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a b s t r a c t

The real ghost fluid method (RGFM) [Wang CW, Liu TG, Khoo BC. A real-ghost fluid method for the sim-
ulation of multi-medium compressible flow. SIAM J Sci Comput 2006;28:278–302] has been shown to be
more robust than previous versions of GFM for simulating multi-medium flow problems with large den-
sity and pressure jumps. In this paper, a finite difference RGFM is combined with adaptive moving
meshes for one- and two-dimensional problems. A high resolution corner-transport upwind (CTU)
method is used to interpolate approximate solutions from old quadrilateral meshes to new ones. Unlike
the dimensional splitting interpolation, the CTU method takes into account the transport across corner
points, which is physically more sensible. Several one- and two-dimensional examples with large density
and pressure jumps are computed. The results show the present moving mesh method can effectively
reduce the conservative errors produced by GFM and can increase the computational efficiency.

Crown Copyright � 2011 Published by Elsevier Ltd. All rights reserved.

1. Introduction

In compressible multi-medium flow problems, the equations of
state (EOS) are different and some physical quantities are discon-
tinuous across the material interface. This poses challenging
problems for numerical simulation. The key point in modeling such
problems is how to correctly track the interface location and how
to simulate the interaction of different fluids. Generally, there are
two different approaches to deal with compressible multi-medium
flows. One is the front capturing in which the fluid interface is trea-
ted as steep gradients to be resolved over a few grid cells, the other
is the front tracking in which the fluid interface is explicitly tracked
as an internal moving boundary. By comparison, the front captur-
ing is more simple and easy to code, but physical quantities near
the interface may be smeared and unphysical oscillations usually
occur in naive implementation of high-resolution conservative
schemes, while the front tracking can maintain the interface states
well but is rather complicated in multi-dimension cases.

Level set method as developed by Osher and Sethian [1,2] has
become one of the most widely used front capturing methods. It
represents the interface as the zero level set of a signed distance
function, and the interface location is ‘‘implicitly’’ captured by
solving the level set equation which propagates the level set with
the fluid velocity. A critical step in the level set method is to

preserve the signed distance property of the level set function
in the vicinity of the interface. For this, reinitialization is often
used [3]. However, it is costly and often fail to recover signed
distance function exactly. Meanwhile, other techniques for main-
taining the signed distance property were also developed [4,5].
Recently, while developing the real ghost fluid method (RGFM),
Wang et al. [6] proposed an approach which avoids reinitializa-
tion by using a constructed extension velocity to convect the
level set function.

The ghost fluid method (GFM) as proposed by Fedkiw et al. [7],
is an effective method for simulating multi-medium flows in
Eulerian schemes that is able to maintain a Heaviside profile of
the density with no numerical smearing. It treats the solution of
the multi-medium problem as solutions of two single-medium
problems. In doing so, GFM defines two types of fluids, i.e., real
fluid and ghost fluid, at each grid point. The ghost fluid takes the
pressure, normal velocity component from the local fluid it coin-
cides, and obtains the entropy and tangential velocity component
by extrapolating from the other side of the interface where corre-
sponding real fluid exists. This definition of ghost fluid status as
given in [7] (called OGFM in this study) was found not robust when
applied to gas–water flows [8]. Therefore, a new definition of ghost
fluid status was proposed especially for treating gas–water flows in
[8] (NGFM). Specifically, the ghost fluid pressure is obtained from
the less stiff gas and the ghost fluid normal velocity component
is obtained from the more stiff water, while the ghost fluid entropy
and tangential velocity component are obtained in the same way
as in OGFM.
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Many compressible multi-medium flow problems have the sit-
uation where a strong shock wave interacts with the material
interface. Since the pattern of this interaction at the interface and
the resultant interfacial states are nonlinearly affected by the flow
material properties on both sides of the interface, this implies that
the definition of ghost fluid states by simply duplicating from local
real fluid is not sufficient to take into account such interacting
effects. In fact, because GFM provides solutions via essentially
solving two single-medium Riemann problems, some conditions
have to be satisfied in defining the ghost fluid states to ensure that
the two single-medium Riemann problems give the correct solu-
tions at the respective real fluid sides. This has led to the develop-
ment of a modified ghost fluid method (MGFM) by Liu et al. [9]. In
this version, a local multi-medium Riemann problem is defined
and solved approximately to predict the interfacial status, and
the predicted interfacial status are then used to define the ghost
fluid status. MGFM has been shown to be more robust and can
be applied to various EOS. However, in MGFM and earlier versions
of GFM, the focus is on how to define the ghost fluid states while
the real pressure and normal velocity at the real fluid nodes neigh-
boring the interface are unchanged and only the density is modi-
fied via the simple isobaric fix of [7] which takes reference
entropy from a nearby grid point. As a result, in impedance match-
ing problems, non-physical reflection always occurs at the inter-
face and can not be completely removed even with the use of
MGFM. In the more recent work of Wang et al. [6], the interfacial
states at the real fluid side next to the interface are completely
replaced by corresponding approximate Riemann problem solu-
tions. This slightly modified version is called real ghost fluid meth-
od (RGFM) [6]. It retains all the good properties of MGFM and can
further suppress the non-physical reflection for impedance match-
ing problems. In [10], Liang et al. made comparison among the
OGFM and several modified versions of GFM. Those comparisons
show that the RGFM (as well as the same technique MGFM) can
treat higher pressure and higher density situations such as gas–
water interface (pressure ratio 8000:1 in [9]) and shock impinging
the fluid interface [9] more robust than the OGFM.

In essence, GFMs are nonconservative because they solve two
single-fluid problems instead of the original two-fluid problem
and the numerical flux is no longer single-valued at the interface.
Among them, MGFM and RGFM have smaller conservative errors.
Some efforts have also been made to develop a conservative GFM
[11], however, a practical conservative GFM has yet to be devel-
oped. On the other hand, the adaptive moving mesh method has
been proved to be a very effective way of reducing numerical
errors and increasing the resolution of flow field where singular
or nearly singular solutions and large gradient variations in flow
variables exist. There have been many important progresses in
adaptive moving mesh methods for partial differential equations,
including the mesh-redistribution approach based on the variation
principles [12–14]; moving mesh PDE methods [15,16]; moving
mesh methods based on the harmonic mapping [17,18]; and adap-
tive elliptic grid generation equations [19,20], etc. Recently, an
adaptive moving mesh finite volume RGFM [21] was developed
for two-medium compressible flows. It was found that the mesh
clustering in the vicinity of the material interface can effectively
reduce conservative errors produced by RGFM.

In this paper, we couple RGFM proposed by Wang et al. [6] with
the adaptive mesh redistribution method developed by Tang et al.
[22,23] in the finite difference framework. For adaptive mesh redis-
tribution method, the authors of Ref. [21] mentioned a particular
difficulty in the mesh redistribution process for multi-medium
flows, i.e., some mesh points may cross over the interface in the
iteration. They suggested that after one loop of mesh-redistribu-
tion iteration, the crossing point and its neighbor point that bor-
ders the interface are pulled back to positions at the previous

iteration. However, we will show in the remark of Section 3.2.2
that crossing over the interface is not a problem. Another common
difficulty is to accurately interpolate or remap flow solutions and
level set function from old mesh onto new mesh after each mesh
redistribution iteration. In this study, we apply the high-resolution
corner-transport upwind (CTU) method [24,25] to interpolation.
The CTU method includes the proper transport across corner
points, and was shown more accurate and stable [25]. This method
is compared with traditional dimensional splitting conservative
interpolation [23,21] in 2D examples.

The paper is organized as follows. In Section 2, the governing
equations for multi-medium flows in generalized curvilinear coor-
dinates, the stiffened gas EOS, and the level set equation are given.
In Section 3, the RGFM is introduced, then the adaptive moving
mesh method and CTU interpolation method which utilize RGFM
is given in detail. The complete solution procedure is outlined in
Section 4. Numerical experiments are carried out in Section 5 to
demonstrate the effectiveness of the present adaptive method.
Conclusions are made in Section 6.

2. Governing equations

Suppose Xc be a two-dimensional computational domain with
the coordinate system (n,g), and Xp a physical domain with the
Cartesian coordinate system (x,y), where x = x(n,g), y = y(n,g) is a
coordinate transformation from Xc to Xp, which is established
once the physical grid is created. The Euler equations for two-fluid
compressible flows take the following form in generalized coordi-
nate system (n,g)

@ bU
@t
þ @

bF1

@n
þ @F̂2

@g
¼ 0; ð1Þ

wherebU ¼ JU;bF1 ¼ JðnxF1 þ nyF2Þ;bF2 ¼ JðgxF1 þ gyF2Þ;

and

J ¼ xnyg � xgyn;

U ¼ ðq;qu;qv ; EÞT;
F1ðUÞ ¼ ðqu;qu2 þ p;quv;uðEþ pÞÞT;
F2ðUÞ ¼ ðqv ;quv ;qv2 þ p; vðEþ pÞÞT:

Here J is the Jacobian determinant of the coordinate transformation,
q is the density, u and v are the velocity components in the respec-
tive x and y direction, p is the pressure, and E = qe + 0.5q(u2 + v2) is
the total energy per unit volume.

For closure of the system (1), the equation of state (EOS) is
required. In this paper, we use the following stiffened gas EOS

p ¼ ðc� 1Þqe� cp ð2Þ

to model gas and water medium uniformly, where c and p are fluid
constants to be specified. The speed of sound c and entropy S can be
computed by

c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c

pþ p
q

r
;

S ¼ pþ p
qc :

In order to track the moving material interface, we adopt the level
set method proposed in [1,?,?,?]. The level set equation can be writ-
ten as
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/t þ u � r/ ¼ /t þ u � r/
jr/j

� �
jr/j,/t þ unjr/j ¼ 0: ð3Þ

/is usually initialized as a signed distance function, and un is the
velocity field along the normal n = (nx,ny)T of /. As discussed in
[6], /’s signed distance property can be maintained well as long
as a suitably redefined normal velocity field is used in place of un

in (3). This velocity is called extension velocity uc
n, and there are sev-

eral ways of defining extension velocity in literature. We will dis-
cuss the construction of uc

n at the end of Section 3.1.2.
Eq. (3) can be rewritten as

/t þ unn � r/ ¼ 0:

With un ¼ uc
n, it can be transformed to the coordinate system (n,g)

as following

@/
@t
þ uc

nðnx nx þ ny nyÞ
@/
@n
þ uc

nðnx gx þ ny gyÞ
@/
@g
¼ 0; ð4Þ

where the metric terms are computed by central differences.

3. Numerical schemes

The present adaptive ghost fluid finite difference method con-
tains two independent ingredients: The solvers for the Euler equa-
tions and for the level set equation and the adaptive mesh
redistribution method. Th flow variables and the level set function
as defined on the mesh points are solved for on a fixed mesh for a
given physical time, then the mesh is redistributed by iterating an
grid generation equation and simultaneously remap the numerical
solutions onto the new mesh by using the interpolation method.

3.1. Real ghost fluid method

3.1.1. One-dimensional case
To specify the ghost fluid states, we need to assign the values for

density, velocity and pressure. Suppose that the fluid interface lies
between xi and xi+1 as depicted in Fig. 1. A Riemann problem is
defined at the fluid interface with initial condition UL = Ui�1 and
UR = Ui+2 (rather than Ui and Ui+1 since they are thought to be pol-
luted by numerical errors from the interface [7]) and solved with
the two-shock approximate Riemann solver. Denote the resultant
interfacial pressure and velocity as pI and uI, and the densities on
the left and right sides of the fluid interface as qIL and qIR, respec-
tively. For defining the ghost fluid states and implementing iso-
baric fix for medium I, qIL, uI, pI are assigned to the ghost fluid
points from i + 1 to i + 2 and to the real fluid point i. Similarly, for
medium II, qIR, uI, pI are assigned to the ghost fluid points from
i � 1 to i and to the real fluid point i + 1. After defining the ghost
fluid states, we then solve (1) for each sing-medium by using the
second-order HLLC scheme [26], and then solve the Hamilton–Ja-
cobi type level set Eq. (4) by using a fifth-order WENO scheme
[27] with approximate normal velocity field uc

n ¼ uI. The final
solution U is obtained by combining the solutions of the two

single-medium problems according to the sign of the new level
set function at each mesh point.

3.1.2. Two-dimensional case
In two-dimensional case there are two velocity components,

and the main difficulty to implement RGFM is how to define a local
Riemann problem at the interface. In virtue of the level set func-
tion, we can define its unit normal and normal velocity component
at each grid point as

n ¼ r/
jr/j ; ð5Þ

un ¼ ðu; vÞT � n; ð6Þ

Suppose medium I occupy the domain / < 0 and II the domain / > 0
(see Fig. 2). Since / is a signed distance function, we can define a
narrow band j/j < 1.5 max(Dx,Dy). The procedure of defining the
Riemann problem and ghost fluid for medium I is as follows. For
each grid point A in the half band belonging to medium I, we search
for a corresponding grid point B in the half band belonging to med-
ium II, such that the angle made by the respective normals nA and
nB is the minimum. Then a local 1D Riemann problem with the ini-
tial condition

Unðx; 0Þ ¼
UA

n if / < 0

UB
n if / > 0

(

is defined, where UA
n and UB

n are the projections of the true fluid
states at points A and B onto their normal directions, respectively,
i.e., U A

n ¼ qA;qAuA
n ;p

A
� � T and UB

n ¼ qB;qBu B
n ; p

B
� �T.

Solving this multi-medium Riemann problem by using two-
shock wave approximate Riemann solver, we obtain the entropy
SIL and SIR at the side / < 0 and the side / > 0 of the interface,
respectively, the normal velocity component uI and the pressure
pI. To define the ghost fluid states, we first redefine the entropy,
normal velocity component and pressure at the point A to be SIL,
uI, pI. After redefining all the real points next to the interface, the
ghost fluid states in the region / > 0 are obtained by solving the
convection equation

Is þ n � rI ¼ 0 ð7Þ

until steady state is reached. Here I is a column vector consisting of
normal velocity, tangential velocity, pressure, and density or entro-
py. Eq. (7) is first transformed into computational domain, and then
a first-order upwind scheme is used to discretize the spatial
derivatives.

Similar procedure can be applied to define the Riemann prob-
lem and ghost fluid states for medium II. The corresponding con-
vection equation is

Is � n � rI ¼ 0; ð8Þ

which is solved in the ghost fluid region / < 0 until steady state is
reached.

Fig. 1. Defining ghost fluid states and implement isobaric fix in the 1D RGFM.
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The above procedure of defining and solving Riemann problems
gives the normal velocity uI for all the grid points in the banded re-
gion, which is assigned to the extension velocity uc

n. Outside this
region, uc

n can be obtained by solving the convection Eq. (7) for
the region / > 1.5 max(Dx,Dy), and (8) for the region / < �1.5
max(Dx,Dy), respectively.

3.2. Adaptive mesh redistribution

3.2.1. Mesh movement
Let (x,y) and (n,g) be the physical and computational coordi-

nates, respectively, and x � (x,y) = (x(n,g), y(n,g)) be the mesh
map in two dimensions. We use a simple form of the Euler–La-
grange equation derived by Ceniceros and Hou [16]

ðxxnÞn þ ðxxgÞg ¼ 0

ðxynÞn þ ðxygÞg ¼ 0 ð9Þ

to provide the coordinate transformation x = x(n,g), y = y(n,g),
where xis the monitor function which generally depends on the
flow solution U and level set /. Eq. (9) can be discretized on uniform
mesh in the computational domain Xc and solved with the Gauss–
Seidel type iteration

x½v�
iþ1

2;j
x½v �iþ1;j � x½vþ1�

i;j

� �
�x½v�

i�1
2;j

x½vþ1�
i;j � x½vþ1�

i�1;j

� �
þx½v�

i;jþ1
2

x½v�i;jþ1 � x½vþ1�
i;j

� �
�x½v�

i;j�1
2

x½vþ1�
i;j � x½vþ1�

i;j�1

� �
¼ 0; ð10Þ

where x½v�
iþ1

2;j
¼ 1

2 x½v�iþ1;j þx½v�i;j

� �
and v is the index of iteration. In

practical computation, it is common to use some spatial smoothing
on the monitor function x to obtain smoother meshes. We apply
the following low-pass filter for the spatial smoothing

xi;j  
1

16
½4xi;j þ 2ðxiþ1;j þxi�1;j þxi;jþ1 þxi;j�1Þ þ ðxiþ1;jþ1

þxiþ1;j�1 þxi�1;jþ1 þxi�1;j�1Þ�: ð11Þ

It is noted that each iteration is followed by the interpolation
procedure in 3.2.2 for solutions U and /. The updated solutions
U½vþ1�

ij and /½vþ1�
ij are used to obtain x½vþ1�

ij . The iteration is continued
until there is no significant change in the calculated new meshes
from one iteration to the next. Typically about 3–5 cycles of the
mesh iteration are required.

3.2.2. The solution interpolation
In each mesh iterative step, once the new mesh points are up-

dated, we need to interpolate the solutions U and / from the old
mesh x½v �i;j to the new mesh x½vþ1�

i;j . In this paper, to better approxi-
mate multidimensional effects, the CTU method with high resolu-
tion correction terms as introduced in [25] is used. The scheme is

q x½vþ1�
i;j

� �
¼ q x½v�i;j

� �
� cn

i�1
2;j

� �þ
Dqi�1

2;j
þ cn

iþ1
2;j

� ��
Dqiþ1

2;j

	 

� cg

i;j�1
2

� �þ
Dqi;j�1

2
þ cg

i;jþ1
2

� ��
Dqi;jþ1

2

	 

� ~f iþ1

2;j
� ~f i�1

2;j

� �
� ~gi;jþ1

2
� ~gi;j�1

2

� �
ð12Þ

where q represents U or /,

cn
iþ1

2;j
¼ 1

2
cn

i;j þ cn
iþ1;j

� �
; cg

i;jþ1
2
¼ 1

2
cg

i;j þ cg
i;jþ1

� �
;

cn
iþ1

2;j

� ��
¼ 1

2
cn

iþ1
2;j
� cn

iþ1
2;j

��� ���� �
; cg

i;jþ1
2

� ��
¼ 1

2
cg

i;jþ1
2
� cg

i;jþ1
2

��� ���� �
;

Dqi�1
2;j
¼ qi;j � qi�1;j; Dqi;j�1

2
¼ qi;j � qi;j�1;

and

cn
i;j ¼ ½rn � ðx½v� � x½vþ1�Þ�i;j ¼

1
Ji;j
½ygðx½v� � x½vþ1�Þ � xgðy½v� � y½vþ1�Þ�i;j;

cg
i;j ¼ ½rg � ðx½v � � x½vþ1�Þ�i;j ¼

1
Ji;j
½xnðy½v� � y½vþ1�Þ � ynðx½v� � x½vþ1�Þ�i;j

are the moving speed of mesh points, Ji,j = (xnyg � xgyn)i,j is the Jaco-
bian determinant of coordinate transformation. The terms in the
square brackets in RHS of (12) are the donor-cell upwind contribu-
tions, while the terms in circle brackets are the CTU corrections plus
the high-resolution corrections

~f i�1
2;j
¼ �1

2
cn

i�1
2;j

� ��
cg

i;j�1
2

� �þ
Dqi;j�1

2

� 1
2

cn
i�1

2;j

� ��
cg

i;jþ1
2

� ��
Dqi;jþ1

2

� 1
2

cn
i�1

2;j

� �þ
cg

i�1;j�1
2

� �þ
Dqi�1;j�1

2

� 1
2

cn
i�1

2;j

� �þ
cg

i�1;jþ1
2

� ��
Dqi�1;jþ1

2

þ 1
2

cn
i�1

2;j

��� ��� 1� cn
i�1

2;j

��� ���� �
minmod Dqi�1

2;j
;Dqi�3

2;j

� �
~gi;j�1

2
¼ �1

2
cg

i;j�1
2

� ��
cn

i�1
2;j

� �þ
Dqi�1

2;j

� 1
2

cg
i;j�1

2

� ��
cn

iþ1
2;j

� ��
Dqiþ1

2;j

� 1
2

cg
i;j�1

2

� �þ
cn

i�1
2;j�1

� �þ
Dqi�1

2;j�1

� 1
2

cg
i;j�1

2

� ��
cn

iþ1
2;j�1

� ��
Dqiþ1

2;j�1

þ 1
2

cg
i;j�1

2

��� ��� 1� cg
i;j�1

2

��� ���� �
minmod Dqi;j�1

2
;Dqi;j�3

2

� �
with the slope limiter

Fig. 2. Defining the Riemann problem for mesh points in the banded region j/j < 1.5 max(Dx,Dy) in the 2D RGFM.
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minmodða; bÞ ¼
0; if signðaÞ – signðbÞ;
signðaÞminðjaj; jbjÞ; if signðaÞ ¼ signðbÞ:

�
The first four terms in ~f i�1=2;j or ~gi;j�1=2 are the CTU corrections and
the last term is the second-order high-resolution correction. In
[21], the interpolation formula is a second-order MUSCL method
in dimension splitting form, while the current CTU method takes ac-
count of flow direction more fully and is more stable since it has a
larger numerical domain of dependence [25].

Remark 1. After each mesh iterative step, we can do the RGFM
process, and interpolate the solutions U for each medium and the
level set function / onto the new mesh, then decide the fluid state

and the equation of state (EOS) for each grid point based on the
sign of the updated /. Since the interpolation for U based on RGFM
does not produce extra difficulty, we need not consider whether or
not some points may cross the interface. In fact, this allows the
mesh to move more freely so as to provide better mesh adaptivity
than in [21].

4. Solution procedure of RGFM on moving mesh

The whole solution procedure consists of two parts: one is the
evolution of the fluid equations and the level set equation, the
other is the mesh moving procedure. We use a second-order HLLC
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Fig. 3. Example 1. Computational results at t = 0.2. The solid line in A–D denotes the analytic solution. E is the comparison of total mass conservation errors caused by the
adaptive RGFM on 100 mesh points and the RGFM on 100 uniform mesh points. F is the time history of the mesh distribution.
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scheme [26] to solve the Euler Eq. (1) and a fifth-order WENO
scheme [27] to solve the level set Eq. (4). We apply the Gauss–Sei-
del iteration method (10) to move the mesh, and then apply the
CTU method (12) to interpolate the conservative variables for each
single medium with the help of RGFM, and the level set function
from the old mesh to the new mesh. The complete algorithm pro-
cedure is illustrated as follows:

Step 1: Given the initial mesh ~x0
i;j

n o
and initial values U0

i;j and /0
i;j.

Let ~x½0�i;j ¼ ~x0
i;j. For v = 0, 1, 2, . . ., L � 1, do (1)–(3):

Table 1
Comparison of errors of RGFM on moving mesh and fixed mesh for example 1.

Mesh Time steps L2 error of density L2 error of pressure

Fixed 100 grids 50 0.0191 0.0170
Fixed 200 grids 100 0.0119 0.0095
Fixed 300 grids 150 0.0089 0.0061
Moving 100 grids 330 0.0095 0.0066

X

D
en

si
ty

0.2 0.4 0.6 0.8 1

1

1.05

1.1

1.15

1.2

1.25

A (Density)
X

Ve
lo

ci
ty

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

B (Velocity)

X

Pr
es

su
re

0 0.2 0.4 0.6 0.8 1

2000

4000

6000

8000

C (Pressure)
X

D
en

si
ty

0.15 0.2 0.25 0.3 0.35

1

1.05

1.1

1.15

1.2

1.25
exact
100 moving mesh
100 fixed mesh
200 fixed mesh

D (Density)

time

M
as

s 
lo

ss

0 0.0005 0.001 0.0015 0.002

0.0000

0.0002

0.0004

0.0006

0.0008

RGFM on 100 fixed mesh
RGFM on 100 moving mesh

E (mass loss)
X

Ti
m

e

0 0.2 0.4 0.6 0.8 1

0.0005

0.001

0.0015

0.002

F (Mesh trajectory)

Fig. 4. Example 2. Computational results at t = 0.002. The solid line in A–D denotes the analytic solution. D is the close-up of A around the rarefaction wave. E is the
comparison of total mass conservation errors caused by the adaptive RGFM on 100 moving mesh points and the RGFM on 100 uniform mesh points. F is the time history of the
mesh distribution.
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(1) Move mesh points ~x½v �i;j to ~x½vþ1�
i;j .

(2) Redefine the initial values of U0
i;j;/

0
i;j on the new mesh

~x½vþ1�
i;j according to initial condition.

(3) Let x0
i;j ¼ ~x½vþ1�

i;j .
Step 2: For physical time level n = 1, 2, . . ., do (1)–(4):

(1) Solve the governing equations:
(a) Define the ghost fluid states for each medium by

using RGFM.

(b) Solve the Euler Eq. (1) for each single medium to
obtain the solution Unþ1

i;j , and solve the level set
Eq. (4) to obtain /nþ1

i;j at new time level t = tn+1.

(2) Redistribute the mesh iteratively: Let
x½0�i;j ¼ xn

i;j; /½0�i;j ¼ /nþ1
i;j ; U½0�i;j ¼ Unþ1

i;j . For v = 0, 1, . . .,
L � 1, do (a)–(c):
(a) Move mesh points x½v �i;j to x½vþ1�

i;j .
(b) Interpolate the level set function /½v �i;j and the

conservative variables U½v �i;j of each single med-
ium from the old mesh x½v �i;j to the new mesh
x½vþ1�

i;j .

(3) Let xnþ1
i;j ¼ x½L�i;j ;/

nþ1
i;j ¼ /½L�i;j ;U

nþ1
i;j ¼ U½L�i;j .

(4) If tn+1 < T, then go to (1) of step 2; otherwise output the
final results and stop.

The maximal iteration number is set to be L = 5.

Table 2
Comparison of errors of RGFM on moving mesh and fixed mesh for example 2.

Mesh Time steps L2 error of density L2 error of pressure

Fixed 100 grids 70 0.0142 333.3388
Fixed 200 grids 130 0.0085 209.0767
Fixed 300 grids 200 0.0062 158.0870
Fixed 400 grids 260 0.0057 136.0303
Moving 100 grids 500 0.0058 135.0900
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Fig. 5. Example 3. A, B, C, D are the adaptive meshes using the CTU interpolation at t = 0.27, 0.56, 0.80, 1.10, while E and F are that using the dimensional splitting
interpolation at t = 0.80, 1.10.
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5. Numerical examples

In this section, we give several 1D and 2D numerical examples
to illustrate the efficiency of our adaptive RGFM method in
decreasing numerical errors and the effectiveness of the high-res-
olution CTU interpolation. The first two examples are 1D two-med-
ium Riemann problems, unless otherwise stated, the physical
domain is taken as [0, 1] and is divided into 100 uniform cells,
the CFL number is set to 0.8, and the monitor function in the mesh
generation equation has the form

xðUÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a

p2
n

maxfp2
ng

 !
þ b

q2
n

maxfq2
ng

 !vuut ;

where a and b are two free parameters for controlling the adaptiv-
ity. They are varied from case to case.

5.1. One-dimensional examples

For 1D examples we will show the efficiency of the present
adaptive RGFM and its capability to reduce conservative errors.
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Fig. 6. Example 3. A, B, C, D are the pressure contours at t = 0.27, 0.56, 0.80, 1.10 as computed with the adaptive RGFM, and E and F are pressure contours at t = 0.80 and 1.10
as computed with fixed mesh RGFM. The dashed line denotes the bubble interface.
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the adaptive RGFM method with CTU interpolation, that with dimensional splitting
interpolation, and the real GFM method on the uniform mesh.

254 Y. Ding et al. / Computers & Fluids 49 (2011) 247–257



Author's personal copy

Example 1. Gas–gas shock tube problem. This problem is from
reference [7] but we have chosen different dimensional scales.
Initially, the interface is at x = 0.5, and the states on the left and
right sides of the interface are

ðq;u;p; c;pÞ ¼
ð1:0;0;1:0;1:4;0Þ; 0 6 x < 0:5;
ð0:125; 0;0:1;1:2;0Þ; 0:5 6 x 6 1:

�
In the computation, the two free parameters are a = 100, b = 100.
The computational results at t = 0.2 are shown in Fig. 3, where
frames A, B and C show comparison of the numerical profiles (sym-
bol‘‘�’’) for density, pressure and velocity with the exact solutions
(solid line). It is seen that high resolution results for the left moving
rarefaction wave, the contact discontinuity, and the right moving
shock wave are obtained. Fig. 3D is the close-up view for density
near the right moving shock, on which we plot the results of RGFM
on 100 moving mesh points (symbol ‘‘�’’), 100 fixed (symbol ‘‘D’’),
and 200 fixed mesh points (symbol ‘‘r’’), respectively. It is observed
that 100 moving mesh result is even more accurate than 200 fixed

mesh result. Fig. 3E shows the time history of total mass conserva-
tion errors for both the adaptive RGFM and the RGFM on the uni-
form mesh. Here the conservative errors are measured by (3.7) in
[9]. It is seen that the adaptive RGFM decreases the conservative er-
ror more quickly.

Fig. 3F shows the mesh moving history in time, where one can
observe that the mesh points are automatically clustered near
where large gradient variation exists. In Table 1, we present the
comparison between L2 errors of the RGFM on moving and fixed
meshes. It is obvious that the results on 100 moving grids is nearly
as accurate as that on 300 fixed grids. Although the adaptive RGFM
costs double time steps to go through the time, it is still about 1.5
times more efficient due to fewer grids being used.

Example 2. Gas–water shock tube problem. This problem is
taken from [9]. The initial interface lies at x = 0.4, and the states
on the left and right side of the interface are
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Fig. 8. Example 4. A is the adaptive mesh, B and C are the contours of density and pressure on adaptive mesh, and D is the pressure contours on fixed mesh.
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ðq;u;p; c;pÞ ¼
ð1:27;0;8000:0;1:4;0Þ; 0 6 x < 0:4;
ð1:0;0;1:0;7:15;3309Þ; 0:4 6 x 6 1:

�

The two free parameters are a = 100 and b = 160. The computational
results at t = 0.002 are illustrated in Fig. 4. In A, B and C, the numer-
ical density, pressure and velocity profiles of RGFM on 100 moving
mesh points (symbol ‘‘o’’) are compared with the exact solutions,
while in D, a close-up view for density is shown to compare results
obtained on 100 moving meshes (symbol‘‘�’’), 100 uniform (symbol
‘‘D’’) and 200 (symbol ‘‘r’’) uniform meshes, respectively. It can be
seen that RGFM results on 100 moving mesh points is even better
than RGFM results on 200 uniform mesh points. Fig. 4E shows the
time history of total mass conservation errors for both the adaptive
RGFM and the fixed mesh RGFM. Again, it is seen that the the adap-
tive RGFM decreases the conservative error further. Fig. 4F shows
the mesh trajectory, where the mesh points are more clustered near
the shock and interface than near the rarefaction wave. In Table 2,
we also give a comparison of the L2 errors of RGFM on moving
and fixed meshes. It is noted that the RGFM on 100 moving mesh
is nearly as accurate as on 400 fixed meshes. After considering more
time steps cost, the adaptive RGFM is still twice times more efficient
than the RGFM only.

5.2. Two-dimensional examples

For following two examples, we will show that our adaptive
mesh RGFM can increase the numerical accuracy for the interface
and can effectively eliminate nonphysical oscillations. In addition,
the CTU interpolation is compared with the dimensional splitting
interpolation [23]. The monitor function in 2D examples takes
the form

xðUÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a

p2
n þ p2

g

maxfp2
n þ p2

gg

 !
þ b

q2
n þ q2

g

maxfq2
n þ q2

gg

 !vuut :

Example 3. Planar air shock interacting with helium bubble.
This example is taken from reference [7] and is widely studied by
many researchers. We do not list the lengthy initial conditions
here. Initially, a Mach 1.22 planar shock in air locates at x = �0.75
and moves to the right in a physical domain [�1,1] � [0,1], and
there is a helium bubble centered at (�0.5,0.5) with radius r = 0.2.
The mesh point number used is 200 � 100, and the CFL number is
set to 0.5. The two free parameters for grid adaptivity are a = 100
and b = 50. In Fig. 5A–D show the moving mesh distributions using
the CTU interpolation for four instants t = 0.27, 0.56, 0.80, 1.10,
respectively, and frames E and F show that using the dimensional
splitting interpolation for the last two instants. Small difference
can be observed between the two interpolation methods. Fig. 6A–D
show the pressure contours at above four instants and E and F
show pressure contours at last two instants as computed by the
fixed mesh RGFM. We can see that the moving mesh computation
gives sharper profiles of the interface and there are no nonphysical
oscillations. For simulating this flow problem, preventing mass loss
is a big concern.

Fig. 7 shows the total mass loss of the helium bubble with time.
Three computational results, obtained respectively by using adap-
tive RGFM with the CTU interpolation, that with the dimensional
splitting interpolation, and the RGFM on fixed meshes, are
compared. It is found that the adaptive RGFM results with CTU
interpolation and the dimensional splitting interpolation have
comparable mass losses, while the fixed mesh result has much
larger mass loss.

Example 4. Two-dimensional underwater explosion. This exam-
ple is a 2D gas–water Riemann problem. The physical domain is
[0,1] � [0,1] and is initially divided into 100 � 100 uniform
meshes, the CFL number is taken as 0.5, the initial conditions are
taken as

ðq;u;v ;p; c;pÞ ¼ ð1250;0;0;109;1:4;0Þ; r < 0:5;

ð1000;0;0;105;7:15;3:309� 108Þ; r > 0:5:

(

The solution of this problem comprises of an inward moving rare-
faction wave, a fast outward moving shock and a slowly outward
moving contact discontinuity. We take the free parameters a = 60
and b = 100. Fig. 8 shows the moving mesh (A), the density and
pressure contours (B and C) as computed by the moving mesh
RGFM and the pressure contour (D) as computed by the fixed mesh
RGFM. It can be observed that by using moving mesh method, the
resolutions near the interface and the shock wave are improved
remarkably. The numerical abnormality near the interface in frame
D is removed in frame C. We also compare the total mass loss of the
gas bubble with time in Fig. 9. Again, it is found that the adaptive
RGFM results with CTU interpolation and the dimensional splitting
interpolation have comparable mass losses, while the fixed mesh
result has much larger mass loss.

6. Conclusions

In this paper, we implement the real ghost fluid method in finite
difference discretization on adaptive moving meshes for one- and
two-dimensional problems. We show that the strategy used by
previous investigators [21] to avoid grid points from crossing over
the material interface is unnecessary. Thus, the adaptivity will be
improved in simulating moving singularities. We also use a high-
resolution corner-transport upwind method for interpolating solu-
tions from old mesh to new one. This interpolation method should
be more accurate and stable than previous dimension splitting
interpolation method. The numerical examples demonstrate that
the present moving mesh method is effective in increasing numer-
ical resolution of two-fluid compressible flows and decreasing con-
servative errors caused by the ghost fluid method.
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Fig. 9. Example 4. The recorded total mass losses of the gas bubble with time for
the adaptive RGFM method with CTU interpolation, that with dimensional by
dimension interpolation, and the real GFM method on the uniform mesh.
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