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In this work, a numerical scheme based on artificial compressibility formulation of a
phase-field model is developed for simulating two-phase incompressible flow problems.
The coupled nonlinear systems composed of the incompressible Navier–Stokes equations
and volume preserving Allen–Cahn-type phase-field equation are recast into conservative
form with source terms, which are suited to implement high-resolution schemes origi-
nally developed for hyperbolic conservation laws. The Boussinesq approximation is used
to account for the buoyancy effect in flow with small density difference. The fifth-order
weighted essentially nonoscillatory (WENO) scheme is used for discretizing the convec-
tive terms while dual-time stepping (DTS) technique is used for obtaining time accuracy
at each physical time step. Beam–Warming approximate factorization scheme is utilized
to obtain block tridiagonal system of equations in each spatial direction. The alternating
direction implicit (ADI) algorithm is used to solve the resulting system of equations.
The performance of the method is demonstrated by its application to some 2D and 3D
benchmark viscous two-phase flow problems.

Keywords: Two-phase flow; phase-field model; incompressible Navier–Stokes equations;
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1. Introduction

The numerical study of incompressible two-phase interfacial flows is very impor-
tant in various fields of science and engineering and is applied in many industrial
applications. However, several special physical properties like concentrated surface
tension, topological change, large density/viscosity difference associated with time-
evolving sharp interface make such flows difficult to solve analytically and numeri-
cally. From a mathematical point of view, such problems are called moving internal
boundary or free surface flows where the interface has varying behaviors due to den-
sity and viscosity differences of the two fluids. Several numerical techniques exist to
solve such kinds of problems which are usually not easy to implement numerically,
especially in three space dimensions.

In incompressible two-phase flows, the physical variables required to describe the
motion are velocity, pressure, density, viscosity and surface tension. The density
is a very important quantity of fluids since it determines the properties of fluids
like acceleration and buoyancy. However, the density variation in the flow-field has
complicated effects on the flow and one needs to make some assumptions to reduce
the degree of complexity. The Boussinesq approximation [Ferziger and Peric (2002);
Liu and Shen (2003)] is one of such assumptions, which is widely used for buoyancy-
driven flows. In the Boussinesq approximation, the density variation in space and
time is small such that the density occurring in the acceleration terms can be
treated as a constant “background density” ρ0, and the difference between the
actual density and the background density contributes only to the buoyancy force
in the momentum equations [Tryggvason (1988); Lee and Kim (2011)].

Phase-field/diffuse-interface models for two-phase flows have gained a lot of
attention due to ease in handling the topological changes without explicitly knowing
the location of the interface. In our previous work [Shah and Yuan (2011)], we
have developed a two-dimensional (2D) artificial compressibility method (ACM) for
simulating two-phase flows with constant density and viscosity but different types
of fluids embodied by surface tension. The ACM provides a mechanism to march in
pseudo-time to get the divergence-free velocity-field such that mass and momentum
are conserved in the pseudo-steady state and solves a hyperbolic system to avoid
solution of pressure Poisson’s equation. Many numerical schemes for hyperbolic
conservation laws can easily be transferred to artificial compressibility formulations.
The objective of this work is to extend the two-phase numerical method by Shah
and Yuan [2011] to three dimension (3D). Due to the inherited simplicity of our
formulation, it is not difficult to simulate complicated 3D problems using high-
performance computing facilities.

The plan of the paper goes as follows. In Sec. 2, the governing equations for the
mixture of two incompressible fluids are provided with relevant details. In Sec. 3,
formulations based on the ACM are rewritten in hyperbolic conservative form.
Section 4 describes the spatial and temporal discretization and solution algorithm.
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Numerical experiments for 2D and 3D problems are given in Sec. 5. Section 6 con-
cludes this work.

2. Phase-Field Model for Two Different Fluids

Let Ω be a domain filled with two isotropic fluids of different densities and viscosities
separated by an interface. The phase-field function φ(x, t) with x ∈ Ω assumes
distinct constant values φ = 1 in one fluid and φ = −1 in the other fluid with
smooth change in the interfacial region given by a width η as shown in Fig. 1.

The elastic mixing free-energy of two-component fluids can be expressed by the
Ginzburg–Landau free-energy functional of the form:

F (φ,∇φ) =
∫

Ω

(
1
2
|∇φ|2 +

1
4η2

(φ2 − 1)2
)

dx, (1)

where the constant η is an artificial thickness for the diffusive interface. Actually,
the gradient term for φ in the integrand leads to a diffuse liquid–liquid interface,
a feature observed both experimentally and numerically [Tegze et al. (2005); Tan
et al. (2007)], while the latter term in the integrand leads to a sharp interface.
The energy minimization in one-dimensional (1D) case yields the equilibrium with
φ = ±1 in the two bulk phases and φ(x) = tanh( x√

2η
) across the interface at x = 0.

The evolution of φ is governed by the Allen–Cahn-type equation:

φt + (u·∇)φ = −γ
δF

δφ
= γ(∆φ − f(φ)). (2)

Here, δF/δφ represents the variation of the energy F with respect to φ, f(φ) is the
double well potential (f(φ) = φ(φ2−1)

η2 ), and γ is the elastic relaxation time-scale of
the two fluids. We used a modified Allen–Cahn formulation [Yang et al. (2006); Di
et al. (2008)] by introducing ξ(t) that allows to enforce the condition |φ| = 1 as a
remedy to conserve the mass. We can see that Eq. (2) tends to the classical volume
of fluid (VOF) equation φt + (u·∇)φ = 0, provided that both η and γ tend to 0.

Fig. 1. A schematic diagram showing the distribution of phase variable across an interface (φ = 0)
while (φ = 1) and (φ = −1) represent two phases separated by a diffusive region with a thickness η.
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The momentum equation for the fluid mixture with small density difference can be
described by the Boussinesq approximation:

ρ0[ut + (u · ∇)u] = −∇p̃ + ∇ · σ + b(φ), (3)

where ρ0 is the “background” density treated as constant in the whole flow-field and
the difference between the actual density and ρ0 contributes only to the buoyancy
force b(φ). p̃ is the pressure that has absorbed ρ0gz from original gravity term. σ

is the lumped stress tensor that includes the viscous stress tensor and the induced
elastic stress tensor, and is given by

σ = µ(φ)[∇u+(∇u)T ] − λ∇φ ⊗∇φ, (4)

where µ(φ) = 1+φ
2 µ1 + 1−φ

2 µ2 is the dynamic viscosity of the mixture, λ is the
surface tension coefficient and (∇φ⊗∇φ)ij = ∇iφ∇jφ is the usual tensor product.
By using the identity,

∇ · (∇φ ⊗∇φ) = ∆φ∇φ + ∇
(

1
2
|∇φ|2

)
, (5)

the momentum equation is further simplified by redefining the pressure term: p =
p̃ + 1

2λ|∇φ|2. The buoyancy force with gravitational acceleration g in the negative
z-direction is given as

b(φ) = (0, 0,−g(ρ− ρ0))T, (6)

where ρ = 1+φ
2 ρ1 + 1−φ

2 ρ2 is used. In this work, we restrict ourself to a simpler type
of incompressible two-fluid mixture [Liu and Shen (2003); Di et al. (2008)] with a
viscosity constant µ1 = µ2 = µ. We used the incompressibility condition to convert
the convective term in Eq. (3) to a conservative form, divide it by ρ0 but still
denote (p, µ,b, λ) = (p, µ,b, λ)/ρ0, the system of governing equations consisting of
the continuity equation, the momentum equation, and the phase-field equation are
as follows:

∇·u = 0, (7a)

ut + ∇ · (u ⊗ u) + ∇p − µ∆u = b(φ) − λ∆φ∇φ, (7b)

φt + u · ∇φ − γ∆φ = γ(−f(φ) + ξ(t)) (7c)

with initial conditions

u|t=0 = u0, φ|t=0 = φ0

and appropriate boundary conditions. The phase-field model Eq. (7) for two-phase
incompressible viscous flows has received a lot of attention recently and some
authors [Liu and Shen (2003); Chiu and Lin (2011); Yue et al. (2005); Liu et al.
(2005); Tan et al. (2006); Zhang and Tang (2007); Sun and Beckermann (2007);
Ding et al. (2007); Sun et al. (2009); Feng et al. (2005); Zhao et al. (2016)] among
others have developed different numerical methods to solve this type of coupled
system of equations.
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3. Artificial Compressibility Formulation

The mass conservation is the main difficulty in solving the incompressible Navier–
Stokes equations in primitive variables. To relax this constraint, the ACM [Chorin
(1967)] provides a mechanism to march in pseudo-time towards the divergence-free
velocity-field such that the mass and momentum are conserved in the pseudo-steady
state. The method gives an artificial relation between pressure and density in order
to bring a pseudo-time derivative to the mass conservation equation, i.e., p ∼ βρ∗

implies that β ∂ρ∗
∂τ = ∂p

∂τ , where β is the artificial compressibility parameter. Now
that the system of equations become hyperbolic in pseudo-time, numerical methods
for hyperbolic conservation laws can be used. Adding the artificial compressibility
terms with dual-time stepping (DTS) technique [Shah and Yuan (2011)] to the
governing equations (7), we obtain

∂p

∂τ
+ β(∇ · u) = 0, (8a)

∂u
∂τ

+
∂u
∂t

+ ∇ · (uu) + ∇p − µ∆u = b(φ) − λ∆φ∇φ, (8b)

∂φ

∂τ
+

∂φ

∂t
+ ∇ · (φu) − γ∆φ = γ(−f(φ) + ξ(t)). (8c)

After ξ(t) in Eq. (8c) is modified as ξ(t)(1 − φ2) as per Di et al. [2008] to keep
φ ∈ [−1, 1], the above equations can be written in the following conservative form:

∂D
∂τ

+ Im
∂D
∂t

+
∂(E− Ev)

∂x
+

∂(F − Fv)
∂y

+
∂(G− Gv)

∂z
= Sb (9)

with

D =




p

u

v

w

φ




, E =




βu

u2 + p

uv

uw

uφ




, F =




βv

uv

v2 + p

vw

vφ




, G =




βw

uw

vw

w2 + p

wφ




and

Im =




0 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1



, Ev =




0

µux

µvx

µwx

γφx




, Fv =




0

µuy

µvy

µwy

γφy



, Gv =




0

µuz

µvz

µwz

γφz



,
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Sb =




0

−λφx(φxx + φyy + φzz)

−λφy(φxx + φyy + φzz)

−λφz(φxx + φyy + φzz) − 1
2
g

[
(1 + φ)

ρ1 − ρ0

ρ0
− (1 − φ)

ρ2 − ρ0

ρ0

]

γ(1 − φ2)(φ/η2 + ξ(t))



, (10)

where D is the solution vector (u, v, w) are velocity components in each spatial
directions, respectively, τ is the pseudo-time, t is the physical time, Im is a modified
identity matrix and Sb represents the effects of nonlinear surface tension terms and
buoyancy terms. The Jacobian matrices A, B and C of the inviscid flux vectors E,
F and G, respectively, are given by

A =
∂E
∂D

=




0 β 0 0 0

1 2u 0 0 0

0 v u 0 0

0 w 0 u 0

0 φ 0 0 u



, B =




0 0 β 0 0

0 v u 0 0

1 0 2v 0 0

0 0 w v 0

0 0 φ 0 v




,

C =




0 0 0 β 0

0 w 0 u 0

0 0 w v 0

1 0 0 2w 0

0 0 0 φ w



.

The viscous Jacobian matrices Av, Bv and Cv of the viscous flux vectors Ev, Fv

and Gv, respectively, which will be utilized in the approximate factorization (AF)
scheme are

Av =
∂Ev

∂D
= diag(0, µ, µ, µ, γ)∂x, Bv =

∂Fv

∂D
= diag(0, µ, µ, µ, γ)∂y

and Cv =
∂Gv

∂D
= diag(0, µ, µ, µ, γ)∂z.

It is possible to diagonalize A, B and C as

A = XΛAX−1, B = YΛBY−1, C = ZΛCZ−1,

where diagonal matrices ΛA, ΛB and ΛC contain the eigenvalues of matrices
A, B and C, respectively, e.g., ΛA = diag = {u − c1, u, u, u, u + c1} with
c1 =

√
u2 + β being the pseudo-speed of sound. The matrices X and Y and Z

are the right eigenvectors matrices, while X−1 and Y−1 and Z−1 are their inverses,
respectively.
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4. Numerical Method

The fifth-order weighted essentially nonoscillatory (WENO) scheme [Jiang and Shu
(1996); Yang et al. (1998)] for the discretization of the convective terms while
second-order central scheme for the viscous and surface tension terms are used.
Forward difference scheme for pseudo time derivative and two-point backward dif-
ference scheme for the physical time derivative are used, i.e.,

Dn+1,m+1 − Dn+1,m

∆τ
+ Im

3Dn+1,m+1 − 4Dn + Dn−1

2∆t

+
[
∂(E − Ev)

∂x
+

∂(F − Fv)
∂y

+
∂(G − Gv)

∂z

]n+1,m+1

= Sn+1,m+1
b , (11)

where n is the physical time level and m is the pseudo-time level. The objective is
to solve for Dm+1 at level n + 1 (knowing the solution at level n and n − 1) which
is nonlinear in nature, so first we linearize it using the first-order Taylor’s series
expansion

Em+1 ≈ Em +
(

∂E
∂D

)m

(Dm+1 − Dm), (12)

where second and higher-order terms are neglected. Since ( ∂J
∂D )m = Am, Eq. (12)

becomes

Em+1 ≈ Em + Am∆Dm. (13)

Similarly, we expand Fm+1,Gm+1,Em+1
ν ,Fm+1

ν ,Gm+1
ν with respect to pseudo-time

level m like Eq. (13). From now on, superscript n + 1 is omitted for brevity. After
substituting Eq. (13) and similar expansions in Eq. (11), the following rearranged
form is obtained:[

I + 1.5
∆τ

∆t
Im + ∆τ

(
∂(A − Av)

∂x
+

∂(B− Bv)
∂y

+
∂(C − Cv)

∂z
− Φ− P̃

)]
∆Dm

= −∆τ

(
∂(E− Ev)

∂x
+

∂(F − Fv)
∂y

+
∂(G− Gv)

∂z
− Sb

)m

− ∆τ

2∆t
Im(3Dm − 4Dn + Dn−1). (14)

In Eq. (14), Φ is a Jacobian matrix resulting from the nonlinear function in the
φ equation and the buoyancy term in the momentum equations, and P̃ = (Px +
Py + Pz), where Px, Py and Pz are the Jacobian matrix operators resulting from
the x-, y- and z-derivative operators of the surface tension terms in the momentum
equations, respectively.

Denoting the RHS of Eq. (14) as Rm and H = I+ 1.5∆τ
∆t Im −∆τΦ in the LHS,

we get[
H + ∆τ

(
∂(A − Av)

∂x
+

∂(B− Bv)
∂y

+
∂(C − Cv)

∂z
− P̃

)]m

∆Dm = Rm. (15)
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Therefore, we have linearized the nonlinear system of Eqs. (11) by using Taylor’s
series expansion to obtain the linearized system of equations given by Eq. (15). Next,
we split the matrices A, B and C into positive and negative parts and discretize
the split parts with the first-order upwind scheme, and discretize the viscous terms
and surface tension matrix operator terms in the LHS with the second-order central
difference as follows:

[H + ∆τ(δ−x A+ + δ+
x A− − δ2

xAv − Px) + ∆τ(δ−y B+ + δ+
y B− − δ2

yBv − Py)

+ ∆τ(δ−z C+ + δ+
z C− − δ2

zCv − Pz)]m∆Dm = Rm.
(16)

In the LHS of Eq. (16), the first-order upwind difference and the second-order central
difference schemes used are

δ+
x fi =

fi+1 − fi

∆x
, δ−x fi =

fi − fi−1

∆x
and δ2

xfi =
(fi+1 − fi) − (fi − fi−1)

∆x2
.

The Beam–Warming AF scheme [Beam and Warming (1978)] which converts a 3D
problem into three 1D problems, symbolically written as

£ · ∆Dm ≈ £x£y£z · ∆Dm = Rm. (17)

In a standard fashion to add cross-derivative terms to the LHS of Eq. (16), which
are the same order of ∆τ3 as the truncated terms of the original equations, one
can obtain the AF scheme in the form which can be easily solved by alternating
direction implicit (ADI) method, i.e.,

[H + ∆τ(δ−x A+ + δ+
x A− − δxAv − Px)]∆D∗∗ = Rm, (18)

[H + ∆τ(δ−y B+ + δ+
y B− − δyBv − Py)]∆D∗ = ∆D∗∗, (19)

[H + ∆τ(δ−z C+ + δ+
z C− − δzCv − Pz)]∆Dm = ∆D∗. (20)

That is, first solve Eq. (18) for ∆D∗∗ then solve Eq. (19) for ∆D∗ and finally solve
Eq. (20) for ∆Dm to update the solution at m + 1 pseudo-time level (Dm+1 =
Dm + ∆Dm). The resulting block tri-diagonal linear system in each direction is

αi∆Ui−1 + βi∆Ui + γi∆Ui+1 = Ri, i = 2, . . . , imax− 1

with appropriate boundary conditions at i = 1 and i = imax.

5. Numerical Results

In this section, a number of flow problems in 2D and 3D are simulated to validate
the numerical method and test the application of phase-field model for two-phase
flows. Relevant details for convergence and volume conservation properties of the
method are presented in our previous work [Shah and Yuan (2011)].

5.1. 2D rising bubbles

In our first numerical experiment, we investigate the bubble deformation due to
the buoyancy effect and elastic relaxation. The parameters for this problem are:
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η = 0.01, ∆t = 0.01, β = 200, ρ1 − ρ2 = −1.0 and g = 9.8. Here, ρ1 refers to
the fluid density inside the bubble, ρ2 refers to the density of the surrounding fluid
that can be taken as the “background” density, ρ0 = ρ2, and this will simplify the
buoyancy term to − 1+φ

2 g(ρ1 − ρ2) in Eq. (10). We consider a circular bubble of
radius R0 = 0.25 with center at xc = (0.5, 0.35) in the rectangle domain of size
[0, 1]× [0, 2.5]. Grid resolutions of 201× 551 can give reasonable results for smaller
width η = 0.01. Initially, zero velocity is assumed and the phase function is given by

φ(x, 0) = tanh
(‖x− xc‖ − R0√

2η

)
so that φ ≈ 1 inside the bubble and φ ≈ −1 in the surrounding fluid. We performed
60 sub-iterations to get converged solution in pseudo-time at each physical time-
step.

From Figs. 2(a)–2(d), we display the time evolution and shape deformation of
a rising bubble by plotting φ = 0. It can be seen that for surface tension λ = 0.0,
viscosity µ = 0.05 and elastic relaxation γ = 0.05, the bubble rise in the upward
y-direction because of the buoyancy force. It attains a steady state with somewhat
kidney-shaped bubble as shown in Figs. 2(d)–2(f). In Fig. 3, however, with zero
surface tension and µ = γ = 0.005, a bubble starts rising in the upward direc-
tion with a breakup of primary and secondary liquid drops as shown in Figs. 3(f)
and 3(h), respectively. Soon, the primary and secondary drops start shrinking as
shown in Figs. 3(i)–3(j) and eventually disappear given in Fig. 3(k). The shrinking
phenomena which is similar to the Ostwald ripening phenomenon in liquid solu-
tions [https://en.wikipedia.org/wiki/Ostwald ripening] is actually due to Allen–
Cahn-type (diffusive) approximation of the sharp interface. It causes the smaller
bubble to dissolve into the fluid while the bigger bubble to absorb mass from the
fluid. It is to be noted that the overall mass of the bubble is still conserved due to the
mass transfer from smaller to the lager bubble. It is noted that for large value of sur-
face tension coefficient, the bubble remains nearly circular and rise in a steady state
fashion with constant velocity and shape [Rizwan et al. (2016)] while larger values

(a) (b) (c) (d) (e) (f)

Fig. 2. Time evolution of the rising 2D bubble interface for λ = 0.0 and µ = γ = 0.05.
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(g) (h) (i) (j) (k) (l)

(a) (b) (c) (d) (e) (f)

Fig. 3. Time evolution of the rising 2D bubble interface for λ = 0 and γ = 0.005.

of elastic relaxation parameter can control the breakup of smaller drops. Although,
our results agree well with the results in Sussman and Smereka (1997) and Unverdi
and Tryggvason (1992) qualitatively, however for accurate representations of the
interface location and flow-field require more studies and high resolution (adaptive)
grids to better resolve the thin interface profile (η → 0). High grid resolution and
smaller width η both may help minimize the coarsening effect of the Allen–Cahn-
type approximation due to potential difference at the interface Jamet (2001).

5.2. 3D rising bubble

As a second numerical experiment, we show the deformation of a fully 3D rising
bubble to validate our 3D code. We choose η = 0.04, λ = 0.005, µ = γ = 0.05
while ∆t and β remain the same as in Sec. 5.1 with a 3D domain of size [0, 1] ×
[0, 1]× [0, 2.5]. The mesh size is 101× 101× 251. Similar to previous 2D case, as the
simulation starts, the 3D spherical bubble deforms and starts to rise and reach to
steady state with a constant shape as shown in Fig. 4.

5.3. Coalesces of two bubbles

In this example, coalesces and changes in topology of two 3D interacting bubbles
due to the surface tension are considered. Coalescence is the process by which two

1750059-10
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Fig. 4. Iso-surface of a 3D rising bubble at time t = 0, 0.5, 1.0, 1.5 and 1.75.

Fig. 5. Coalesces of two bubbles at time t = 0, 0.1, 0.2, 0.5 and 2.0.

or more droplets, bubbles or particles merge during contact to form a larger single
droplet, bubble or particle. It can take place in many processes, e.g., the formation
of rain drop is due to the coalesces of small droplets in clouds. When the droplets
become heavy not to be sustained in the air, it begin to fall as rain. Let the 3D
domain is of size [0, 2] × [0, 2] × [0, 2] with a computational grids 101 × 101 × 101,
respectively, in which two 3D spherical bubbles of equal radius are taken as shown in
Fig. 5. As the computation starts, the two bubbles coalesce and first they transform
into one elliptic shape bubble, which then transfigures and deforms into a steady
state single larger circular bubble.

In Figs. 6(a)–6(c), results from literature for the interaction of two spherical
rising bubbles are shown. For comparison purpose, we take two spherical bubbles
of radii 0.5 which are centered at (0.7, 0.7, 0.5) and (1.2, 1.4, 1.65), respectively,
as shown in Fig. 7 with the density ratio ρ1/ρ2 = 1/20. Now the background
density ρ0 is taken to be 0.5(ρ1 + ρ2) such that the buoyancy force b = −gφ(ρ1 −
ρ2)/(ρ1 + ρ2) in Eq. (10). Other parameters are η = 0.04, λ = γ = 0.01, g = 9.8
and the solution domain is of size [0, 2] × [0, 2] × [0, 4] with computational grids
of 101 × 101 × 201, respectively, so that the interfacial zone is fairly resolved by
two grid points. This setting is roughly similar to the one used by Di et al. [2008],
Sussman and Puckett [2000] and Unverdi and Tryggvason [1992]. The topological
deformation “mushroom”-like shape can be seen when the bubbles start rising. The
top bubble continues deform and draws the lower bubble, a similar behavior given
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(a) (b) (c)

Fig. 6. Reference results at different time-level for coalescence of two rising bubbles (a) Di et al.
[2008], (b) Sussman and Puckett [2000] and (c) Unverdi and Tryggvason (1992).

Fig. 7. Coalescence of two rising viscous bubbles in a continuous phase at time t = 0, 0.4, 0.8, 1.0

and 1.2, when the bubbles are not aligned.

in Di et al. [2008], Sussman and Puckett [2000] and Unverdi and Tryggvason [1992].
We see a very close resemblance of our results with that of Sussman and Puckett
[2000]. Nevertheless, the method, time-scale and parameter settings used and 3D
image view may slightly different from the reference solution resulting the difference
qualitatively in Figs. 6 and 7. Further studies of parameter estimations and method
may help us to establish relation between numerical simulation and experimental
results.

6. Conclusions

Based on a phase-field model, an implicit 3D method is developed for simulating
two-phase flow problems which is capable of capturing essential features of inter-
facial dynamics and topological changes. The model consists of the incompress-
ible Navier–Stokes equations coupled with mass preserving Allen–Cahn phase-field
equation through surface tension term and buoyancy force (Boussinesq approxi-
mation). The numerical algorithm is based on ACM which recast the governing
equations into conservative form for using numerical methods developed for hyper-
bolic conservation laws. The high-order high-resolution WENO scheme can capture
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the sharp interface correctly and avoid spurious oscillation. A number of numer-
ical simulations were performed to validate the method. The major limitation of
the method is, of course, insufficient resolution of small interfacial width η if using
fixed coarse grid. Also, in spite of being implicit mostly, the numerical scheme
still has restricted physical time step because the source terms are hard to be
fully implicit. More studies are needed to establish accurately the correspondence
between the parameters in the model and those in experiments and sharp interface
modeling. In future work, we intend to use adaptive meshes to increase the grid scale
locally for phase-field simulation and to go beyond the Boussinesq approximation to
solve more challenging multi-phase flow problems with large density and viscosity
differences.
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