
Journal of Computational Physics 513 (2024) 113169

Contents lists available at ScienceDirect

Journal of Computational Physics

journal homepage: www.elsevier.com/locate/jcp

A flux-based moving mesh method applied to solving the

Poisson–Nernst–Planck equations

Minrui Lv a,b, Benzhuo Lu a,b,∗

a LSEC, NCMIS, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China
b School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China

A R T I C L E I N F O A B S T R A C T

Keywords:

Moving mesh method

Poisson–Nernst–Planck equations

Finite element method

The moving mesh method is one of the important adaptive mesh methods which is practically
useful when the mesh size and overall resolution are provided and fixed as seen in many
engineering computations. We employ a moving mesh technique combined with a finite element
method (FEM) to solve a widely-used charged carrier transport model, the Poisson–Nernst–Planck
(PNP) equations, the solutions of which often have boundary or internal layers and sharp
interfaces when the convection is dominated. Considering that flux is a significant physical
quantity in designing stable and accurate numerical algorithm for transport problems such as
the PNP system, we start from a relatively general functional and propose a flux-based monitor
function and an adaptive step size-controlling algorithm for guiding the mesh movement in
the FEM solution of the PNP equations. The numerical results illustrate that the moving mesh
method is effectively addressing challenges arising from solution singularities and the convection-

dominated effects. It also shows that the moving mesh finite element method we propose exhibits
superior performance compared to both the traditional moving mesh finite element method
and fixed mesh finite element method in some scenarios. Furthermore, it demonstrates better
adherence to the physical properties of energy dissipation inherent in the PNP equation.

1. Introduction

The PNP model is a well-known carrier transport model that takes into account the movement of charged particles influenced by
both the Brownian motion of free particles and the total electric field. The total electric field includes external and self-generated
electric fields varying with particle motion. This model is useful in simulating biological ion channels [31,38,45,55], semiconductor
devices [7,49], and electrochemical systems [14,52]. To solve the PNP equations numerically, there are various methods available,
including finite element [27,57,61,62,66,67], finite difference [22,26,29,41,42], and finite volume methods [3,11,48]. The finite
element method is particularly suitable to handle complex shapes and boundary conditions.

Solving the PNP equations is a challenging task due to its inherent nonlinearity. The Nernst-Planck equation is a nonlinear
convection-diffusion equation where the convection velocity vector is influenced by the electric potential gradient. This causes the
formation of boundary or interior layers in regions with a higher rate of change in electric potential than the diffusion coefficient.
Therefore, considerable efforts have been devoted to dealing with the challenge. Various techniques have been explored, including
stabilization techniques [2,9], exponential fitting method [4,8], inverse-average-type finite element [47,60,65,67]. Aside from those

* Corresponding author.
Available online 6 June 2024
0021-9991/© 2024 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.

E-mail address: bzlu@lsec.cc.ac.cn (B. Lu).

https://doi.org/10.1016/j.jcp.2024.113169

Received 1 September 2023; Received in revised form 31 May 2024; Accepted 1 June 2024

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcp
mailto:bzlu@lsec.cc.ac.cn
https://doi.org/10.1016/j.jcp.2024.113169
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcp.2024.113169&domain=pdf
https://doi.org/10.1016/j.jcp.2024.113169

Journal of Computational Physics 513 (2024) 113169M. Lv and B. Lu

methods focusing on stiff matrix construction or algorithm design, from a mesh perspective, mesh-adaptive methods can be employed
to resolve the locations where the regularity of solution is low.

Currently, there are three main types of mesh-adaptive methods: ℎ-adaptive methods that focus on mesh refinement, 𝑝-adaptive
methods that focus on increasing the degree of basis functions, and 𝑟-adaptive methods that focus on relocating mesh. The ℎ-adaptive
and 𝑝-adaptive methods both require increasing the degrees of freedom (DOFs) in the system, which may give rise to challenges [63]

such as leading to excessively large number of DOFs or unnecessarily deteriorating the condition number of the linear system during
the adaptive process. In practical problems, engineers can often estimate the required number of freedoms to achieve the desired
accuracy based on experience and a basic upper bound on problem size. Therefore, 𝑟-adaptive methods, which do not need to increase
the DOFs, deserve more attention.

In our study, we utilize the 𝑟-adaptive method, also known as the moving mesh method. This approach allows us to redistribute
mesh points based on the geometric shape of the region or the error estimate of the solution. Then we are able to achieve a more even
distribution of error across each element, which leads to improved solution accuracy and convergence performance. The 𝑟-adaptive
method has two key applications. Firstly, it can optimize the initial mesh in the region with complex geometry. Secondly, during the
iterative process of solution, it dynamically adjusts the mesh density based on various criteria such as residual, energy, or specially
designed objective functions. The dynamic adjustment enables us to capture the locations of singularities and boundary layers while
avoiding the issue of excessive growth of DOFs.

There are two primary categories of available moving mesh methods [35]: velocity-based methods and location-based methods.
Velocity-based methods, such as the Geometric Conservation Law (GCL) [53] and the Moving Finite Element Method (MFEM) [50],
excel in maintaining conservation properties. However, the issue of mesh entanglement resulting from rapid mesh movement has
always been a challenging and significant research topic in this field. Location-based methods can be further divided into two
subclasses, depending on whether a reference mesh is introduced or not. The first subclass only considers the movement of the
physical mesh itself and requires the formulation of an objective function that incorporates the positions of mesh nodes as variables.
Typically, during optimization, each mesh point can be moved in the opposite direction of the shape gradient to minimize the
objective function [19,54]. The second subclass treats mesh movement as the change of mapping from a fixed reference mesh to
the physical mesh. The objective function in this case is designed as a functional that depends on the mapping or its inverse. The
optimization process usually involves solving the Euler-Lagrange equations or their corresponding gradient flow equations, such as
the Moving Mesh Partial Differential Equations (MMPDE) [33,34].

The methods in the second subclass heavily rely on the choice of the objective functional and the monitor function. The monitor
function, essentially a Riemannian metric matrix, is central in various works aiming to design and select suitable monitor functions
tailored to different requirements. These efforts primarily fall into two categories: isotropic and anisotropic monitor functions.
The former, isotropic monitor functions, are a natural extension of one-dimensional mesh density functions, characterized by their
simplicity and effectiveness. They require determining a single variable function, 𝜌, and numerous existing works have adopted this
form of monitor function [15–18,20,24,28,37,39,43,46,51,56,59,64]. The latter, anisotropic monitor functions, are designed within
a framework that can be understood as compressing and stretching along the directions of the matrix’s eigenvectors, corresponding
to changes in the associated eigenvalues [10]. For two-dimensional and three-dimensional problems, this framework of anisotropic
monitor functions offers greater flexibility compared to its isotropic counterparts, enabling more suitable adaptation of mesh size,
shape, and orientation to specific problem characteristics. Several works have proposed such forms of monitor functions and analyzed
their behavior in driving mesh movement [1,10,12,23,32].

In this work, we attempt to enhance the moving mesh method initially proposed by Li et al. [21,40], and apply it to the electro-

diffusion coupled PNP equations. For a PNP system, the flux formed by charged particles is a significant physical quantity as it is
usually the practically measured quantity and the conservation of it is also a desirable property in designing stable and accurate
numerical algorithm [25,65,67]. Considering the importance of flux for the PNP system, we devise a novel flux-based monitor
function for a more general functional tailored for the PNP equations. A series of numerical examples clearly illustrate that the moving
mesh method can dynamically adjust the positions of mesh points, leading to a finite element space that offers a more accurate
approximation of the solutions. Furthermore, the moving mesh finite element method we employed achieves better performance
than that with the traditional monitor function or fixed mesh FEM in terms of solution accuracy. Moreover, in certain scenarios, it
showcases better alignment with the intrinsic physical properties of energy dissipation in the PNP equation. These results demonstrate
the effectiveness of our proposed approach.

The paper is structured as follows. In Section 2, we introduce the notations that will be consistently used throughout the text.
In Section 3, we first give a brief introduction to the PNP model, followed by the numerical discretization methods for the PNP
equations in time and space. In Section 4, the detailed implementation of moving mesh method is described. Particularly, a general
functional and a novel flux-based monitor function are proposed, together with their qualitative explanation. In Section 5, we provide
some numerical examples to demonstrate the effectiveness of the moving mesh method and the better performance of our approach.
Finally, Section 6 contains some concluding remarks.

2. Preliminaries

Let Ω ⊂ ℝ𝑑 (where 𝑑 = 2, 3) denote the physical region where the PNP equations will be solved. 𝜕Ω is the boundary of the
physical region Ω. In this paper, we adopt the standard notation for Sobolev spaces 𝑊 𝑠,𝑝(Ω), including their associated norms ‖ ⋅ ‖𝑠,𝑝,Ω and seminorms | ⋅ |𝑠,𝑝,Ω [13]. Specifically, when 𝑝 = 2, we use 𝐻𝑠(Ω) =𝑊 𝑠,2(Ω) and 𝐻1

0 (Ω) = {𝑣 ∈ 𝐻1(Ω)∶ 𝑣|𝜕Ω = 0},
2

where the condition 𝑣|𝜕Ω = 0 is understood in terms of trace. The norm ‖ ⋅ ‖𝑠,2,Ω is denoted as ‖ ⋅ ‖𝑠,Ω. The dual of 𝐻1
0 (Ω) is denoted

Journal of Computational Physics 513 (2024) 113169M. Lv and B. Lu

as 𝐻−1(Ω). Let (⋅, ⋅) be the standard inner product of 𝐿2(Ω) and the dual inner product from 𝐻1
0 (Ω) to 𝐻−1(Ω) be denoted as ⟨⋅, ⋅⟩.

The symbol | ⋅ | is used to represent the length of a vector or the magnitude of scalar.

In addition, for a time-dependent function, the proper space is denoted as 𝐿1(0, 𝑇 ; 𝐻1(Ω)) = {𝑣(𝒙, 𝑡) ∈𝐻1(Ω)∶ ∫ 𝑇0 ‖𝑣‖1,Ωd𝑡 <∞}.
And the corresponding norm can be defined as

‖𝑣‖𝐿1(0,𝑇 ;𝐻1(Ω)) =

𝑇

∫
0

‖𝑣‖1,Ωd𝑡, ∀𝑣 ∈𝐿1(0, 𝑇 ;𝐻1(Ω)). (1)

For the sake of brevity in subsequent discussions, it is necessary to provide some notations in the physical region Ω and the
corresponding reference region Ω𝐶 ⊂ ℝ𝑑 , which is also called computational region. The coordinate of the point in Ω is denoted as
𝒙 = [𝑥1, 𝑥2, … , 𝑥𝑑]⊤ and the coordinate of the point in Ω𝐶 is denoted as 𝝃 = [𝜉1, 𝜉2, … , 𝜉𝑑]⊤.

We assume that the physical region Ω is a polyhedron (polygon) whose boundary can be defined as the union of facets (edges)
Γ𝑖 ⊂ℝ𝑑−1, i.e., 𝜕Ω = ∪𝑁Γ

𝑖=1Γ𝑖, where 𝑁Γ is the number of boundary facets (edges). Correspondingly, the computational region Ω𝐶 is
also a polyhedron (polygon) with the same number of boundary facets (edges), and 𝜕Ω𝐶 can be rewritten as 𝜕Ω𝐶 = ∪𝑁Γ

𝑖=1Γ
𝐶
𝑖

, where
Γ𝐶
𝑖
⊂ℝ𝑑−1 is the boundary facet (edge) of Ω𝐶 .

After denoting geometric objects in the region, we need to further define meshes in the region. The mesh composed of simplices
on Ω can be represented as  = { ,  }. Here,  = {𝒙𝑖}

𝑁𝑣
𝑖=1 represents the collection of all mesh points in  , where 𝑁𝑣 denotes

the total number of mesh points, encompassing both boundary and interior points. The set of interior points and boundary points can
be denoted as  𝑖𝑛 and 𝑏𝑑 , respectively. Without loss of generality, we assume that the first 𝑁̃𝑣 points (𝑁̃𝑣 <𝑁𝑣) are interior points,

and the remaining 𝑁𝑣 − 𝑁̃𝑣 ones belong to the boundary 𝜕Ω, i.e.,  =  𝑖𝑛 ∪ 𝑏𝑑 where  𝑖𝑛 ∶= {𝒙𝑖}
𝑁̃𝑣
𝑖=1, 𝑏𝑑 ∶= {𝒙𝑖}

𝑁𝑣

𝑖=𝑁̃𝑣+1
. The set

of all elements in  is denoted as  = {𝒆𝑖}
𝑁𝑒
𝑖=1, where 𝑁𝑒 is the total number of elements. Similarly, the mesh on the computational

region Ω𝐶 is represented as 𝐶 = {𝐶 , 𝐶 }, where 𝐶 = {𝝃𝑖}
𝑁𝑣
𝑖=1, 𝐶 = {𝜔𝑖}

𝑁𝑒
𝑖=1.

We can further define continuous piecewise polynomial spaces on the mesh  , i.e.,

𝑉 𝑘 (Ω) = {𝑣 ∈ 𝐶(Ω̄)∶ 𝑣|𝑒 ∈ 𝑘(𝑒),∀𝑒 ∈  }, (2)

where Ω̄ is the closure of Ω and 𝑘(𝑒) denotes the space of degree-𝑘 polynomial functions defined on the element 𝑒. 𝑉 𝑘𝐶 (Ω𝐶) is
the corresponding space defined on the mesh 𝐶 . Let {𝜑𝑖}𝑁𝑖=1 be a basis of finite dimensional space 𝑉 𝑘 (Ω), where 𝑁 is the number
of DOFs. We denote the corresponding interpolation points for the 𝑖-th basis function 𝜑𝑖 as 𝒒𝑖. Particularly, when 𝑘 = 1 and the
interpolation points are the vertices of elements, 𝑉 1 (Ω) is the Lagrange linear element space, where the number of DOFs is equal to
the number of mesh points, i.e., 𝑁 =𝑁𝑣. We denote these linear basis functions as special notation {𝜙𝑖}

𝑁𝑣
𝑖=1.

3. Poisson–Nernst–Planck equations

In this part, we first introduce the PNP equations which consist of the Poisson equation and the Nernst-Planck equations. Subse-

quently, some types of boundary conditions for the PNP equations will be elucidated.

PNP equations describe a system with 𝐾 species of charged particles driven by Brownian motion and the electric field. We
consider the system in a bounded domain Ω ⊂ℝ𝑑 (𝑑 = 2, 3) with smooth boundary 𝜕Ω. Then the dimensionless PNP equations can be
written as⎧⎪⎨⎪⎩

𝜕𝑐𝑘

𝜕𝑡
= −∇ ⋅ 𝑱 𝑘 in Ω,

𝑱 𝑘 = −𝐷𝑘(∇𝑐𝑘 + 𝑧𝑘𝑐𝑘∇Φ) 𝑘 = 1,… ,𝐾,

−∇ ⋅ (𝜖∇Φ) = 𝜌0 +
∑𝐾
𝑘=1 𝑧𝑘𝑐𝑘 in Ω,

(3)

where some dimensionless quantities are defined as follows.

• 𝑐𝑘(𝒙, 𝑡) is the density of the 𝑘-th species.

• Φ(𝒙, 𝑡) is the electric potential contributed by the charged particles.

• 𝜌0(𝒙) is a given fixed charge density function.

• 𝑧𝑘, 𝐷𝑘 are the valence and the diffusion constant of the 𝑘-th species, which can be set as constants for simplicity. Here, 𝐷𝑘
should always be positive.

• 𝜖 > 0 is the dielectric constant.

• 𝑱 𝑘 is the flux formed by the 𝑘-th species, which can be rewritten as 𝑱 𝑘 = 𝑐𝑘𝒗𝑘 = −𝐷𝑘𝑐𝑘∇𝜇𝑘. Here, 𝒗𝑘 and 𝜇𝑘 are the velocity
field and chemical potential of the 𝑘-th species. Clearly, 𝜇𝑘 = log 𝑐𝑘 + 𝑧𝑘Φ.

The initial value of 𝑐𝑘 should be given, such as
3

𝑐𝑘(𝒙,0) = 𝑐𝑘,0, 𝑘 = 1,2,… ,𝐾. (4)

Journal of Computational Physics 513 (2024) 113169M. Lv and B. Lu

The boundary conditions imposed on Φ can usually be Dirichlet or Neumann in the physical sense, which are as follows.

Φ|𝜕Ω = 𝑉 (𝒙, 𝑡), 𝜖
𝜕Φ
𝜕𝒏

|||𝜕Ω = 𝜎𝑠(𝒙, 𝑡), (5)

where 𝒏 is outer normal at the boundary of Ω, 𝑉 (𝒙, 𝑡) is imposed voltages, and 𝜎𝑠(𝒙, 𝑡) is a given surface charge density on the
boundary. For the concentrations 𝑐𝑘, there are two kinds of boundary conditions. One is imposed on the concentrations 𝑐𝑘 directly,
which is called Dirichlet boundary conditions. The other is imposed on the fluxes 𝑱𝑘, which is called blocking boundary conditions. Both
of them are as follows.

𝑐𝑘|𝜕Ω = 𝛾𝑘(𝒙, 𝑡), 𝑱 𝑘 ⋅ 𝒏|𝜕Ω(𝒙, 𝑡) = 0, 𝑘 = 1,2,… ,𝐾, (6)

where 𝛾𝑘(𝒙, 𝑡) is the given concentration on the boundary.

Besides, the free energy of the PNP model is defined as follows without considering the boundary conditions.

𝐸[𝑐1, 𝑐2,… , 𝑐𝐾] = ∫
Ω

(𝐾∑
𝑘=1
𝑐𝑘 log 𝑐𝑘 +

1
2
(𝜌0 +

𝐾∑
𝑘=0
𝑧𝑘𝑐𝑘)Φ

)
d𝒙. (7)

Then we can easily obtain the property of energy dissipation with the following derivation.

d𝐸
d𝑡

= ∫
Ω

𝐾∑
𝑘=1

𝛿𝐸

𝛿𝑐𝑘

𝜕𝑐𝑘

𝜕𝑡
d𝒙 = −∫

Ω

𝐾∑
𝑘=1
𝐷𝑘𝑐𝑘|∇𝜇𝑘|2d𝒙 ≤ 0. (8)

For a general and rigorous free energy formulation and discussion, please refer to [44].

4. Numerical discretization

We consider an implicit discretization of (3) with the selective boundary condition. Firstly, we need to designate some notations.
Let Γ𝐷,𝑘 ⊂ 𝜕Ω be the boundary part with Dirichlet boundary condition for 𝑐𝑘 and Γ𝐷,Φ ⊂ 𝜕Ω be the boundary part with Dirichlet
boundary condition for Φ. We can denote the test finite element space 𝑉 𝑝𝑐𝑘 = {𝑣 ∈ 𝑉 𝑝 (Ω)∶ 𝑣|Γ𝐷,𝑘 = 0}, 𝑉 𝑝Φ = {𝑣 ∈ 𝑉 𝑝 (Ω)∶ 𝑣|Γ𝐷,Φ = 0}
(𝑝 ≥ 1). Given a partition on the time interval [0, 𝑇], i.e., 0 = 𝑡0 < 𝑡1 <⋯ < 𝑡𝑀 = 𝑇 , any function 𝑓 (𝒙, 𝑡) at time 𝑡𝑚 can be denoted as
𝑓 (𝑚).

Then the specific scheme of the implicit discretization is given as follows.

Scheme 4.1. With appropriate initial status (𝑐(0)1 , 𝑐
(0)
2 , … , 𝑐(0)

𝐾
) ∈ [𝑉 𝑝 (Ω)]

𝐾
, find (𝑐(𝑚)1 , 𝑐(𝑚)2 , … , 𝑐(𝑚)

𝐾
, Φ(𝑚)) ∈ [𝑉 𝑝 (Ω)]𝐾 which meets all

Dirichlet boundary conditions for every 𝑚 ≥ 1, such that for all (𝑣0, 𝑣1, … , 𝑣𝐾) ∈ 𝑉
𝑝

Φ × 𝑉 𝑝𝑐1 ×⋯ × 𝑉 𝑝𝑐𝐾 holds

⎧⎪⎪⎪⎨⎪⎪⎪⎩

∫
Ω

𝑐
(𝑚)
𝑘

− 𝑐(𝑚−1)
𝑘

𝛿𝑡
𝑣𝑘d𝒙+ ∫

Ω

𝐷𝑘(∇𝑐
(𝑚)
𝑘

+ 𝑧𝑘𝑐
(𝑚)
𝑘

∇Φ(𝑚)) ⋅∇𝑣𝑘d𝒙 = 0 𝑘 = 1,2,… ,𝐾,

∫
Ω

𝜖∇Φ(𝑚) ⋅∇𝑣0d𝒙 = ∫
Ω

𝜌0𝑣0d𝒙+
𝐾∑
𝑘=1

∫
Ω

𝑧𝑘𝑐
(𝑚)
𝑘
𝑣0d𝒙+ ∫

𝜕Ω∖Γ𝐷,Φ

𝜎(𝑚)
𝑠
𝑣0d𝒙,

(9)

where 𝛿𝑡 is the time step and 𝜎𝑠 is given by the boundary condition 𝜖 𝜕Φ
𝜕𝒏
|𝜕Ω∖Γ𝐷,Φ = 𝜎𝑠.

To avoid solving the coupled system directly in (9), we adopt Gummel iteration to decouple it. This decoupling method is a kind
of nonlinear block Gauss-Seidel iteration. If we abstract the equations in (9) as{

𝐹𝑘(Φ(𝑚), 𝑐(𝑚)
𝑘

) = 0 𝑘 = 1,2,… ,𝐾,

𝐹0(Φ(𝑚), 𝑐(𝑚)1 , 𝑐
(𝑚)
2 ,… , 𝑐

(𝑚)
𝐾

) = 0.
(10)

Then the Gummel iteration can be specifically expressed as Algorithm 1.

5. Moving mesh method

In this section, we provide a comprehensive and detailed introduction to the moving mesh method. We first give Algorithm 2 as
an overview of the algorithm. Then three key components of the algorithm are discussed in the following subsections, namely the
mesh redistribution strategy, monitor function design, and solution interpolation.

The relationship between the computational domain Ω𝐶 and the physical domain Ω, as mentioned in the algorithm, is visually
depicted in Fig. 1 (a). Additionally, to bolster comprehension of the mesh redistribution strategy discussed in Section 5.1, we present
4

a simplified example of the mesh movement process with a solitary interior mesh point in Fig. 1 (b).

Journal of Computational Physics 513 (2024) 113169M. Lv and B. Lu

Algorithm 1 Gummel iteration for the PNP model.

1: For 𝑚 ≥ 1, set Φ𝑚,0 = Φ(𝑚−1) , 𝑐𝑚,0
𝑘

= 𝑐(𝑚−1)
𝑘

, 𝑘 = 1, 2, … , 𝐾 and 𝑙 = 0.

2: For 𝑙 ≥ 1, compute Φ𝑚,𝑙 , 𝑐𝑚,𝑙
𝑘
, 𝑘 = 1, 2, … , 𝐾 such that all

⎧⎪⎨⎪⎩
𝐹𝑘(Φ𝑚,𝑙−1, 𝑐

𝑚,𝑙

𝑘
) = 0 𝑘 = 1,2,… ,𝐾,

𝐹0(Φ𝑚,𝑙 , 𝑐
𝑚,𝑙

1 , 𝑐
𝑚,𝑙

2 ,… , 𝑐
𝑚,𝑙

𝐾
) = 0.

(11)

3: For fixed tol > 0, stop if

‖Φ𝑚,𝑙 −Φ𝑚,𝑙−1‖0,Ω < tol , ‖𝑐𝑚,𝑙
𝑘

− 𝑐𝑚,𝑙−1
𝑘
‖0,Ω < tol , 𝑘 = 1,2… ,𝐾. (12)

Set Φ(𝑚) ←Φ𝑚,𝑙 , 𝑐(𝑚)
𝑘

← 𝑐
𝑚,𝑙

𝑘
, 𝑘 = 1, 2, … , 𝐾 and go to step 4; otherwise, set 𝑙← 𝑙 + 1 and go to step 2.

4: Set 𝑚 ←𝑚 + 1 and go to step 1.

Algorithm 2 Moving mesh method.

Require: A fixed computational mesh  ∗
𝐶

(see Section 5.4.1), along with the solution of the PNP equations at time 𝑡(𝑚) , represented by Φ(𝑚) , 𝑐(𝑚)1 , …, 𝑐(𝑚)
𝐾

, and a
specified tolerance value, referred to as tol.

1: Obtain the mesh 𝐶 in computational region Ω𝐶 by solving the optimization problem (see Section 5.1) with respect to the variables Φ(𝑚), 𝑐(𝑚)1 , … , 𝑐(𝑚)
𝐾

.

2: while ‖𝐶 −  ∗
𝐶
‖𝐿∞(Ω𝐶) > tol do

3: Use the difference between 𝐶 and  ∗
𝐶

to guide the movement of mesh points in the current mesh  within the physical region Ω (see Section 5.1).

4: Interpolate the solution Φ(𝑚), 𝑐(𝑚)1 , … , 𝑐(𝑚)
𝐾

from the old mesh to the new mesh (see Section 5.2).

5: Solve the optimization problem (see Section 5.1) with respect to the updated variables Φ(𝑚), 𝑐(𝑚)1 , …, 𝑐(𝑚)
𝐾

to get 𝐶 in Ω𝐶 .

6: end while

Fig. 1. (a) The relationship between the computational domain Ω𝐶 and the physical domain Ω. (b) A simplified example of the mesh movement process with a
solitary interior mesh point.

5.1. Mesh redistribution strategy

The mesh redistribution strategy aims to reposition mesh points to achieve an even redistribution of errors or user-specified
quantities within each mesh element. We need to achieve the goal mathematically via solving an optimization problem or a PDE
model. In this work, we use the second class of location-based methods mentioned in the introduction. It is worth highlighting that
in this subsection, we present our derivation in matrix form, enhancing the clarity of the process and ensuring its applicability to any
given dimension 𝑑.

We define a computational region Ω𝐶 ∈ℝ𝑑 and a reference mesh  ∗
𝐶
= { ∗

𝐶
= {𝝃∗

𝑖
}𝑁𝑣
𝑖=1,  ∗

𝐶
= {𝜔∗

𝑖
}𝑁𝑒
𝑖=1} on it. Then any mesh 

in the physical region Ω ∈ℝ𝑑 can be described as the image of  ∗
𝐶

under a reversible mapping function 𝒙 = 𝒙(𝝃)∶ Ω𝐶 →Ω, which
is called an adaptive mesh generation function. Consequently, the optimization problem can be formulated by optimizing an objective
functional of either the mapping 𝒙(𝝃) or its inverse mapping 𝝃(𝒙)∶ Ω → Ω𝐶 . However, it has been shown in [24] that optimizing
the objective functional of 𝒙(𝝃) may result in mesh folding and tangling more easily, especially when dealing with concave physical
5

regions. Therefore, it is generally preferred to take the functional of 𝝃(𝒙) as the objective.

Journal of Computational Physics 513 (2024) 113169M. Lv and B. Lu

In existing methods for mesh generation and adaptation, a general functional of 𝝃(𝒙) can be formulated as follows [6,34,39,58]

𝐺[𝝃] = 1
2

𝑑∑
𝑘=1

∫
Ω

(∇𝜉𝑘)⊤𝑴−1∇𝜉𝑘d𝒙, (13)

where 𝑴 ∈ ℝ𝑑×𝑑 is a symmetric positive definite matrix, which is known as monitor function. For this adaptation functional, a
qualitative explanation of the relationship between the monitor function and mesh movement has already been provided in [10]. It
should be noted that the functional derived from the harmonic mapping in [21,40] is a special case of (13) with 𝑴 = 𝑴̃∕det(𝑴̃),
where 𝑴̃ ∈ℝ𝑑×𝑑 is a given metric tensor for Ω.

During optimization, it is necessary to keep the boundary of the physical region invariant. For this purpose, we can enforce that
the vertices, edges, and faces of the physical region’s boundary are mapped to their corresponding counterparts in the computational
region, i.e., 𝝃(Γ𝑖) = Γ𝐶

𝑖
, 𝑖 = 1, 2, … , 𝑁Γ. This implies that the set for 𝝃𝑏(𝒙) = 𝝃|𝜕Ω is given by

 = {𝝃𝒃 ∈ 𝐶(𝜕Ω)∶ 𝝃𝒃 ∶ 𝜕Ω→ 𝜕Ω𝐶 ;𝝃𝒃|Γ𝑖 is a linear segment and strictly increasing, 𝑖 = 1,2,… ,𝑁Γ}. (14)

From some perspective, the constraint in equation (14) is overly restrictive, as it prohibits points from moving between adjacent
boundary facets (edges). This may result in some distortion of mesh near the boundary during movement, particularly in practical
cases with complex boundaries.

In summary, the complete optimization problem for mesh redistribution can be formulated as

min
𝝃
𝐺[𝝃] = 1

2

𝑑∑
𝑘=1

∫
Ω

(∇𝜉𝑘)⊤𝑴−1∇𝜉𝑘d𝒙,

s.t. 𝝃|𝜕Ω = 𝝃𝑏 ∈.
(15)

To discrete (15), Lagrange linear finite element space 𝑉 1 (Ω) is used. Then 𝜉𝑘(𝒙) can be approximated as
∑𝑁𝑣
𝑗=1 𝜉

𝑘
𝑗
𝜙𝑗 (𝒙) =

(𝝃𝑘)⊤𝝓(𝒙), where 𝝃𝑘 = [𝜉𝑘1 , 𝜉
𝑘
2 , … , 𝜉𝑘

𝑁𝑣
]⊤, 𝝓(𝒙) = [𝜙1(𝒙), 𝜙2(𝒙), … , 𝜙𝑁𝑣 (𝒙)]

⊤. Therefore, the approximation for 𝝃 in [𝑉 1 (Ω)]𝑑 is

𝝃(𝒙) =
⎡⎢⎢⎢⎣
𝜉1(𝒙)
𝜉2(𝒙)
⋮

𝜉𝑑 (𝒙)

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎣

∑
𝑗 𝜉

1
𝑗
𝜙𝑗 (𝒙)∑

𝑗 𝜉
2
𝑗
𝜙𝑗 (𝒙)
⋮∑

𝑗 𝜉
𝑑
𝑗
𝜙𝑗 (𝒙)

⎤⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎣
(𝝃1)⊤

(𝝃2)⊤

⋮

(𝝃𝑑)⊤

⎤⎥⎥⎥⎥⎦
𝝓(𝒙). (16)

Substituting (16) into the functional 𝐺[𝝃] in (15), we obtain

𝐺[𝝃] = 1
2

𝑑∑
𝑘=1

∫
Ω

[∇(
𝑁𝑣∑
𝑖=1
𝜉𝑘
𝑖
𝜙𝑖)]⊤𝑴−1[∇(

𝑁𝑣∑
𝑗=1
𝜉𝑘
𝑗
𝜙𝑗)]d𝒙

= 1
2

𝑑∑
𝑘=1

𝑁𝑣∑
𝑖,𝑗=1

𝜉𝑘
𝑖
𝜉𝑘
𝑗

[
∫
Ω

(∇𝜙𝑖)⊤𝑴−1∇𝜙𝑗d𝒙
]

= 1
2

𝑑∑
𝑘=1

(𝝃𝑘)⊤𝑯𝝃𝑘,

(17)

where the entry of 𝑯 ∈ℝ𝑁𝑣×𝑁𝑣 is 𝐻𝑖,𝑗 = ∫Ω(∇𝜙𝑖)⊤𝑴−1∇𝜙𝑗d𝒙.

Besides, the boundary condition 𝝃|𝜕Ω = 𝝃𝑏 can be rewritten as

𝝃 ⋅ 𝒏 = 𝑏, (18)

where 𝒏 = 𝒏(𝒙) = [𝑛1(𝒙), 𝑛2(𝒙), … , 𝑛𝑑 (𝒙)]⊤ ∈ ℝ𝑑 is the unit normal vector of the boundary point and 𝑏 = 𝑏(𝒙) is a given function
related to the boundary of the computational region 𝜕Ω𝐶 . It should be noted that 𝒏, 𝑏 remains constant on each boundary face(edge)
Γ𝑖. Since there are no normal vectors defined for interior points of Ω, we can assume that 𝒏(𝒙) = 𝟎 for any interior points. This
enables us to construct a matrix 𝑵 ∈ℝ𝑑×𝑁𝑣 by arranging 𝒏(𝒙) corresponding to all mesh points 𝒙 ∈  as column vectors, which is
as follows

𝑵 =
[
𝒏(𝒙1) 𝒏(𝒙2) ⋯ 𝒏(𝒙𝑁𝑣)

]
=

⎡⎢⎢⎢⎢⎣
0 ⋯ 0 𝑛1

𝑁̃𝑣+1
𝑛1
𝑁̃𝑣+2

⋯ 𝑛1
𝑁𝑣

0 ⋯ 0 𝑛2
𝑁̃𝑣+1

𝑛2
𝑁̃𝑣+2

⋯ 𝑛2
𝑁𝑣

⋮ ⋮ ⋮ ⋮ ⋮
0 ⋯ 0 𝑛𝑑

𝑁̃𝑣+1
𝑛𝑑
𝑁̃𝑣+2

⋯ 𝑛𝑑
𝑁𝑣

⎤⎥⎥⎥⎥⎦
, (19)

where the 𝑗-th column of 𝑵 is 𝒏(𝒙𝑗) = [𝑛1
𝑗
, 𝑛2
𝑗
, … , 𝑛𝑁𝑣

𝑗
]⊤, 𝒙𝑗 ∈  . Furthermore, if we denote each row of the matrix 𝑵 as 𝒏𝑘,
6

𝑘 = 1, 2, … , 𝑑, the discrete form of (18) on mesh 𝐶 can be expressed as

Journal of Computational Physics 513 (2024) 113169M. Lv and B. Lu

[
𝑵1 𝑵2 ⋯ 𝑵𝑑

] ⎡⎢⎢⎢⎣
𝝃1

𝝃2

⋮
𝝃𝑑

⎤⎥⎥⎥⎦ = 𝒃, (20)

where 𝑵𝑘 = diag(𝒏𝑘) ∈ℝ𝑁𝑣×𝑁𝑣 , 𝑘 = 1, 2, … , 𝑑 and 𝒃 = [0, … , 0, 𝑏𝑁̃𝑣+1, 𝑏𝑁̃𝑣+2, … , 𝑏𝑁𝑣]
⊤ ∈ℝ𝑁𝑣 .

With above preparation, we can obtain the corresponding Lagrangian function for the discrete form of the optimization prob-

lem (15), which is given by

𝐿[𝝃,𝝀] =𝐺[𝝃] +
𝑁𝑣∑

𝑗=𝑁̃𝑣+1
𝜆𝑗 (𝝃(𝒙𝑗) ⋅ 𝒏(𝒙𝑗) − 𝑏(𝒙𝑗))

= 1
2
[
(𝝃1)⊤ (𝝃2)⊤ … (𝝃𝑑)⊤

] ⎡⎢⎢⎢⎣
𝑯

𝑯

⋱
𝑯

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
𝝃1

𝝃2

⋮
𝝃𝑑

⎤⎥⎥⎥⎦+ 𝝀⊤
([

𝑵1 𝑵2 ⋯ 𝑵𝑑
] ⎡⎢⎢⎢⎣

𝝃1

𝝃2

⋮
𝝃𝑑

⎤⎥⎥⎥⎦− 𝒃
)
,

(21)

where the elements of 𝝀 = [0, … , 0, 𝜆𝑁̃𝑣+1, 𝜆𝑁̃𝑣+2, … , 𝜆𝑁𝑣]
⊤ ∈ ℝ𝑁𝑣 are the Lagrange multipliers. Therefore, the optimization prob-

lem (15) is equivalent to solving the linear system

⎡⎢⎢⎢⎢⎢⎣

𝑯 𝑵1

𝑯 𝑵2

⋱ ⋮
𝑯 𝑵𝑑

𝑵1 𝑵2 ⋯ 𝑵𝑑 𝟎

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

𝝃1

𝝃2

⋮
𝝃𝑑

𝝀

⎤⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎣

𝟎
𝟎
⋮
𝟎
𝒃

⎤⎥⎥⎥⎥⎥⎦
. (22)

By solving the optimization problem above, we can obtain a mesh 𝐶 in the computational region Ω𝐶 , that corresponds to the
current physical mesh  . If the difference between 𝐶 and the given fixed mesh  ∗

𝐶
is not small enough, we should update the mesh

 so that the corresponding mesh in Ω𝐶 becomes closer to  ∗
𝐶

.

Next, we need to determine the movement direction 𝛿𝒙𝑗 for each mesh point 𝒙𝑗 ∈  . After solving (22), the direction of
movement for each mesh point in 𝐶 can be chosen as 𝛿𝝃𝑗 = 𝝃∗

𝑗
− 𝝃𝑗 . And we can naturally obtain the direction of movement 𝛿𝝃 for

any point 𝝃 ∈ Ω𝐶 through linear interpolation. In fact, the topology of the physical mesh and the reference mesh remains the same
if we choose appropriate moving step. Hence, each simplex element 𝑒 ∈  has a unique corresponding simplex element 𝜔 ∈ 𝐶 .
For a given element 𝑒 ∈  and its corresponding element 𝜔 ∈ 𝐶 , we denote {𝒙𝑒,𝑖}𝑑𝑖=0 and {𝝃𝜔,𝑖}𝑑𝑖=0 as their vertices, respectively.
Then any point inside the elements 𝑒 or 𝜔 can be represented in barycentric coordinates 𝜶 = [𝛼0, 𝛼1,… , 𝛼𝑑]⊤ as

𝒙 =
𝑑∑
𝑖=0
𝛼𝑖𝒙𝑒,𝑖 = 𝒙𝑒,0 +

𝑑∑
𝑖=1
𝛼𝑖(𝒙𝑒,𝑖 − 𝒙𝑒,0),

𝝃 =
𝑑∑
𝑖=0
𝛼𝑖𝝃𝜔,𝑖 = 𝝃𝜔,0 +

𝑑∑
𝑖=1
𝛼𝑖(𝝃𝜔,𝑖 − 𝝃𝜔,0).

(23)

According to the chain rule, we can get a constant Jacobian matrix on the element 𝜔 as

𝜕𝒙

𝜕𝝃

|||𝜔 = 𝜕𝒙
𝜕𝜶

|||𝑒(𝜕𝝃𝜕𝜶 |||𝜔)−1 = ⎡⎢⎢⎣
𝑥1
𝑒,1 − 𝑥

1
𝑒,0 ⋯ 𝑥1

𝑒,𝑑
− 𝑥1

𝑒,0
⋮ ⋮

𝑥𝑑
𝑒,1 − 𝑥

𝑑
𝑒,0 ⋯ 𝑥𝑑

𝑒,𝑑
− 𝑥𝑑

𝑒,0

⎤⎥⎥⎦
⎡⎢⎢⎣
𝜉1
𝜔,1 − 𝜉

1
𝜔,0 ⋯ 𝜉1

𝜔,𝑑
− 𝜉1

𝜔,0
⋮ ⋮

𝜉𝑑
𝜔,1 − 𝜉

𝑑
𝜔,0 ⋯ 𝜉𝑑

𝜔,𝑑
− 𝜉𝑑

𝜔,0

⎤⎥⎥⎦
−1

. (24)

If we take the volume of the element 𝑒 ∈𝑖 as the weight, where 𝑖 ⊂  is the set of elements with 𝒙𝑖 as a vertex, the weighted
average moving direction of 𝒙𝑖 is defined by

𝛿𝒙𝑖 =
∑
𝑒∈𝑖

(|𝑒|∑
𝑒∈𝑖
|𝑒|)𝛿𝒙𝑖|||𝑒 = ∑

𝑒∈𝑖

(|𝑒|∑
𝑒∈𝑖
|𝑒|) 𝜕𝒙𝜕𝝃 |||𝜔𝛿𝝃𝑖. (25)

Therefore, with a given update step size of 𝜃, the physical mesh can be updated as

𝒙new
𝑖

= 𝒙old
𝑖

+ 𝜃𝛿𝒙𝑖, 𝑖 = 1,2,… ,𝑁𝑣, (26)

where the selection of 𝜃 will be introduced in Section 5.4.2.

5.2. Solution interpolation

After the physical mesh is redistributed, it is necessary to interpolate the solution from the old mesh to the new one. The primary
7

challenge of interpolation generally lies in finding the elements that contain the new mesh points [35]. To avoid this difficulty, a

Journal of Computational Physics 513 (2024) 113169M. Lv and B. Lu

PDE-based interpolation method proposed in [40] is adopted here. However, it is crucial to note that, distinct from the presentation
in [40], we differentiate basis functions of FEM used in solving the PDEs, denoted as {𝜑𝑖}𝑁𝑖=1, from linear nodal basis functions,
denoted as {𝜙𝑖}

𝑁𝑣
𝑖=1. This indicates that the moving mesh technique introduced in this work is not limited to the linear nodal finite

element during solving the physical PDEs, which reflects the universality of the moving mesh method.

In this subsection, the solution to be interpolated is denoted as 𝑢(𝒙). We can view the movement of physical mesh as a continuous
process, i.e.,

𝒙𝑖(𝜏) = (1 − 𝜏)𝒙old
𝑖

+ 𝜏𝒙new
𝑖
, 𝑖 = 1,2,… ,𝑁𝑣, 𝜏 ∈ [0,1], (27)

where 𝜏 is a pseudo-time introduced to describe mesh movement. Obviously, 𝒙𝑖(0) = 𝒙old
𝑖
, 𝒙𝑖(1) = 𝒙new

𝑖
. Then the discrete form of 𝑢

in 𝑉 𝑘 (Ω) can be viewed as

𝑢ℎ(𝒙, 𝜏) =
𝑁∑
𝑗=1
𝑢𝑗 (𝜏)𝜑𝑗 (𝒙, 𝜏). (28)

Therefore, the interpolation of 𝑢ℎ from the old mesh to the new one is equivalent to finding the solution 𝑢ℎ(𝒙, 𝜏) which obeys the
following differential equation

𝜕𝑢ℎ

𝜕𝜏
= 0. (29)

According to the relationship between material and local derivative, we can get that

𝜕𝜑𝑗 (𝒙, 𝜏)
𝜕𝜏

= −∇𝜑𝑗 (𝒙, 𝜏) ⋅ 𝛿𝒙, 𝑗 = 1,2,… ,𝑁, (30)

where 𝛿𝒙 =
∑𝑁𝑣
𝑖=1 𝜙𝑖(𝒙, 𝜏)

d𝒙𝑖
d𝜏 =

∑𝑁𝑣
𝑖=1 𝜙𝑖(𝒙, 𝜏)(𝒙

new
𝑖

− 𝒙old
𝑖

). Here, 𝜙𝑖 ∈ 𝑉 1 (Ω) is the 𝑖-th Lagrange linear basis function. The detailed
derivation of (30) will be provided in the Appendix A.

With the relationship in (30) and (28), the differential equation (29) gives

0 =
𝜕𝑢ℎ

𝜕𝜏
=

𝑁∑
𝑗=1

(d𝑢𝑗
d𝜏
𝜑𝑗 + 𝑢𝑗

𝜕𝜑𝑗

𝜕𝜏

)
=

𝑁∑
𝑗=1

d𝑢𝑗
d𝜏
𝜑𝑗 −

𝑁∑
𝑗=1
𝑢𝑗∇𝜑𝑗 ⋅ 𝛿𝒙. (31)

As ∇𝑢ℎ =
∑𝑁
𝑗=0 𝑢𝑗∇𝜑𝑗 , we can obtain from the above equation that

𝑁∑
𝑗=1

d𝑢𝑗
d𝜏
𝜑𝑗 (𝒙, 𝜏) − ∇𝑢ℎ ⋅ 𝛿𝒙 = 0. (32)

Then the corresponding weak form of (32) can be represented as

∫
Ω

(𝑁∑
𝑗=1

d𝑢𝑗
d𝜏
𝜑𝑗 (𝒙, 𝜏) − ∇𝑢ℎ ⋅ 𝛿𝒙

)
𝑣d𝒙 = 0, ∀𝑣 ∈ 𝑉ℎ(𝜏). (33)

If we let 𝑣 be the basis function of 𝑉 𝑘 (Ω), i.e., 𝑣 = 𝜑𝑖(𝒙, 𝜏), a system of linear ODEs for 𝑢𝑗 can be obtained, which is given by

𝑁∑
𝑗=1

(
∫
Ω

𝜑𝑖𝜑𝑗d𝒙
)d𝑢𝑗
d𝜏

=
𝑁∑
𝑗=1

(
∫
Ω

𝜑𝑖∇𝜑𝑗 ⋅ 𝛿𝒙d𝒙
)
𝑢𝑗 , 𝑖 = 1,2,… ,𝑁. (34)

5.3. Monitor functions

In the process of adaptive mesh movement, the effectiveness is largely determined by the monitor function 𝑴 . The commonly
used monitor function is a diagonal matrix based on the magnitudes of gradients of all solutions in the system, given by

𝑴(𝒙) =

(√
𝛿 +
∑
𝑖

|∇𝑢𝑖|2)𝑰 , (35)

where {𝑢𝑖} represents the solutions and 𝛿 > 0 is a parameter controlling the degree of mesh movement and preventing 𝑴 from
becoming a singular matrix. For PNP equations (3), (35) can be rewritten as

𝑴1(𝒙) =

(√√√√
𝛿 + |∇Φ|2 + 𝐾∑

𝑘=1
𝜂𝑘|∇𝑐𝑘|2)𝑰 , (36)
8

where 𝜂𝑘, 𝑘 = 1, 2, … , 𝐾 are parameters for regulating the impact of ion concentrations on the mesh movement.

Journal of Computational Physics 513 (2024) 113169M. Lv and B. Lu

Inspired by [10], another kind of monitor function can be designed to make the mesh move along the certain direction 𝒗(𝒙),

𝑴(𝒙) = 𝜆1(𝒙)𝒗(𝒙)𝒗⊤(𝒙) + 𝜆2(𝒙)𝒗⟂(𝒙)𝒗⊤⟂(𝒙), (37)

where 𝒗(𝒙), 𝒗⟂(𝒙) are normalized orthogonal eigenvectors corresponding to the positive eigenvalues 𝜆1(𝒙), 𝜆2(𝒙). Here, 𝜆1(𝒙) ought
to pinpoint locations with local singularities or boundary layers, i.e., 𝜆1(𝒙) should have bumps along the 𝒗(𝒙) at these locations.
Besides, 𝜆2(𝒙) can be chosen as a function of 𝜆1(𝒙). In fact, the monitor function defined in (35) can be interpreted as a special case
of (37) with 𝜆1(𝒙) = 𝜆2(𝒙) =

√
𝛿 +
∑
𝑖 |∇𝑢𝑖|2.

From a physical perspective, the flux formed by charge carriers in the PNP system is an important physical quantity, and the
convection-dominant effect is closely related to the characteristics of the flux. According to lots of work and our research expe-

riences [5,25,30,36,65,67], preserving flux conservation in numerical formulations significantly enhances algorithm stability and
accuracy. While this work does not focus on the design of flux-conserving algorithms, we propose a novel monitor function based on
flux for moving mesh method. This allows the mesh to contract and expand along the direction of streamlines in response to changes
in the flux divergence. As a result, the moving mesh method can effectively capture the characteristics of flux in the PNP system.
Specifically, 𝑱 𝑘 =

𝑱𝑘|𝑱𝑘| is selected as 𝒗(𝒙) and the divergence of flux ∇ ⋅ 𝑱 𝑘 is chosen to determine the eigenvalue 𝜆1(𝒙). Then the
new monitor function for the PNP equation is written as

𝑴2(𝒙) =
𝐾∑
𝑘=1

(𝜆1𝑱̂ 𝑘𝑱̂
⊤

𝑘
+ 𝜆2𝑱̂ 𝑘,⟂𝑱̂

⊤

𝑘,⟂), (38)

where 𝜆1 =
√
𝛿 + |∇ ⋅ 𝑱 𝑘|2 (𝛿 > 0) and 𝜆2 is a positive function of 𝜆1. 𝑱̂ 𝑘 is the normalized flux vector of 𝑱 𝑘 and 𝑱̂ 𝑘,⟂ is the

normalized orthogonal vector of 𝑱̂ 𝑘. In the following numerical experiments, we choose 𝜆2 = 0.5𝜆1.

Overall, the new monitor function 𝑴2, inspired by the flux in the PNP system, is heuristically devised. Mathematically, it cannot
be guaranteed that 𝑴2 consistently outperforms the traditional monitor function 𝑴1 in all scenarios. However, given that the design
framework of the monitor function (37) we employ is more general, where the traditional monitor function 𝑴1 is just a specific
instance within this framework, we have the flexibility to adjust parameters or devise other monitor functions tailored to specific
problems. Thus, the outcomes of these alternatives are expected to be at least on par with 𝑴1.

5.4. Some details

Regarding the moving mesh method, there are a couple of details that need to be clarified. One of them is the process of creating
a fixed reference mesh, and the other is to determine the appropriate step size, denoted as 𝜃.

5.4.1. Fixed reference mesh

The first step in the moving mesh method is to determine a fixed reference mesh  ∗
𝐶

in Ω𝐶 . In general, the reference mesh  ∗
𝐶

should meet certain conditions: the mesh should not be tangled with each other, and its topology should match that of the physical
mesh  . Therefore, we can solve the weak form of the following Laplace equations to determine the initial mesh positions [40,58],

−∇2𝝃(𝒙) = 0. (39)

Additionally, some boundary conditions should be given to ensure that the reference mesh  ∗
𝐶

and the physical mesh  have the
same boundary structure, i.e., corresponding boundary points have the same barycentric coordinates:

𝝃(𝒙) =
𝑑−1∑
𝑗=0
𝛼𝑗 (𝒙)𝐯𝑗 (Γ𝐶𝑖), ∀𝒙 =

𝑑−1∑
𝑗=0
𝛼𝑗 (𝒙)𝐯𝑗 (Γ𝑖) ∈ Γ𝑖 ⊂ 𝜕Ω. (40)

Here, {𝐯𝑗 (Γ𝐶𝑖)}
𝑑−1
𝑗=0 , {𝐯𝑗 (Γ𝑖)}

𝑑−1
𝑗=0 are the sets of vertices for Γ𝐶

𝑖
and Γ𝑖, respectively. The barycentric coordinate of 𝒙 on the boundary

facet(edge) is written as 𝜶 = [𝛼0(𝒙), 𝛼1(𝒙), … , 𝛼𝑑−1(𝒙)]⊤.

5.4.2. Step size

When considering a given step size for mesh moving, denoted as 𝜃, we need to avoid mesh tangle, which means maintaining the
orientation of all mesh elements. Therefore, for any mesh element 𝑒 ∈ ℎ, we need to ensure that step size 𝜃 > 0 is smaller than the
minimum positive solution 𝜃∗ of the following equation.

det
([1 1 ⋯ 1

𝒙𝑒,0 + 𝜃𝛿𝒙𝑒,0 𝒙𝑒,1 + 𝜃𝛿𝒙𝑒,1 ⋯ 𝒙𝑒,𝑑 + 𝜃𝛿𝒙𝑒,𝑑

])
= 0, ∀𝑒 ∈  , (41)

i.e., 𝜃 = 𝜂min𝑒∈ 𝜃∗, where 𝜂 ∈ [0, 1) is a scaling factor.

Additionally, to avoid producing too small elements during mesh movement, we propose to adaptively adjust the scaling factor
9

𝜂. Before explaining the adaptive step size adjustment strategy, we introduce some notations.

Journal of Computational Physics 513 (2024) 113169M. Lv and B. Lu

• Δ(𝑙)
max ∶= max𝑒∈ {(max𝑖 |𝛿𝒙𝑒,𝑖|)∕ℎ𝑒}, where ℎ𝑒 is the minimum distance from the vertices of element 𝑒 to the hyperplanes that

opposite them. Here, the superscript (𝑙) denotes the interior iteration step of mesh movement.

• 𝑁down denotes the number of consecutive decreases of Δmax. If an increase occurs, 𝑁down is reset to 0.

Then our algorithm for adaptive step size adjustment is as follows.

Algorithm 3 Adaptive step size adjustment.

Require: Given the initial value 𝜂0 and some constants 𝜂min < 𝜂̂ < 𝜂max, Δ1 < Δ2 < Δ3, 𝑁1
down

< 𝑁2
down

, the following algorithm is to determine the value of scaling
factor at the 𝑙-th interior iteration, which is denoted as 𝜂(𝑙) .

1: 𝜂(𝑙) ← 𝜂(𝑙−1)

2: if Δ(𝑙)
max >Δ3 and 𝜂(𝑙) > 𝜂̂ then

3: Set 𝜂(𝑙) ← 𝜂̂

4: end if

5: if Δ(𝑙)
max >Δ(𝑙−1)

max and 𝜂(𝑙) < 𝜂max then

6: Set 𝜂(𝑙) ← 1
2
𝜂(𝑙) and 𝑁𝑑𝑜𝑤𝑛 ← 0.

7: else

8: if Δ(𝑙)
max <Δ1 , 𝑁down >𝑁

1
down

and 𝜂(𝑙) < 𝜂max then

9: Set 𝜂(𝑙) ← 2𝜂(𝑙) .
10: else if Δ(𝑙)

max <Δ2 , 𝑁down >𝑁
2
down

and 𝜂(𝑙) < 𝜂max then

11: Set 𝜂(𝑙) ← 2𝜂(𝑙) .
12: end if

13: Set 𝑁down ←𝑁down + 1.

14: end if

In practice, the constants mentioned in Algorithm 3 can be adjusted according to the specific problem. In our numerical experi-

ments, we choose 𝜂min = 0.0125, 𝜂max = 0.5, ̂𝜂 = 0.125, Δ1 = 1, Δ2 = 10, Δ3 = 20, 𝑁1
down

= 10, 𝑁2
down

= 20.

6. Numerical results

6.1. Example 1

We consider the time-dependent PNP equations with a fixed singularity. The equations are as follows

⎧⎪⎪⎨⎪⎪⎩

𝜕𝑐𝑘

𝜕𝑡
−∇ ⋅ (𝐷𝑘(∇𝑐𝑘 + 𝑧𝑘𝑐𝑘∇Φ)) = 𝑓𝑘, 𝑘 = 1,2, in Ω, 𝑡 ∈ [0, 𝑇],

−∇ ⋅ (𝜖∇Φ) =
2∑
𝑘=1
𝑧𝑘𝑐𝑘 + 𝑓0, in Ω, 𝑡 ∈ [0, 𝑇],

(42)

where the computational L-shaped domain Ω = [−1, 1]2∖(−1.0 ×10−4, 1] × (−1.0 ×10−4, 1] ∈ℝ2 and the time span 𝑇 = 0.5. The basic
parameters for the PNP equations are set as 𝜖 = 1.0, 𝐷1 = 𝐷2 = 1, 𝑧1 = 1, 𝑧2 = −1. The boundary condition and the source terms
𝑓𝑘, 𝑘 = 0, 1, 2 should be chosen such that the exact solution is given by [68]

⎧⎪⎪⎨⎪⎪⎩

Φ= 𝑒𝑡(𝑥2 + 𝑦2)0.1,

𝑐1 =
𝑒𝑡

(100𝑥)2 + (100𝑦)2 + 1
,

𝑐2 = − 𝑒𝑡

(100𝑥)2 + (100𝑦)2 + 1
.

(43)

Obviously, the exact solutions have a singularity (0, 0), which can be visualized clearly in Fig. 2.

Fig. 3 shows the fixed uniform mesh and the redistributed meshes controlled by the monitor functions 𝑴1, 𝑴2 at 𝑡 = 0.5 respec-

tively. It is easy to see that the redistributed meshes are capable of capturing the position of the singularity accurately. Furthermore,
𝑴2 is able to drive the mesh nodes closer towards the singularity than 𝑴1, resulting in higher accuracy as expected.

When we choose a time step 𝛿𝑡 = 𝑂(ℎ), where ℎ is the initial uniform mesh size, the analysis for finite element approximation
shows that the optimal convergence order for 𝐻1 norm is 𝑂(DOF

1
2) for linear finite element discretization in two-dimensional

problem. Fig. 4 demonstrates the convergence plot in 𝐿1(0, 𝑇 ; 𝐻1(Ω)) norm. Clearly, the redistributed mesh outperforms the fixed
uniform mesh in both convergence speed and accuracy, irrespective of the monitor function employed. Additionally, as shown in
Fig. 5, the redistributed mesh requires less CPU time than the fixed uniform mesh to achieve comparable accuracy. The results also
show that the new monitor function 𝑴2 is superior to the traditional monitor function 𝑴1 in this case.

Besides, to further illustrate the time cost of the moving mesh method, we provide the CPU times for solving the PNP system
and moving mesh in Table 1. We observe that the time cost of the moving mesh is acceptable for smaller-scale grids. However, for
larger-scale grids, the time cost significantly increases. Despite this, the considerable improvement in solution accuracy justifies this
10

time cost. In future work, we will further optimize the algorithm to reduce the time expenditure.

Journal of Computational Physics 513 (2024) 113169M. Lv and B. Lu

Fig. 2. The exact solution of Φ, 𝑐1 and 𝑐2 when 𝑡 = 0.5 for Example 6.1.

Fig. 3. Comparison chart of fixed mesh and redistributed meshes when time 𝑡 = 0.5 and element scale ℎ = 0.05.

Fig. 4. Convergence plot in 𝐿1(0, 𝑇 ;𝐻1(Ω)) error.

6.2. Example 2

The second example introduces a case with internal layers. The computational domain for this example is a square region
Ω = [0, 1] × [0, 1], and the time span is 𝑇 = 0.5. The basic parameters for the PNP equation are the same as in Example 6.1. Suitable
11

boundary conditions and source terms 𝑓𝑘, 𝑘 = 0, 1, 2 are chosen to ensure that the exact solution is given by:

Journal of Computational Physics 513 (2024) 113169M. Lv and B. Lu

Fig. 5. Relative error-CPU seconds curve for Example 6.1.

Table 1

Three parts of CPU times for Example 6.1.

NDOF

405 1537 5985 23617 93825

CPU seconds for solving PNP system

fixed mesh 1.8067 9.7406 65.375 455.18 3223.1

redistributed mesh with 𝑀1 1.5719 9.5674 65.067 462.05 3260.9

redistributed mesh with 𝑀2 1.6136 9.2696 64.48 447.39 3230.5

CPU seconds for moving mesh

fixed mesh 0 0 0 0 0

redistributed mesh with 𝑀1 0.2800 1.2297 5.9607 38.060 3291.1

redistributed mesh with 𝑀2 1.6300 4.6122 24.953 193.54 2172.6

Total CPU seconds

fixed mesh 1.8067 9.7406 65.375 455.18 3223.1

redistributed mesh with 𝑀1 1.8519 10.797 71.028 500.11 6551.9

redistributed mesh with 𝑀2 3.2436 13.882 89.433 640.93 5403.1

⎧⎪⎪⎪⎨⎪⎪⎪⎩

Φ= exp
((𝑥− 0.25)2

0.001𝑒−𝑡
)
+ exp

((𝑦− 0.25)2

0.001𝑒−𝑡
)
,

𝑐1 = 10exp
((𝑥− 0.25)2

0.0005𝑒−𝑡
)
,

𝑐2 = −10exp
((𝑦− 0.25)2

0.0005𝑒−𝑡
)
.

(44)

In this example, the internal layer is controlled by the exponential term 𝑒−𝑡 of the Gaussian functions. When 𝑡 increases, the
boundary layer gradually thins. When 𝑡 = 0.5, the exact solution is shown in Fig. 6.

Although the solutions are globally smooth in this example, the presence of the internal layer causes the finite element method
with fixed mesh to achieve the expected convergence rate but with large convergence constants. However, the moving mesh method
is a useful choice to improve the efficiency of convergence, reducing the CPU time required to achieve the same accuracy, as shown
in Fig. 7. From the figure, we can also observe that although both Monitor functions achieve similar accuracy with the same degrees
of freedom, 𝑴2 consumes less CPU time than 𝑴1.

Additionally, it is worth noting that the exponential composition in the construction of the analytic solution is natural. In practical
applications of the Poisson–Nernst–Planck (PNP) equation, many potential wells formed by charges exhibit exponential forms. For
potential wells with more exponential term combinations, we can naturally extend them as variations of Example 6.2, where the
12

effectiveness of the moving mesh method remains applicable.

Journal of Computational Physics 513 (2024) 113169M. Lv and B. Lu

Fig. 6. Exact solutions Φ, 𝑐1 , and 𝑐2 at 𝑡 = 0.5 for Example 6.2.

Fig. 7. Relative error-CPU seconds curve for Example 6.2.

6.3. Example 3

The third case involves a PNP system that features a moving singularity. This system can be mathematically represented as follows⎧⎪⎨⎪⎩
𝜕𝑐𝑘

𝜕𝑡
−∇ ⋅ (𝐷𝑘(∇𝑐𝑘 + 𝑧𝑘𝑐𝑘∇Φ)) = 𝑓𝑘, 𝑘 = 1,2, in Ω, 𝑡 ∈ [0, 𝑇],

−∇ ⋅ (𝜖∇Φ) = 𝑧1𝑐1 + 𝑧2𝑐2 + 𝑓0, in Ω, 𝑡 ∈ [0, 𝑇],
(45)

where the computational region Ω = [−1, 1]2∖(−1.0 ×10−4, 1] ×(−1.0 ×10−4, 1] ∈ℝ2 and the time span 𝑇 = 0.5. The basic parameters
for PNP equations are the same as in Example 6.1. Select appropriate boundary conditions and source terms 𝑓𝑘, 𝑘 = 0, 1, 2, such that
the exact solution is represented as [68]

⎧⎪⎨⎪⎩
Φ= (𝑥2 + (𝑦− 0.4𝑡)2)0.1,

𝑐1 = lnΦ,

𝑐2 = − lnΦ.

(46)

The exact solution (46) reveals that the position of the singularity is (0, 0.4𝑡), which moves with time 𝑡. When 𝑡 = 0.5, it can be
illustrated in Fig. 8.

According to Fig. 9, it can be observed that the moving mesh method exhibits significantly improved convergence rates compared
13

to the fixed mesh. Particularly, when using 𝑴2 as the monitor function, the convergence rate reaches the theoretical optimum. In

Journal of Computational Physics 513 (2024) 113169M. Lv and B. Lu

Fig. 8. The exact solution of Φ, 𝑐1 and 𝑐2 when 𝑡 = 0.5 for Example 6.3.

Fig. 9. 𝐿1(0, 𝑇 ;𝐻1(Ω)) error and convergence rate. (The curves of 𝒄1 and 𝒄2 are overlapped.)

contrast to Example 6.1, this example better demonstrates the capability of moving mesh methods to capture the dynamic singularity.
Furthermore, it showcases the effectiveness and superiority of the newly designed monitor function 𝑴2.

6.4. Example 4

In this example, we consider the standard PNP equations which have a convection-dominant effect at the boundary with a
Dirichlet boundary condition,

⎧⎪⎨⎪⎩
𝜕𝑐𝑘

𝜕𝑡
=∇ ⋅ (𝐷𝑘(∇𝑐𝑘 + 𝑧𝑘𝑐𝑘∇Φ)) 𝑘 = 1,2, in Ω, 𝑡 ∈ [0, 𝑇],

−∇ ⋅ (𝜖∇Φ) = 𝑧1𝑐1 + 𝑧2𝑐2 in Ω, 𝑡 ∈ [0, 𝑇],
(47)

where Ω = [0, 1]2 ∈ ℝ2, 𝑇 = 0.5, 𝜖 = 0.01, 𝐷1 =𝐷2 = 1.0, 𝑧1 = 1, and 𝑧2 = −1. As for the initial and boundary conditions, they are
defined as follows{

𝑐1(𝑥, 𝑦,0) = 3.5,
14

𝑐2(𝑥, 𝑦,0) = 3.5,
(48)

Journal of Computational Physics 513 (2024) 113169M. Lv and B. Lu

Fig. 10. Illustration of the numerical solutions in equilibrium state solved by moving mesh method with 𝑴2 .

Fig. 11. Comparison chart of fixed mesh and redistributed meshes when time 𝑡 = 1 and initial element scale ℎ = 0.025.

⎧⎪⎪⎪⎨⎪⎪⎪⎩

Φ= 0 (𝑥, 𝑦) ∈ Γ1, 𝑡 ∈ [0, 𝑇],
Φ= 4 (𝑥, 𝑦) ∈ Γ3, 𝑡 ∈ [0, 𝑇],
𝜖
𝜕Φ
𝜕𝒏

= 0 (𝑥, 𝑦) ∈ Γ2 ∪ Γ4, 𝑡 ∈ [0, 𝑇],
𝑱 𝟏 ⋅ 𝒏 = 0 (𝑥, 𝑦) ∈ 𝜕Ω, 𝑡 ∈ [0, 𝑇],
𝑱 𝟐 ⋅ 𝒏 = 0 (𝑥, 𝑦) ∈ 𝜕Ω, 𝑡 ∈ [0, 𝑇],

(49)
15

where Γ1 = {(𝑥, 𝑦) ∈ 𝜕Ω|𝑦 = 0}, Γ2 = {(𝑥, 𝑦) ∈ 𝜕Ω|𝑥 = 1}, Γ3 = {(𝑥, 𝑦) ∈ 𝜕Ω|𝑦 = 1}, Γ4 = {(𝑥, 𝑦) ∈ 𝜕Ω|𝑥 = 0}.

Journal of Computational Physics 513 (2024) 113169M. Lv and B. Lu

Fig. 12. The free energy for different ℎ when time step 𝛿𝑡 = 0.002.

As we can see from Fig. 10, the system displays clear boundary layers around Γ1 and Γ3, where the convective term with the
velocity vector ∇Φ is significantly large within narrow regions. To capture these boundary layers and improve solution accuracy,
the moving mesh method is employed. Fig. 11 shows zoomed-in views of the solution 𝑐2 varying with 𝑥 at the boundary Γ3 for fixed
and redistributed meshes. Here, the figure only shows the 𝑴2 result as the visualization of 𝑴1 is similar. The figure clearly displays
the effectiveness of the mesh redistribution.

In this example, we fix the time step size as 𝛿𝑡 = 0.002. Taking free energy as an evaluation metric, the results are shown in
Fig. 12. It can be observed that in the case of sparse mesh, if the mesh is fixed, unbounded energy occurs during time marching,
while the moving mesh method can effectively redistribute mesh points and keep the energy bounded. In the case of a denser mesh,
the moving mesh method meets the energy dissipation property, where the free energy monotonically decreases over time. However,
the fixed mesh fails to capture the energy dissipation property even with a denser mesh (initial uniform mesh size ℎ = 0.0125).
Additionally, based on the monitor function 𝑴2, the mesh redistributed by the moving mesh method yields a smaller equilibrium
energy compared to 𝑴1. This indicates that the finite element space corresponding to the mesh redistribution based on 𝑴2 provides
a better approximation for the solutions to some degree.

7. Conclusion

In this paper, we apply a moving mesh method to address the challenges posed in the numerical solution of the Poisson–

Nernst–Planck (PNP) equations. The PNP equations are decoupled using the Gummel iteration technique. Spatial discretization
was achieved through a finite element approach, while temporal discretization was realized using an implicit scheme. We presented
a comprehensive derivation and explanation of the moving mesh method, which includes a relatively general functional and a novel
flux-based monitor function. Our experiments display clearly that the redistributed mesh generated by moving mesh method is supe-

rior to the fixed mesh in solving PNP equations with singularities or exhibiting boundary layers. Additionally, the flux-based monitor
function we proposed outperforms the traditional counterpart in all the numerical examples of this paper.

In future work, we aim to combine the moving mesh method with more stable numerical algorithms. Furthermore, we will employ
the moving mesh technique to other systems of transport problem where flux exists.

CRediT authorship contribution statement

Minrui Lv: Writing – review & editing, Writing – original draft, Visualization, Validation, Software, Resources, Methodology,
Investigation, Formal analysis, Data curation, Conceptualization. Benzhuo Lu: Writing – review & editing, Supervision, Project
16

administration, Funding acquisition, Conceptualization, Methodology.

Journal of Computational Physics 513 (2024) 113169M. Lv and B. Lu

Fig. A.13. Illustration of 𝐹𝑒(𝜏) ∶ 𝑒→ 𝑒(𝜏).

Declaration of competing interest

The authors declare the following financial interests/personal relationships which may be considered as potential competing
interests: Minrui Lv and Benzhuo Lu reports financial support was provided by National Natural Science Foundation of China.

Data availability

Data will be made available on request.

Acknowledgements

This research was funded by the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB0500000)
and the National Natural Science Foundation of China (Grant No. 12371413, No. 22073110). We would like to thank the students
Yan Xie, Sheng Gui for their valuable comments and suggestions.

Appendix A. The derivation of (30)

Set  (𝜏) = { (𝜏) = {𝒙𝑖(𝜏)}
𝑁𝑣
𝑖=1,  (𝜏) = {𝑒𝑖(𝜏)}

𝑁𝑒
𝑖=1} be the mesh at 𝜏 during the process of mesh moving. Due to the topology of

mesh being invariant, any mesh element 𝑒(𝜏) ∈𝐸 ℎ(𝜏) can be regarded as the image of a fixed reference element 𝑒 under a family of
invertible affine mappings 𝐹𝑒(𝜏), i.e.,

𝐹𝑒(𝜏) ∶ 𝑒→ 𝑒(𝜏),

𝝃 ↦ 𝒙 = 𝐹𝑒(𝜏)(𝝃),
(A.1)

which in the two-dimensional case is clearly depicted in Fig. A.13. We can observe that the relationship between any basis function
𝜑𝑗 restricted to 𝑒(𝜏) and its corresponding basis 𝜑̂𝑗 restricted to 𝑒 is as follows,

𝜑𝑗 (𝒙(𝜏), 𝜏) = 𝜑̂𝑗◦𝐹−1
𝑒(𝜏)(𝒙) = 𝜑̂𝑗 (𝝃). (A.2)

It means that the material derivative of any basis in 𝑉 𝑘 (Ω) is vanished, i.e.,

d𝜑𝑗 (𝒙(𝜏), 𝜏)
d𝜏

=
𝜕𝜑̂𝑗 (𝝃)
𝜕𝜏

= 0, 𝑗 = 1,2,… ,𝑁. (A.3)

According to (A.3) and the relationship between material and local derivative, we can derive (30) through the following steps, i.e.,

0 =
d𝜑𝑗
d𝜏

=
𝜕𝜑𝑗

𝜕𝜏
+∇𝜑𝑗 ⋅

d𝒙
d𝜏

=
𝜕𝜑𝑗

𝜕𝜏
+∇𝜑𝑗 ⋅

d
d𝜏

(
𝑁𝑣∑
𝑘=1
𝜙𝑘𝒙𝑘(𝜏)) (linear basis function)

=
𝜕𝜑𝑗

𝜕𝜏
+∇𝜑𝑗 ⋅

𝑁𝑣∑
𝑘=1

(d𝜙𝑘
d𝜏

𝒙𝑘(𝜏) +𝜙𝑘
d𝒙𝑘
d𝜏

)
=
𝜕𝜑𝑗

𝜕𝜏
+∇𝜑𝑗 ⋅

𝑁𝑣∑
𝑘=1
𝜙𝑘

d𝒙𝑘
d𝜏

(
d𝜙𝑘
d𝜏

=
𝜕𝜙𝑘

𝜕𝜏

|||𝝃 = 0)

=
𝜕𝜑𝑗

𝜕𝜏
+∇𝜑𝑗 ⋅ 𝛿𝒙,

(A.4)
17

where 𝛿𝒙, 𝜙𝑘 have the same definitions as those in (30).

Journal of Computational Physics 513 (2024) 113169M. Lv and B. Lu

References

[1] F. Alauzet, A. Loseille, A decade of progress on anisotropic mesh adaptation for computational fluid dynamics, Comput. Aided Des. 72 (2016) 13–39.

[2] R.E. Bank, J.F. Bürgler, W. Fichtner, R.K. Smith, Some upwinding techniques for finite element approximations of convection–diffusion equations, Numer. Math.
58 (1990) 185–202.

[3] M. Bessemoulin-Chatard, C. Chainais-Hillairet, M.H. Vignal, Study of a finite volume scheme for the drift-diffusion system. Asymptotic behavior in the quasi-

neutral limit, SIAM J. Numer. Anal. 52 (2014) 1666–1691.

[4] P. Bochev, M. Perego, K. Peterson, Formulation and analysis of a parameter–free stabilized finite element method, SIAM J. Numer. Anal. 53 (2015) 2363–2388.

[5] D. Boffi, N. Cavallini, F. Gardini, L. Gastaldi, Local mass conservation of Stokes finite elements, J. Sci. Comput. 52 (2012) 383–400.

[6] J. Brackbill, An adaptive grid with directional control, J. Comput. Phys. 108 (1993) 38–50.

[7] F. Brezzi, L. Marini, S. Micheletti, P. Pietra, R. Sacco, S. Wang, Discretization of semiconductor device problems (I), Handb. Numer. Anal. 13 (2005) 317–441.

[8] F. Brezzi, L.D. Marini, P. Pietra, Two-dimensional exponential fitting and applications to drift–diffusion models, SIAM J. Numer. Anal. 26 (1989) 1342–1355.

[9] A.N. Brooks, T.J. Hughes, Streamline upwind/Petrov–Galerkin formulations for convection dominated flows with particular emphasis on the incompressible
Navier–Stokes equations, Comput. Methods Appl. Mech. Eng. 32 (1982) 199–259.

[10] W. Cao, W. Huang, R.D. Russell, A study of monitor functions for two–dimensional adaptive mesh generation, SIAM J. Sci. Comput. 20 (1999) 1978–1994.

[11] C. Chainais-Hillairet, Y.J. Peng, Finite volume approximation for degenerate drift–diffusion system in several space dimensions, Math. Models Methods Appl.
Sci. 14 (2004) 461–481.

[12] L. Chen, P. Sun, J. Xu, Optimal anisotropic meshes for minimizing interpolation errors in 𝐿𝑝–norm, Math. Comput. 76 (2007) 179–204.

[13] P.G. Ciarlet, The Finite Element Method for Elliptic Problems, Society for Industrial and Applied Mathematics, 2002.

[14] F. Ciucci, W. Lai, Derivation of micro/macro lithium battery models from homogenization, Transp. Porous Media 88 (2011) 249–270.

[15] A. van Dam, P.A. Zegeling, et al., Balanced monitoring of flow phenomena in moving mesh methods, Commun. Comput. Phys. 7 (2010) 138.

[16] P. Das, Comparison of a priori and a posteriori meshes for singularly perturbed nonlinear parameterized problems, Am. J. Comput. Appl. Math. 290 (2015)
16–25.

[17] P. Das, S. Natesan, Adaptive mesh generation for singularly perturbed fourth-order ordinary differential equations, Int. J. Comput. Math. 92 (2015) 562–578.

[18] P. Das, J. Vigo-Aguiar, Parameter uniform optimal order numerical approximation of a class of singularly perturbed system of reaction diffusion problems
involving a small perturbation parameter, Am. J. Comput. Appl. Math. 354 (2019) 533–544.

[19] M. Delfour, G. Payre, J.P. Zolésio, An optimal triangulation for second–order elliptic problems, Comput. Methods Appl. Mech. Eng. 50 (1985) 231–261.

[20] Y. Di, R. Li, T. Tang, P. Zhang, Moving mesh finite element methods for the incompressible Navier–Stokes equations, SIAM J. Sci. Comput. 26 (2005) 1036–1056.

[21] Y. Di, R. Li, T. Tang, et al., A general moving mesh framework in 3D and its application for simulating the mixture of multi–phase flows, Commun. Comput.
Phys. 3 (2008) 582–602.

[22] J. Ding, Z. Wang, S. Zhou, Positivity preserving finite difference methods for Poisson–Nernst–Planck equations with steric interactions: application to slit–shaped
nanopore conductance, J. Comput. Phys. 397 (2019) 108864.

[23] C. Dobrzynski, P. Frey, Anisotropic Delaunay mesh adaptation for unsteady simulations, in: Proceedings of the 17th International Meshing Roundtable, Springer,
2008, pp. 177–194.

[24] A.S. Dvinsky, Adaptive grid generation from harmonic maps on Riemannian manifolds, J. Comput. Phys. 95 (1991) 450–476.

[25] R. Eymard, T. Gallouët, R. Herbin, Finite volume methods, Handb. Numer. Anal. 7 (2000) 713–1018.

[26] A. Flavell, M. Machen, B. Eisenberg, J. Kabre, C. Liu, X. Li, A conservative finite difference scheme for Poisson–Nernst–Planck equations, J. Comput. Electron.
13 (2014) 235–249.

[27] H. Gao, P. Sun, A linearized local conservative mixed finite element method for Poisson–Nernst–Planck equations, J. Sci. Comput. 77 (2018) 793–817.

[28] J.L. Gracia, E. OŔiordan, Numerical approximations to a singularly perturbed convection–diffusion problem with a discontinuous initial condition, Numer.
Algorithms 88 (2021) 1851–1873.

[29] D. He, K. Pan, An energy preserving finite difference scheme for the Poisson–Nernst–Planck system, Appl. Math. Comput. 287 (2016) 214–223.

[30] J.J. Heys, E. Lee, T.A. Manteuffel, S.F. McCormick, An alternative least–squares formulation of the Navier–Stokes equations with improved mass conservation,
J. Comput. Phys. 226 (2007) 994–1006.

[31] U. Hollerbach, D.P. Chen, R.S. Eisenberg, Two- and three-dimensional Poisson–Nernst–Planck simulations of current flow through gramicidin A, J. Sci. Comput.
16 (2001) 373–409.

[32] W. Huang, L. Kamenski, J. Lang, A new anisotropic mesh adaptation method based upon hierarchical a posteriori error estimates, J. Comput. Phys. 229 (2010)
2179–2198.

[33] W. Huang, R.D. Russell, A high dimensional moving mesh strategy, Appl. Numer. Math. 26 (1998) 63–76.

[34] W. Huang, R.D. Russell, Moving mesh strategy based on a gradient flow equation for two–dimensional problems, SIAM J. Sci. Comput. 20 (1998) 998–1015.

[35] W. Huang, R.D. Russell, Adaptive Moving Mesh Methods, vol. 174, Springer Science & Business Media, 2010.

[36] D. Kim, H. Choi, A second-order time-accurate finite volume method for unsteady incompressible flow on hybrid unstructured grids, J. Comput. Phys. 162
(2000) 411–428.

[37] Y. Kuang, G. Hu, An adaptive FEM with ITP approach for steady Schrödinger equation, Int. J. Comput. Math. 95 (2018) 187–201.

[38] M.G. Kurnikova, R.D. Coalson, P. Graf, A. Nitzan, A lattice relaxation algorithm for three-dimensional Poisson–Nernst–Planck theory with application to ion
transport through the gramicidin A channel, Biophys. J. 76 (1999) 642–656.

[39] R. Li, W. Liu, H. Ma, T. Tang, Adaptive finite element approximation for distributed elliptic optimal control problems, SIAM J. Control Optim. 41 (2002)
1321–1349.

[40] R. Li, T. Tang, P. Zhang, A moving mesh finite element algorithm for singular problems in two and three space dimensions, J. Comput. Phys. 177 (2002)
365–393.

[41] C. Liu, C. Wang, S.M. Wise, X. Yue, S. Zhou, A positivity–preserving, energy stable and convergent numerical scheme for the Poisson–Nernst–Planck system,
Math. Comput. 90 (2021) 2071–2106.

[42] H. Liu, Z. Wang, A free energy satisfying finite difference method for Poisson–Nernst–Planck equations, J. Comput. Phys. 268 (2014) 363–376.

[43] L. Liu, Y. Chen, A posteriori error estimation in maximum norm for a strongly coupled system of two singularly perturbed convection–diffusion problems, Am.
J. Comput. Appl. Math. 313 (2017) 152–167.

[44] X. Liu, Y. Qiao, B. Lu, Analysis of the mean field free energy functional of electrolyte solution with nonhomogenous boundary conditions and the generalized
PB/PNP equations with inhomogeneous dielectric permittivity, SIAM J. Appl. Math. 78 (2018) 1131–1154.

[45] B. Lu, M.J. Holst, J.A. McCammon, Y. Zhou, Poisson–Nernst–Planck equations for simulating biomolecular diffusion–reaction processes I: finite element solutions,
J. Comput. Phys. 229 (2010) 6979–6994.

[46] G. MacDonald, J. Mackenzie, M. Nolan, R. Insall, A computational method for the coupled solution of reaction–diffusion equations on evolving domains and
manifolds: application to a model of cell migration and Chemotaxis, J. Comput. Phys. 309 (2016) 207–226.

[47] P.A. Markowich, M.A. Zlámal, Inverse–average–type finite element discretizations of selfadjoint second-order elliptic problems, Math. Comput. 51 (1988)
431–449.
18

[48] S.R. Mathur, J.Y. Murthy, A multigrid method for the Poisson–Nernst–Planck equations, Int. J. Heat Mass Transf. 52 (2009) 4031–4039.

http://refhub.elsevier.com/S0021-9991(24)00418-2/bib8E24993D27802D3A9C00170A672F6987s1
http://refhub.elsevier.com/S0021-9991(24)00418-2/bibAE6C398FE9D59C96180532359AB67C7Fs1
http://refhub.elsevier.com/S0021-9991(24)00418-2/bibAE6C398FE9D59C96180532359AB67C7Fs1
http://refhub.elsevier.com/S0021-9991(24)00418-2/bib218DCF52D3C26BC01E565CE311999444s1
http://refhub.elsevier.com/S0021-9991(24)00418-2/bib218DCF52D3C26BC01E565CE311999444s1
http://refhub.elsevier.com/S0021-9991(24)00418-2/bib5891187298BBF621F0D0D4FF75685A71s1
http://refhub.elsevier.com/S0021-9991(24)00418-2/bibA484F0CAB4E5273C8BCAAE4CFDA17E15s1
http://refhub.elsevier.com/S0021-9991(24)00418-2/bib18D9D38D81ACA139EC83833DAE0735E3s1
http://refhub.elsevier.com/S0021-9991(24)00418-2/bibCC7065F9FF8112BE0D970C1E3D90CCE3s1
http://refhub.elsevier.com/S0021-9991(24)00418-2/bib258E5D60EFE34E5360D005FA68057666s1
http://refhub.elsevier.com/S0021-9991(24)00418-2/bib67FA727211FE3D97FDA171B7F266DE83s1
http://refhub.elsevier.com/S0021-9991(24)00418-2/bib67FA727211FE3D97FDA171B7F266DE83s1
http://refhub.elsevier.com/S0021-9991(24)00418-2/bib29AD5F1591A9D374CCCF6517B8DD2DBCs1
http://refhub.elsevier.com/S0021-9991(24)00418-2/bib22EFA92172881ABA9F23B13BBEEF2FB2s1
http://refhub.elsevier.com/S0021-9991(24)00418-2/bib22EFA92172881ABA9F23B13BBEEF2FB2s1
http://refhub.elsevier.com/S0021-9991(24)00418-2/bib743C016EC72D2DA7D7855C82324036C1s1
http://refhub.elsevier.com/S0021-9991(24)00418-2/bib26F60F0DB5489115250F1D59C1606AB8s1
http://refhub.elsevier.com/S0021-9991(24)00418-2/bibAF8125B06C6518A810C3704C4E216E15s1
http://refhub.elsevier.com/S0021-9991(24)00418-2/bibC2BDDF5058830761B33D5027F39056B1s1
http://refhub.elsevier.com/S0021-9991(24)00418-2/bib2ECAC83D2FC558044ECF38B9FFC23AFBs1
http://refhub.elsevier.com/S0021-9991(24)00418-2/bib2ECAC83D2FC558044ECF38B9FFC23AFBs1
http://refhub.elsevier.com/S0021-9991(24)00418-2/bibA6E8B53BFE6E4A4A8265EEE3F26CAE4Bs1
http://refhub.elsevier.com/S0021-9991(24)00418-2/bib11FBA9853A5811896D63958B953F981Fs1
http://refhub.elsevier.com/S0021-9991(24)00418-2/bib11FBA9853A5811896D63958B953F981Fs1
http://refhub.elsevier.com/S0021-9991(24)00418-2/bibE41BA3C50F22E6FACDB3A8A4DAEBEA38s1
http://refhub.elsevier.com/S0021-9991(24)00418-2/bib83808A6AA6635FA7A42C141F294AE836s1
http://refhub.elsevier.com/S0021-9991(24)00418-2/bibCA7A481E814D31C31A46ABC10F97BC1As1
http://refhub.elsevier.com/S0021-9991(24)00418-2/bibCA7A481E814D31C31A46ABC10F97BC1As1
http://refhub.elsevier.com/S0021-9991(24)00418-2/bib4E5E6084CFAB4029C83E616B0EE8777Ds1
http://refhub.elsevier.com/S0021-9991(24)00418-2/bib4E5E6084CFAB4029C83E616B0EE8777Ds1
http://refhub.elsevier.com/S0021-9991(24)00418-2/bibFB50A654F667E9CC6FCD0F7ED6799E40s1
http://refhub.elsevier.com/S0021-9991(24)00418-2/bibFB50A654F667E9CC6FCD0F7ED6799E40s1
http://refhub.elsevier.com/S0021-9991(24)00418-2/bib7B058F4A5284CE250222C729E19AE5C3s1
http://refhub.elsevier.com/S0021-9991(24)00418-2/bib7860808F5B3496BEBE284865D20547BAs1
http://refhub.elsevier.com/S0021-9991(24)00418-2/bib44CADD5A5274A28DDC514EF7B6EF209Cs1
http://refhub.elsevier.com/S0021-9991(24)00418-2/bib44CADD5A5274A28DDC514EF7B6EF209Cs1
http://refhub.elsevier.com/S0021-9991(24)00418-2/bib1EA9777BC2C17A3E259595C775EB03E7s1
http://refhub.elsevier.com/S0021-9991(24)00418-2/bibBD7457EA6602C1BA885F5D7003BF53C9s1
http://refhub.elsevier.com/S0021-9991(24)00418-2/bibBD7457EA6602C1BA885F5D7003BF53C9s1
http://refhub.elsevier.com/S0021-9991(24)00418-2/bib866D5AB53E7C641B4A029689E40B87CEs1
http://refhub.elsevier.com/S0021-9991(24)00418-2/bib415280D317DAAB55E43B14C0C2B435D5s1
http://refhub.elsevier.com/S0021-9991(24)00418-2/bib415280D317DAAB55E43B14C0C2B435D5s1
http://refhub.elsevier.com/S0021-9991(24)00418-2/bibC86E17BDED90A4EFE2071663F1F3BD44s1
http://refhub.elsevier.com/S0021-9991(24)00418-2/bibC86E17BDED90A4EFE2071663F1F3BD44s1
http://refhub.elsevier.com/S0021-9991(24)00418-2/bibBC4FBDB56589F10E86ACB1307B73A670s1
http://refhub.elsevier.com/S0021-9991(24)00418-2/bibBC4FBDB56589F10E86ACB1307B73A670s1
http://refhub.elsevier.com/S0021-9991(24)00418-2/bib590FC8D9C265EE9908C9A715256BA93Bs1
http://refhub.elsevier.com/S0021-9991(24)00418-2/bib4C4021E63280CD1DBA8CBF149900B802s1
http://refhub.elsevier.com/S0021-9991(24)00418-2/bibA189C531AD808D8983B27EB4F16C61B7s1
http://refhub.elsevier.com/S0021-9991(24)00418-2/bibDA313DEBC942A03320A4AF79ABA20AEEs1
http://refhub.elsevier.com/S0021-9991(24)00418-2/bibDA313DEBC942A03320A4AF79ABA20AEEs1
http://refhub.elsevier.com/S0021-9991(24)00418-2/bibE5E69898CBA35B5BD4A669216B08FAF0s1
http://refhub.elsevier.com/S0021-9991(24)00418-2/bibB8C78882B31B9768953E189F4F2A20B3s1
http://refhub.elsevier.com/S0021-9991(24)00418-2/bibB8C78882B31B9768953E189F4F2A20B3s1
http://refhub.elsevier.com/S0021-9991(24)00418-2/bib80877849621B6CEA8C4B007C2FC14A8Ds1
http://refhub.elsevier.com/S0021-9991(24)00418-2/bib80877849621B6CEA8C4B007C2FC14A8Ds1
http://refhub.elsevier.com/S0021-9991(24)00418-2/bib9E49D455BC96D9EB09B5AB2449162A00s1
http://refhub.elsevier.com/S0021-9991(24)00418-2/bib9E49D455BC96D9EB09B5AB2449162A00s1
http://refhub.elsevier.com/S0021-9991(24)00418-2/bib4837EFCAF0BA15A485C1A452536F5631s1
http://refhub.elsevier.com/S0021-9991(24)00418-2/bib4837EFCAF0BA15A485C1A452536F5631s1
http://refhub.elsevier.com/S0021-9991(24)00418-2/bibFBDD82EF2F58FD4FCA7DDD2E24678625s1
http://refhub.elsevier.com/S0021-9991(24)00418-2/bib89C5CFFE3CC7BC3019CC247AE635461Ds1
http://refhub.elsevier.com/S0021-9991(24)00418-2/bib89C5CFFE3CC7BC3019CC247AE635461Ds1
http://refhub.elsevier.com/S0021-9991(24)00418-2/bib412719794D709A40DACBAA93D3478DA0s1
http://refhub.elsevier.com/S0021-9991(24)00418-2/bib412719794D709A40DACBAA93D3478DA0s1
http://refhub.elsevier.com/S0021-9991(24)00418-2/bib5294CB404842D543F152CC36FBE86816s1
http://refhub.elsevier.com/S0021-9991(24)00418-2/bib5294CB404842D543F152CC36FBE86816s1
http://refhub.elsevier.com/S0021-9991(24)00418-2/bib3862D50E19BDD591FEC55B7EB1FDE5E7s1
http://refhub.elsevier.com/S0021-9991(24)00418-2/bib3862D50E19BDD591FEC55B7EB1FDE5E7s1
http://refhub.elsevier.com/S0021-9991(24)00418-2/bib5BF06A56A2A5D1A46EB4AA7A815B3D5Fs1
http://refhub.elsevier.com/S0021-9991(24)00418-2/bib5BF06A56A2A5D1A46EB4AA7A815B3D5Fs1
http://refhub.elsevier.com/S0021-9991(24)00418-2/bib020D8C40455464C2216E4E737AC1E0EEs1

Journal of Computational Physics 513 (2024) 113169M. Lv and B. Lu

[49] J. Miller, W. Schilders, S. Wang, Application of finite element methods to the simulation of semiconductor devices, Rep. Prog. Phys. 62 (1999) 277.

[50] K. Miller, R.N. Miller, Moving finite elements. I, SIAM J. Numer. Anal. 18 (1981) 1019–1032.

[51] Y. Qiu, D. Sloan, T. Tang, Numerical solution of a singularly perturbed two–point boundary value problem using equidistribution: analysis of convergence, Am.
J. Comput. Appl. Math. 116 (2000) 121–143.

[52] G. Richardson, J. King, Time-dependent modelling and asymptotic analysis of electrochemical cells, J. Eng. Math. 59 (2007) 239–275.

[53] P. Thomas, C. Lombard, Geometric conservation law and its application to flow computations on moving grids, AIAA J. 17 (1979) 1030–1037.

[54] Y. Tourigny, F. Hülsemann, A new moving mesh algorithm for the finite element solution of variational problems, SIAM J. Numer. Anal. 35 (1998) 1416–1438.

[55] B. Tu, M. Chen, Y. Xie, L. Zhang, B. Eisenberg, B. Lu, A parallel finite element simulator for ion transport through three–dimensional ion channel systems, J.
Comput. Chem. 34 (2013) 2065–2078.

[56] D. Wang, X.P. Wang, A three-dimensional adaptive method based on the iterative grid redistribution, J. Comput. Phys. 199 (2004) 423–436.

[57] Q. Wang, H. Li, L. Zhang, B. Lu, A stabilized finite element method for the Poisson–Nernst–Planck equations in three-dimensional ion channel simulations, Appl.
Math. Lett. 111 (2021) 106652.

[58] A.M. Winslow, Numerical solution of the quasilinear Poisson equation in a nonuniform triangle mesh, J. Comput. Phys. 1 (1966) 149–172.

[59] A.M. Winslow, Adaptive–mesh zoning by the equipotential method, Technical Report, Lawrence Livermore National Lab., CA (USA), 1981.

[60] S. Wu, J. Xu, Simplex–averaged finite element methods for H(grad), H(curl), and H(div) convection–diffusion problems, SIAM J. Numer. Anal. 58 (2020)
884–906.

[61] D. Xie, Z. Chao, A Poisson–Nernst–Planck single ion channel model and its effective finite element solver, J. Comput. Phys. 481 (2023) 112043.

[62] D. Xie, B. Lu, An effective finite element iterative solver for a Poisson–Nernst–Planck ion channel model with periodic boundary conditions, SIAM J. Sci. Comput.
42 (2020) B1490–B1516.

[63] Y. Xie, T. Liu, B. Tu, B. Lu, L. Zhang, Automated parallel and body–fitted mesh generation in finite element simulation of macromolecular systems, Commun.
Comput. Phys. 19 (2016) 582–602.

[64] G. Xu, B. Li, L. Shu, L. Chen, J. Xu, T. Khajah, Efficient R-adaptive isogeometric analysis with Winslow’s mapping and monitor function approach, Am. J. Comput.
Appl. Math. 351 (2019) 186–197.

[65] J. Xu, L. Zikatanov, A monotone finite element scheme for convection–diffusion equations, Math. Comput. 68 (1999) 1429–1446.

[66] J. Ying, R. Fan, J. Li, B. Lu, A new block preconditioner and improved finite element solver of Poisson–Nernst–Planck equation, J. Comput. Phys. 430 (2021)
110098.

[67] Q. Zhang, Q. Wang, L. Zhang, B. Lu, A class of finite element methods with averaging techniques for solving the three-dimensional drift–diffusion model in
semiconductor device simulations, J. Comput. Phys. 458 (2022) 111086.

[68] W. Zhu, Y. Yang, G. Ji, B. Lu, Residual type a posteriori error estimates for the time-dependent Poisson–Nernst–Planck equations, J. Sci. Comput. 90 (2022)
19

1–35.

http://refhub.elsevier.com/S0021-9991(24)00418-2/bib184070B7786DEA1F2BEAB15C734F0D73s1
http://refhub.elsevier.com/S0021-9991(24)00418-2/bibDA67114F7EC6F2F141D1D180AAC11163s1
http://refhub.elsevier.com/S0021-9991(24)00418-2/bibCF1F30FD6B032A01B99B7E104DB33F45s1
http://refhub.elsevier.com/S0021-9991(24)00418-2/bibCF1F30FD6B032A01B99B7E104DB33F45s1
http://refhub.elsevier.com/S0021-9991(24)00418-2/bib20826826D976C188735A19C16DFCB15Ds1
http://refhub.elsevier.com/S0021-9991(24)00418-2/bib0847CD18A3E8F1AEF99DC107EA91E32Fs1
http://refhub.elsevier.com/S0021-9991(24)00418-2/bib4FCCE1CD5B63C09EDE0F1D9773FDA8D7s1
http://refhub.elsevier.com/S0021-9991(24)00418-2/bib24C2328257F6B00C676F433FD762B1DBs1
http://refhub.elsevier.com/S0021-9991(24)00418-2/bib24C2328257F6B00C676F433FD762B1DBs1
http://refhub.elsevier.com/S0021-9991(24)00418-2/bibD8B7460E5BEE771DD8716FA0800C4E40s1
http://refhub.elsevier.com/S0021-9991(24)00418-2/bibD80230FF4AB32D8DB4AB83892EB4B49Bs1
http://refhub.elsevier.com/S0021-9991(24)00418-2/bibD80230FF4AB32D8DB4AB83892EB4B49Bs1
http://refhub.elsevier.com/S0021-9991(24)00418-2/bib99702C7F7BD7284FE0A39FCDAE06708Bs1
http://refhub.elsevier.com/S0021-9991(24)00418-2/bib61D69ECF4A390C2EDDCC0D98601A5ACDs1
http://refhub.elsevier.com/S0021-9991(24)00418-2/bibFA00DC1883D6C50142D95FE07CED8A1Ds1
http://refhub.elsevier.com/S0021-9991(24)00418-2/bibFA00DC1883D6C50142D95FE07CED8A1Ds1
http://refhub.elsevier.com/S0021-9991(24)00418-2/bibD2132207E19190EA252C239455AF40F4s1
http://refhub.elsevier.com/S0021-9991(24)00418-2/bibB686E63243D8F9DB7A62B972DD8E8DCAs1
http://refhub.elsevier.com/S0021-9991(24)00418-2/bibB686E63243D8F9DB7A62B972DD8E8DCAs1
http://refhub.elsevier.com/S0021-9991(24)00418-2/bib7405777B0F5231251D28939B794E9196s1
http://refhub.elsevier.com/S0021-9991(24)00418-2/bib7405777B0F5231251D28939B794E9196s1
http://refhub.elsevier.com/S0021-9991(24)00418-2/bib5D2207BBCE751DF5830D1B9E54E4064Cs1
http://refhub.elsevier.com/S0021-9991(24)00418-2/bib5D2207BBCE751DF5830D1B9E54E4064Cs1
http://refhub.elsevier.com/S0021-9991(24)00418-2/bib26A9A0BFD170D81B6FDEAEEBCE466486s1
http://refhub.elsevier.com/S0021-9991(24)00418-2/bib1D3A9C30200260C6482A276D64750B38s1
http://refhub.elsevier.com/S0021-9991(24)00418-2/bib1D3A9C30200260C6482A276D64750B38s1
http://refhub.elsevier.com/S0021-9991(24)00418-2/bib39F1F2246391C096892BBB0EB5801187s1
http://refhub.elsevier.com/S0021-9991(24)00418-2/bib39F1F2246391C096892BBB0EB5801187s1
http://refhub.elsevier.com/S0021-9991(24)00418-2/bibFD57FB01B5ED2C3D24B3215C1F02AF0Fs1
http://refhub.elsevier.com/S0021-9991(24)00418-2/bibFD57FB01B5ED2C3D24B3215C1F02AF0Fs1

	A flux-based moving mesh method applied to solving the Poisson--Nernst--Planck equations
	1 Introduction
	2 Preliminaries
	3 Poisson--Nernst--Planck equations
	4 Numerical discretization
	5 Moving mesh method
	5.1 Mesh redistribution strategy
	5.2 Solution interpolation
	5.3 Monitor functions
	5.4 Some details
	5.4.1 Fixed reference mesh
	5.4.2 Step size

	6 Numerical results
	6.1 Example 1
	6.2 Example 2
	6.3 Example 3
	6.4 Example 4

	7 Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgements
	Appendix A The derivation of (30)
	References

