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ABSTRACT: So far, the existing Poisson−Boltzmann (PB)
solvers that accurately take into account the interface jump
conditions need a pregenerated body-fitted mesh (molecular
surface mesh). However, qualified biomolecular surface meshing
and its implementation into numerical methods remains a
challenging and laborious issue, which practically hinders the
progress of further developments and applications of a bunch of
numerical methods in this field. In addition, even with a molecular
surface mesh, it is only a low-order approximation of the original
curved surface. In this article, an interface-penalty finite element
method (IPFEM), which is a typical unfitted finite element
method, is proposed to solve the Poisson−Boltzmann equation
(PBE) without requiring the user to generate a molecular surface
mesh. The Gaussian molecular surface is used to represent the molecular surface and can be automatically resolved with a high-order
approximation within our method. Theoretical convergence rates of the IPFEM for the linear PB equation have been provided and
are well validated on a benchmark problem with an analytical solution (we also noticed from numerical examples that the IPFEM has
similar convergence rates for the nonlinear PBE). Numerical results on a set of different-sized biomolecules demonstrate that the
IPFEM is numerically stable and accurate in the calculation of biomolecular electrostatic solvation energy.

1. INTRODUCTION
The Poisson−Boltzmann equation (PBE) serves as a typical and
effective implicit solvent model in the fields of biophysics and
physical chemistry. Achieving improved efficiency, robustness,
and ease of use of the PB solver has always been arousing many
research interests (see our previous review1). A large number of
methods have been developed and applied to solve the PBE.2−16

DelPhi,2 UHBD,3 APBS,4 GRASP,5 AFMPB,6−8 the PBEQ9

module in CHARMM,10 TABIPB,11 MIBPB,12 and SDPBS13

are some examples of the successful PB solvers for computing
biomolecular electrostatics. Due to the strong singularity and
nonlinearity caused by its singular distribution, it is hard to
obtain a numerical solution of the PBE. Many early works, like
DelPhi,2 UHBD,3 PBEQ,9 and APBS,4 dealt with this difficulty
by assigning singular charges to surrounding mesh points or
other methods. These methods do not treat several essential
features of the PBE, including the exact position of themolecular
surface and the continuity condition of electric displacement on
the molecular surface, which results in low accuracy of the
surface potential. Although these errors have a relatively small
effect on the calculation of electrostatic solvation energies and
therefore these software are still widely used, the accurate
surface potential distributions are still of interest to many
researchers.1 Based on a matched interface and boundary (MIB)
method,12 Zhou et al. successfully implemented the analytical

molecular surface in their interface method for solving the PBE.
There also exist a number of decomposition schemes for the
PBE, like in refs17,18 for finite difference methods and in
refs14,19,20 for finite element methods.
The finite element method (FEM), as detailed in the

literature,19,21−23 has effectively addressed some challenging
numerical issues associated with the PBE, such as accurate
treatments of the irregular geometry and interface conditions,
charge singularity, and fast algorithms. Chern,18 Xie,14 and
Chen19 proposed several fundamental technical results, which
made it possible to develop fast finite element algorithms. Holst
et al.19 proposed a number of fundamental technical results,
including a priori pointwise bounds on solutions to the
continuous and finite element discretized solutions to the
PBE. Xie et al.14,24 proposed a solution decomposition and
minimization scheme, together with an analysis on solution
existence and uniqueness. The FEM for PB advanced by Cortis
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and Friesner25 makes use of a similar Galerkin formulation.
Shestakov et al.26 developed a nonlinear Poisson−Boltzmann
solver based on the FEM, using Newton−Krylov iterations
coupled with pseudo-transient continuation. Lu’s group27

developed a finite element solution for the PBE with a two-
dimensional periodicity for membrane channel proteins, with
different numerical treatments of the singular charge distribu-
tions in the channel protein.
To the best of our knowledge, all existing PB solvers

(especially for FEMs) that accurately treat the interface jump
conditions need a pregenerated body-fitted mesh, i.e., a
molecular surface mesh. So far, for large biomolecular systems
(e.g., see the review1), the creation of a mesh continues to pose a
challenge for the implementation of FEM, primarily due to the
highly irregular shapes of biomolecular systems. This task
becomes more complex as it involves recognizing the irregular
molecular surface and accurately describing it to resolve the
molecular structures in greater detail. Furthermore, the
molecular surface mesh is only a low-order approximation of
the original curved surface. This fact is the main hurdle for the
progress of implementation and application of a bunch of
numerical methods relying on molecular surface meshing in this
area. Triangular and tetrahedral meshing are most commonly
adopted for generating an unstructured mesh.28 Several
programs have been developed to produce surface triangular
meshes for biomolecules, but there are very few software tools
available for directly generating tetrahedral meshes for
biomolecules. A common approach for obtaining tetrahedral
meshes of biomolecules involves first creating surface triangular
meshes and then generating tetrahedral volume meshes based
on these surface meshes. A widely used package, TetGen,29 can
generate a tetrahedral mesh based on a surface triangular mesh.
Our group has established a toolchain to create a qualified

mesh for finite element/boundary element modeling of large
molecular systems. This toolchain consists of the following key
components: surface meshing, quality improvement, volume
mesh generation, and membrane-protein mesh construction.
First, a manifold triangular mesh of the Gaussian surface is
generated using our program TMSmesh.30−32 In the second
step, the software package SMOPT is used33 to improve the
qualities of the surface triangular mesh and at the same time
preserve the manifoldness. Finally, the package TetGen is used
to generate a tetrahedral volumemesh, which is then used for 3D
finite element simulations. More details can be found in the
literature.34,35 With this toolchain, we have successfully
generated meshes for many protein systems and performed
finite element simulations on them. However, efficiently
generating high-quality biomolecular meshes via the entire
toolchain involves a laborious process with a significant level of
manual intervention.33,36,37

Thus, we aim to find a new strategy that does not rely on high-
qualitymolecular surfacemeshing while ensuring the accuracy of
the numerical results. From the analysis of the PBE (see, for
example, ref 1), the electrostatic potential ϕ can be split into two
components: ϕ = G + ϕr. G collects all singularities from the
Delta distributions with available analytical formula, andϕr is the
solution of a typical elliptic interface problem. Over the past
decades, various unfittedmeshmethods, in which the interface is
allowed to cross mesh elements, have been proposed for solving
elliptic interface problems. Examples of such methods are the
multiscale finite element methods,38 the immersed interface
method,39 the immersed finite element methods,40 the extended
finite element methods,41 and the penalty finite element

methods.42 Unfitted mesh methods involving penalty terms
can be traced back to the penalty finite element methods
proposed by Babusǩa.43 Hansbo and Hansbo44 presented an
unfitted finite element method, in which through the
introduction of a geometry-dependent average of flux at the
interface, they established stable discretization and proved that
the linear finite element scheme is nearly optimal in two
dimensions. This approach has motivated many follow-up
works, e.g., the cut finite element methods,45 the unfitted finite
element methods,46 and the unfitted discontinuous Galerkin
methods.47 Wu and Xiao42 proposed an hp-unfitted discontin-
uous Galerkin method for solving the linear elliptic interface
problem, and Liu et al.48 proved that, for the general interface
problem in H1, H(curl), and H(div), the method converges in
broken H1 norm at an optimal rate with respect to h and at a
suboptimal rate with respect to p by a factor of p.
In this paper, we propose a robust parallel interface-penalty

finite element method (IPFEM) for the PBE to calculate
electrostatics in biomolecular systems without requiring
molecular mesh generation. The optimal L2 error estimate and
energy norm error estimate of our IPFEM are obtained for the
linear PBE. Numerical examples show optimal convergence of
the proposed finite element method for a piecewise smooth
solution. Ourmethod also exhibits good performance for solving
the PBE in molecular cases.
The contributions are listed as follows.
1. Our method only needs a simple tetrahedral mesh

covering the whole computational domain without
generating a molecular surface mesh.

2. The Gaussian molecular surface is approximated by the
piecewise polynomial function, and we use high-order
numerical quadratures of the interface to accurately treat
the interface jump conditions.

The rest of the article is organized as follows. In Section 2, we
introduce our methods, including the PB model and its
regularization form in Section 2.1 and the discrete format of
IPFEM in Section 2.2. The validation tests are provided to show
the optimal convergence rates of our method in Section 3, as
well as protein tests and their applications to solvation energy
calculations. In Section 4 we conclude our paper. The job shell
script of our method is presented in the Data Availability part.

2. METHODS
2.1. Mathematical Model. In this work, the PBE is used to

study electrostatic interactions in biomolecular systems. LetΩ ∈
3 denote the calculation domain with a convex and Lipschitz-

continuous boundary ∂Ω and Ω = Ωm ∪ Ωs, respectively.
The molecule for which we want to calculate the electrostatic

potential is located in region Ωm with a relative permittivity of
εm. The region Ωs contains Nc different species of ions with a
relative permittivity of εs. Ωm and Ωs are separated by the
interface (molecule surface) Γ. Figure 1 shows a 2D illustration
of the computational domain of the PB model.
The PBE model14 in SI (Systeḱe International) units is

defined as
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where ϕ(x)⃗ is the electric potential in volts, cj is the bulk density
of mobile ion species j with charge number zjc. Nm denotes the
number of fixed charges within Ωm, and zi and xi⃗, i = 1, 2, ..., Nm
denote the charge number and position of fixed charges within
Ωm, respectively. The values and units of physical parameters ε0,
ec, kB, and T are listed in Table 1.

To simplify the presentation, we only consider a symmetric
1:1 salt in this paper, which means that Nc = 2, Z1

c = 1, Z2
c = −1,

and c1 = c2 = cb. So the PBE model (eq 1) can be simplified as
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where the dielectric coefficient ε is defined as ε = εm in Ωm and ε
= εs in Ωs. κ̅ is the modified Debye−Hückel parameter, κ̅ = 0 in
themolecule regionΩm, κ̅ = s 0 in the solution regionΩs. κ is

the Debye−Hückel parameter with κ2 = c2 b
e

k T
c

B s

2

0
.

In fact, the PBE model (eq 2) is formally equivalent to a
coupling of two equations for the electrostatic potential in
different regions Ωm and Ωs through the molecule surface
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These two equations are coupled together through the
boundary conditions on the interface (molecule surface) Γ
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where the jump [v] of v on Γ is defined as [v] = v|Ω dm
− v|Ω ds

and nΓ

is the unit normal vector on Γ, pointing from Ωm to Ωs.
We choose a widely used boundary condition ϕ|∂Ω = ϕD on

∂Ω, which is determined by a known analytical solution to one of
the simplifications of the linear PBE49
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Taking the first term in the series expansion sinh x = x +

+ + ···! !
x x
3 5

3 5

as an approximation of sinh x, we can get the linear
Poisson−Boltzmann equation (LPBE)
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For computational convenience, the dimensionless equation
is introduced. Defining =

k T
1

B
as the reciprocal of Boltzmann

energy, the dimensionless PBE and boundary condition can be
obtained for u(x)⃗ = ecβϕ(x)⃗
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Due to the presence of singular terms δ(x)⃗ in the PBE, its
solution has singularities. In this study, a solution (potential)
decomposition of the PBE is introduced to remove the potential
singular part
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Substituting this decomposition (eq 6) into the dimensionless
PBE (eq 5), we then obtain the regularized Poisson−Boltzmann
equation (RPBE)
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where α̅ = 0 in Ωm and α̅ = α in Ωs.
Similarly, the regularized LPBE is as follows
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Figure 1. Illustration of computational domain Ω.

Table 1. Parameters of the PBE Model in SI Units

parameter name value unit (abbr.)

ε0 vacuum permittivity 8.854187817 × 10−12 F/m
ec elementary charge 1.602176565 × 10−19 C
kB Boltzmann constant 1.380648813 × 10−23 J/K
T absolute temperature 298.15 K
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2.2. IPFEM for the PBE. In this subsection, we present the
algorithm for solving the PBE via the IPFEM. The IPFEM
belongs to the class of unfitted finite element methods in which
the finite element mesh (in our case a tetrahedral mesh) is not
required to be fitted with the interface (in our case the molecular
surface). In unfitted finite element methods, an element that
intersects with the interface is called an interface element or cut
element. In the case of a molecular surface, an interface element
is divided into two parts by themolecular surface, one inΩm (the
molecular part) and the other one in Ωs (the solvent part). The
basic idea of the IPFEM consists of using two sets of degrees of
freedom in each interface element to define two finite element
functions, which approximate the solution in the solvent part
and the molecular part, and handling the interface conditions on
the molecular surface by penalizing them in the finite element
discretization. A formal and more detailed description of the
IPFEM will be given in Section 2.2.2.
The input of our method is the PQR file, which includes

coordinates of centers and radii of atoms. We first represent the
molecular surface by using the Gaussian molecular surface 9 and
project it into finite element space to present the level set
function. After that we construct the IPFEM for the PBE and
implement it using the open-source finite element toolbox
Parallel Hierarchical Grid (PHG).50 We present a parallel
IPFEM of the Poisson−Boltzmann (IPFEMPB) solver. Figure 2
illustrates the flowchart of IPFEMPB.
2.2.1. Unfitted Mesh and Interface Resolution. There are

various kinds of definitions for a molecular surface,51 including
the van der Waals surface (VDWs), the solvent-accessible
surface (SAS),52 the solvent-excluded surface (SES),53 etc.
Different from these definitions, the Gaussian surface54 is

defined as a level set from the Gaussian density maps as
{ = }x x C, ( )3 where the definition of the Gaussian
density map is as follows

=
=

x e( )
i

N
d x x r

1

( )
m

i i
2 2

(9)

here, xi⃗ and ri are the coordinate of center and the radius of the i-
th atom, respectively. The parameter d is positive and controls
the decay rate of the kernel functions. C is the isovalue
parameter, and it controls the volume enclosed by the Gaussian
molecular surface. These two parameters, d andC, can be chosen
properly to make the Gaussian molecular surface approximate
the SES, SAS, and VDW surfaces well.55 The Gaussian surface
and other mentioned surface types are all widely used in the
community. Compared with the other definitions, the Gaussian
surface has the following advantages.

• The Gaussian surface is smooth.

• TheGaussian surface provides a realistic representation of
the electron density of a molecule as compared to other
molecular surface definitions.54

• The Gaussian surface is well established30,56−58 and has a
wide range of applications in computational biology, such
as docking problems,59 molecular shape comparisons,60

calculating SAS areas,61 and the generalized Born
models.62

• The Gaussian surface is currently suited to be handled
within our finite element toolbox PHG.

In this paper, the Gaussian molecular surface is chosen to
represent the molecular surface. We first read the PQR file to get
the coordinates of centers and the radii of atoms and calculate
the Gaussian density map by (eq 9). Meanwhile, a uniform
tetrahedral mesh is constructed based on the size of the
computation domain. Mesh elements near the Gaussian surface
are locally refined to limit the relative curvature of the surface
with respect to the size of the neighboring elements. The
literature63 provided a method to calculate the curvature of
implicit surfaces defined by the level set function ω(x, y, z). The
max curvature of the surface can be calculated by

= + | |H H Kmax
2

(10)

where = +
| |H 2

uu vv

n
represents the mean curvature and

=
| |K

uu vv uv

n

2

2 represents the Gaussian curvature, u and v are

arbitrary vectors defining the tangent plane to the surface and
|ωn|2 = ωx

2 + ωy
2 + ωx

2.
Then we can construct the level set function L(x)⃗ = Πk(C −

φ(x ⃗)), where Πk denotes the kth-order finite element
interpolation operator.64 Clearly, x ⃗ ∈ Ωm, L(x)⃗ < 0, x ⃗ ∈ Ωs,
L(x)⃗ > 0 and x ⃗ ∈ Γ, L(x)⃗ = 0. Algorithm 1 illustrates the unfitted
mesh generation process with interface resolving.
Figures 3 and 4 illustrate the final computational mesh, and

Figure 5 illustrates a cut plane of the body-fitted mesh. Notice
that the surface presented from the body-fitted mesh is a linear
approximation of the Gaussian molecular surface while our
method can choose a high-order finite element interpolation to
make the interpolated molecular surface approximate the
Gaussian molecular surface well.

Figure 2. Pipeline of our algorithm.
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2.2.2. Interface-Penalty Finite Element Method. This
subsection introduces the IPFEM for the PBE. Let { }h be a
family of conforming and shape regular partitions of the domain
Ω into closed tetrahedra. For any T h we define, hT
≔diam(T), h hmaxT Th

denote the size of element T and
mesh h, respectively. h represents the partition of the interface
(molecular surface) Γ with

= { = | | > }e e T e T: , 0,h h

where |e| is the area of e. For convenience, we denote Ω1 = Ωm
andΩ2 =Ωs. Figure 6 illustrates h with the red part. LetT e

h
be one of the element(s) containing e and

=T T j, 1, 2j
e e

j

so we have

=e T T T j, , 1, 2e e
j
e

j1 2

In addition, we define the set of boundary surfaces.

= { = | | > }e e T e T: , 0,D h

We introduce the energy space as

{ | = |

= }
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T i
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i i i T i

h

1 2
i i

(11)

and the continuous finite element spaceUh
p ≔ {vh ∈ H1(Ω) : vh|T

∈ }T T( ),p h , where T( )p denotes the set of all

polynomials of degrees less than or equal to p for any T .
Our interface-penalty finite element approximation space Vh

p is
defined as the space of piecewise continuous finite element
functions

{ | = }V v v U i: , 1, 2h
p

h h h
p

i (12)

That is, for any vh ∈ Vh
p, the restriction of vh onto Ωi is a

continuous piecewise polynomial for i = 1, 2. Defining the

average {v} of v on the interface Γ as{ } | + |
v

v v

2
1 2 , testing the

RPBE (eq 7) by any v ∈ V, using Green’s formula and the
identity [uv] = [u]{v} + [v]{u}, we obtain
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and { }f v g v( )h N
0 . We refer to the symmetric interface

penalty finite element method in the literature42 and define the
bilinear form ah(·,·) on V × V

+ +a u v a u v S u v J u v J u v( , ) ( , ) ( , ) ( , ) ( , )h h
0

0 1 (14)

where

Figure 3. Illustration of interface resolving.

Figure 4. Cut plane of the computational mesh of IPFEM.

Figure 5. Cut plane of the body-fitted mesh.

Figure 6. Illustration of interface elements h (the red part).
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and the linear form f h(·) on V
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In (eq 14), S(u, v) is to maintain the symmetry of the format,
that is ah(u, v) = ah(v, u), J0(u, v) and J1(u, v) are the interface
penalty terms in which γ0 and γ1 are nonnegative numbers to be
specified later. The tricks on dealing with the discontinuities are
from the interior penalty discontinuous or continuous Galerkin
methods.65,66 Sf(v), J0f (v), and J1f (v) correspond to S(u, v), J0(u,
v), and J1(u, v), respectively.
Obviously, solution u to the problem (eq 7) satisfies the

following equation

+ =a u v c u v f v v V( , ) 2 sinh( ) ( )h b h
2 (16)

The interface-penalty finite element approximation to RPBE
(eq 7) reads as follows: find uh ∈ Vh

p, such that

+ =a u v c u v f v v V( , ) 2 sinh( ) ( )h h h b h h h h h h
p

2

(17)

Similarly, the interface-penalty finite element approximation
to LPBE (eq 8) reads as follows: find uh ∈ Vh

p, such that

+ =a u v c u v f v v V( , ) 2 ( )h h h b h h h h h h
p

2 (18)

Notice that in (eqs 14 and 15), we need to calculate both
volume integrals in the subdomains and surface integrals on
their common boundary (patch of Gaussian molecular surface).
Our group67 proposed a general-purpose, robust, and high-

order numerical algorithm to handle these tasks, with the source
code freely available in the recent distributions of PHG which
can be downloaded at http://lsec.cc.ac.cn/phg/index_en.htm
(see doc/quad-XFEM.pdf in the source code of PHG for related
documentations).
We define the “energy” norm |||v|||1,h on the space V
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For the linear PBE, our method has the following L2 error and
“energy” error estimates.
Theorem 1: let s≥ 2 be an integer and let μ =min{p + 1,s}. Let

u and uh be the solutions of eqs 8 and 18, respectively. Then
there exists constants α0, h0, independent of h, p, and penalty
parameters such that for γ1 > 0 and γ0 ≥ α0/γ1, the following
error estimates hold

||| |||
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Theorem 2: under the conditions of Theorem 1, holds the
following estimate
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The proofs of the above theoretical results can be obtained
with similar analysis techniques as in the literature.48 Note that
γ0 and γ1 cannot take minor values in order to ensure the
convergence and accuracy of the method according to
Theorems 1 and 2, but we also found in numerical experiments
that too large values for them can lead to difficulty or even failure
in solving PBE. We usually choose γ0 = 10 and γ1 = 1 because
they perform well in the majority of cases.

2.3. Nonlinear Iteration. A backtracking line search
Newton-like method68 is adopted to solve the above nonlinear
eq 17. Let uj be the approximation solution of u at the j-th
Newton iteration, which could be expressed with basis functions
of the finite element space Vh

p: {Φi}i=1n . Referring to eq 17, we
define a nonlinear vector function F(x), whose t-th component

is given as F(u)t = ah(u, Φt) + usinh( )
m

Φt − f h(Φt). The

Jacobian matrix of F(u) is denoted with F′(u), and the t-th, k-th
element of which is described as (F′(u))t,k = ah(Φk, Φt) +

ucosh( )
m

ΦkΦt, t, k = 1, 2, ..., n. Moreover, the merit function

of F(u) is the sum of squares, which is defined byR(u) = ∥F(u)∥2
2

= ∑i=1
N (F(u)i)2. The framework of the backtracking line search

Newton-like method is stated in Algorithm 2.
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3. RESULTS AND DISCUSSION
In this section, we carry out a suite of numerical examples to test
the accuracy and robustness of our IPFEM and compare it with
the boundary element method (BEM) and the standard finite
element method (FEM). For simplicity, we set εm = 2.0, εs =
80.0, and T = 298.15 K, and unless otherwise specified, let cb =
0.1 M, γ0 = 10.0, and γ1 = 1.0.
Our method is implemented using the open-source finite

element toolbox Parallel Hierarchical Grid (PHG),50 in which
the integrals in the cut elements are computed using the
corresponding numerical quadrature functions provided in
PHG.48 All numerical experiments were done on the high-
performance computers of State Key Laboratory of Scientific
and Engineering Computing, Chinese Academy of Sciences,
which consist of dual Intel Gold 6140 CPU nodes (2 × 18 cores,
2.30 GHz) and a 100 Gbps EDR Infiniband network.

3.1. Validation Tests. A simple test (a sphere in a cube) is
carried out in this subsection to check the accuracy of IPFEM.
We assume that the solute region is an atom of radius R in the
units of Å, and the only fixed charge q is located at the center of
the sphere. Taking the center of the sphere as the coordinate
origin, the LPBE (eq 8) has the following analytical solution
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(19)

where = + +r x y z2 2 2 represents the distance to the center
of the sphere.
Here, we select the calculation region as a cube Ω = [−2 Å, 2

Å]3 and the solute region as a single atom sphere {x2 + y2 + z2 ≤
1}. Ω is uniformly divided into several tetrahedra as the initial
mesh for the calculation (see Figure 7).
We solve the example problem on five grids with elements that

are bisected three times successively. Figure 8 shows the errors

and convergence orders of IPFEM for the LPBE, where p is a
parameter in Vh

p andN is the number of degrees of freedom. The
L2 error and H1 error are defined as

= | |u u u uh L h
2

1/2
2

i
k
jjj y

{
zzz

= +u u u u u u( )h H h L h L1 2 2

where u and uh represent the analytical solution and the
numerical solution, respectively.
We can find that ourmethod has L2 andH1 norm convergence

rates, which validates the theoretical results.
Similarly, we tested the convergence of IPFEM for the

nonlinear RPBE (eq 7) in the same way. A test analytical
solution for the electrostatic potential is defined as follows

=
+ +

+ +
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The source term and the corresponding boundary conditions
can be calculated accordingly.
The results are displayed in Figure 9, which shows that the

relative errors decrease as the time of refinement increases,
verifying the accuracy and applicability of IPFEM to the three-
dimensional nonlinear Poisson−Boltzmann equation (NPBE).

3.2. Protein Tests. In this subsection, to further validate the
effectiveness of our method, we apply IPFEM to seven proteins
with PDB names/IDs ADP, 1V4Z, 1A36, 3LOD, 1RMP, 1BL8,
and AChE and compare our results with the BEM simulations
for LPBE and the standard FEM simulations for nonlinear
RPBE. High-quality molecular surface meshes are a prerequisite
for using BEM and FEM in the implicit solvent model. However,
the surface mesh generated by TMSmesh 2.0 can not be directly
used for BEM simulation or generation of body-fitted volume
meshes due to singular triangles with tiny angles or very short
edges. We use our group’s SMOPT software to improve the
quality of these meshes. The improved mesh is used in the
BEM6−8 simulations and the generation of corresponding
surface-conforming volume meshes that are required in the
FEM69 simulations. The BEM software used is a publicly
available PB solver, AFMPB. In FEM simulations, the
corresponding volume meshes are generated by TetGen.
The PDB files of these proteins were downloaded from the

PDB website (https://www.rcsb.org/) and then converted to
PQR files by the tool PDB2PQR70 with AMBER force field.
These protein molecules have 39, 266, 1402, 2246, 3478, 5892,
and 8280 atoms with net charges −3ec, −1ec, −42ec, −5ec, −8ec,
+8ec, and −9ec, respectively. Figure 10 shows their molecular
structures.
For protein tests, we typically use the solvation energy to

validate the accuracy of computational results. In the implicit
solvent continuum dielectric approach, the electrostatic
solvation energy Esol is commonly estimated in the units of
kilocalories per mole (kcal/mol) by

=E
N k T

e
x u u x x

4184 2
( )( )( ) dA B

c
fsol sol ref

(21)

where usol and uref denote the electrostatic potential functions in
the solvent and reference states, respectively. ρf denotes the fixed
charge density function. By using the decomposition (eq 6)
technique in our method, the electrostatic solvation energy is
equivalently calculated asFigure 7. Calculation area for validation tests.
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Figure 8. Errors and convergence orders of IPFEM for the LPBE (left: p = 1, right: p = 2).

Figure 9. Errors and convergence orders of IPFEM for the RPBE (left: p = 1, right: p = 2).

Figure 10. Molecular structure (left to right, up to down): ADP, 1V4Z, 1A36, 3LOD, 1RMP, 1BL8, and AChE.
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First we compare the solvation energies obtained using the
IPFEM method for a set of molecules at different ionic
concentrations (0.05, 0.1, and 0.15 M) with the BEM solver
AFMPB. Obviously, Table 2 shows that IPFEM can produce
converged results without a body-fitted mesh, and the calculated
solvation energies are close to the results obtained with AFMPB,
validating the accuracy of our method for solving LPBE.
We also test the performance of IPFEM for RBPE (eq 7), and

Figure 11 reports the convergence process of our Newton
iterative Algorithm 2 for solving the RPBE (eq 17) for

biomolecules. From this figure, it can be seen that our method
stably converges within 30 iterations for general cases. Figure 12,
produced with ParaView (https://www.paraview.org/), shows
the computed nonlinear PB electrostatic potentials mapped on
the molecular surface.
To validate the accuracy of our method for solving nonlinear

RPBE, we compare the solvation energies obtained using the
IPFEM method for a set of molecules at different ionic
concentrations (0.05, 0.1, and 0.15 M) with the results of
standard FEM. Table 3 shows the results.

3.3. Performance. The performance of our method is
discussed in this subsection. First, we tested the parallel
performance of our IPFEM solver using proteins ADP and

Table 2. Solvation Energies Obtained with IPFEM and AFMPB for the Linear PBE (Unit: kcal/mol)

cb (M) protein number of atoms electrical charge Esol
AFMPB Esol

IPFEM relative difference (%)

0.05 ADP 39 −3ec −253.80 −252.25 0.61
1V4Z 266 −1ec −252.52 −251.40 0.45
1A36 1402 −42ec −8049.01 −8067.72 0.23
3LOD 2246 −5ec −982.71 −988.67 0.61
1RMP 3478 −8ec −1775.13 −1803.71 1.61
1BL8 5892 +8ec −2450.38 −2448.11 0.09
AChE 8280 −9ec −4046.86 −4059.55 0.32

0.10 ADP 39 −3ec −254.16 −252.61 0.44
1V4Z 266 −1ec −253.71 −251.63 0.83
1A36 1402 −42ec −8066.19 −8078.28 0.15
3LOD 2246 −5ec −984.16 −990.09 0.60
1RMP 3478 −8ec −1776.69 −1805.26 1.61
1BL8 5892 +8ec −2454.90 −2449.11 0.23
AChE 8280 −9ec −4050.09 −4060.05 0.25

0.15 ADP 39 −3ec −254.41 −252.88 0.60
1V4Z 266 −1ec −253.92 −251.63 0.83
1A36 1402 −42ec −8075.43 −8081.75 0.08
3LOD 2246 −5ec −985.18 −991.15 0.61
1RMP 3478 −8ec −1777.81 −1806.38 1.60
1BL8 5892 +8ec −2458.44 −2449.88 0.34
AChE 8280 −9ec −4052.46 −4060.38 0.20

Figure 11. Iteration errors R(u) of Algorithm 2.
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1A36 as examples. The initial tetrahedral mesh contained
163840 elements, and the computational mesh obtained after
Algorithm 1 contained 352086 elements for protein ADP and
5698923 elements for protein 1A36. Table 4 illustrates the total
time (refine mesh according to Algorithm 1 and solve LPBE)
and the parallel efficiency. For protein ADP, the parallel
efficiency can be maintained at around 70% at 256 processes.
After that the parallel efficiency drops significantly; since the size
of the problem is not large enough, the reduction in
computation time by increasing the parallel size cannot cover
the increase in communication overheads. For protein 1A36, the
parallel efficiency of the algorithm can still be maintained above

Figure 12. Electrostatic potential ϕ (unit: kcal/mole) of molecules (left to right, up to down): ADP, 1V4Z, 1A36, 3LOD, 1RMP, 1BL8, and AChE.

Table 3. Solvation Energies Obtained with IPFEM and the Standard FEM for the Nonlinear PBE (Unit: kcal/mol)

cb (M) protein number of atoms electrical charge Esol
FEM Esol

IPFEM relative difference (%)

0.05 ADP 39 −3ec −255.82 −254.64 0.46
1V4Z 266 −1ec −253.39 −253.42 0.01
1A36 1402 −42ec −8045.87 −8099.56 0.66
3LOD 2246 −5ec −1006.43 −992.37 1.39
1RMP 3478 −8ec −1789.80 −1810.39 1.15
1BL8 5892 +8ec −2452.94 −2455.59 0.11
AChE 8280 −9ec −3953.76 −3928.74 0.63

0.10 ADP 39 −3ec −255.99 −255.06 0.36
1V4Z 266 −1ec −253.45 −253.26 0.07
1A36 1402 −42ec −8047.97 −8107.21 0.73
3LOD 2246 −5ec −1006.64 −994.06 1.25
1RMP 3478 −8ec −1790.03 −1812.18 1.23
1BL8 5892 +8ec −2453.52 −2456.87 0.13
AChE 8280 −9ec −3953.96 −3929.57 0.63

0.15 ADP 39 −3ec −256.07 −255.32 0.29
1V4Z 266 −1ec −253.49 −254.03 0.18
1A36 1402 −42ec −8048.58 −8111.52 0.78
3LOD 2246 −5ec −1006.74 −995.16 1.15
1RMP 3478 −8ec −1790.13 −1813.33 1.29
1BL8 5892 +8ec −2453.52 −2457.04 0.14
AChE 8280 −9ec −3954.03 −3930.11 0.60

Table 4. Parallel Efficiency of the IPFEM Solver (Protein
ADP)

MPI processes ADP 1A36

Ttol (s) efficiency Ttol (s) Efficiency

1 430
4 112 0.96
16 32 0.84 18080
64 8.6 0.78 4185 1.08
256 2.43 0.69 1228 0.92
1024 1.17 0.36 336.4 0.84
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80% at 1024 processes, which demonstrates the excellent
parallel scalability of our solver.
In Table 5, we report the computational costs to obtain the

numerical solutions of RPBE for proteins ADP, 1V4Z, 1A36, and
3LOD using IPFEM and FEM (the meshes are provided for
FEM). Here, both methods adopt backtracking line search
Newton-like method (Algorithm 2) to solve the nonlinear
equation, and each involved linear system in the test is solved by
the GMRES with the additive Schwarz preconditioner. We
count the CPU time of solving one Newton-like iteration step
and the maximum memory usage for the entire solving process.
Though the computation time with IPFEM is about 4−8 times
more than with traditional FEM for comparable precisions, we
think it is acceptable for practical applications. Moreover, the
time for generating interface-fitted meshes, which are only
required by traditional FEM was not counted in the
comparisons. The most time-consuming part for the IPFEM is
the numerical quadrature in the interface elements, which is a
topic of our future studies.

4. CONCLUSIONS

The traditional method of the PBE in biomolecules-solution
system needs biomolecular surface meshing, which is complex
and tedious. In this work, we have proposed an IPFEM for
solving the PBE. This method does not require molecular mesh
generation and adopts techniques from the standard interior
penalty discontinuous Galerkin method to handle the trans-
mission conditions across the interface. To depict the Gaussian
molecular surface, we employ interpolation of the Gaussian
density map within the finite element space to characterize the
level set function. Numerical examples have also been provided
to illustrate the performance of our method. Validation tests are
given to check the accuracy of IPFEM. We noticed that IPFEM
has a convergence rate for the NPBE similar to that for the linear
PBE in numerical examples. Our method also exhibits good
performance for solving the PBE on molecular cases. In the
future, the theoretical convergence of IPFEM for the NPBE will
be studied, and the method will be further developed and
applied to more complex models (e.g., Poisson−Nernst−Planck
equations, SMPB equations,71,72 etc.) and biosystems (like
membrane-channel protein systems). Based on PHG, we also
consider extending ourmethod to other molecular surfaces (e.g.,
VDWs, SAS, SES, etc.).

■ APPENDIX

In the following, we provide an example shell script for executing
the IPFEMPB package that can be found at https://github.com/
bzlu-Group/IPFEMPB.

where mpirun -np 32 ./IPFEMPB denotes running IPFEMPB
using 32 MPI processes, -epsilon_solute denotes the relative
permittivity of the solute molecule, -epsilon_solvent denotes the
relative permittivity of the solvent, -concentration denotes the
salt concentration with unit mol/L, -temp denotes the
temperature with unit K, and -pqr denotes the PQR file.
The output file which contained electrostatic solvation energy

and other information will be generated in the working
directory. We also provide a tool for visualization of the
molecular surface potential and more details can be found from
the readme file of the uploaded package.
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(43) Babusǩa, I. The finite element method for elliptic equations with
discontinuous coefficients. Computing 1970, 5, 207−213.
(44) Hansbo, A.; Hansbo, P. An unfitted finite element method, based
on Nitsche’s method, for elliptic interface problems. Comput. Methods
Appl. Mech. Eng. 2002, 191, 5537−5552.
(45) Burman, E.; Hansbo, P.; Larson, M. A cut finite element method
with boundary value correction. Math. Comput. 2017, 87, 633−657.
(46) Xiao, Y.; Xu, J.; Wang, F. High-order extended finite element
methods for solving interface problems. Comput. Methods Appl. Mech.
Eng. 2020, 364, 112964.
(47)Massjung, R. An unfitted discontinuous Galerkin method applied
to elliptic interface problems. SIAM J. Numer. Anal. 2012, 50, 3134−
3162.
(48) Liu, H.; Zhang, L.; Zhang, X.; Zheng, W. Interface-penalty finite
element methods for interface problems in H1, H (curl), and H (div).
Comput. Methods Appl. Mech. Eng. 2020, 367, 113137.
(49) Lamm, G. The Poisson−Boltzmann equation. Rev. Comput.
Chem. 2003, 19, 147−365.
(50) Zhang, L.-B. A parallel algorithm for adaptive local refinement of
tetrahedral meshes using bisection.Numer. Math. Theory Methods Appl.
2009, 2, 65−89.
(51) Gui, S.; Khan, D.; Wang, Q.; Yan, D.; Lu, B. Frontiers in
biomolecular mesh generation and molecular visualization systems.
Visual Comput. Ind. Biomed. Art 2018, 1, 7−13.
(52) Lee, B.; Richards, F. M. The interpretation of protein structures:
estimation of static accessibility. J. Mol. Biol. 1971, 55, 379−400.
(53) Richards, F. M. Areas, volumes, packing, and protein structure.
Annu. Rev. Biophys. Bioeng. 1977, 6, 151−176.
(54) Duncan, B. S.; Olson, A. J. Shape analysis of molecular surfaces.
Biopolymers 1993, 33, 231−238.
(55) Liu, T.; Chen, M.; Lu, B. Parameterization for molecular
Gaussian surface and a comparison study of surface mesh generation. J.
Mol. Model. 2015, 21, 113−114.
(56) Liao, T.; Zhang, Y.; Kekenes-Huskey, P. M.; Cheng, Y.;
Michailova, A.; McCulloch, A. D.; Holst, M.; McCammon, J. A. Multi-
core CPU or GPU-accelerated Multiscale Modeling for Biomolecular
Complexes. Comput. Math. Biophys. 2013, 1, 164−179.
(57) Yu, Z.; Holst, M. J.; Andrew McCammon, J. High-fidelity
geometric modeling for biomedical applications. Finite Elem. Anal. Des.
2008, 44, 715−723.
(58) Zhang, Y.; Xu, G.; Bajaj, C. Quality meshing of implicit solvation
models of biomolecular structures. Comput. Aided Geomet. Des. 2006,
23, 510−530.
(59) McGann, M.; Almond, H.; Nicholls, A.; Grant, J.; Brown, F.
Gaussian docking functions. Biopolymers 2003, 68, 76−90.
(60) Grant, J.; Gallardo, M.; Pickup, B. A fast method of molecular
shape comparison: A simple application of a Gaussian description of
molecular shape. J. Comput. Chem. 1996, 17, 1653−1666.
(61)Weiser, J.; Shenkin, P.; Still, W. Optimization of Gaussian surface
calculations and extension to solvent-accessible surface areas. J. Comput.
Chem. 1999, 20, 688−703.
(62) Yu, Z.; Jacobson, M.; Friesner, R. What role do surfaces play in
GBmodels? A new-generation of surface-generalized Bornmodel based
on a novel Gaussian surface for biomolecules. J. Comput. Chem. 2006,
27, 72−89.
(63) Albin, E.; Knikker, R.; Xin, S.; Paschereit, C. O.; d’Angelo, Y.
Computational assessment of curvatures and principal directions of

implicit surfaces from 3D scalar data. Math. Methods Curves Surfaces
2017, 10521, 1−22.
(64) Adams, R. A.; Fournier, J. J. Sobolev Spaces; Academic Press,
2003.
(65) Arnold, D. N. An interior penalty finite element method with
discontinuous elements. SIAM J. Numer. Anal. 1982, 19, 742−760.
(66) Burman, E.; Ern, A. Continuous interior penalty hp-finite
element methods for advection and advection-diffusion equations.
Math. Comput. 2007, 76, 1119−1140.
(67) Cui, T.; Leng, W.; Liu, H.; Zhang, L.; Zheng, W. High-order
numerical quadratures in a tetrahedron with an implicitly defined
curved interface. ACM Trans. Math. Software 2020, 46, 1−18.
(68) Zhang, Q.; Gui, S.; Li, H.; Lu, B. Model reduction-based
initialization methods for solving the Poisson-Nernst-Plank equations
in three-dimensional ion channel simulations. J. Comput. Phys. 2020,
419, 109627.
(69) Leng, W.; Cui, T.; Lin, D.; Zheng, W.; Zhang, L.; Lu, B. The
toolbox PHG and its applications. Sci. Sin. Inform. 2016, 46, 1442−
1464.
(70) Dolinsky, T. J.; Nielsen, J. E.; McCammon, J. A.; Baker, N. A.
PDB2PQR: an automated pipeline for the setup of Poisson−Boltzmann
electrostatics calculations. Nucleic Acids Res. 2004, 32, 665−667.
(71) Dou,W.; Chen, M.; Zhou, S. Fast iterative method for local steric
Poisson−Boltzmann theories in biomolecular solvation. Comput. Phys.
Commun. 2023, 291, 108808.
(72) Zhou, S.; Wang, Z.; Li, B. Mean-field description of ionic size
effects with nonuniform ionic sizes: A numerical approach. Phys. Rev. E:
Stat., Nonlinear, Soft Matter Phys. 2011, 84, 021901.

The Journal of Physical Chemistry B pubs.acs.org/JPCB Article

https://doi.org/10.1021/acs.jpcb.4c01894
J. Phys. Chem. B 2024, 128, 6463−6475

6475

https://doi.org/10.1137/0731054
https://doi.org/10.1137/0731054
https://doi.org/10.1016/S0168-9274(98)00015-4
https://doi.org/10.1016/S0168-9274(98)00015-4
https://doi.org/10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J
https://doi.org/10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J
https://doi.org/10.4208/jcm.1802-m2017-0219
https://doi.org/10.4208/jcm.1802-m2017-0219
https://doi.org/10.1007/BF02248021
https://doi.org/10.1007/BF02248021
https://doi.org/10.1016/S0045-7825(02)00524-8
https://doi.org/10.1016/S0045-7825(02)00524-8
https://doi.org/10.1090/mcom/3240
https://doi.org/10.1090/mcom/3240
https://doi.org/10.1016/j.cma.2020.112964
https://doi.org/10.1016/j.cma.2020.112964
https://doi.org/10.1137/090763093
https://doi.org/10.1137/090763093
https://doi.org/10.1016/j.cma.2020.113137
https://doi.org/10.1016/j.cma.2020.113137
https://doi.org/10.1002/0471466638.ch4
https://doi.org/10.1186/s42492-018-0007-0
https://doi.org/10.1186/s42492-018-0007-0
https://doi.org/10.1016/0022-2836(71)90324-X
https://doi.org/10.1016/0022-2836(71)90324-X
https://doi.org/10.1146/annurev.bb.06.060177.001055
https://doi.org/10.1002/bip.360330205
https://doi.org/10.1007/s00894-015-2654-9
https://doi.org/10.1007/s00894-015-2654-9
https://doi.org/10.2478/mlbmb-2013-0009
https://doi.org/10.2478/mlbmb-2013-0009
https://doi.org/10.2478/mlbmb-2013-0009
https://doi.org/10.1016/j.finel.2008.03.004
https://doi.org/10.1016/j.finel.2008.03.004
https://doi.org/10.1016/j.cagd.2006.01.008
https://doi.org/10.1016/j.cagd.2006.01.008
https://doi.org/10.1002/bip.10207
https://doi.org/10.1002/(SICI)1096-987X(19961115)17:14<1653::AID-JCC7>3.0.CO;2-K
https://doi.org/10.1002/(SICI)1096-987X(19961115)17:14<1653::AID-JCC7>3.0.CO;2-K
https://doi.org/10.1002/(SICI)1096-987X(19961115)17:14<1653::AID-JCC7>3.0.CO;2-K
https://doi.org/10.1002/(SICI)1096-987X(199905)20:7<688::AID-JCC4>3.0.CO;2-F
https://doi.org/10.1002/(SICI)1096-987X(199905)20:7<688::AID-JCC4>3.0.CO;2-F
https://doi.org/10.1002/jcc.20307
https://doi.org/10.1002/jcc.20307
https://doi.org/10.1002/jcc.20307
https://doi.org/10.1007/978-3-319-67885-6_1
https://doi.org/10.1007/978-3-319-67885-6_1
https://doi.org/10.1137/0719052
https://doi.org/10.1137/0719052
https://doi.org/10.1090/S0025-5718-07-01951-5
https://doi.org/10.1090/S0025-5718-07-01951-5
https://doi.org/10.1145/3372144
https://doi.org/10.1145/3372144
https://doi.org/10.1145/3372144
https://doi.org/10.1016/j.jcp.2020.109627
https://doi.org/10.1016/j.jcp.2020.109627
https://doi.org/10.1016/j.jcp.2020.109627
https://doi.org/10.1360/N112016-00066
https://doi.org/10.1360/N112016-00066
https://doi.org/10.1093/nar/gkh381
https://doi.org/10.1093/nar/gkh381
https://doi.org/10.1016/j.cpc.2023.108808
https://doi.org/10.1016/j.cpc.2023.108808
https://doi.org/10.1103/PhysRevE.84.021901
https://doi.org/10.1103/PhysRevE.84.021901
pubs.acs.org/JPCB?ref=pdf
https://doi.org/10.1021/acs.jpcb.4c01894?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

