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Abstract When the artificial compressibility method in conjunction with high-order
upwind compact finite difference schemes is employed to discretize the steady-state
incompressible Navier-Stokes equations, in each pseudo-time step we need to solve
a structured system of linear equations approximately by, for example, a Krylov
subspace method such as the preconditioned GMRES. In this paper, based on the
special structure and concrete property of the linear system we construct a structured
preconditioner for its coefficient matrix and estimate eigenvalue bounds of the cor-
respondingly preconditioned matrix. Numerical examples are given to illustrate the
effectiveness of the proposed preconditioning methods.
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1 Introduction

A wide spectrum of fluid flow problems can be described mathematically through
the incompressible Navier-Stokes equations, which can be solved numerically by the
directly coupled method, the pressure-correction method, and the projection method.
These methods may be categorized into the methodology of self-consistent itera-
tions, which computes approximate solutions by alternatively solving the pressure
(or the pressure-correction) Poisson equation and the momentum equation, and in
general they can be employed to solve both steady-state and time-dependent incom-
pressible Navier-Stokes equations; see [18, 19, 23, 25]. However, for steady-state
incompressible Navier-Stokes equations, the artificial compressibility method [18]
is cost-effective and, hence, is frequently used in engineering computing. The main
reason is that for using the artificial compressibility method we change the govern-
ing equations to hyperbolic ones by introducing an extra pseudo-time derivative with
respect to the pressure into the continuity equation so that accurate discretization
schemes and efficient solution methods developed for computing compressible flows
can be straightforwardly utilized.

Compared with numerical solutions for the compressible flows, a main difficulty
in numerically solving the incompressible Navier-Stokes equations is the lack of a
time-derivative term in the continuity equation, which limits straightforward applica-
tions of the time-marching methods [19]. The artificial compressibility method over-
comes this difficulty by introducing an extra pseudo-time derivative into the steady-
state incompressible Navier-Stokes equations, so that the resulting equations are
coupled in a time-marching manner. Alternatively, the mixed finite element method
may be used to solve the steady-state incompressible Navier-Stokes equations, induc-
ing a discretized linear system of the saddle-point form. As is well-known, the
saddle-point matrix is indefinite and ill-conditioned, so computing an approximate
solution to the saddle-point linear system is practically a very difficult problem and
numerically a challenging task; see [4, 5, 7, 10, 12, 20] and the references therein.

Recently, based on the artificial compressibility method, in [30–32] the authors
proposed and studied several simple and accurate discretization methods by mak-
ing use of the third- and the fifth-order upwind compact finite difference schemes.
After discretization, at each pseudo-time level an approximate solution of the dis-
cretized steady-state incompressible Navier-Stokes equations can be computed by the
approximate factorization and alternating direction implicit (AF-ADI) iteration, the
lower and upper symmetric Gauss-Seidel (LU-SGS) iteration, and the line relaxation
method; see [15, 24, 27, 33]. These approaches are essentially based on approximate
factorizations of the discretized incompressible Navier-Stokes equations. They may,
however, cause errors related to the pseudo-time stepsizes and the artificial compress-
ibility factor, which could affect the overall computational accuracy of the discretized
solution and the global convergent rate of the iteration process.

Through a different approach, recently Ran and Yuan [28] fully discretized and
linearized the two-dimensional steady-state incompressible Navier-Stokes equations
by making use of the artificial compressibility method at each pseudo-time level on
quadrilateral meshes, resulting in a class of large, sparse, and structured systems of
linear equations. The discretized solution of the steady-state incompressible viscous
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flow problem can then be obtained via solving these linear systems by employing the
modified block symmetric successive overrelaxation (MBSSOR) and the modified
alternating direction implicit (MADI) iteration methods, respectively; see [1, 3, 26].
Both MBSSOR and MADI iteration methods require low computational complexity
and small computer memory in actual implementations. However, finding the optimal
iteration parameters for these two iteration methods is practically a challenging task.

Note that for any real �-by-� banded matrix A ∈ R
�×� (with a fixed small band-

width) and any real �-dimensional vector b ∈ R
� the matrix-vector product Ab may

be computed in O(�) operations. Hence, we can employ Krylov subspace iteration
methods such as GMRES [29] to solve the system of linear equations Ax = b in an
economical cost. To further accelerate the convergence rates of the Krylov subspace
methods, we need to construct economical and high-quality preconditioners for the
matrix A.

Along this approach, in this paper we construct and analyze approximated incom-
plete LU (ILU) factorization and approximated unsymmetric Gauss-Seidel (UGS)
splitting preconditioning matrices for the coefficient matrix An of the discretized lin-
ear system An �qn = g̃n. These preconditioning matrices essentially consist of two
approximation steps: First, selectively dropping the off-diagonal elements of An to
obtain an approximate matrix Pn; Second, constructing ILU factorization and UGS
splitting for the matrix Pn to obtain the ILU and the UGS preconditioning matrices
for the matrix An. The matrix Pn is much sparser than the matrix An, so that the ILU
and the UGS preconditioning matrices are also sparser than the ILU factorization and
the UGS splitting preconditioning matrices straightforwardly computed from An.

Theoretically, we prove that both An and Pn are strictly diagonally dominant
matrices by columns under certain restrictions on the spatial and the temporal step-
sizes, and all eigenvalues of the preconditioned matrix (Pn)−1An are located within
a complex disk centered at (1, 0) with radius being less than 1, which condition-
ally guarantees the convergence of the GMRES method preconditioned by Pn when
it is used to solve the discretized linear system An �qn = g̃n; see [2, 11, 22, 29].
Numerically, we show that Pn possesses more desirable sparsity pattern and eigen-
value distribution than An, and the eigenvalues of the preconditioned matrices with
respect to the ILU and the UGS preconditioners are tightly clustered. Therefore, when
the eigenvector matrices of the preconditioned matrices are not very ill-conditioned,
the corresponding preconditioned GMRES methods are convergent fast, accurately
and robustly to the exact solution of the discretized linear system An �qn = g̃n,
resulting in a reliable and effective numerical process, including the discretization,
the linearization and the GMRES solve, for solving the two-dimensional steady-state
incompressible Navier-Stokes equations; see [2, 22].

The paper is organized as follows. In Section 2, we briefly describe the govern-
ing equations, their finite difference discretizations, and the correspondingly induced
system of linear equations. The strictly diagonal dominance of the linear system
is also demonstrated in this section. In Section 3, we construct the ILU and the
UGS preconditioning matrices for the matrix An and demonstrate the strictly diago-
nal dominance of the approximate matrix Pn. The numerical results about the plane
Poiseuille flow, the plane Couette-Poiseuille flow and the modified cavity flow are
reported in Section 4. Finally, we give some concluding remarks in Section 5.
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2 The governing equations and discretization

In this section, we will describe the governing equations, i.e., the two-dimensional
steady-state incompressible Navier-Stokes equations, and derive the corresponding
discretized linear system resulting from a technical combination of the artificial com-
pressibility method and the high-order upwind compact finite difference scheme. For
more details, we refer to [28].

2.1 The governing equations

The governing two-dimensional steady-state incompressible Navier-Stokes equa-
tions, in Cartesian coordinates (x, y) and without body force, are of the following
dimensionless form:
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(2.1)

where u and v are the velocity components, p is the pressure, and Re is the
Reynolds number. By introducing a pseudo-time derivative into the continuity and
the momentum equations, we further modify (2.1) to obtain the following target
equations:
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(2.2)

where τ is the pseudo time and β is the artificial compressibility factor. Note that
when τ → ∞, the equations in (2.2) approach to those in (2.1) or, in other words, the
non-steady state solution of the equations in (2.2) asymptotically tends to the steady
state solution of the equations in (2.1). We remark that the value of β is important for
the numerical performance of the artificial compressibility method.
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where q represents the solution vector, e, f and eν , fν stand for the inviscid and the
viscous flux vectors, and ux , vx and uy , vy denote the first-order derivatives of u,
v with respect to x and y, respectively. Then we can rewrite the target equations in
(2.2) into a unified vector form as follows:

∂q
∂τ

+ ∂(e − eν)

∂x
+ ∂(f − fν)

∂y
= 0. (2.3)

By direct computations we know that the Jacobian matrices Je and Jf of the
inviscid flux vectors e and f are given by

Je = ∂e
∂q
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⎛

⎝

0 β 0
1 2u 0
0 v u

⎞

⎠ and Jf = ∂f
∂q

=
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0 0 β

0 v u
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⎞

⎠ ,

and the Jacobian matrices Jeν and Jfν of the viscous flux vectors eν and fν are
given by

Jeν = ∂eν
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Re
Im

∂
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Re
Im

∂

∂y
,
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The Jacobian matrices Je and Jf admit the spectral decompositions

Je = �e	e�
−1
e and Jf = �f	f�

−1
f ,

where

	e = diag(u − c1, u, u + c1) and 	f = diag(v − c2, v, v + c2)

are diagonal matrices containing the eigenvalues, with

c1 =
√

u2 + β and c2 =
√

v2 + β,

and �e and �f are the matrices corresponding to the right eigenvectors, of the
matrices Je and Jf, respectively.

2.2 The temporal and spatial discretizations

Approximating the pseudo-time derivative ∂q
∂τ

by the first-order backward difference,
from (2.3) we can obtain an implicit difference scheme

�qn

�τ
= −

[

∂(e − eν)

∂x
+ ∂(f − fν)

∂y

]n+1

, (2.4)

where n represents the pseudo-time level (the number of iterations), �τ is the
pseudo-time stepsize determined according to the CFL number, and �qn=qn+1−qn.
Because the first-order Taylor expansions of e, f and eν , fν are given by

en+1 ≈ en + Jn
e�qn, fn+1 ≈ fn + Jn

f �qn
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and

en+1
ν ≈ en

ν + Jn
eν�qn, fn+1

ν ≈ fnν + Jn
fν�qn,

after substitution of these approximations into (2.4) we have
[
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where I denotes the identity matrix. If we further denote by

gn = −�τ

[

∂(e − eν)

∂x
+ ∂(f − fν)

∂y

]n

, (2.5)

then the above equation can be briefly rewritten as
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Owing to the hyperbolic nature of the Eq. (2.3), we can split the convective flux
derivative ex = ∂e

∂x
in (2.5) into two parts e+x and e−x along the positive and the

negative x-directions with respect to the positive and the negative eigenvalues of Je,
respectively. That is to say,

ex = e+x + e−x ,

with e+x and e−x being the split flux derivatives propagating information from left
to right and from right to left, respectively. The two derivatives e+x and e−x can
be computed by the third- and the fifth-order upwind compact difference schemes
defined as
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(2.8)

respectively. Here �x denotes the grid spacing, and we have used the notations

δ+fi = fi+1 − fi and δ−fi = fi − fi−1

for any given sequence {fi} of real numbers. Noticing that each term in the right-
hand sides of the Eqs. (2.7)–(2.8) represents the difference of the split fluxes between
two neighboring points, we may compute them by using the flux difference splitting

e±i+1 − e±i ≡ �e±
i+ 1

2
= J±e (q)(qi+1 − qi ),

where �e±
i+ 1

2
are the flux differences across the positive and the negative traveling

waves, and the split Jacobian matrices J±e (q) are defined by

J±e = �e	
±
e �−1

e ,
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with

	±
e = 1

2
(	e ± |	e|)

being evaluated using the Roe average value q = 1
2 (qi+1 + qi ) for incompressible

flow.
In addition, we approximate the derivative ∂eν

∂x
in (2.5) by the fourth- and the sixth-

order symmetric compact difference schemes at interior points. For example, for

si ≈
(

∂2u

∂x2

)

i
, it holds that

1

12
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4
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�x2
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In an analogous fashion, we can obtain approximations to the convective flux

fy = ∂f
∂y

, the second-order derivative ∂2v

∂x2 and the derivative for the viscous term ∂fν
∂y

in (2.5).
Moreover, we discretize the convective terms and the viscous terms in the left-

hand side of (2.6) by the first-order upwind difference and the central difference,
respectively, which are defined as

δ+x fi = fi+1 − fi

�x
, δ−x fi = fi − fi−1

�x
and δ2

xfi = fi+1 − 2fi + fi−1

�x2

for any given sequence {fi} of real numbers and any given stepsize �x.
Hence, through the above-mentioned finite difference discretization we can obtain

the following approximation to the Eq. (2.3):
[

I + �τ

(

δ−x ˜J+e + δ+x ˜J−e − 1

Re
Imδ2

x

)

+�τ

(

δ−y ˜J+f + δ+y ˜J−f − 1

Re
Imδ2

y

)]n

�qn = g̃n, (2.9)

where

˜J±e = 1

2
(Je ± �(Je)I), ˜J±f = 1

2
(Jf ± �(Jf)I)

and

�(Je) = κ · max |λ(Je)|, �(Jf) = κ · max |λ(Jf)|,
with κ being a given positive constant, λ(·) representing the eigenvalues of the cor-
responding matrix, and | · | denoting the absolute value of the corresponding number.
Now, by solving the Eq. (2.9) we can get the increment �qn and, hence, qn+1 at the
(n + 1)-th pseudo-time level.

We remark that˜J±e and˜J±f constructed in such a way can guarantee that the eigen-
values of matrices with “+” are nonnegative and those with “−” are nonpositive. In
actual applications, we may take κ = 1.0 for the third-order upwind compact differ-
ence scheme and κ ≥ 1.3 for the fifth-order upwind compact difference scheme, so
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that ˜J±e and ˜J±f are diagonally dominant and their eigenvalues possess the required
sign patterns; see [31].

2.3 The algebraic system of linear equations

We now rewrite the discretized system of linear equations (2.9) into an explicit
matrix-vector form. To this end, we suppose that the computational grid has (nx +2)×
(ny + 2) grid points, and �x and �y are, respectively, the stepsizes in the x- and
the y-directions. For simplicity, without loss of generality we impose the Dirichlet-
type boundary condition on the definition domain, which leads to the determinant
conditions

�qn
i,j = 0, for i = 0, i = nx + 1, j = 0 and j = ny + 1,

for the system of linear equations (2.9). Thereby, at the grid point (i, j), after
dividing the temporal stepsize �τi,j through both sides, we can reformulate
the (i, j)-th sub-system of linear equations of the discretized linear system
(2.9) as
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where �τi,j stands for the pseudo-time stepsize at the grid point (i, j). By introduc-
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as well as

Ei,j = I + Ex
i,j + Ey

i,j ,

we can simply express the sub-system of linear equations (2.10) as
[
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Therefore, the discretized linear system (2.9) can be equivalently rewritten into the
matrix-vector form

An �qn = g̃n, (2.11)

where the coefficient matrix An ∈ R
�×�, with � = 3×nx ×ny , is a block-tridiagonal

matrix given by

An =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

Dn
1 Un

2 0 · · · 0

Ln
1 Dn

2 Un
3 · · · ...

0 Ln
2 Dn

3
. . .

...
...

. . .
. . . Un

ny

0 · · · · · · Ln
ny−1 Dn

ny

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

≡ Tridiag
(

Ln
i−1, Dn

i , Un
i+1

)

, (2.12)

the unknown vector �qn ∈ R
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respectively, and Dn
j , j = 1, 2, . . . , ny , being block-tridiagonal matrices defined as

Dn
j =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

En
1,j Cn

2,j · · · 0

Fn
1,j En

2,j

. . .
...

...
. . .

. . . Cn
nx,j

0 · · · Fn
nx−1,j En

nx,j

⎞

⎟

⎟

⎟

⎟

⎟

⎠

≡ Tridiag
(

Fn
i−1,j , En

i,j , Cn
i+1,j

)

. (2.15)

Moreover, Ex
i,j , Ey

i,j , Ci+1,j , Fi−1,j , Gi,j−1 and Hi,j+1 are 3-by-3 matrices of the
following forms:

Ex
i,j =

⎛

⎜

⎝

2θx
i,j �((Je)i,j ) 0 0

0 2θx
i,j �((Je)i,j ) + 2μx

i,j 0
0 0 2θx

i,j �((Je)i,j ) + 2μx
i,j

⎞

⎟

⎠
,

Ey
i,j =

⎛

⎜

⎝

2θ
y
i,j �((Jf)i,j ) 0 0

0 2θ
y
i,j �((Jf)i,j ) + 2μ

y
i,j 0

0 0 2θ
y
i,j �((Jf)i,j ) + 2μ

y
i,j

⎞

⎟

⎠
,

Ci+1,j =
⎛

⎜

⎝

−θx
i,j �((Je)i+1,j ) θx

i,j β 0
θx
i,j θx

i,j (2ui+1,j − �((Je)i+1,j )) − μx
i,j 0

0 θx
i,j vi+1,j θx

i,j (ui+1,j − �((Je)i+1,j )) − μx
i,j

⎞

⎟

⎠
,

Fi−1,j = −
⎛

⎜

⎝

θx
i,j �((Je)i−1,j ) θx

i,j β 0
θx
i,j θx

i,j (2ui−1,j + �((Je)i−1,j )) + μx
i,j 0

0 θx
i,j vi−1,j θx

i,j (ui−1,j + �((Je)i−1,j )) + μx
i,j

⎞

⎟

⎠
,

Gi,j−1 = −
⎛

⎜

⎝

θ
y
i,j �((Jf)i,j−1) 0 θ

y
i,j β

0 θ
y
i,j (vi,j−1 + �((Jf)i,j−1)) + μ

y
i,j θ

y
i,j ui,j−1

θ
y
i,j 0 θ

y
i,j (2vi,j−1 + �((Jf)i,j−1)) + μ

y
i,j

⎞

⎟

⎠

and

Hi,j+1 =
⎛

⎜

⎝

−θ
y
i,j �((Jf)i,j+1) 0 θ

y
i,j β

0 θ
y
i,j (vi,j+1 − �((Jf)i,j+1)) − μ

y
i,j θ

y
i,j ui,j+1

θ
y
i,j 0 θ

y
i,j (2vi,j+1 − �((Jf)i,j+1)) − μ

y
i,j

⎞

⎟

⎠
,

where ui,j and vi,j are the values of the functions u and v at the (i, j)-th grid point.
Here for notational convenience we have omitted the superscript n used to label the
pseudo-time level. Obviously, Ex

i,j and Ey
i,j are diagonal matrices, Ci+1,j and Fi−1,j

are tridiagonal matrices, and Gi,j−1 and Hi,j+1 are dense matrices.
We remark that when nx = ny = 3, for example, the matrix An possesses the

sparse pattern
⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

d© f© f©
f© d© f© f©

f© d© f©
f© d© f© f©

f© f© d© f© f©
f© f© d© f©

f© d© f©
f© f© d© f©

f© f© d©

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,
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where

d© =
⎛

⎝

� 0 0
0 � 0
0 0 �

⎞

⎠ and f© =
⎛

⎝

� � �

� � �

� � �

⎞

⎠

are 3-by-3 diagonal and dense matrices, respectively.

2.4 Diagonal dominance property

We are going to explore diagonal dominance for the matrix An ∈ R
�×�. Note that the

i-th block column in the j -th block column of the matrix An consists of the matrix
blocks Cn

i,j , En
i,j , Fn

i,j , Gn
i,j and Hn

i,j , with En
i,j = I + [Ex

i,j ]n + [Ey
i,j ]n being the

diagonal block. By further expanding all elements of these matrix blocks to the first-
order accuracy at the spatial grid point (i, j), and then omitting the subscripts i, j and
the superscript n used to label the spatial and the pseudo-time levels, respectively, we
know that the matrix A ∈ R

�×� is strictly diagonally dominant by columns provided
the following inequalities hold true:

(a) θx + θy < 1
2 ;

(b) θx(β + |v|) < 1
2 ; and

(c) θy(β + |u|) < 1
2 .

Here we have applied the facts that

θx(2u − �(Je)) − μx < 0, θx(u − �(Je)) − μx < 0

and

θy(2v − �(Jf)) − μy < 0, θy(v − �(Jf)) − μy < 0.

The above inequalities (a)–(c) straightforwardly lead to a sufficient condition for
guaranteeing the strictly diagonal dominance of the matrix A ∈ R

�×�.

Theorem 2.1 The matrix An ∈ R
�×� defined by Eqs. (2.12)–(2.15) is strictly

diagonally dominant, if �x and �y are reasonably small and �τ satisfies

�τ <min

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

�x�y

�x + �y
,

�x

β + max
1 ≤ i ≤ nx

1 ≤ j ≤ ny

|vn
i,j |

,
�y

β + max
1 ≤ i ≤ nx

1 ≤ j ≤ ny

|un
i,j |

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

. (2.16)

When the spatial and the temporal stepsizes satisfy the condition (2.16), we know
from Theorem 2.1 that the matrix An is nonsingular, so that the discretized linear
system (2.11) has a unique solution. Moreover, An is positive real. That the matrix An

is diagonally dominant guarantees existence of its LU factorization and convergence
of its Gauss-Seidel splitting and GMRES iteration; see [11, 17, 21, 22].
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3 Construction of preconditioning matrices

We can obtain an approximate matrix, say, Pn, to the matrix An ∈ R
�×� defined in

(2.12) by selectively dropping its off-diagonal elements. More precisely, for the 3-by-
3 matrices Ci+1,j , Fi−1,j , Gi,j−1 and Hi,j+1, we only keep the diagonal elements,
but drop all of the off-diagonal elements, obtaining their approximated matrices
denoted as ˜Ci+1,j , ˜Fi−1,j , ˜Gi,j−1 and ˜Hi,j+1, respectively. Then we define matrices
˜Ln

j (j = 1, 2, . . . , ny − 1), ˜Un
j (j = 2, 3, . . . , ny) and ˜Dn

j (j = 1, 2, . . . , ny) as

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

˜Ln
j = Diag

(

˜Gn
1,j ,

˜Gn
2,j , · · · ,˜Gn

nx,j

)

,

˜Un
j = Diag

(

˜Hn
1,j ,

˜Hn
2,j , · · · ,˜Hn

nx,j

)

,

˜Dn
j = Tridiag

(

˜Fn
i−1,j , En

i,j ,
˜Cn

i+1,j

)

.

(3.1)

Finally, the matrix Pn ∈ R
�×� is given by

Pn = Tridiag
(

˜Ln
i−1,

˜Dn
i ,

˜Un
i+1

)

. (3.2)

Note that the matrix Pn is a block-tridiagonal matrix. Its diagonal blocks ˜Dn
j (j =

1, 2, . . . , ny) are block-tridiagonal matrices, with the block elements being 3-by-3
diagonal matrices. And its off-diagonal blocks ˜Ln

j (j = 1, 2, . . . , ny − 1) and ˜Un
j

(j = 2, 3, . . . , ny) are block-diagonal matrices, with the block elements being 3-by-3
diagonal matrices, too.

We remark that when nx = ny = 3, for example, the matrix Pn possesses the
sparse pattern

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

d© d© d©
d© d© d© d©

d© d© d©
d© d© d© d©

d© d© d© d© d©
d© d© d© d©

d© d© d©
d© d© d© d©

d© d© d©

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

where

d© =
⎛

⎝

� 0 0
0 � 0
0 0 �

⎞

⎠

is a 3-by-3 diagonal matrix.
In general, we can demonstrate the following property for the matrix Pn by

straightforward computations.
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Theorem 3.1 Let the spatial stepsizes �x and �y be reasonably small. Then

(a) the matrix Pn = (Pn
i,j ) ∈ R

�×�, defined by (3.2) and (3.1), is strictly diagonally
dominant by columns, and satisfies

|Pn
j,j | ≥ 1 +

∑

1≤i≤�,i �=j

|Pn
i,j |, j = 1, 2, . . . , �;

(b) the matrix Rn = (Rn
i,j ) ∈ R

�×�, defined by Rn = Pn − An, satisfies

∑

1≤i≤�

|Rn
i,j | ≤ max

⎧

⎪

⎪

⎨

⎪

⎪

⎩

�τ

�x
+ �τ

�y
,

�τ

�x

⎛

⎜

⎜

⎝

β + max
1 ≤ i ≤ nx

1 ≤ j ≤ ny

|vn
i,j |

⎞

⎟

⎟

⎠

,

�τ

�y

⎛

⎜

⎜

⎝

β + max
1 ≤ i ≤ nx

1 ≤ j ≤ ny

|un
i,j |

⎞

⎟

⎟

⎠

⎫

⎪

⎪

⎬

⎪

⎪

⎭

, j = 1, 2, . . . , �.

From Theorem 3.1 we know that the approximate matrix Pn is nonsingular
and positive real. Moreover, when the velocity components u and v are uniformly
bounded, ‖Pn − An‖1 is essentially bounded by a quantity of the order �τ

�x
+ �τ

�y
.

In addition, Theorem 3.1 immediately results in a bound for the eigenvalues of the
matrix (Pn)−1An described in the following theorem.

Theorem 3.2 Let the spatial stepsizes �x and �y be reasonably small. Then all
eigenvalues of the matrix (Pn)−1An are located within the complex disk centered at
(1, 0) with radius rn, where

rn = max

⎧

⎪

⎪

⎨

⎪

⎪

⎩

�τ

�x
+ �τ

�y
,

�τ

�x

⎛

⎜

⎜

⎝

β + max
1 ≤ i ≤ nx

1 ≤ j ≤ ny

|vn
i,j |

⎞

⎟

⎟

⎠

,
�τ

�y

⎛

⎜

⎜

⎝

β + max
1 ≤ i ≤ nx

1 ≤ j ≤ ny

|un
i,j |

⎞

⎟

⎟

⎠

⎫

⎪

⎪

⎬

⎪

⎪

⎭

.

As a result, if the spatial stepsizes �x and �y are reasonably small and the temporal
stepsize �τ satisfies

�τ < min

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

�x�y

�x + �y
,

�x

β + max
1 ≤ i ≤ nx

1 ≤ j ≤ ny

|vn
i,j |

,
�y

β + max
1 ≤ i ≤ nx

1 ≤ j ≤ ny

|un
i,j |

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

,

then rn < 1 and all eigenvalues of the matrix (Pn)−1An have positive real parts.
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Proof Let λn be an eigenvalue of the matrix (Pn)−1Rn. Then μn = 1 − λn is an
eigenvalue of the matrix (Pn)−1An. In accordance with [13] and Theorem 3.1 we
know that

|λn| ≤ max
1≤j≤�

∑

1≤i≤�

∣

∣

∣Rn
i,j

∣

∣

∣

∣

∣

∣Pn
j,j

∣

∣

∣− ∑

1≤i≤�,i �=j

∣

∣

∣Pn
i,j

∣

∣

∣

≤ max
1≤j≤�

∑

1≤i≤�

∣

∣

∣Rn
i,j

∣

∣

∣ ≤ rn.

Hence, from [4] we see that all eigenvalues of the matrix (Pn)−1An are located within
the complex disk centered at (1, 0) with radius rn.

From [2, 11, 22, 29] we know that the convergence rate of the GMRES method
is essentially determined by the condition number of the eigenvector matrix and the
radius of the eigenvalue disk of the coefficient matrix of the referred linear system.
The smaller of both quantities are, the faster the convergence rate of the GMRES
will be. Therefore, it follows from Theorem 3.2 that the preconditioned GMRES
method with the preconditioning matrix Pn is convergent to the exact solution of the
discretized linear system (2.11) with a rate being at least rn, provided the eigenvector
matrix of (Pn)−1An is not very ill-conditioned; see [2, 22].

By employing ILU factorization and, alternatively, UGS splitting, to the sparse and
structured matrix Pn, we can obtain the ILU and the UGS preconditioning matrices,
say, Pn

ILU and Pn
UGS, to the coefficient matrix An of the discretized linear system

(2.11). In the ILU factorization process, we should adopt suitable dropping rules and
certain sparsity patterns in the incomplete lower- and upper-triangular factors. And
in the UGS splitting, we can define Pn

UGS as

Pn
UGS = (˜D −˜L)˜D−1(˜D −˜U),

where ˜D, −˜L and −˜U being the diagonal, the strictly lower-triangular and the strictly
upper-triangular matrices of the matrix Pn, respectively.

4 Numerical results

As in [30, 31], we use the plane Poiseuille flow, the plane Couette-Poiseuille flow,
and the modified cavity flow as examples to examine the feasibility and effectiveness
of the approximated ILU (i.e., Pn

ILU) and the approximated UGS (i.e., Pn
UGS) precon-

ditioning matrices for the matrix An, when they are employed to precondition the
GMRES iteration method for solving the system of linear equations (2.11).

In the computations, we take the threshold ILU of the approximate matrix Pn

as the ILU preconditioning matrix to the coefficient matrix An of the discretized
linear system (2.11). In addition, when solving the discretized linear system (2.11)
on certain pseudo-time level by the GMRES or the preconditioned GMRES methods,
we set the initial vector to be 0 and adopt the stopping criterion that demands the
ratio of the current and the initial residuals in the Euclidean norm be less than 10−6.
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4.1 Description of test problems

The plane Poiseuille flow and the plane Couette-Poiseuille flow are governed by the
two-dimensional steady-state incompressible Navier-Stokes equations (2.1) imposed
the constraint u = u(y), satisfying

� + d2u

dy2
= 0, 0 ≤ x, y ≤ 1,

on the velocity component u, where � = −Re ∂p
∂x

is a dimensionless constant pres-
sure gradient. The boundary conditions for the velocity components u and v, and for
the pressure p are

∂p
∂y

(x, 1) = 0, u(x, 1) = uconst, v(x, 1) = 0,

p(0, y) = pinlet,
∂u
∂x

(0, y) = 0, v(0, y) = 0,

p(1, y) = 0, ∂u
∂x

(1, y) = 0, ∂v
∂x

(1, y) = 0,
∂p
∂y

(x, 0) = 0, u(x, 0) = 0, v(x, 0) = 0.

In particular, when uconst = 0 and � �= 0, we obtain the plane Poiseuille flow, which
has the exact solution

u(y) = �

2
(y − y2);

and when uconst = 1 and � �= 0, we obtain the plane Couette-Poiseuille flow, which
has the exact solution

u(y) = �

2
(y − y2) + y.

The modified cavity flow defined on the domain 0 ≤ x, y ≤ 1 is governed by
the two-dimensional steady-state incompressible Navier-Stokes equations (2.1). The
boundary conditions for the velocity components u and v, and for the pressure p

are of the Dirichlet type, i.e., the values of these three components are equal to 0
everywhere on the boundary of the unit square, except for

u(x, 1) = 16(x4 − 2x3 + x2), p(1, y) = 6.4

Re
y,

and

p(x, 1) = 8

Re
[24F(x) + 2f ′(x)g′′(1) + f ′′′(x)g(1)]

−64[F2(x)G(1) − g(1)g′′(1)F1(x)],
where

f (x) = x4 − 2x3 + x2, F (x) = ∫

f (x)dx, F1(x) = f (x)f ′′(x) − [f ′(x)]2,
F2(x) = ∫

f (x)f ′(x)dx, g(y) = y4 − y2, G(y) = g(y)g′′′(y) − g′(y)g′′(y).

The exact solution of this flow is given by

u(x, y) = 8f (x)g′(y), v(x, y) = −8f ′(x)g(y),
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and

p(x, y) = 8

Re
[F(x)g′′′(y) + f ′(x)g′(y)] + 64F2(x)(g(y)g′′(y) − [g′(y)]2).

In our implementations, in the plane Poiseuille and the plane Couette-Poiseuille
flows we set the constants pinlet and � to be both equal to 10, the Reynolds number
Re to be equal to 1, and the artificial compressibility factor β to be 100; while in the
modified cavity flow, we take the Reynolds number Re and the artificial compress-
ibility factor β to be both equal to 100. Moreover, we adopt an equidistant spatial
grid with the stepsize

h := �x = �y ≡ 1

N + 1

and a variable local temporal grid with the stepsize

�τi,j = ch

|ui,j | + |vi,j | +
√

u2
i,j + β +

√

v2
i,j + β

, i, j = 1, 2, . . . , N,

where c is the Courant number, which is equal to 8.0 for the plane Poiseuille and
the plane Couette-Poiseuille flows, and is equal to 30.0 for the modified cavity flow.
Hence, on each pseudo-time level we obtain a system of linear equations of the form
(2.11), with � = 3 × N × N .

4.2 Numerical property of preconditioning matrices

We show numerical advantages of the preconditioned GMRES over the AF-ADI in
terms of absolute error, and also show computational effectiveness of the precondi-
tioned GMRES methods over the GMRES method in terms of iteration count and
CPU time.

We depict in Figs. 1 and 2 the curves of the absolute errors versus the number of
pseudo-time levels and in Figs. 3 and 4 the curves of the absolute errors versus the
CPU times with respect to the velocity components u, v, and/or the pressure p, for the
plane Poiseuille flow, the plane Couette-Poiseuille flow and the modified cavity flow,
respectively, when N = 19. Because the velocity component v = 0 and the pressure
p is a known constant for the plane Poiseuille and the plane Couette-Poiseuille flows,
we only depict the absolute error curves with respect to the velocity component u in
Fig. 1 for these two flows.

From these figures, we see that the GMRES method converges faster than the
AF-ADI method in both iteration step and CPU time, which indicates that the overall
numerical process, including the discretization, the linearization and the GMRES
solve, is accurate, effective and robust for solving the two-dimensional steady-state
incompressible Navier-Stokes equations (2.1).

In Figs. 5 and 6 we depict the spatial distributions of the absolute errors for
the velocity components u and v, and/or the pressure p with respect to the plane
Poiseuille flow, the plane Couette-Poiseuille flow and the modified cavity flow,
respectively, when N = 19. Here the approximated solutions are computed by
employing the Pn

ILU-preconditioned GMRES method. From these figures we see that



Numer Algor (2014) 65:43–68 59

0 50 100 150 200 250 300 350 400 450 500
−8

−7

−6

−5

−4

−3

−2

−1

0

Number of Pseudo−Time Level

T
he

 A
bs

ol
ut

e 
E

rr
or

 in
 L

og
ar

ith
m

 o
f V

el
oc

ity
 C

om
po

ne
nt

 u

 

 
GMRES
AF−ADI

0 50 100 150 200 250 300 350 400 450 500
−7

−6

−5

−4

−3

−2

−1

0

1

T
he

 A
bs

ol
ut

e 
E

rr
or

 in
 L

og
ar

ith
m

 o
f V

el
oc

ity
 C

om
po

ne
nt

 u

 

 
GMRES
AF−ADI

Number of Pseudo−Time Level

Fig. 1 The curves of the absolute errors in logarithm versus the number of pseudo-time levels with
respect to the velocity component u when N = 19; the plane Poiseuille flow (left), and the plane
Couette-Poiseuille flow (right)

all errors are of the order of 10−3, which shows that the preconditioned GMRES
method can be applied to produce an accurate solution of the two-dimensional
steady-state incompressible Navier-Stokes equations (2.1).

In Tables 1, 2, 3, 4, 5 and 6 we list the number of iteration steps (denoted as IT)
and the total CPU time in seconds (denoted as CPU) for the GMRES methods with
or without a preconditioner for the plane Poiseuille flow, the plane Couette-Poiseuille
flow and the modified cavity flow, at the pseudo-time levels n = 0 and 100, respec-
tively. Besides, we also list the CPU time of the threshold ILU factorization (denoted
as CPUILU) for the original matrix An or the approximate matrix Pn. In these tables,
the symbol I indicates that no preconditioner is used when solving the system of
linear equations (2.11) with GMRES, while An

ILU represents the ILU factorization
preconditioner of the matrix An, and Pn

ILU and Pn
UGS represent the ILU factorization
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Fig. 2 The curves of the absolute errors in logarithm versus the number of pseudo-time levels for the
modified cavity flow when N = 19; the velocity component u (left), the velocity component v (middle),
and the pressure p (right)
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Fig. 3 The curves of the absolute errors in logarithm versus the CPU times with respect to the velocity
component u when N = 19; the plane Poiseuille flow (left), and the plane Couette-Poiseuille flow (right)

and the UGS splitting preconditioners of the matrix Pn, respectively. Here, we adopt
10−3 as the dropping tolerance in these ILU factorization processes.

For the plane Poiseuille flow, in Tables 1 and 2 we list the iteration steps and the
CPU times of the vanilla and the preconditioned GMRES methods with respect to dif-
ferent spatial grids at the pseudo-time levels n = 0 and n = 100, respectively. From
these tables we see that the iteration step and the CPU time of the vanilla GMRES
method are very large and are monotonically increasing with respect to both N and
n, but those of the preconditioned GMRES methods with both preconditioners An

ILU
and Pn are considerably small, especially when the spatial grid becomes fine. More-
over, when n = 0 or n = 100, with respect to N the number of iteration steps of
the An

ILU-preconditioned GMRES method is slowly increasing, while that of the Pn-
preconditioned GMRES method is slowly decreasing, and it keeps almost a constant
for each of these two preconditioned GMRES methods. To achieve the prescribed
convergence criterion, the Pn-preconditioned GMRES method requires the same or

0 20 40 60 80 100 120 140
−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

CPU Time

T
he

 A
bs

ol
ut

e 
E

rr
or

 in
 L

og
ar

ith
m

 o
f V

el
oc

ity
 C

om
po

ne
nt

 u

 

 
GMRES
AF−ADI

0 20 40 60 80 100 120 140
−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

CPU Time

T
he

 A
bs

ol
ut

e 
E

rr
or

 in
 L

og
ar

ith
m

 o
f V

el
oc

ity
 C

om
po

ne
nt

 v

 

 
GMRES
AF−ADI

0 20 40 60 80 100 120 140
−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

CPU Time

T
he

 A
bs

ol
ut

e 
E

rr
or

 in
 L

og
ar

ith
m

 o
f P

re
ss

ur
e 

p 

 

 
GMRES
AF−ADI

Fig. 4 The curves of the absolute errors in logarithm versus the CPU times for the modified cavity flow
when N = 19; the velocity component u (left), the velocity component v (middle), and the pressure p

(right)
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Fig. 5 The spatial distributions of the absolute errors for the velocity component u when N = 19 as
computed by using Pn

ILU-preconditioned GMRES method; the plane Poiseuille flow (left), and the plane
Couette-Poiseuille flow (right)
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Fig. 6 The spatial distributions of the absolute errors for the modified cavity flow when N = 19 as
computed by using Pn

ILU-preconditioned GMRES method; the velocity component u (left), the velocity
component v (middle), and the pressure p (right)

Table 1 Numerical Results for
the Plane Poiseuille Flow When
n = 0

N 39 79 159 179 199

I IT 90 122 154 161 167

CPU 0.44 3.31 34.17 47.29 61.64

An
ILU IT 6 7 8 8 9

CPUILU 0.17 1.05 7.51 10.67 14.39

CPU 0.20 1.14 7.96 11.32 15.21

Pn IT 12 10 9 8 8

CPU 0.76 2.92 11.57 13.95 17.51

Pn
ILU IT 12 11 11 11 12

CPUILU 0.03 0.22 1.57 2.20 3.00

CPU 0.06 0.31 2.06 2.84 3.85

Pn
UGS IT 33 43 53 54 56

CPU 0.06 0.55 4.62 6.00 7.92
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Table 2 Numerical Results for
the Plane Poiseuille Flow When
n = 100

N 39 79 159 179 199

I IT 98 129 165 172 188

CPU 0.52 3.76 39.35 55.28 80.46

An
ILU IT 6 7 9 9 10

CPUILU 0.16 1.12 7.64 10.60 14.40

CPU 0.19 1.23 8.17 11.21 15.28

Pn IT 12 10 9 8 8

CPU 0.70 2.94 11.82 14.12 17.68

Pn
ILU IT 12 11 12 12 13

CPUILU 0.03 0.28 1.59 2.18 2.96

CPU 0.08 0.35 2.17 2.85 3.89

Pn
UGS IT 34 44 58 60 66

CPU 0.08 0.55 5.31 7.21 10.54

even less number of iteration steps than the An
ILU-preconditioned GMRES method for

almost all N except for the smallest two or three, but the former costs mildly more
computing time than the latter, with the time difference becoming relatively small
when N is growing. We note that in the total CPU times of the An

ILU-preconditioned
GMRES method, the time of ILU factorization is strongly dominant over the time of
iteration solve. Roughly speaking, when being used as preconditioners, the approxi-
mate matrix Pn outperforms the ILU factorization An

ILU in terms of the iteration step
of the GMRES method, but in terms of the CPU time the situation is just reversed.

Now we turn to analyze and compare the numerical results of the ILU factorization
and the UGS splitting preconditioners resulted from the approximate matrix Pn. From

Table 3 Numerical Results for
the Plane Couette-Poiseuille
Flow When n = 0

N 39 79 159 179 199

I IT 91 118 150 157 163

CPU 0.67 4.13 34.91 48.62 63.86

An
ILU IT 6 6 7 8 8

CPUILU 0.22 1.41 10.08 14.17 19.33

CPU 0.27 1.63 11.19 15.72 21.30

Pn IT 12 10 8 8 8

CPU 0.55 2.53 13.61 21.64 24.30

Pn
ILU IT 12 10 11 11 11

CPUILU 0.06 0.34 2.55 3.59 4.92

CPU 0.14 0.67 4.19 5.67 7.45

Pn
UGS IT 35 44 54 56 59

CPU 0.25 1.53 9.56 12.91 17.16
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Table 4 Numerical Results for
the Plane Couette-Poiseuille
Flow When n = 100

N 39 79 159 179 199

I IT 95 128 163 170 178

CPU 0.70 5.69 40.83 56.31 75.67

An
ILU IT 6 7 8 9 9

CPUILU 0.27 1.42 10.09 14.23 19.33

CPU 0.31 1.67 11.31 15.97 21.48

Pn IT 12 10 8 8 8

CPU 0.55 2.56 13.64 21.78 24.48

Pn
ILU IT 12 11 11 11 11

CPUILU 0.05 0.36 2.58 3.59 4.95

CPU 0.14 0.73 4.19 5.61 7.55

Pn
UGS IT 33 43 56 56 59

CPU 0.23 1.47 10.13 12.83 17.13

Tables 1–2 we observe that the Pn
ILU-preconditioned GMRES method costs greatly

smaller computing time than both Pn- and An
ILU-preconditioned GMRES method,

though the former still shows more but comparable iteration steps to the latter. The
ILU factorization time for generating Pn

ILU is much smaller than that for generating
An

ILU, which again confirms that the simple approximation Pn is very effective for
being used to further build up an economical and high-quality preconditioner for the
original matrix An in actual computations. For all N and n, the iteration steps and
CPU times of the Pn

UGS-preconditioned GMRES method are greatly more than those
of the Pn

ILU-preconditioned GMRES method, but are much less than those of both
Pn- and An

ILU-preconditioned GMRES methods.

Table 5 Numerical Results for
the Modified Cavity Flow When
n = 0

N 39 79 159 179 199

I IT 153 193 231 242 242

CPU 1.83 10.38 80.69 112.03 137.03

An
ILU IT 10 15 21 23 25

CPUILU 0.38 2.90 23.67 33.28 46.31

CPU 0.50 3.69 29.13 40.88 56.84

Pn IT 34 32 30 30 30

CPU 1.59 8.00 48.44 66.38 86.14

Pn
ILU IT 36 36 35 35 35

CPUILU 0.05 0.36 2.59 3.64 5.02

CPU 0.34 1.66 8.55 11.22 14.53

Pn
UGS IT 66 83 96 98 98

CPU 0.66 3.50 22.31 29.44 36.58
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Table 6 Numerical Results for
the Modified Cavity Flow When
n = 100

N 39 79 159 179 199

I IT 157 221 246 260 241

CPU 1.94 14.28 90.98 129.63 137.86

An
ILU IT 10 16 23 25 26

CPUILU 0.38 2.89 22.44 33.39 46.55

CPU 0.47 3.69 28.05 41.86 57.78

Pn IT 38 38 34 34 34

CPU 1.72 9.38 54.75 74.44 97.86

Pn
ILU IT 39 40 37 38 36

CPUILU 0.05 0.36 2.61 3.64 4.95

CPU 0.38 1.83 9.00 12.09 14.83

Pn
UGS IT 68 93 101 107 100

CPU 0.59 4.55 24.05 33.83 37.61

For the plane Couette-Poiseuille and the modified cavity flows, from Tables 3–6
we can obtain analogous observations and conclusions. Therefore, among all the pre-
conditioners Pn

ILU is the most effective and Pn
UGS is the second most effective in terms

of the CPU times.

4.3 Discussion of eigen-properties

In Figs. 7, 8, 9, 10, 11 and 12 we depict the eigenvalue distributions of the matri-
ces An, Pn, (Pn)−1An, (An

ILU)−1An, (Pn
ILU)−1An and (Pn

UGS)−1An for the plane
Poiseuille flow, the plane Couette-Poiseuille flow and the modified cavity flow, when
N = 19 and n = 100, respectively.

From these figures we see that all eigenvalues of An and Pn (n = 100) are located
on the right half of the complex plane, so these matrices could be positive definite
and even strictly diagonally dominant, which coincides with the theoretical results
established in Sections 2.4 and 3.
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Fig. 7 Eigenvalue distributions for the original matrix An (left), the approximate matrix Pn (middle), and
the preconditioned matrix (Pn)−1An (right) with respect to the plane Poiseuille flow when N = 19 and
n = 100. The Euclidean condition numbers of their eigenvector matrices are 5.29e + 02, 2.92e + 01 and
1.24e + 04, respectively
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Fig. 8 Eigenvalue distributions of the preconditioned matrices with respect to the ILU factorization and
the UGS splitting for the original matrix An and the approximate matrix Pn with respect to the plane
Poiseuille flow when N = 19 and n = 100; (An

ILU)−1An (left), (Pn
ILU)−1An (middle), and (Pn

UGS)−1An

(right). The Euclidean condition numbers of their eigenvector matrices are 3.37e + 05, 2.47e + 02 and
9.08e + 04, respectively
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Fig. 9 Eigenvalue distributions for the original matrix An (left), the approximate matrix Pn (middle),
and the preconditioned matrix (Pn)−1An (right) with respect to the plane Couette-Poiseuille flow when
N = 19 and n = 100. The Euclidean condition numbers of their eigenvector matrices are 8.38e + 02,
4.63e + 01 and 5.90e + 03, respectively
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Fig. 10 Eigenvalue distributions of the preconditioned matrices with respect to the ILU factorization
and the UGS splitting for the original matrix An and the approximate matrix Pn with respect to the
plane Couette-Poiseuille flow when N = 19 and n = 100; (An

ILU)−1An (left), (Pn
ILU)−1An (middle),

and (Pn
UGS)−1An (right). The Euclidean condition numbers of their eigenvector matrices are 1.42e + 10,

3.53e + 02 and 1.39e + 05, respectively
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Fig. 11 Eigenvalue distributions for the original matrix An (left), the approximate matrix Pn (middle),
and the preconditioned matrix (Pn)−1An (right) with respect to the modified cavity flow when N = 19
and n = 100. The Euclidean condition numbers of their eigenvector matrices are 9.52e + 02, 1.04e + 02
and 3.23e + 03, respectively

The eigenvalues of Pn are much more clustered than those of An, as they are
located closely to the real axis, with their real parts being bounded within relatively
small intervals. We recall that Pn is a trivial approximation to An after selectively
dropping the off-diagonal elements. Hence, via Pn we may construct economi-
cal and high-quality preconditioning matrices for the original matrix An in actual
computations.

Many eigenvalues of An are located around the origin and some have very
large real and imaginary parts. And the condition numbers of its eigenvector
matrices are of the order 102. So this matrix is highly ill-conditioned and, as a
result, the GMRES method may converge very slowly to the solution of the sys-
tem of linear equations (2.11). For the preconditioning matrices An

ILU, Pn, Pn
ILU

and Pn
UGS, the eigenvalues of (An

ILU)−1An are the most clustered, and those of
(Pn)−1An and (Pn

ILU)−1An are about equally clustered. Moreover, the condition
numbers of their eigenvector matrices are constantly bounded. Hence, in iteration
steps the An

ILU-preconditioned GMRES method is the fastest, and the Pn- and the
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Fig. 12 Eigenvalue distributions of the preconditioned matrices with respect to the ILU factorization and
the UGS splitting for the original matrix An and the approximate matrix Pn with respect to the modified
cavity flow when N = 19 and n = 100; (An

ILU)−1An (left), (Pn
ILU)−1An (middle), and (Pn

UGS)−1An

(right). The Euclidean condition numbers of their eigenvector matrices are 1.79e + 07, 4.75e + 02 and
4.93e + 03, respectively
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Pn
ILU-preconditioned GMRES methods are comparable. These observations and

analyses conform with the numerical behaviors shown in Tables 1–6.
As an exception, we see from Figs. 7–12 that the eigenvalues of (Pn

UGS)−1An

are less clustered than those of (An
ILU)−1An and are more clustered than those of

both (Pn)−1An and (Pn
ILU)−1An, but from Tables 1–6 the iteration steps of the

Pn
UGS-preconditioned GMRES method are the smallest among all the preconditioned

GMRES methods. This phenomenon may occur due to the highly ill-conditioning of
the eigenvectors of (Pn

UGS)−1An.

5 Concluding remarks

We have constructed and analyzed the approximated ILU factorization and the
approximated UGS splitting preconditioning matrices for the coefficient matrix
An of the discretized linear system (2.11) from the two-dimensional steady-state
incompressible Navier-Stokes equations (2.1). Both theoretical analyses and numer-
ical experiments have shown that these structured preconditioners can efficiently
improve the convergence property of the GMRES method when used to solve the dis-
cretized linear system (2.11), resulting in a reliable and effective numerical process,
including the discretization, the linearization and the GMRES solve, for solv-
ing the two-dimensional steady-state incompressible Navier-Stokes equations (2.1).
This new approach provides one feasible way for designing other economical and
high-quality preconditioning matrices for the matrix An, that is, by applying the well-
known sparse factorizations and matrix splittings to the matrix Pn, we may obtain
effective preconditioners like incomplete orthogonal-triangular factorization [6, 14],
sparse approximate inverse [16], Hermitian and skew-Hermitian splitting [9], and
positive-definite and skew-Hermitian splitting [8].
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