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POISSON-NERNST-PLANCK/POISSON-BOLTZMANN MODEL*
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Abstract. In this paper, an energetic variational method is employed to derive a set of ion
transportation and electrostatic models of general electrolyte solution with a locally and mathemat-
ically rigorously determined dielectric permittivity of the dipolar solvent under certain assumptions.
The model could be called the local dielectric Poisson-Nernst—Planck (LDPNP)/Poisson—Boltzmann
(LDPB) model, which couples the Poisson—Nernst—Planck and Poisson—Boltzmann equations with
a novel moment equation of dipolar molecules. A feature of this new model is that the system con-
sistently determines the dipole moment distribution, thereby the local dielectric permittivity of the
ionic aqueous solution, whereas this information is lacking and a constant assumption is usually
adopted for the dielectric permittivity in traditional PNP simulations. We investigate the energy
dissipation law of the derived LDPNP equations. For a planar bounded radially symmetric domain,
we prove the existence and uniqueness of the equilibrium solution of LDPNP equations.
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1. Introduction. The Poisson—Boltzmann (PB) equation and Poisson-Nernst-
Planck (PNP) equations are two commonly used PDE models in the electrolyte
solution system. The PB equation serves as a physically reasonable and efficient math-
ematical description of the equilibrium state of the electrolyte solution [2, 13, 14, 15, 19].
It models the electrostatic interactions involving charged solutes, mobile ions, and a
polarized solvent which influences the stability and dynamics of biological molecules
in aqueous solutions [13, 26, 30, 35, 36]. In a nonequilibrium state (i.e., unbalanced
ionic flow exists), the PNP model, which couples the electrostatic potential equation
with convection-diffusion equations, describes the electrodiffusion process of ions in an
electrolyte solution. It has been widely used in the biological ion channel [25, 28, 31]
and nanopore systems [10, 12, 52]. In both models, a basic hypothesis is that the
background solute and solvent molecules can be treated as dielectric media character-
ized by their dielectric permittivity. Though the dielectric permittivity in electrolytes
was often assumed as constant or piecewise constant in many electrostatic modelings,
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such as in PB/PNP calculations, it is usually not a constant and has a complicated
dependence on the density of surface/interface charge, domain geometry, and the ionic
strength of the solution [22, 24, 29, 30, 38].

Dielectric decrement, referring to the reduction in the dielectric constant (or per-
mittivity) of a solution, is a general phenomenon observed in electrolytes which results
from the ordering of the polarized water due to the presence of ions or polar molecules
in a solution (see Figure 1). A number of experimental and numerical measurements
have confirmed that the dielectric properties of the fluid close to interfaces drastically
differ from the bulk properties [6, 16, 46]. The low dielectric region can reach dis-
tances of a few nanometers from the interface (such as water-membrane, water-protein
interfaces and others), which is independent of the sign of the surface charges [11].
This phenomenon is significant in various contexts, including electrochemical pro-
cesses, biological systems, and transport phenomena. For instance, the low dielectric
permittivity of water at the membrane interface affects the protonmotive force (the
transmembrane difference in electrochemical potential of protons), and thereby the
proton motion which drives adenosine triphosphate (ATP) synthesis in bacteria, mi-
tochondria, and chloroplasts. Nevertheless, when simulating interfacial phenomena,
using a homogeneous dielectric constant of water in calculations leads to an underes-
timation of the occurrence of electrostatic forces [11]. Investigations were conducted
for dielectric modulation of ion transport near interfaces [3], as well as the effects
on electrokinetic phenomena, including electroosmosis and electrophores [53]. The
heterogeneity of the dielectric constant also has a significant influence on the struc-
ture of the electric double-layer region [5, 18, 23, 29, 37, 44] and charge transfer [27].
Additionally, a good understanding of the dielectric properties of a solvent is crucial
for an accurate description of molecular-level studies of macrobiomolecules [17].

As for ion channel studies, besides many factors like quantum effects [9, 45, 50],
protein conformation dynamics [7, 4, 21], ion size effects [8, 33, 43|, and correlation
effects [34, 42, 41] to be considered, the dielectric permittivity is also an influential
parameter in continuum modeling. It is not entirely clear what dielectric value should
be used in continuum studies of biological ion channels. The quantity is hard to mea-
sure experimentally, with very few studies known to date [20, 40], and the complicated
geometries and composition of the proteins makes this value difficult to compute ana-
lytically. A number of attempts have been made to determine the dielectric constant
of liquid water [1, 39, 47], water inside an artificial narrow pore [48, 49], and water
within the channel protein/pore [40].

In this paper, we consider diffusion and migration of positively and negatively
charged particles in a general electrolyte solution (not limited to ion channel) with
a dipolar medium. This work aims to present a general model to calculate the het-
erogeneous dielectric coefficient in electrolytes (not limited to ion channel systems)
that is locally determined by an interplay of dipole distribution, surrounding charges,
electric fields, and domain geometry. A particularly interesting case of this work is to
consider the situation that the dielectric coefficient is dependent on ionic concentra-
tion and polarization of water molecules. The general free energy functional includes
additional energy terms of the interaction between dipole and electric field. The varia-
tional approach is employed to derive the local dielectric PNP (LDPNP)/PB (LDPB)
equations in dipolar medium under boundary conditions.

The dielectric permittivity ¢ has complicated local dependence on the ionic den-
sities and polarization of the media, and these quantities and relations are usually
difficult to determine and experimentally measure in inhomogeneous material. The
main point of this work is to treat the dielectric permittivity as a generic function
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Fic. 1. A diagram of the heterogeneous dielectric implicit solvent model in an ionic solvent.

of polarization and ionic densities. The function forms were widely studied and can
be seen elsewhere; for instance, the dependence of ¢ on polarization P has a common
physical relation, € = (1 + x.)/€o, where the electric susceptibility x. describes a pro-
portional relation between the polarization and the strength of the electric field as
P =¢gx.F, and ¢q is the vacuum permittivity.

It is worth noting here that if € assumes an explicitly given function of position x,
€(x), this is the usual treatment as in commonly used PNP/PB modeling, and is not
the focus of the current work. If € depends only on the ionic densities and the general
free energy does not depend on the dipole effect, €(c;), this resumes our previously
studied ionic density-dependent dielectric model [31]. Our LDPNP model couples
the PNP equations with a dipole moment equation describing the interactions and
dynamics among electrostatic potential ¢ = ¢(x,t), the density of the ith ion species
¢; = ¢i(z,t), and the dipole polarization field p = p(z,t). In the microscopic scale,
there are polarized charges due to dipole polarization, V - p. But in the macroscopic
scale we still regard a water molecule as an electrically neutral particle, and hence
in Gauss’s law the field sources are all the ions, which implies that the electrostatic
potential ¢ is formed only by all ions and the boundary layers.

We organize the rest of the paper as follows: In section 2, we give a complete
free energy functional with dipole moment. In section 3, we derive the first variations
of the free energy functional, the generalized Boltzmann distributions, the LDPB
model, and the LDPNP model. Furthermore, we prove the energy dissipation law of
the LDPNP model, and the existence and uniqueness of the solution for the stationary
LDPNP model. Finally, in section 4, we draw our conclusions.

2. The mean field free energy functional. In this section, we will derive
the free energy functional with dipole moment. When considering charged ions in a
water medium in a domain Q C RY, N =2,3, and the dielectric permittivity e local
dependence on the ionic densities, the Gibbs free energy of the charged system is
usually written as
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Here, p is the total charge density, K is the number of diffusive ion species in the
solution that are considered in the system, ¢ = ¢(c) is the electrostatic potential with
c=(e1,...,¢K), ¢; is the concentration for the ith ionic species, 8 =1/kgT is inverse
Boltzmann energy, where kp is the Boltzmann constant and 7' the temperature, A
is the thermal de Broglie wavelength, and p; is the chemical potential of the ith
ion species. The classical PB equation and PNP equations can be derived by the
variational method from this energy form [32, 51].

However, this free energy is not complete. When a potential is given on a bound-
ary, this means (1) if the boundary is a physical boundary identified as a certain type of
material interfaces, there must be a mount of “effective” surface charges o<if = —egi,
which then causes an additional surface interaction energy — 1 6%&, (2) the bound-
ary is artificial, and the influence can be approximated by * effectlve surface charges
UeDH = —eg , which leads to a similar energy term. Based on these two observations,
Liu, Qiao, and Lu [31] put forward a complete free energy functional form for the

Dirichlet boundary condition:

Fld= /Q %p(c)qs(c)dV— /8 ) %e@ f"gg’)

K K
+ 571 Z/ch[log(A?’c,) - l]dV - Z/Quzczdv
i=1 i=1

Using this energy form, they derive a generalized self-consistent PB equation/PNP
equations.

In the present paper, we further add the polarization effect to this system, in which
the dielectric permittivity € has local dependence not only on the ionic densities, but
also on the polarization of the media.

For a dipole moment p = (p1,...,pn) in a electric field E = —V ¢, the total energy
includes two parts: one is the electric potential energy of the outside electric field E
given by Uy = —p- F = p - V¢, and the other is the electric potential energy given
by Us = —k*qflq? = % where k* is Coulomb’s constant, [ = |d| is the length of
a dipole, and d is the vector that represents a dipole (see Figure 2). Therefore, we
present the free energy functional as follows:

Fla] = / a)dV — /
(2.3) +ﬁ‘1§ /Q ci[log(Asci)—l]dV—g /Q picidV

k*
+ [ pup-votaav + [ Folofav,

(2.2)

where the electrostatic potential ¢(a) satisfies the Poisson equation:

(2.4) —V - (e(a)Vé(a)) =p(c) in Q,
¢(a) = o on 0f).
Here, a = (¢1,...,¢K;p1,---,DN), ¢ =(C1,...,CK), ¢; is the density of ith ion species,

B =1/KpT is inverse Boltzmann energy, A is thermal de Broglie wavelength, p; is
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Fic. 2. A diagram of the dipole in the external electric field.

the chemical potential of the ith ion species, p,, is the number density of water, and
p=p(c) is the total charge density, defined by

K
p(c) :Z(h% ¢ =ze, i=1,.... K,
i=1

where z; is the valence of the ith species and e is the charge of one electron. In
(2.3), The first two terms together represent the electrostatic potential energies, and
the second term is the boundary interaction. The third term represents the ideal-gas
entropy, and the fourth term represents the chemical potential of the system that
results from the constraint of the total number of ions in each species. The last two
terms represent the total energy of dipoles.

3. Energetic variational approach. In this section, we will use the energetic
variational approach from the energy functional form (2.3) to derive LDPNP/LDPB
models. For this purpose, we need the following basic assumptions:

(i) a € X, where

X= {a:(cl,...,cK,pl,...,pN):cz- >0, ¢; € WH(Q), ps GLQ(Q)QWLOO(Q)}.

—K+N
(ii) The dielectric coefficient function e(a) € C*(R ++ ,R). Moreover, there are two
positive numbers €p,;, and €y, such that

0 < €min < €(a) <€max Va€X,

where R = [0,00).
(iii) The boundary electrostatic potential ¢, belongs to H 2 ().

Before deriving the first variation of F' with respect to a, we state the following
results for Poisson equation (2.4).

THEOREM 3.1. Poisson equation (2.4) has a unique solution ¢ = ¢(a) € H*(S2).
Moreover, by the trace theorem, ¢(a) € H? (992).

Proof. Let us decompose ¢(a) as follows:

¢(a) = ¢1(a) + ¢p2(a),
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where ¢4 (a) satisfies

(3.1)

=V (e(a)V¢1(a)) =0 inQ,
$1(a) = ¢o on 09,

and ¢o(a) satisfies

(3.2)

{—v (e(a)Va(a)) =p(c) n®,
¢2(a)=0 on 0f).

It is well known that for ¢y € H?2(99), there exists a unique harmonic function
11 € H?(Q2), such that ¢11 = ¢ on IQ. If we take ¢1(a) = ¢1.1 + ¢12(a), then
¢1,2(a) satisfies

3.3
(3.3) . -
V(@) Vérae) = 3 (Ve - Vera) + Y 5 (Vp; - V) inQ,

i=1

¢1,2(a) =0 on 9.

Define the bilinear form
B(u,v) = / e(a)Vu-VodV Yu,v € Hi(Q).
Q

Tt follows from assumption (ii) that B is a bounded, coercive bilinear form. Since a € X
and ¢, € H?(Q2), by our assumption (ii) again, the right-hand side of (3.3) belongs
to L2(Q2) and hence H~1(2). Using the Lax-Milgram theorem, (3.3) has a unique
solution ¢1 2(a) in H{(£2). Using the elliptic regularity theorem, ¢1 2(a) € H?(€2). As
a result, (3.1) has a unique solution ¢ (a) € H?(Q).

Since a € X, we have p(c) € H~1(£2). Using the Lax-Milgram theorem again, (3.2)
also has a unique solution ¢2(a) in H} (). The elliptic regularity theorem implies
that ¢o(a) € H3(Q).

Hence, we have proved that the boundary-value problem of Poisson equation (2.4)
has a unique solution ¢ = ¢(a) € H*(Q). 0

Based on Theorem 3.1, the complete free energy (2.3) is well-defined. We now
begin to calculate the first variation of F' with respect to a.

3.1. First variations. Let a = (¢1,...,¢k,p1,.--,pn) € X and a = (¢4, ..,Ck,
P1y--.,0Nn) € X. We define the Gateaux derivative by
F ta]| — F
(3.4) 5Fa)[a) = tim L0+ ta = Fla]
t—0 t

To get the expression of 0 F'[a][a], some lemmas are needed.
For t € R and t # 0, we define

dla+ta) — §la)

(35) @alfa] = 2

Then we can state the first lemma.
LEMMA 3.2. We have ®.[a][a] € HE(Q). Ast—0,
As a consequence,

(3.7) d(a+ta) — ¢(a) strongly in H'(Q) as t — 0.
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Proof. Since ¢(a) solves (2.4) and ¢(a + ta) is a solution of

—V - (ela+ta)Veo(a+ta)) =plc+1tc) inf,

(3:8) pla+ta)=¢o on d9),
we have ¢(a + ta) — ¢(a) € H} () (hence ®,[a][a] € HL(Q)) and

=V (e(@)V(é(a+ta) - d(a)))
=p(c+te)—p(c) + V- ((e(a+ta) — €(a))Vo(a+ta)) inQ.

Testing ¢(a + ta) — ¢(a) to (3.9) and the integral in 2, we get

(3.9)

/Q ()| ($(a + ta) — d(a))2dV
(3.10) = /Q (p(c+te) — p(c)) (¢(a+ ta) — ¢(a))dV
+ /Q (e(a+ta) — e(a))Vo(a+ta) - V(p(a+ ta) — ¢(a))dV.

Since ¢(a + ta) — ¢(a) € HE(Q), by the Poincaré inequality we have

(3.11) [p(a+ta) — ¢(a)]| L2 (@) < ClV(d(a+ta) — ¢(a)) L2()-
Then the first term on the right-hand side of (3.10) has the following estimate:

K
| (ple-+12) = p10) (00 +12) —gt@)av =3t [ a(ola-+ta) —g(a)av
=1
<Cltl||¢(a+ta) — p(a)l|L2(q)
<C[t||[V(¢(a+ta) — ¢(a))llr2()-

On the other hand, fixing 0 > 0, for any [t| <, [|[V(a +ta)|r2q) < C via the
elliptic regularity theory. Thus, the second term on the right-hand side of (3.10) has
the estimate

/Q (e(a+ta) —e(a))Vo(a+ta) - V(d(a+ta) — ¢(a))dV
K _ N _
_ /Q (X_; 736(‘22““) téﬂr; ae(%;ism) t@) Vo(a+ta) - V(¢latta)—p(a))dV
< Clt[[[V(g(a+ta) — ¢(a)) | 2(a),

where 0 <s<1.
Hence, we obtain that

o [ [V(0(a+12) — o@)PdV < [ @)V ((a+ta) - () Pav
Q Q
< ClE|IV(e(a+ta) — ¢(a))ll L2(e)
which gives
(3.12) IV(¢(a+ta) — d(a))llL2(0) < Clt].
The conclusion (3.6) follows from (3.11) and (3.12). |

Furthermore, we have the following.
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LEMMA 3.3. Ast—0,
(3.13) ®,[a][a] — vy strongly in Hy(S),
where vy is a solution of

(3.14)
{—v - (e(a)Vp) = § Ge+ V- (<1_1 el + Z oy > Voé(a )) inQ,

i=1

v9=0 on Of).

Proof. Note that ®;[a][a] € H}(Q) satisfies
(3.15) =V (e(a)V®a Z%Cz +V- (WVqﬁ(a—&—ta)) in Q.

By Lemma 3.2, ®,[a][a] is bounded in HE(Q). So there exists vg € H(£2) such that
®q[a][a] — vy weakly in HJ(Q) as t — 0.

By letting ¢ — 0 in (3.15), we have

de(a) = Oe(a)
—V - (€e(a) Vo) Zqzczw ((Z 5o G . pz-) V¢(a)> in €,
which, together with (3.15), gives

(3.16)
— V- (e(a)V(®;[a][a] - vo))

_ K N
-V (M)E(a)vqb(a +ta) — (Z 867@514 4 86(@)@) V¢(a)> in Q.

t i=1 i—1 Opi

Testing ®;[a][a] — vo to (3.16) and the integral in Q, we get from assumption (ii) and
Lemma 3.2 that

/ ()| V(@ [a][a] — vo)PdV
Q

= _/Q wvﬂa +ta) - V(®,[a][a] — vo)dV

K 9e(a N He(a
+/Q (Z a(ci)@' +2. aﬁ,)m) Vo(a) - V(@ [alfa] - vo)dV

=1 i=1

:_/Q<Zae a+sta Z a+sta ) V(a+ta) V(P,[a][a] — vo)dV

=1
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+/Q (2 dc; Ci +Z 3171 ) (a) - V(®¢[a][a] — vo)dV

/Z (86 (a+sta) Oe(a )>cLV¢(a+ta) (@1 fal[a] — vo)dV

/ Z acz ¢(a+ta) — ¢(a)) - V(®¢|al[a] — vo)dV

/Z(ae (atsta) Dela ))pzv¢(a—|—ta) V(®,[a][a] — vo)dV

/Efk (¢(a+ta) — #(a)) - V(P¢[a][a) — vo)dV
(3.17) < 0or(1)||V(®¢[al[a] — vo HLZ(W

where 04(1) denotes that 0;(1) = 0 as t — 0. Since €(a) > €min > 0, we finally obtain
that

(3.18) 19(@4lal a) — v0) 2oy < 0x(1).
It follows from the Poincaré inequality that
(3.19) [4[alfa) — voll o) < or(1).
We complete the proof. ]
Let Ge(q)(y,x) be the Green’s function for —V(e(a)V) in , such that
_vy : (G(G)vyGe(a) (yvaj» = 6(y - SL‘) in Qv
Ge(a) (yax) =0 on 8Qa

where § is the Dirac function. Then G, (y,x) has the form

Ge(a) (y7 l‘) = G(ya CC) + Re(a) (y7 JC),

where G(y,z) is the Green’s function for —A in  with zero boundary condition
and R(q)(y,r) is a correction term. Using the Green’s function G, (y, ), we can
represent vy as follows:

(3.20)

K N
w@) = [ Gl [qumv (( Ot 8;;‘?)m> w(a))](y)dy.
i=1 ‘ i=1 ’

Based on the above discussions, we are ready to calculate dF[a][a]. Let us de-
compose the free energy F' as

F[a] = Fpot [Cl] + Fentropy [C] + Fdipole [CL],

where
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(1 1 0¢(a)
(3.21) Falal = [ goteot@av = | Setw)Z58oas,
K
(3.22) Faronsle] = Y /Q (8~ ciflog(A3e;) — 1] — pics V.,
(323) Fdipolc[a}:/prp~V¢(a)dV+/§2%pw|p|2dV.

By the definition of (3.4), we have

(3.24)

_ ntr c+tc ntr
(SFentropy[ ][ ]_th~>0 e ¢ Opy[ t} e ¢ opy Z/ Cz 110g A3 ) ]d

We now deal with the derivative of electrostatic potential energy. Clearly,

m F; Ot[a + td] — Fpot[a]
t—0 t

( (p(c+te) — p(c))pla+ ta)dV + / p(c)(d(a+ta) — ¢(a))dv>

Q Q
1 _ 9¢(a+ta) d¢(a)

— lim — /(9Q <e(a +ta) o —€(a) o > dodS

=lim = Z/ q:i¢iP(a+ta)dV + hm = / p(c)(¢(a+ta) — ¢(a))dV

0
(3.25)
iy Qlt /8 ) (e(a + ta) ‘%(‘gz 1) _ o(a) agg) GodsS.
By (3.7),
(3.26) lim = Z/ qicip(a +ta)d V:li/ qicid(a)dV.
) 24 Jo

Since ¢(a) is a solution of (2.4), we can test (2.4) by ¢(a) to get that

) [ dave) Vo - [ da®ous = [ sersaa

Similarly, testing (3.8) by ¢(a) we have

(3.28)

/ €(a-+1a)V(a-+1a) - V(a)dV — / e(a—l—t&)wa)dS: / pc-+te)d(a)dV.
Q o9 n Q
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Combining this with (3.27) and (3 28), one sees

—tlg%% Q( a+ ta) a+ta)—e(a)ag§?)>¢od5
/ (p(c+te) — p(c))p(a)dV
(3.29) - gl_r)l(l) 5 / (e(a+ta)Ve(a+ta) — e(a)Ve(a)) - Vo(a)dV

= Z/ qicip(a)dV — hm — /Q (e(a+ta) —e(a))Vo(a+ta) - Vo(a)dV

~lim & / )V (¢(a + ta) — d(a)) - Vo(a)dV.

t—0 2t Jq

It follows from Lemma 3.2 that

lim i/ (e(a+ta) — e(a))Vé(a+ta) - Vo(a)dV

t—0 2t Q

—2/Q< et a;%) V() dv.

i=1 =1

(3.30)

Since ¢(a + ta) — ¢p(a) =0 on I, we have
lim — / (a+ta) — ¢(a)) - Vo(a)dV
(3.31) :hm—/ﬂ—V (e(a)Vo(a))(¢(a+ta) — ¢(a))dV
= lim . / p(c) (6(a +ta) — d(a))dV.

Then by (3.25), (3.26), (3.29), (3.30), and (3.31), we obtain

pot Z/ %Cz¢

1 K
_2/Q<l_ > >|V¢ a)|2dV.

Finally, we deal with the derivative of the dlpole s energy. We have
Fdipole [a + ta] - Fdipole [a]

(3.32)

5Fdipole [a] [d} =lim

t—0 t
1 _
=lim S | pep: V(p(a+ta) — ¢(a))dV

+lim/ puwb - Vo(a+ta)dV
t—=0 Jo
2k*
(3.33) +/ lprp-f)dV.
Q
By (3.7), we have

(3.34) lim /Q pub - Vo(a+ ta)dV = /Q pup - Vo(a)dV.
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On the other hand, by Lemma 3.3 we have
1 _ . _
gg% i) puP - V(p(a+ta) — ¢(a))dV —}1_13(1) ; pwP - VO, [a](a]

(3.35) :/ PP - Vug dV
Q

— [ (¥ P av
Q

From the expansion (3.20), we obtain that

/ p)uo dV’ = / / Gty (1 2) [PV
'l?ém”'((féi‘?c . ) )

y)dxdy

K

(3.36) Z/Ham)[zqwﬁv (( ) )) av
=1 =1
72 / <qz o) — ( ) “Vo(a). VHE(G)> & dv
_Z / 8pl ) VH.())pi dV,
where
(337) e(a) /Ge(a) ya pw( )]( )d Y.
Hence we obtain that
(3.38)
d Faipole|a] Z/ <Qz (a) V¢(a)'VH5(a)> ¢ dv
Q &
2k* 0 Oe
+Z / ( pui + P ZZ;SH6;?(v¢<a>-VHE<a)))pidv.

Combining (3.24), (3.32), and (3.38), the derivative dF[a][a] can be stated as
follows.

THEOREM 3.4. Suppose (i)-(iii) hold and a € X. Then

Z/ (qz — Hew) = (;|V¢(a)|2 CVH. ~V¢>(a)> a;(:

+ B_l log(ASCi) - /,Li> c;dV
2k* 0¢(a)
+Z / ( pui + Pup -

+ (—2|v¢<a>|2 VY HW -w(a)) 3E‘Cf))pidv.

~—

(3.39)
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That 1s,
OF 1 5
(3.40) ol = (0(0) ~ How) - (2|V¢<a>|2 — VH,- wa)) o)
+ ﬁ_l log(A?’cZ-) — I
and
OF 2k* o 5
(341) 5p[a] = 13 Puli + Puw g;a) —+ (—;|v¢(a)|2 4 VHe(a) v¢(a)> ;;CL)

From the definition of H,(,), we have the following remark.

Remark 3.5. The function H.(, introduced in (3.37) satisfies

—V - (e(a)VH(q)) = pu(V-p) inQ,
He(a) =0 on 0f2.

Thus, H.(,) is the electrostatic potential of the dipole and its equivalent charge dis-
tribution is p.,(V - p).

3.2. Generalized Boltzmann distributions with dipole moment and lo-
cal dielectric Poisson—Boltzmann Model. For a € X, we call it an equilibrium
if the first variation dF[a][a] exists and equals zero for any a € X. If a € X is an
equilibrium, then §F[a][a] =0 for all a € X, which means

(3.42)
0
i = q; (qb(a) — He(a)) - <;|V¢)(a)|2 —VH, ) - V(;S(a)) % + B8 og(A3¢),
2k* 0 1 0
B3 At 2 (<5IV6 4 VHw Vo)) S 0.
A straightforward calculation implies that
(3.44)
ci= A—3Bui exp {ﬁ <_Qi (d)(a) - He(a)) + <;v¢(a)|2 _ VHE(G) . v¢(a)) a(f)(ca)> }
—ciex {8 (~a(000) ~ ) + (170007 - Vi Vol)) ) .

where as r — 00, ¢; = ¢ and ¢(a) — 0. Compared with the classical Boltzmann
distributions ¢; = cg’oe’ﬂqm, this is the generalized Boltzmann distributions. Plug-
ging the generalized Boltzmann distributions (3.44) into the Poisson equation, and
combining with (3.43), we then obtain an LDPB model under an arbitrary Dirichlet
boundary condition:

(3.45)
a —q; a)— i a)|?— . a))2cl)
—V'(E(Q)Vqﬁ(a)):ZqicfoeB( 4 (#(a) ~ Heqa) ) +(31V0(a) P~V He(a) Vo (a)) %L ) n Q.
i=1
2k 0¢(a) 1 2 Oe(a) _ :
i 0,20 (V6P + V0 To(o) ) S 0 in €
¢(a) = ¢o on ON.
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3.3. Local dielectric Poisson—Nernst—Planck model. According to the con-
stitutive relations, the flux J; and the electrochemical potential ji; of the ith species
satisfy

Ji=—m;c; Vi,
where m; is the ion mobility that relates to its diffusivity D; through Einstein’s
relation D; = 8~ m;, and ; is the variation of F with respect to ¢;:
. OF
i = (5701
Then the following transport equations are obtained from the mass and current con-
servation law:
aci
ot

=—V-J; =V (BDic;V}i;)
-V (ﬂDiciv (%’ (¢(a) = Hewy) — (;Wﬁ(a)2 —VH) - V¢(a)) a;(:)))
+ V- (BDic;V (57 og(A%cy)))

_v. (BDZ-QV <Qi (¢(a) = He(a)) — (;w(a)? ~VHe): W(a)) 8(;(3))
+V-(D;Vg).

Next, we want to drive the equations corresponding to the dipole moment field p
via the conservation law of spin angular momentum. As an approximation model, we
assume that the masses of positive charge ¢go and negative charge ¢; in the dipole p
are equal to each other, that is, %mw, where m,, is the mass of a molecule of water,
and they rotate around the center O of the line between the positive charge and the
negative charge. Thus the spin angular momentum L of dipole p is given by

L=r1y XxXmyvy+rsXmogvsy

1 1 d 1 1 1 d (1

om dd me, dp
=—dx —= X —
1 T 16e2? "
where for i = 1,2, r; is the vector from O to ¢;, m; is the mass of ¢;, and v; is the
rotation velocity of g;.
On the other hand, for a dipole moment p in an electric field F, the moment of
force is given by

M=px E.

When we consider the permittivity coefficient € not depending on p, the electric field

E=-V¢— %p and it equals fp%Vdeipolc, where Vp = (6%17“'76;%\,)' But for €

depending on p, we amend the electric field to fpinpF. So we have

M=—-px iVPF[a].
w
By the conservation law of spin angular momentum, we have
dL
=0
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namely,
My d’p 1
16e2p X ﬁ = 7pjp X VPF[CL],
since
i( dp)_dj 0 s S s
at\P ™) T Car TP ae TP g

Collecting all those above equations, we get a set of generalized self-consistent
LDPNP equations:

K
(3.46) —V - (e(a)Ve(a)) = Zqici in Q,
(3.47) -
Oc;

5=V (ﬂDic,-V (qi (6(a) — Hoa) — <;|V¢(a)|2 CVH Vo (a)> a;(:) ))
+V-(D;Ve;) inQ,

Ep  16¢2 2+
pX e = ey P X | 3 PP + puVo(a)

4 ( ~ SIVB@)P + V- V¢<a>> vpe<a>> in,

with the boundary conditions

= o on 092,
ci=c on 0f),
Di :p? on 05,
Ji-n=0 on 0f2.

It is easy to see that (3.48) is equivalent to
d*p 16€2 16e2
Y - v

pTo Rt e ¢(a) - e

for some function ~.

(3.49) (31960 + Vi, Vo(a)) Tuela)

3.3.1. Emnergy dissipation law. In this section, we show the energy dissipation
law as follows.

THEOREM 3.6 (energy dissipation law). If (¢,p, @) is a solution of the LDPNP
equations (3.46)—(3.48) so that |p| = 2le, then we have

d o al
7 — Ftot Z/ mzcl‘VM’ dV <0,
where E*%a] is given by E***[a] := F[a] + 257 [, dp‘ dv.
Proof. 1t is clear that
K

d da oF dcz oF dpz
L pla)=0F[a) |2 = or
g Flal =oFlal [dt} ; /Q Ser dt © / op di ©
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:_Z/ Ly. JdV+Z/ giiil
:_Z aﬂmn JdS+Z/Vch JdV+Z/ f;f:fﬁ‘
:—Z/micl sl av e Z/ﬁfii
:_Z/mlc,|wl| av + Z/ 2562?

By (3.49), for vy =~ — ‘ff l‘f‘; we get

OF dpi 1, pu / d’p dp P / ‘
Z /g2 opn dt VT T 6e Q(dtz 71) WV=""% a ), av,

2

since from |p|? = 4/%¢? we have p - %p =0. a0

3.3.2. Analysis of stationary models. In order to demonstrate the new model
of mathematical posedness, we will investigate the analysis of the stationary LDPNP
model. In this section, we mainly focus on the existence of stationary LDPNP equa-
tions in a bounded domain €. For simplicity, we assume that K =2, g1 =1, go = —1,
B=1,D;=1,e=1, p,=1, m, =16, and € = &2, where € > 0 is a small constant. We
also denote ¢ = ¢(a), H = H.(,). Then the stationary LDPNP system can be stated
as follows:

(3.50) —e?Ap=c; —cy inf,
(3.51) V- (Var+aV(g—H)=0 inQ,
(3.52) V- (Vea—coV(p—H))=0 inQ,
(3.53) P+Ve=0 inQ,
(3.54) —e?AH=V-p inQ,

(3.55) d=do on 01,
(3.56) H=0 on 09,
(3.57) ci=c on 0%},
(3.58) pi=p? on 01,
(3.59) (Ver+e1V(p—H)) -n=0 on 99,
(3.60) (Vez —coV(p— H)) -n=0 on ).

Based on the mass conservation law, we may assume that

(3.61) /cldz:a>0, /czdx:5>0.
Q Q
THEOREM 3.7 (existence). Let Q be a planar bounded, radially symmetric do-

main. We assume that ¢o = constant on each connected component of Q2. We further
assume that 7 is a radially symmetric function, v € C1(Q), and My < v < +oo with
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Mye? > 1. Then there exist boundary data c?, p? such that the system (3.50)(3.54)
with boundary conditions (3.55)~(3.60) and constraint (3.61) has a classical solution
(¢, H,c1,c2,p1,p2), namely, ¢, H,c1,ca € C*(Q) and p1,ps € C1(Q).

We will prove Theorem 3.7 by reducing the stationary LDPNP system to an
elliptic equation with Dirichlet boundary condition. Let us outline its proof.
We note that the equilibrium solution of LDPNP is
e~ (6—H) ; e~ H
o (h—FH) g =057
Joe = Hdy 2 Joe? Hdx
which satisfies (3.51)—(3.52), the boundary conditions (3.59)—(3.60), and the con-

straint (3.61). Thus, the system (3.50)—(3.54) with boundary conditions (3.55)—(3.60)
and the constraint (3.61) can be reduced to the following system:

(3.62) =«

o—(¢—H) o4 H .
7€2A¢:a‘fﬂ e—(¢—H)dy 7ﬂf9 e?—Hdg mn Q’
~e2AH=V-p in Q,
¢=¢g, H=0 on 0f2.
Since v > M; > 0, from the second equation of (3.63) we have
1
(3.64) p=—-Vo.
Y
Inserting it into the third equation of (3.63), one sees
1
(3.65) E2AH=V" (WV(b) .
Let w=¢ — H. Then by (3.65) we have
1 1
(3.66) V- ((52 - ) VH - w) =0.
v 2

If we want to find radial solutions ¢, H, then there exists a radially symmetric function
f=f(r) with r = |z| so that

1 1
(52 — ) VH = ;Vu—I—VLf,

v
where V+ = (0y, —0;). Since ve2 > M;£2? > 1, we obtain that
1 v 1
3.67 H= .
(3.67) v 752—1vu+752—1v !
As a result,

_ 1 B 1 _ 1
(3.68) AH=V <7§2— 1Vu> +V <752— 1V f> =V <752_1Vu>,

since

v-( ! vﬁ):v(%r]_ )-v{f+ L v.vif

ve2 —1 1 ve2 —1
/
_ v / 1 T2y (T2 1 v Rval
_(7521) o7 (2 2) (2 -0) ¢ v vy
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Hence, the system (3.63) becomes

27 . [ o et :
(369) eV (752 1vu> fne*"d:c ﬁfsz etdw in &,
U= ¢o on Of.

Note that if we find a radial solution u of (3.69), then H can be recovered by

0= [ 6 v+ (= vu) | wan

¢ =u+ H, and p is given by (3.64), where G is the Green’s function of —A with zero
Dirichlet boundary condition.
The proof of Theorem 3.7 can be derived directly from the following result.

THEOREM 3.8. Under the assumptions of Theorem 3.7, problem (3.69) has a
unique solution u € C*(Q), which is radially symmetric.

Proof. Let 1 be the unique solution of the following equation:

2
(3.70) V. <7; vn> —0 inQ, =¢o ond.
We replace u by v+ 7. Then (3.69) becomes
—(utn) outn
(3.71) e v (762 1Vu) [ peICE=n BI =l UR L2
u=0 on 0f).

Let us point out that (3.71) is the Euler—Lagrange equation of the energy

2
E(u)= = WU‘ dz +alog ez ) 4 Blog e"dz ) .
2 752 0 o

We first show that E is a coercive functional bounded from below. By the con-
vexity of the exponential and by the Poincaré inequality,

2
E(u) = %/ %;6 |Vu|?dz + alog </Q e(“+”)da?> + Blog </Q e“*”dz)

>7 2do —
/762_1\Vu| dx a/Q(u—i—n)dx—i—ﬁ/Q(u—&—n)dx
2
€
> S [ [Vultde — Clullaey €2 S IVul ) - ClVulze ~ €,

where C' > 0 is a constant. Thus, E(u) > —553C? — C, and E(u) — 400 as ||[ul| g1 —
+00. We now define

(3.72) ce= inf E(u).
Let {u,} C HZ(2) be a sequence so that E(u,) — c. as n — +oo. It is clear that wu,
is bounded in H{(Q2). Up to a subsequence, we may assume that as n — +oo,

u, —u  weakly in Hj(Q),
u, —u strongly in L?(Q),

Uy, — U a.e. S
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By Fatou’s lemma,

ce <E(u) < nkr—&r-loo E(up) =ce.
Thus, E(u) = ¢ and u is a minimizer. By the Ekeland variational principle, E’(u) =0,
namely, v is a solution of (3.71).
Next we show that the solution of (3.71) is unique. To do this, we only need to
show that E is a strictly convex functional on H{ ().
Let uy,uz € HE(Q) so that u; # ua. Then Vu; # Vuy. As a result, for each
A€ (0,1) we have

g2 ve?
— V(A 1-A 2d
> [ VO + (= )P
22 €2 22 ~e?
A— | ——— 24 1—N)— 2dx.
< 2/9752_1|Vu1\ x4+ ( )2/9762_1|Vu2| x

Otherwise, by the Holder inequality we have

log </ e(/\u1+(1)\)u2+77)dx) =log (/ e(/\(u1+n)+(1/\)(u2+n))dx>
Q Q
A 1-X\
<10g (/ 6_(“1+")da:> </ e_(”2+”)dx)
< A .

= Mlog </ e(“1+”)dx) +(1-X)log </ e(“2+")d:r>,
Q Q
and similarly,

log </ e>‘“1+(1)‘)“2+"d:c) < \log (/ e“1+"dx> +(1—X\)log </ e“2+"dx) .
Q Q Q

Thus, we get that
E()\Ul + (]. — )\)Ug) < )\E(ul) + (]. — )\)E('UQ)

So, E is a strictly convex functional on HE(Q).
Hence, u + n is a unique solution of (3.69). ad

4. Conclusion. In this paper, an energetic variational method is applied to de-
rive a set of ion transport and electrostatic models of the general electrolyte solution
(not limited to ion channel) with a locally and mathematically strictly determined
dielectric permittivity of the dipolar solvent under certain assumptions. The main
feature of the LDPNP model is that the system consistently determines the dipole
moment distribution and hence the local permittivity of the ionic aqueous solution,
whereas in traditional PNP simulations this information is lacking and a constant
assumption is usually made for the permittivity. Furthermore, in order to demon-
strate the reasonableness of our model, we investigate the energy dissipation law of
the derived LDPNP model, and the existence and uniqueness of the solution for the
stationary LDPNP model. A quantitative comparison between the dipole effects and
other effects has not been conducted in the current work due to the lack of model sim-
ulations; this, as well as tackling the numerical challenges in solving the complicated
model equations, is our next goal.
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