simulation example of an
avalanche of finite granular mass sliding down an inclined
plane and merging continuously into a horizontal plane [30].
The problem scales are nondimensional. A paraboloid of
rotation holding the material together is suddenly released
so that the bulk material commences to slide on an inclined
flat plane at 35◦ into a horizontal run-out plane connected
by a smooth transition. For the simulation using the body-
fitted coordinates (x̃, ỹ), the computational domain is the
rectangle x̃ ∈ [0, 30] and ỹ ∈ [−7, 7] in dimensionless
length units, where the inclined section lies in the interval
x̃ ∈ [0, 17.5] and the horizontal section lies where x̃ ≥ 21.5
with a smooth change in the topography in the transition
zone, x̃ ∈ [17.5, 21.5]. The inclination angle is prescribed
by

ζ(x̃) =

⎧⎪⎪⎨
⎪⎪⎩

ζ0, 0 ≤ x̃ ≤ 17.5,

ζ0

(
1 − x̃ − 17.5

4

)
, 17.5 < x̃ < 21.5,

0, x̃ ≥ 21.5,

(62)

where ζ0 = 35◦. The friction angles φbed = φint = 30◦.
A paraboloid of rotation with height of h0 = 1.60 and
radius of r0 = 2.3 centered at (x̃0, ỹ0) = (4, 0) is released
suddenly at t = 0, see Fig. 6a. The initial vertical height
in the horizontal coordinates can be calculated by rotation
of coordinates around the center (x̃0, ỹ0) = (4, 0) with
angle ζ0.

Figure 6b-d illustrate comparison of the thickness con-
tours of the avalanche body at three time instants (t = 9, 15
and 24) as the avalanche slides on the inclined plane into
the horizontal run-out zone. The results obtained by using
different global Cartesian models are compared with those
obtained by using the bed-fitted model [30]. Comparing
Fig. 6b,c and d, it is seen that the avalanche speed increases
from model A to model C, and all the Cartesian mod-
els produce quicker avalanche than the bed-fitted model.
This difference may be attributed to intrinsic differences
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Fig. 6 a Side view of the bed topography and initial pile. The tran-
sition zone from the inclined plane to the horizontal plane lies for
S1 = 17.5 < xs < S2 = 21.5, where xs is along the downslope
direction. b, c, d Comparison of avalanche thickness contours at times
t = 9, 15, and 24 computed with three Cartesian models and the

bed-fitted model [30]. Five equal contours from h = 0.05 to respec-
tive maximal depth in each frame are displayed. The zone between two
long dashed lines is the transition zone. Meanings of models A, B, and
C are given in the beginning of Section 6

in models such as different depth-averaging directions, as
explained in the end of last subsection. The results of model
A are in better agreement with the bed-fitted results. It is

observed that a shock wave develops just upstream of xs =
21.5 at t = 15. With the arrival of mass from the tail, the
shock wave propagates backwards. At t = 15, the position
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of the shock in model A is almost coincident with that of the
bed-fitted model, the shock in model B is more upstream,
while the shock in model C is more downstream proba-
bly due to shock forming at more downstream position. At
t = 24, the shock front almost reaches the beginning of the
transition zone at xs = 17.5 for the A, B, and bed-fitted
models, and the final depositions of them are comparable.
However, the deposition in model C is more downstream
than that in the bed-fitted model.

6.4 Granular avalanches in a chute with shallow lateral
curvature

This example was taken from Wieland et al. [7] on the rapid
fluid-like flow of a finite mass of granular material down

a chute with partial lateral confinement. The chute consists
of a section inclined at 40◦ to the horizontal, which is con-
nected to a plane run-out zone by a smooth transition. The
reference surface is defined by the variation of its inclination
angle, ζ , with the downslope coordinate x. The inclination
angle of the reference plane is prescribed by

ζ(x) =

⎧⎪⎨
⎪⎩

ζ0, x < xa,

ζ0
xb − x

xb − xa

, xa ≤ x ≤ xb,

0, xb < x.

(63)

where ζ0 = 40◦, and xa = 175 cm is the beginning of the
transition zone and xb = 215 cm is the end of the transition
region. The side view of the reference plane is similar to the
slope in Fig. 6a.
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Fig. 7 Comparison of the present dimensionless avalanche thickness
with the numerical and experimental results for experiment “V05” in
Ref. [7]. The “bed-fitted” results are obtained by solving the conser-
vative governing equations [30] (equivalent to the non-conservative
form [7]) with the present finite volume scheme. The contour levels
start from pile edge (at which the flow thickness is defined as 0.1 mm,

equivalent to 10−3 dimensionless unit) with 0.1 unit intervals. The
zone between two long dashed lines is the transition zone. Meanings of
models A, B, and C are given in the beginning of Section 6. Isotropic
earth pressure coefficients kap = 1 are used in panels (a) and (c), while
the coefficients kap 
= 1 [5] are used in panel (e)—left. (b) and (d) are
numerical results computed by Wieland et al. [7]
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Fig. 7 (continued)

As described in [7], the three-dimensional basal topog-
raphy is superposed normal to the reference surface. A
shallow parabolic cross-slope profile with radius of curva-
ture R = 110 cm is prescribed on the inclined section of the
chute, x < xa = 175 cm. It opens out into a flat run-out
zone in the region, x > xb = 215 cm, and in the transition
zone, xa ≤ x ≤ xb, a continuous differentiable function is
constructed to provide a smooth change in the topography.

The function of the chute topography above the reference
plane, b(x, y), is

b(x, y)=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

y2

2R
, x <xa,

y2

2R

[
3

(
xb − x

xb − xa

)2

−2

(
xb − x

xb − xa

)3
]
, xa ≤ x ≤ xb,

0, xb <x.

(64)
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The initial condition of the flow is the granular material
packed in a hemispherical cap centered at (x0, y0, z0) =
(6, 0, −(r − hc)) cm, which is on the parabolic cross-slope
basal topography. Here, r is the radius of the hemisphere and
hc is the maximum height of the initial free surface above
the chute. The initial free surface, s(x, y), of the granular
material is described in the curvilinear reference coordinate
system as

s(x, y) =
√

r2 − x2 − y2 − (r − hc). (65)

The projection of the intersection of the pile edge with the
basal topology onto the z = 0 plane is approximately ellip-
tical in shape. The major axis of the cap rb = 32 cm, and
the maximum height, hc = 22 cm. The radius r is then
determined by the relation r2 = r2

b + (r − hc)
2. The pile is

released from rest.
We simulate experiment V05 in Ref. [7]. The granular

material is plastic beads, and we use the same fixed basal
angle of friction φbed = 27◦ and internal angle of friction
φint = 33◦ as given in [7]. The computational domain is
[−50, 400] × [−70, 70] cm2 in the reference plane for the
“bed-fitted” model computation, and is slightly extended in
the horizontal x direction for the Cartesian model compu-
tation. A grid with 256 × 96 mesh cells is used in both
coordinates.

Figure 7 illustrates comparisons of the computed thick-
ness at several dimensionless times with the results [7]. The
x and y coordinates in the reference plane are nondimen-
sionalized with Lref = 10 cm, and 0.1 unit intervals in
thickness equal to 1 cm. The “bed-fitted” model we used is
the conservative equations written in the orthogonal curvi-
linear coordinate system on the reference plane [30] (Eq. 63)
that are reformulated from the Lagrangian form [7], and the
equations are solved with the present finite volume scheme.
Comparing Fig. 7a and b, we see that the present bed-fitted
results at t = 6.0 and t = 9.1 are close to the Lagrangian
numerical results [7]. But all the three Cartesian models pro-
duce quicker avalanche nose and slower tail compared with
the present bed-fitted model, and results of models A and
B are closer to the bed-fitted results than model C. Com-
paring panels c and d in Fig. 7, we can see that the shock
wave in the present results begins to form at t = 15.2, and
becomes strong at t = 17.2, while the numerical results
[7] have a stronger shock wave at t = 15.2, and it prop-
agates upslope and becomes weak at t = 17.2. Again, we
see results of models A and B are closer to the bed-fitted
results than model C. In Fig. 7e, we compare our deposited
avalanche thickness distributions with the final avalanche
deposit in experiment V05. For this panel we used the same

earth pressure coefficients kap 
= 1 as given in Refs. [5, 7].
It is seen that the result of model A (or B though not shown
here) is very close to the bed-fitted one, while model C pre-
dicts a deposit at a more downstream position. The tail of
the final deposit at t = 21 computed by model A and the
present “bed-fitted” model is more upstream compared with
the experimental result, yet the computed front and span
extent are comparable to the experimental results.

7 Conclusions

Based on the non-hydrostatic shallow granular theory in
the horizontal Cartesian system due to Castro-Orgaz et al.
[2], we simplify the original expression of the vertical
normal stress, and obtain a new formula for the basal nor-
mal stress by using the relationship between the vertical
component of the basal traction vector integrated from the z-
momentum equation and that of the basal Coulomb friction
law. Together with some stress relations, we turn Castro-
Orgaz et al.’s theory into a refined full non-hydrostatic
shallow granular flow model in the horizontal Cartesian
coordinate system. The equations are further rewritten in a
form of Boussinesq-type water wave equations presumedly
more convenient for future numerical solution using numer-
ical methods developed in water wave field.

In aid of numerical solution of a low-order version of
the full non-hydrostatic model, we propose an approximate
formula for the enhanced gravity based on the hypothesis
of hydrostatic pressure in the bed normal direction and the
Taylor expansion. Correspondingly, we add a “centripetal
normal stress” due to the curvature tensor to the basal nor-
mal stress in the RHS terms. The resulting simplified shal-
low granular flow model is implemented in the open-source
code TITAN2D for simulating granular flows over arbitrary
topography. A series of numerical examples were carried
out to test the suitability of the simplified model. Numeri-
cal results for granular avalanches over simple topographies
show that the simplified model can produce results com-
parable to those obtained with a topography-fitted formu-
lation, while the Saint-Venant equations in the horizontal
Cartesian coordinates produce inaccurate results for steep
slopes. It is concluded that the present simplified model can
be used to model shallow granular flows over steep terrains.
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