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Learning operators mapping between infinite-dimensional Banach spaces via neural networks 
has attracted a considerable amount of attention in recent years. In this paper, we propose an 
interfaced operator network (IONet) to solve parametric elliptic interface PDEs, where different 
coefficients, source terms, and boundary conditions are considered as input features. To capture 
the discontinuities in both the input functions and the output solutions across the interface, IONet 
divides the entire domain into several separate subdomains according to the interface and uses 
multiple branch nets and trunk nets. Each branch net extracts latent representations of input 
functions at a fixed number of sensors on a specific subdomain, and each trunk net is responsible 
for output solutions on one subdomain. Additionally, tailored physics-informed loss of IONet is 
proposed to ensure physical consistency, which greatly reduces the training dataset requirement 
and makes IONet effective without any paired input-output observations inside the computational 
domain. Extensive numerical studies demonstrate that IONet outperforms existing state-of-the-art 
deep operator networks in terms of accuracy and versatility.

1. Introduction

Elliptic interface problems have widespread applications across various fields, including fluid mechanics [1,2], materials science 
[3,4], electromagnetics [5], biomimetics [6,7], and flow in porous media [8]. Accurate modeling and rapid evaluation of these 
differential equations are critical in both scientific research and engineering applications. Many computational tasks arising in science 
and engineering often involve repeated evaluation of the outputs of an expensive forward model for many statistically similar inputs. 
These tasks, known as parametric PDE problems, encompass various areas such as inverse problems, control and optimization, risk 
assessment, and uncertainty quantification [9,10]. When dealing with parametric PDEs with discontinuous coefficients across certain 
interfaces, i.e., parametric interface problems, the low global regularity of the solution and the irregular geometry of the interface 
give rise to additional challenges, particularly for problems with non-smooth interfaces containing geometric singularities such as 
sharp edges, tips, and cusps.

Consider an open and bounded domain Ω ⊂ ℝ𝑑 with a Lipschitz boundary 𝜕Ω. The domain Ω is separated into two disjoint 
subdomains, Ω1 and Ω2, by an interface Γ. A sketch of the computational domain considered in 2D is shown in Fig. 1. Then 
parametric second-order linear elliptic interface problems are of the form:
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Fig. 1. Domain Ω, its subdomains Ω1 , Ω2 . The interface Γ divides Ω into two disjoint subdomains.

−∇ ⋅ (𝑎∇𝑢) + 𝑏𝑢 = 𝑓, in Ω ⧵ Γ, (1a)

�𝑢� = 𝑔𝐷, on Γ, (1b)

�𝑎∇𝑢 ⋅ 𝐧� = 𝑔𝑁 , on Γ, (1c)

𝑢 = ℎ, on 𝜕Ω, (1d)

where 𝐧 denotes the outward unit normal vectors of the interface Γ (from Ω1 to Ω2), �⋅� denotes the jump across the interface, for a 
point 𝐱𝛾 ∈ Γ,

�𝑢�(𝐱𝛾 ) ∶ = lim
𝐱∈Ω2
𝐱→𝐱𝛾

𝑢(𝐱) − lim
𝐱∈Ω1
𝐱→𝐱𝛾

𝑢(𝐱),

�𝑎∇𝑢 ⋅ 𝐧�(𝐱𝛾 ) ∶ = lim
𝐱∈Ω2
𝐱→𝐱𝛾

𝑎(𝐱)∇𝑢(𝐱) ⋅ 𝐧− lim
𝐱∈Ω1
𝐱→𝐱𝛾

𝑎(𝐱)∇𝑢(𝐱) ⋅ 𝐧.

Here, 𝑔𝐷(𝐱) ∶ Γ → ℝ and 𝑔𝑁 (𝐱) ∶ Γ → ℝ are the interface conditions, and ℎ(𝐱) ∶ 𝜕Ω → ℝ is the boundary condition; the coefficient 
𝑎(𝐱) ∶ Ω →ℝ is continuous and positive in each of the subdomains but discontinuous across the interface; the coefficient 𝑏(𝐱) ∶Ω →ℝ
and source 𝑓 (𝐱) ∶ Ω →ℝ are continuous in each of the subdomains but may be discontinuous across the interface. Additionally, we 
will also consider a nonlinear example, i.e., replacing 𝑏𝑢 here with 𝑏(𝑢). The latent solution 𝑢(𝐱) ∶ Ω →ℝ to this problem typically has 
higher regularity in each subdomain, but lower global regularity across the whole domain, even with discontinuities at the interface. 
Solving these parametric elliptic interface problems requires learning the solution operator that maps variable PDE parameters such as 
the coefficient 𝑎(𝐱) and the source term 𝑓 (𝐱) directly to the corresponding solution 𝑢. This paper introduces a novel operator network 
for approximating operators involving discontinuities in both input and output functions. We then demonstrate its effectiveness in 
approximating the solution operator of parametric elliptic interface problems.

Classical numerical methods for solving elliptic interface problems can be roughly divided into two categories: interface-fitted 
methods and interface-unfitted methods. The first type of approach is suitable for solving PDE problems defined in complex domains. 
The methods in this category include classical finite element method (FEM) [11–13], boundary element method (BEM) [14], weak 
Galerkin method [15], and so on. To maintain optimum convergence behavior, these methods require the mesh surface to be aligned 
with the interface. This alignment ensures that interface conditions are correctly applied, enhancing the accuracy of numerical solu-
tions. However, generating interface-fitted meshes for irregular domains or interfaces could result in significant computational costs 
[16], especially when high accuracy is required. To alleviate the burden of mesh generation, many works employ interface-unfitted 
meshes (e.g., a uniform Cartesian mesh) to discretize the computational domain and enforce interface conditions by modifying finite 
difference stencils or finite element bases near the interface. For instance, the immersed boundary method (IBM) [17], the immersed 
interface method (IIM) [18], the immersed finite element method [19], the ghost fluid method (GFM) [20] and its improvement 
(xGFM) [21], the cartesian grid finite volume approach (FVM) [22,23], the matched interface and boundary method [24], the ex-
tended finite element methods (XFEM) [25,26], and references therein. In general, the numerical solution of these methods becomes 
more accurate with mesh refinement, but also more time consuming.

Besides the mesh-based methods, there are also numerous efforts focusing on mesh-free numerical methods for interface problems, 
such as direct meshless local Petrov-Galerkin method [27], the global RBF-QR collection method [28], the local RBF meshless 
methods [29], and the meshless method based on pascal polynomials and multiple-scale approach [30]. Alternatively, there is 
a growing interest in utilizing neural network-based methods to solve elliptic interface problems. For instance, [31] employed a 
shallow neural network to remove the inhomogeneous boundary conditions and developed a deep Ritz-type approach to solve the 
interface problem with continuous solutions. An important development in this direction is the combination of deep learning and 
domain decomposition methods due to the observation that the solution to the interface problem is typically piece-wise continuous. 
The solution to Eq. (1) can be approximated by minimizing a loss function derived from either the least squares principle [32,33]
or the variational principle [34,35]. Moreover, adaptively setting appropriate penalty weights among different terms in the loss 
function could improve accuracy [33,36,37]. And specially designed neural network structures, such as incorporating multi-scale 
features [38,39] and augmenting extra feature input [40–42], are also able to further enhance the performance of neural models.

Although these numerical methods have been shown to be effective to some extent, they are only employed to solve a given 
instance of the elliptic interface problem (1), where the coefficient functions 𝑎(𝐱) and 𝑏(𝐱), the forcing term 𝑓 (𝐱), the interface 
2

conditions 𝑔𝐷(𝐱) and 𝑔𝑁 (𝐱), and the boundary condition ℎ(𝐱) are given in advance. In other words, these methods treat a PDE 
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with different parameters as different tasks, each of which needs to be solved end-to-end, which is computationally expensive and 
time-consuming. To address these challenges, one approach is to employ a reduced-order model that leverages a set of high-fidelity 
solution snapshots to construct rapid emulators [43,44]. However, the validity of this method relies on the assumption that the 
solution set is contained approximately in a low-dimensional manifold, which could potentially lead to compromised accuracy and 
generalization performance [45,46].

Recently, as an emerging paradigm in scientific machine learning, several operator neural networks, such as PDE-Nets [47], 
deep operator network (DeepONet) [48] and Fourier neural operator (FNO) [49], have been developed to directly learn the solution 
mapping between two infinite-dimensional function spaces. Although prediction accuracy may be limited, the ability of neural 
networks to learn from data makes them particularly well suited to this task. Such methods have great potential for developing fast 
forward and inverse solvers for PDE problems, and have shown good performance in building surrogate models for many types of 
PDEs, including the Burgers’ equation [48,50], Navier-Stokes equations [49,51], Darcy flow [51], diffusion-reaction PDE [52], and 
so on.

Despite the aforementioned success, these operator learning methods typically have difficulty effectively capturing the disconti-
nuities of input and output functions due to the following two reasons. Theoretically, their approximation theory usually assumes 
that the input and output functions are continuous [48]. Practically, to handle input functions numerically, we typically need to 
discretize the input functions and evaluate them at a set of locations. This approach may overlook the discontinuity of the true input 
functions, as the input functions were expected to be continuous. In addition, the output functions are represented by a network 
which is a continuous approximator. However, for interface problems, the global regularity of the coefficients and the solutions is 
usually very low, even discontinuous [53]. These limit the ability of operator networks to accurately represent and learn the complex 
behavior associated with interface problems.

To address these limitations, in this paper we propose a novel mesh-free method for approximating the solution operator of 
parametric elliptic interface problems. Different from existing operator networks, we divide the whole domain into several separate 
subdomains according to the interface, and leverage multiple branch nets and trunk nets. Specifically, each branch net encodes 
the input function at a fixed number of sensors in each subdomain, and each trunk net is responsible for output solutions in each 
subdomain. Such an architecture allows the model to accommodate irregularities in input functions and solutions. In addition, 
tailored physics-informed loss is proposed to ensure physical consistency, which greatly reduces the requirement for training datasets 
and makes the network effective without any paired input-output observations in the interior of the computational domain. The 
proposed method circumvents mesh generation and numerical discretization at the interface(s), thus easily handling problems in 
irregular domains. And the model can be trained only once for fast simulation with different input functions. Herein, we name this 
neural operator as the Interfaced Operator Network (IONet). Numerical results show that IONet exhibits better accuracy, as well as 
generalization properties for various input parameters, compared with state-of-the-art neural models.

The rest of this paper is organized as follows: In Section 2, we review the basic idea of the operator network and the DeepONet 
method. In Section 3, we introduce the proposed interfaced neural network in detail. Then, in Section 4, we investigate the per-
formance of the proposed methods in several typical numerical examples. Finally, we conclude the paper and discuss some future 
directions in Section 5.

2. Learning operators with neural networks

In this section, we briefly introduce the DeepONet model architecture [48] and its two extensions, the Multi-input operator 
network (MIONet) [50] and the Physics-informed DeepONet (PI-DeepONet) [52], for learning nonlinear operators between infinite 
function spaces.

Let  and  be two Banach spaces, and let  be an operator that maps between these two infinite-dimensional function spaces, 
i.e.,  ∶  → . We assume that for each 𝑣(𝐲) ∶ 𝐲 → ℝ in  , there exists a unique corresponding output function 𝑢 in  that can 
be represented as (𝑣)(𝐱) ∶ 𝐱 → ℝ. Analogously, in the context of parametric PDE problems,  and  are denoted as the input 
function space and the solution space, respectively. Following the original works of [48,52], an unstacked DeepONet 𝜃 is trained to 
approximate the target solution operator , where 𝜃 prediction of a function (an input parameter) 𝑣 ∈  evaluated at a point 𝐱 can 
be expressed as

𝜃(𝑣)(𝐱) =𝑏(𝑣(𝐲1), 𝑣(𝐲2),⋯ , 𝑣(𝐲𝑚))𝑇
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑏𝑟𝑎𝑛𝑐ℎ 𝑛𝑒𝑡

𝑡(𝐱)
⏟⏟⏟
𝑡𝑟𝑢𝑛𝑘 𝑛𝑒𝑡

+ 𝑏0
⏟⏟⏟
𝑏𝑖𝑎𝑠

=
𝐾∑
𝑘=1
𝑏𝑘𝑡𝑘 + 𝑏0,

where 𝜃 denotes all the trainable parameters, i.e., the set consisting of the parameters in the branch net 𝑏 and the trunk net 
𝑡 and the bias 𝑏0 ∈ ℝ. Here, [𝑏1, 𝑏2, ⋯ , 𝑏𝐾 ]𝑇 ∈ ℝ𝐾 denotes the output of 𝑏 as a feature embedding of the input function 𝑣, 
[𝑡1, 𝑡2, ⋯ , 𝑡𝐾 ]𝑇 ∈ℝ𝐾 represents the output of 𝑡, and {𝐲1, 𝐲2, ⋯ , 𝐲𝑚} is a collection of fixed point locations referred to as “sensors”, 
where we discretize the input function 𝑣. DeepONets are capable of approximating arbitrary continuous operators [54,48], making 
them a powerful tool in the field of scientific computing.

MIONet [50] extends the architecture and approximation theory of DeepONet to the case of operators defined on multiple Banach 
3

spaces. Let  be a multi-input operator defined on the product of Banach spaces:
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 ∶ 1 × 2 ×⋯ × 𝑞 → ,

where 1, 2, ⋯ , 𝑞 are 𝑞 different input Banach spaces that can be defined on different domains, and  denotes the output Banach 
space. Then, when we employ a MIONet 𝜃 to approximate the operator , for a given input function (𝑣1, 𝑣2, ⋯ , 𝑣𝑞) ∈ 1×2×⋯ ×𝑞 , 
the prediction of 𝜃(𝑣1, 𝑣2, ⋯ , 𝑣𝑞) at a point 𝐱 is formulated as

𝜃(𝑣1, 𝑣2,⋯ , 𝑣𝑞)(𝐱) = 

⎛⎜⎜⎜⎜⎝
𝑏1

(𝒗𝟏)
⏟⏞⏟⏞⏟
𝑏𝑟𝑎𝑛𝑐ℎ1

⊙𝑏2
(𝒗𝟐)

⏟⏞⏟⏞⏟
𝑏𝑟𝑎𝑛𝑐ℎ2

⊙⋯⊙𝑏𝑞
(𝒗𝒒)

⏟⏞⏟⏞⏟
𝑏𝑟𝑎𝑛𝑐ℎ𝑞

⊙ 𝑡(𝐱)
⏟⏟⏟
𝑡𝑟𝑢𝑛𝑘

⎞⎟⎟⎟⎟⎠
+ 𝑏0
⏟⏟⏟
𝑏𝑖𝑎𝑠

=
𝐾∑
𝑘=1
𝑡𝑘

𝑞∏
𝑖=1
𝑏𝑖
𝑘
+ 𝑏0.

Here,  is the sum of all the components of a vector, and ⊙ represents the Hadamard product. Each input function 𝑣𝑖 is projected 
onto finite-dimensional spaces ℝ𝑚𝑖 as 𝒗𝒊 ∶= [𝑣𝑖(𝐲𝑖1), 𝑣𝑖(𝐲

𝑖
2), ⋯ , 𝑣𝑖(𝐲𝑖𝑚𝑖 )]

𝑇 in the same manner as in DeepONet, where {𝐲𝑖
𝑗
}𝑚𝑖
𝑗=1 is the set 

of sensors in the domain of 𝑣𝑖. Similarly, [𝑏𝑖1, 𝑏
𝑖
2, ⋯ , 𝑏𝑖

𝐾
] and [𝑡1, 𝑡2, ⋯ , 𝑡𝐾 ] denote the output of the 𝑖-th branch net 𝑏𝑖

(𝒗𝒊) and the 
trunk net 𝑡(𝐱), respectively.

In the framework of vanilla DeepONet, a data-driven (DD) approach is used to train the network. Specifically, the training dataset 
consists of paired input-output observations, and the trainable parameters 𝜃 can be identified by minimizing the following empirical 
loss function:

Loss(𝜃) = 1
𝑁𝑃

𝑁∑
𝑛=1

𝑃∑
𝑝=1

|||𝜃(𝑣𝑛)(𝐱𝑛,𝑝) − (𝑣𝑛)(𝐱𝑛,𝑝)
|||2 ,

where {𝑣𝑛}𝑁
𝑛=1 denotes 𝑁 input functions sampled from the parameter space  . For each input function of DeepONet, the training 

data points {𝐱𝑛,𝑝}𝑃𝑝=1 are randomly sampled from the computational domain of (𝑣𝑛) and can be set to vary for different 𝑛.
Given that the DeepONet architecture provides a continuous approximation of the target functions that is independent of the 

resolution, the derivatives of the output function can be computed during training. This import feature motivated the work of PI-
DeepONet [52], where the trainable parameters can be optimized by minimizing the residuals of the governing equations and the 
corresponding boundary conditions through the use of automatic differentiation [55]. Specifically, consider a generic parametric 
PDE expressed as:

(𝑣, 𝑢) = 0, in Ω,

𝑢 = ℎ, on 𝜕Ω,

where 𝑣 and 𝑢 denote the input function and latent solution, respectively. Then, the physics-informed loss function of PI-DeepONet 
can be formulated as

Loss(𝜃) = 𝜆𝑟Loss𝑟(𝜃) + 𝜆𝑏Loss𝑏(𝜃).

Here, 𝜆𝑟 and 𝜆𝑏 are non-negative weights, the loss term

Loss𝑟(𝜃) =
1
𝑁𝑃𝑟

𝑁∑
𝑛=1

𝑃𝑟∑
𝑝=1

|||(𝑣𝑛,𝜃(𝑣𝑛))(𝐱𝑟𝑛,𝑝)|||
forces the operator network to satisfy the underlying physical constraints, and

Loss𝑏(𝜃) =
1
𝑁𝑃𝑏

𝑁∑
𝑛=1

𝑃𝑏∑
𝑝=1

|||𝜃(𝑣𝑛)(𝐱𝑏𝑛,𝑝) − ℎ(𝐱𝑏𝑛,𝑝)|||
penalizes the violation of the boundary conditions, where {𝐱𝑟𝑛,𝑝}

𝑃𝑟
𝑝=1 and {𝐱𝑏𝑛,𝑝}

𝑃𝑏
𝑝=1 denote the training data points randomly sampled 

from the interior and the boundary of the domain Ω, respectively.

3. Interfaced operator network

In this section, we discuss neural network-based methods for numerically solving parametric interface problems. The main idea 
of our new method is to approach the solution operator through multiple suboperators while remaining consistent with the potential 
physical constraints. To simplify the explanation, we mainly present our method for the case of two subdomains. Note that this 
setting can be easily generalized to a multi-domain scenario, depending on the number of distinct domains involved. Specifically, we 
consider Eq. (1) as a parametric interface problem of general form. In the following, we illustrate our method with the example of 
4

learning the solution operator  that maps the coefficient function 𝑎(𝐱) to the solution 𝑢(𝐱) of Eq. (1), i.e.,  ∶ 𝑎(𝐱) → 𝑢(𝐱).
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Fig. 2. A schematic diagram of the IONet for solving the parametric elliptic interface problem by minimizing the physics-informed loss function. Here, the input 
function is the coefficient 𝑎(𝐱).

3.1. Network architecture of IONet

To preserve the inherent discontinuity of interface problems, we decompose the computational domain into two subdomains 
according to the interface and leverage two operator networks that share some parameters, each of which is responsible for the 
solution in one subdomain. In particular, the IONet architecture is given as follows:

𝜃(𝑎)(𝐱) =
{

1
𝜃
(𝑎)(𝐱), if 𝐱 ∈Ω1,

2
𝜃
(𝑎)(𝐱), if 𝐱 ∈Ω2,

(2)

where 𝑎 is the input function and 𝐱 denotes the location where the output function is evaluated. Note that input functions are 
discretized and evaluated at a set of sensors typically. To retain the irregularity of the input function on the interface, we divide 
the set of sensors according to the interface and use two branch nets, denoted as 𝑏1

and 𝑏2
, to extract latent representations of 

input functions on the corresponding subdomains. Similar to the vanilla DeepONet [48], within each suboperator 𝑖
𝜃
, we use a trunk 

net denoted as  𝑖
𝑡 to extract continuous input coordinates where the output functions are evaluated. Finally, following the MIONet 

[50], we merge the outputs of all the sub-networks through a Hadamard product and a summation, followed by the addition of a 
bias in the last stage. More specifically, the suboperator in 𝜃 (2) is constructed as follows:

𝑖
𝜃
(𝑎)(𝐱) = 

⎛⎜⎜⎜⎜⎝
𝑏1

(𝑎(𝐲11),⋯ , 𝑎(𝐲
1
𝑚1
))

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑏𝑟𝑎𝑛𝑐ℎ1

⊙𝑏2
(𝑎(𝐲21),⋯ , 𝑎(𝐲

2
𝑚2
))

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑏𝑟𝑎𝑛𝑐ℎ2

⊙  𝑖
𝑡 (𝐱)

⏟⏟⏟
𝑡𝑟𝑢𝑛𝑘

⎞⎟⎟⎟⎟⎠
+ 𝑏𝑖0
⏟⏟⏟
𝑏𝑖𝑎𝑠

=
𝐾∑
𝑘=1
𝑡𝑖
𝑘
𝑏1𝑘𝑏2𝑘 + 𝑏𝑖0.

(3)

Here, 𝜃 denotes the trainable parameters in this architecture. For 𝑖 = 1, 2, {𝐲𝑖
𝑗
}𝑚𝑖
𝑗=1 represents the collection of sensors for evaluating 

𝑎(𝐱) in subdomain Ω𝑖, [𝑏𝑖1, 𝑏𝑖2, ⋯ , 𝑏𝑖𝐾 ] and [𝑡𝑖1, 𝑡
𝑖
2, ⋯ , 𝑡𝑖

𝐾
] denote the output features of the branch nets 𝑏𝑖

and the trunk net  𝑖
𝑡 , 

respectively. The network architecture of IONet is schematically visualized on the left side of Fig. 2. To demonstrate the capability 
and performance alone, we apply the simplest feedforward neural networks (FNNs) as the branch and trunk nets in this paper, and we 
note that other neural networks such as ResNet and CNN can be chosen as the sub-networks in IONet according to specific problems.

The IONet structure can be easily generalized to a multi-domain scenario. Next, we show that IONet is able to approximate 
arbitrary continuous operators with discontinuous inputs and outputs. For later analysis, we define the following space

𝑋(Ω) =
𝐼⋂
𝑖=1
𝐻2(Ω𝑖)

⋂
𝐻0(Ω)
5

equipped with the norm
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‖𝑢‖𝑋(Ω) =
𝐼∑
𝑖=1

‖𝑢‖𝐻2(Ω𝑖) .

Then, the approximation theorem of IONet is given as follows.

Theorem 1. Let Ω ⊂ ℝ𝑑 be a bounded domain, Ω𝑖 with 𝑖 = 1, ⋯ , 𝐼 − 1 be disjoint open domains and Ω𝐼 = Ω ⧵
⋃𝐼−1
𝑖=1 Ω𝑖. Assume  ∶⋂𝐼

𝑖=1𝐶(Ω𝑖) 
⋂
𝐿∞(Ω) → 𝑋(Ω) is a continuous operator and 𝑇 ⊂

⋂𝐼
𝑖=1𝐶(Ω𝑖) 

⋂
𝐿∞(Ω) is a compact set. Then for any 𝜀 > 0, there exist 

positive integers 𝑚𝑖, 𝐾 , tanh FNNs 𝑏𝑖
∶ℝ𝑚𝑖 →ℝ𝐾 ,  𝑖

𝑡 ∶ℝ
𝑑 →ℝ𝐾 , and 𝐲𝑖1, ⋯ , 𝐲𝑖𝑚𝑖 ∈Ω𝑖 with 𝑖 = 1, ⋯ , 𝐼 , such that

sup
𝑎∈𝑇

‖‖‖‖(𝑎)(⋅) − 
(
𝑏1

(𝑎(𝐲11),⋯ , 𝑎(𝐲
1
𝑚1
))⊙⋯⊙𝑏𝐼

(𝑎(𝐲𝐼1 ),⋯ , 𝑎(𝐲
𝐼
𝑚𝐼

))⊙ 𝑖
𝑡 (⋅)

)‖‖‖‖𝐻2(Ω𝑖)
≤ 𝜀,

where  is the summation of all the components of a vector, and ⊙ is the Hadamard product.

Proof. The proof can be found in Appendix A. □

Remark 1. There exist various continuous operator  ∶
⋂𝐼
𝑖=1𝐶(Ω𝑖) 

⋂
𝐿∞(Ω) → 𝑋(Ω). For example, for interface problem (1), the 

operator mapping from the source term 𝑓 ∈
⋂𝐼
𝑖=1𝐶(Ω𝑖) 

⋂
𝐿∞(Ω) to the solution 𝑢 ∈𝑋(Ω) is continuous, due to the estimate [56]

that ‖𝑢‖𝑋 ≤ 𝐶 ‖𝑓‖𝐿2(Ω) ≤ 𝐶∑𝐼
𝑖=1 ‖𝑓‖𝐶(Ω𝑖).

3.2. Loss function of IONet

Similar to DeepONet, a data-driven approach can be used to train IONet and optimize the parameters 𝜃 by minimizing the 
following mean square error loss:

𝐿𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟(𝜃) =
1

𝑁𝑜𝑃𝑜

𝑁𝑜∑
𝑛=1

𝑃𝑜∑
𝑝=1

|||𝜃(𝑎𝑛𝑜)(𝐱𝑜𝑛,𝑝) − (𝑎𝑛𝑜)(𝐱
𝑜
𝑛,𝑝)

|||2 , (4)

where {𝑎𝑛𝑜}
𝑁𝑜
𝑛=1 denotes 𝑁𝑜 input functions sampled from the parameter space; for 𝑛 = 1, ⋯ , 𝑁𝑜, the training data points {𝐱𝑜𝑛,𝑝}

𝑃𝑜
𝑝=1 ⊂Ω

denotes the set of locations to evaluate the output function and can be set to vary for different 𝑛; (𝑎𝑛𝑜)(𝐱
𝑜
𝑛,𝑝) and 𝜃(𝑎𝑛𝑜)(𝐱

𝑜
𝑛,𝑝) are 

evaluated values of the output functions of the solution operator  and IONet 𝜃 at location 𝐱𝑜𝑛,𝑝 when 𝑎𝑛𝑜 is the input function. This 
type of training method relies on the assumption that there is sufficient labeled data{(

𝑎𝑛𝑜(𝐲
1
1),⋯ , 𝑎

𝑛
𝑜(𝐲

1
𝑚1
), 𝑎𝑛𝑜(𝐲

2
1),⋯ , 𝑎

𝑛
𝑜(𝐲

2
𝑚2
), 𝐱𝑜𝑛,𝑝, (𝑎

𝑛
𝑜)(𝐱

𝑜
𝑛,𝑝)

)}
𝑛=1,⋯,𝑁𝑜, 𝑝=1,⋯,𝑃𝑜

to train the model. However, the costs associated with experimental data acquisition and high-quality numerical simulation are 
generally expensive. In many practical scenarios, we are inevitably faced with limited or even intractable training data. In the 
following, we introduce the physics-informed loss function for IONet.

By the definitions of IONet (2) and (3), the output function of 𝜃 , such as

𝜃(𝑎𝑛)(𝐱) =
⎧⎪⎨⎪⎩

(
𝑏1

(𝑎𝑛(𝐲11),⋯ , 𝑎
𝑛(𝐲1𝑚1 ))⊙𝑏2

(𝑎𝑛(𝐲21),⋯ , 𝑎
𝑛(𝐲2𝑚2 ))⊙ 1

𝑡 (𝐱)
)
+ 𝑏10, if 𝐱 ∈Ω1,


(
𝑏1

(𝑎𝑛(𝐲11),⋯ , 𝑎
𝑛(𝐲1𝑚1 ))⊙𝑏2

(𝑎𝑛(𝐲21),⋯ , 𝑎
𝑛(𝐲2𝑚2 ))⊙ 2

𝑡 (𝐱)
)
+ 𝑏20, if 𝐱 ∈Ω2,

has a continuous representation in each subdomain. Provided that the trunk net  𝑖
𝑡 are smooth enough, the derivatives of 𝜃(𝑎𝑛) at 

𝐱𝑖𝑛,𝑝 can be easily obtained by automatic differentiation [55]. Inspired by PINN [57] and PI-DeepONet, for given parametric elliptic 
interface problems, we define

𝐿𝑟𝑖 (𝜃) ∶=
𝑁∑
𝑛=1

𝑃𝑖∑
𝑝=1

||||−∇ ⋅
(
𝑎𝑛(𝐱𝑖𝑛,𝑝)∇𝜃(𝑎

𝑛)(𝐱𝑖𝑛,𝑝)
)
+ 𝑏(𝐱𝑖𝑛,𝑝)𝜃(𝑎

𝑛)(𝐱𝑖𝑛,𝑝) − 𝑓 (𝐱
𝑖
𝑛,𝑝)

||||2 (5)

and

𝐿𝑏(𝜃) ∶=
𝑁∑
𝑛=1

𝑃𝑏∑
𝑝=1

|||𝜃(𝑎𝑛)(𝐱𝑏𝑛,𝑝) − ℎ(𝐱𝑏𝑛,𝑝)|||2 ,
where {𝐱𝑖𝑛,𝑝}

𝑃𝑖
𝑝=1 with 𝑖 = 1, 2 and {𝐱𝑏𝑛,𝑝}

𝑃𝑏
𝑝=1 are randomly sampled from the subdomain Ω𝑖 and its boundary 𝜕Ω, respectively. Let 

𝐿Γ(𝜃) =𝐿Γ𝐷 +𝐿Γ𝑁 , where

𝐿 (𝜃) =
𝑁∑ 𝑃𝛾∑||� (𝑎𝑛)�(𝐱𝛾 ) − 𝑔 (𝐱𝛾 )||2 = 𝑁∑ 𝑃𝛾∑||2(𝑎𝑛)(𝐱𝛾 ) − 1(𝑎𝑛)(𝐱𝛾 ) − 𝑔 (𝐱𝛾 )||2 ,
6

Γ𝐷
𝑛=1 𝑝=1

| 𝜃 𝑛,𝑝 𝐷 𝑛,𝑝 |
𝑛=1 𝑝=1

| 𝜃 𝑛,𝑝 𝜃 𝑛,𝑝 𝐷 𝑛,𝑝 |
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and

𝐿Γ𝑁 (𝜃) =
𝑁∑
𝑛=1

𝑃𝛾∑
𝑝=1

|||�𝑎𝑛∇𝜃(𝑎𝑛) ⋅ 𝐧�(𝐱𝛾𝑛,𝑝) − 𝑔𝑁 (𝐱
𝛾
𝑛,𝑝)

|||2
=

𝑁∑
𝑛=1

𝑃𝛾∑
𝑝=1

|||𝑎𝑛2(𝐱)∇2𝜃(𝑎𝑛)(𝐱𝛾𝑛,𝑝) ⋅ 𝐧− 𝑎𝑛1(𝐱)∇
1
𝜃
(𝑎𝑛)(𝐱𝛾𝑛,𝑝) ⋅ 𝐧− 𝑔𝑁 (𝐱

𝛾
𝑛,𝑝)

|||2 .
Here, {𝐱𝛾𝑛,𝑝}

𝑃𝛾

𝑝=1 represents a set of training points sampled from the interface Γ for the 𝑛-th input function. Then, the physics-informed 
loss function for IONet is formulated as follows:

𝐿𝑝ℎ𝑦𝑠𝑖𝑐𝑠(𝜃) = 𝜆1𝐿𝑟1 (𝜃) + 𝜆2𝐿𝑟2 (𝜃) + 𝜆3𝐿Γ(𝜃) + 𝜆4𝐿𝑏(𝜃), (6)

where 𝐿𝑟𝑖 (𝜃) (5) with 𝑖 = 1, 2 are to approximately restrict the IONet output function to obey the given governing PDE (1a), while 
𝐿𝑏(𝜃) and 𝐿Γ(𝜃) penalize IONet for violating the boundary condition (1d) and the interface conditions (1b) and (1c), respectively. 
Such physics-informed loss function of IONet is schematically depicted on the right side of Fig. 2. By incorporating physics constraints 
to ensure that the IONet output function aligns with the given interface PDE (1), the proposed IONet can effectively learn the 
solution operator for parametric interface problems, even in the absence of labeled training data (excluding boundary and interface 
conditions). If both data and PDEs are available, we combine the loss functions (4) and (6) and minimize the following composite 
loss function to obtain the parameter 𝜃 of IONet:

𝐿(𝜃) = 𝜆𝑝𝐿𝑝ℎ𝑦𝑠𝑖𝑐𝑠(𝜃) + 𝜆𝑜𝐿𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟(𝜃). (7)

4. Numerical Results

In this section, the proposed IONet is tested on a range of parametric elliptic interface problems. Throughout all benchmarks, 
the branch nets and the trunk nets are FNNs. Particularly when 𝐿𝑝ℎ𝑦𝑠𝑖𝑐𝑠 is included in (7), i.e., 𝜆𝑝 ≠ 0, they are FNNs with smooth 
activation function Tanh, due to the necessity for high-order derivatives. All operator network models are trained via stochastic 
gradient descent using Adam optimizer with default settings. The learning rate is set to exponential decay with a decay-rate of 0.95 
per #Epochs∕100 iterations, where #Epochs denotes the maximum number of optimization iterations. Unless otherwise specified, the 
training data points used to evaluate the loss function are scattered points randomly sampled in the computational domain, while 
those used to evaluate the output solution of neural models are equidistant grid points. After training, the average relative 𝐿2 error 
between the reference solution operator  and the numerical solution operator 𝜃 is measured as

𝐿2(,𝜃) =
1
𝑁

𝑁∑
𝑛=1

√√√√√ ∫Ω
||(𝑎𝑛𝑡𝑒𝑠𝑡)(𝑥) − 𝜃(𝑎𝑛𝑡𝑒𝑠𝑡)(𝑥)||2 𝑑𝑥

∫Ω
||(𝑎𝑛𝑡𝑒𝑠𝑡)(𝑥)||2 𝑑𝑥 ,

where 𝑁 denotes the number of test input functions {𝑎𝑛𝑡𝑒𝑠𝑡}
𝑁
𝑛=1, and the integration is computed by the Monte Carlo method. For 

simplicity, IONet using the loss function (7) with 𝜆𝑝 = 1 and 𝜆𝑜 = 0 is referred to as “PI-IONet”, while IONet using the loss function 
(7) with 𝜆𝑝 = 0 and 𝜆𝑜 = 1 is denoted as “DD-IONet”. All experiments are tested on one NVIDIA Tesla V100 GPU. The code and 
experimental data used in this paper are publicly available from the GitHub repository https://github .com /bzlu -Group /IONet.

4.1. Parametric elliptic interface problems in one dimension

Example 1. As the first example, we investigate the effectiveness of the proposed method in handling non-zero interface conditions 
in the elliptic interface problem (1), defined on the interval Ω = [0, 1] with an interface point at 𝑥𝛾 = 0.5:

−∇ ⋅ (𝑎(𝑥)∇𝑢(𝑥)) = 0, 𝑥 ∈ Ω,

𝑔𝐷(𝑥𝛾 ) = 1, 𝑔𝑁 (𝑥𝛾 ) = 0,

𝑢(0) = 1, 𝑢(1) = 0.

(8)

Here, our goal is to learn a solution operator  that maps the discontinuous coefficient function 𝑎(𝑥) to the latent solution 𝑢(𝑥) that 
is explicitly discontinuous across the interface.

To make the input function

𝑎(𝑥) =

{
𝑎1(𝑥), 𝑥 ∈Ω1 ∶= [0,0.5]

𝑎2(𝑥), 𝑥 ∈Ω2 ∶= (0.5,1]

strictly positive, we let 𝑎𝑖(𝑥) = 𝑎̃𝑖(𝑥) − min𝑥 𝑎̃𝑖(𝑥) + 1 with 𝑖 = 1, 2, where 𝑎̃𝑖(𝑥) is randomly sampled from a mean-zero Gaussian 
7

random field (GRF) with a radial basis function (RBF) kernel

https://github.com/bzlu-Group/IONet
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Table 1

Test errors and training costs for DD-DeepONet, DD-IONet, PI-DeepONet, and PI-IONet. The error corresponds to the 
relative 𝐿2 error, recorded in the form of mean ± standard deviation based on all test input functions in Example 1.

Models Activation Depth Width #Parameters 𝐿2(𝜃 ,) Training time (hours)

DD-DeepONet ReLU 5 140 172 K 9.82e-2±1.71e-2 0.10
DD-IONet ReLU 5 100 172 K 3.95e-3±1.43e-3 0.17

PI-DeepONet Tanh 5 140 172 K 4.70e-1±1.02e-1 0.36
PI-IONet Tanh 5 100 172 K 8.30e-3 ±7.92e-3 0.44

Fig. 3. The mean and one standard deviation of relative 𝐿2 error for PI-IONet with different weights in the physics-informed loss function (6). Left: 𝜆1 = 1 and 
𝜆3 = 𝜆4 = 100. Middle: 𝜆2 = 1 and 𝜆3 = 𝜆4 = 100. Right: 𝜆1 = 𝜆2 = 1.

𝑘𝑙(𝑥1, 𝑥2) = exp

(
−
‖𝑥1 − 𝑥2‖2

2𝑙2

)
using a length scale 𝑙 = 0.25 (see the left panel of Fig. 4 for an illustration). We randomly sample 10, 000 and 1, 000 input functions 
𝑎(𝑥) for training and testing, respectively. The sensor of the input function consists of 100 equidistant grid points in the interval 
[0, 1]. For each input function, we solve Eq. (8) on a uniform mesh of size 1000 using the matched interface and boundary (MIB) 
method with second-order accuracy [24] to obtain the reference solution and paired input-output training data. The test error of all 
neural models is measured on the same mesh of size 1000.

In this example, we investigate the performance of DD-IONet and PI-IONet as well as two state-of-the-art neural models, namely 
vanilla DeepONet (DD-DeepONet) [48] and physics-informed DeepONet (PI-DeepONet) [52], in solving Eq. (8) with variable co-
efficients 𝑎(𝑥). For PI-DeepONet, the neural network 𝜃 is trained by minimizing a physics-informed loss function of the form 
𝐿𝑝ℎ𝑦𝑠𝑖𝑐𝑠(𝜃) = 𝜆𝑟𝐿𝑟(𝜃) + 𝜆3𝐿Γ(𝜃) + 𝜆4𝐿𝑏(𝜃), where 𝐿Γ = 𝐿Γ𝐷 + 𝐿Γ𝑁 , 𝜆𝑟 = (𝜆1 + 𝜆2)∕2, and weights 𝜆𝑖 with 𝑖 = 1, 2, 3 and 4 are 
those in PI-IONet. Note that the output function space of DeepONet is a subset of the space of continuous functions, implying that 
�𝜃(𝑎)(𝑥𝛾 )� = 0 holds for any input function 𝑎. Hence, we approximate the interface loss functions 𝐿Γ𝐷 and 𝐿Γ𝑁 in PI-DeepONet by 
difference schemes

𝐿Γ𝐷 (𝜃) =
𝑁∑
𝑛=1

|||𝜃(𝑎𝑛)(𝑥𝛾 + 𝜖) − 𝜃(𝑎𝑛)(𝑥𝛾 − 𝜖) − 1|||2
and

𝐿Γ𝑁 (𝜃) =
𝑁∑
𝑛=1

|||�𝑎𝑛∇𝜃(𝑎𝑛) ⋅ 𝐧�(𝑥𝛾 )|||2
=

𝑁∑
𝑛=1

||||𝑎𝑛2(𝑥𝛾 )𝜃(𝑎𝑛)(𝑥𝛾 + 𝜖) − 𝜃(𝑎𝑛)(𝑥𝛾 )
𝜖

− 𝑎𝑛1(𝑥
𝛾 )
𝜃(𝑎𝑛)(𝑥𝛾 ) − 𝜃(𝑎𝑛)(𝑥𝛾 − 𝜖)

𝜖

||||
2

(9)

with 𝜖 = 10−5 in practice. In all cases, the neural networks are trained after 4 × 104 parameter updates. The network architecture 
details and training costs are shown in Table 1.

We first investigate the effect of the weights in loss function (6) on the accuracy of PI-IONet. It can be observed in Fig. 3 that 
the weights of interface and boundary loss terms (i.e. 𝜆3 and 𝜆4) have more significant impacts on the numerical results compared 
with those of PDE residuals (i.e., 𝜆1 and 𝜆2). This phenomenon could be attributed to the fact that the investigated interface problem 
exhibits low-contrast. In the following, we fix the weights in physics-informed loss function of PI-IONet as 𝜆1 = 𝜆2 = 1, 𝜆3 = 10, and 
𝜆4 = 100.

Table 1 reports the relative 𝐿2 errors between the reference solution and the numerical solution for DD-DeepONet, DD-IONet, 
PI-DeepONet, and PI-IONet. Under different training frameworks, it can be observed that the accuracy of DD-IONet is significantly 
8

superior to that of DD-DeepONet with the same paired input-output training data, while the error of PI-DeepONet is about 50 times 
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Fig. 4. Left column: Five input functions randomly selected from the test set (distinguished by different colors). Second and third columns: The reference solutions 
(solid lines) versus the numerical solutions (dashed lines) of DD-DeepONet, DD-IONet, PI-DeepONet, and PI-IONet. Fourth column: The mean and one standard 
deviation of the numerical solutions, averaged over these 5 test examples.

that of PI-IONet when trained by minimizing the physics-informed loss functions. Furthermore, one can also see that DD-IONet 
outperforms PI-IONet, as the latter is trained without relying on any high-quality paired training data but instead through solving 
a highly complex optimization problem involving derivatives. In terms of the training time for neural models, as shown in this 
table, training physics-informed models (PI-DeepONet and PI-IONet) generally takes longer than training data-driven models (DD-
DeepONet and DD-IONet). It is mainly due to the fact that physics-informed models require the computation of the PDE and interface 
residuals via automatic differentiation, and the loss terms are computed in a serial manner.

Fig. 4 shows a comparison between the reference and the numerical solutions for five randomly sampled input functions from the 
test dataset. The second column gives the numerical results of DD-DeepONet and PI-DeepONet. It can be observed that the numerical 
solution of DD-DeepONet agrees well with the reference solution away from the interface (𝑥Γ = 0.5), but there are large errors near 
the interface (refer to the error plot in the first row), while PI-DeepONet fails to yield accurate results. The main reason is due 
to the fact that the output function space of DeepONet is a subset of continuous function space, which limits its effectiveness in 
capturing discontinuities in solution functions to interface problems. In addition, we remark that DD-DeepONet is trained with high-
quality paired training data using least squares regression, enabling the continuous output function of DeepONet to approximate 
the discontinuous output of the target operator point by point. However, PI-DeepONet employs a physics-informed loss function 
involving derivatives and the loss of interface conditions is approximated using difference schemes, exacerbating the challenge 
of handling discontinuities. This results in the numerical accuracy of DD-DeepONet being superior to that of PI-DeepONet. The 
numerical results for DD-IONet and PI-IONet are displayed in the third column, where it can be seen that the numerical solutions 
naturally maintain the discontinuous nature of the numerical solution at the interface, demonstrating excellent agreement with the 
reference solutions (see the error plot in the fourth column). These numerical results show that IONet is more adaptable to the 
irregularities in the input function and the solution, which exhibits a greater ability to represent the solutions of interface problems 
compared with the conventional DeepONet architecture.

Next, we show that IONet is able to be extended to finite number of subdomains (greater than two). Consider Eq. (8) with three 
subdomains, i.e.,

−∇ ⋅ (𝑎(𝑥)∇𝑢(𝑥)) = 0, 𝑥 ∈ Ω,

𝑔𝐷(𝑥𝛾1 ) = 1, 𝑔𝑁 (𝑥𝛾1 ) = 0,

𝑔𝐷(𝑥𝛾2 ) = −1
2
, 𝑔𝑁 (𝑥𝛾2 ) = 0,

𝑢(0) = 1, 𝑢(1) = 0,

(10)

where 𝑥𝛾1 = 0.3 and 𝑥𝛾1 = 0.7.
We approximate the solution operator  of Eq. (10) by PI-IONet. The chosen model architecture and other hyperparameters 

remain consistent with those used for two subdomain scenarios, except for the use of three branch nets and three trunk nets. Fig. 5
shows the numerical results of PI-IONet. The final mean of relative 𝐿2 error over five test input functions in this figure is measured 
9

at 3.83 × 10−3. These results demonstrate that IONet also performs well in multi-subdomain scenarios.
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Fig. 5. Left: Five input functions randomly selected from the test set (distinguished by different colors). Middle: Reference solutions (solid lines) versus the numerical 
solutions (dashed lines) of PI-IONet. Right: Absolute point-wise errors over the whole domain. The gray point-dashed lines represent the location of the interfaces.

Fig. 6. The mean and one standard deviation of test 𝐿2 errors for PI-IONet with varying numbers of sensors.

Example 2. Next, we consider Eq. (1) with zero interface conditions, defined on Ω = [0, 1] with an interface point at 𝑥𝛾 = 0.5:

−∇ ⋅ (𝑎(𝑥)∇𝑢(𝑥)) + 𝑏(𝑥)𝑢(𝑥) = 𝑓 (𝑥), 𝑥 ∈ Ω,

𝑔𝐷(𝑥𝛾 ) = 0, 𝑔𝑁 (𝑥𝛾 ) = 0,

𝑢(0) = ℎ0, 𝑢(1) = ℎ1.

(11)

From the setting of the interface conditions, we know that the latent solution 𝑢 to Eq. (11) is continuous, while its derivative may 
be discontinuous on the interface due to the different values of 𝑎 in different subdomains. In this example, our goal is to learn an 
operator  that maps the source term 𝑓 (𝑥), boundary condition ℎ(𝑥), and coefficients 𝑎(𝑥) and 𝑏(𝑥) to the solution 𝑢, i.e.,

 ∶ (𝑓 (𝑥), ℎ(𝑥), 𝑎(𝑥), 𝑏(𝑥))→ 𝑢(𝑥). (12)

To obtain the dataset, we randomly sample 10, 000 and 1, 000 sets of input functions (𝑓, ℎ, 𝑎, 𝑏) for training and testing, 
respectively. Specifically, the input functions 𝑓1 ∶= 𝑓 |Ω1

and 𝑓2 ∶= 𝑓 |Ω2
are independently sampled from a zero-mean GRF 

with length scales 𝑙1 = 0.2 and 𝑙1 = 0.1, respectively. The coefficients 𝑏𝑖 ∶= 𝑏|Ω𝑖 with 𝑖 = 1, 2 are independently sampled via 
𝑏(𝑥) = 𝑏̃(𝑥) − min𝑥 𝑏̃(𝑥) + 1, where 𝑏̃(𝑥) is randomly sampled from a zero-mean GRF with length scale 𝑙 = 0.25. The coefficient 
𝑎(𝑥) is modeled as a piece-wise constant function, with 𝑎|Ω1

= 𝑎1 and 𝑎|Ω2
= 𝑎2, where 𝑎1 and 𝑎2 are sampled from uniform dis-

tributions over the intervals [0.5, 1] and [2, 3], respectively. Additionally, we sample ℎ0 and ℎ1 from uniform distributions over the 
intervals [−0.1, 0] and [0, 0.1], respectively, to set the variable boundary conditions ℎ(0) = ℎ0 and ℎ(1) = ℎ1. In this setting, it is easy 
to verify the existence and uniqueness of the solution to problem (11). For each set of input, the reference solution 𝑢(𝑥) is obtained 
by the MIB method with a uniform mesh of size 1000. The test error of all neural models is measured on the same mesh of size 1000.

In this case, we investigate the performance of PI-IONet and PI-DeepONet in solving Eq. (11) without any paired input-output 
training data. In order to adapt to multiple input functions, for PI-IONet, we first divide the set of sensors {𝑦𝑖}𝑛𝑖=1 into two subsets 
{𝑦1
𝑖
}𝑛1
𝑖=1 and {𝑦2

𝑖
}𝑛2
𝑖=1 with 𝑛1 +𝑛2 = 𝑛 according to the interface. Then we employ 8 branch nets to extract latent representations of the 

4 input functions on the corresponding sub-domain. Specifically, the inputs for branch nets are [𝑓 (𝑦11), ⋯ , 𝑓 (𝑦1𝑛1 )], [𝑓 (𝑦
2
1), ⋯ , 𝑓 (𝑦2𝑛2 )], 

[𝑏(𝑦11), ⋯ , 𝑏(𝑦1𝑛1 )], [𝑏(𝑦
2
1), ⋯ , 𝑏(𝑦2𝑛2 )], [𝑎1], [𝑎2], [ℎ0] and [ℎ1], respectively. For PI-DeepONet, we employ the most direct approach by 

concatenating the four input functions together, i.e., [𝑓 (𝑦1), ⋯ , 𝑓 (𝑦𝑛), 𝑏(𝑦1), ⋯ , 𝑏(𝑦𝑛), 𝑎1, 𝑎2, ℎ0, ℎ1], to serve as a single input for the 
branch net.

We first utilize the PI-IONet network architecture, employing branch and trunk nets consisting of 5-layer FNN with 70 units per 
layer, to approximate the solution operator (12). The neural network is trained by minimizing the loss function (6) with 𝜆1 = 𝜆2 = 1, 
𝜆3 = 10, and 𝜆4 = 100, over 4 × 104 iterations of optimization. Fig. 6 illustrates the variation in relative 𝐿2 errors of the numerical 
10

solution and its derivative with respect to the number of sensors (denoted as #Sensors). Note that, in each case, the set of sensors 
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Table 2

Test errors and training costs for PI-IONet and PI-DeepONet. The error corresponds to the relative 𝐿2 error, recorded in the form of mean 
± standard deviation based on all test input functions in Example 2.

Model Activation Depth Width #Parameters 𝐿2(𝜃 ,) 𝐿2(∇𝜃 ,∇) Training time (hours)

PI-IONet Tanh 5 70 213 K 3.48e-3± 3.05e-3 8.84e-3±4.51e-3 0.76
PI-DeepONet Tanh 5 151 214 K 2.96e-1± 1.99e-1 3.06e-1± 1.97e-1 0.30

Fig. 7. An illustration of randomly sampled input functions (distinguished by different colors): Source term 𝑓 (𝐴1), boundary condition ℎ (𝐴2), coefficient 𝑎 (𝐴3) and 
coefficient 𝑏 (𝐴4); and the corresponding reference solutions (solid lines) obtained by MIB method and numerical solutions (dashed lines) obtained by PI-IONet (𝐴5) 
and PI-DeepONet (𝐴6). The gray point-dashed lines represent the location of the interface.

consists of equidistant grid points in the interval [0, 1]. As we can see from this figure, the test errors generally decrease as #Sensors
increases until it is sufficient to capture all the necessary frequency information for the input function.

In the following experiments, we keep #Sensors = 100, while keeping other hyperparameters consistent with those used in PI-
IONet. Here, 𝐿Γ𝐷 (𝜃) = 0 holds for any output function of PI-DeepONet, and 𝐿Γ𝑁 is approximated using Eq. (9). Table 2 records 
the network structures and the test errors for two neural models. As can be seen from the table, the final relative 𝐿2 errors of the 
numerical solutions and their derivatives obtained by PI-IONet can be of the order of 10−3 . Some visualizations of the input function, 
the reference solution, and the numerical result are shown in Fig. 7. As can be seen from the figure, the numerical solution obtained 
by PI-IONet aligns more consistently with the reference solution, even in the case where the ground truth is continuous. These results 
suggest that IONet is able to effectively handle multiple inputs for parametric interface problems.

It is remarked that other advantages of DeepONet also hold true for IONet, for example, the capability of providing accurate 
predictions for out-of-distribution test data [52,58]. Fig. 8 illustrates the numerical results of PI-IONet and PI-DeepONet for regen-
erated test input functions. In this study, we not only use GRF to generate the input functions (see the first row), but also include 
two certain functions, i.e., exp(𝑥) and sin(𝑥), as input functions (see the second and third rows). As shown in the third and fourth 
columns of this figure, both PI-IONet and PI-DeepONet integrate the constraints of physical laws as well as boundary conditions 
directly into model training, enabling the models to capture the fundamental behavior of the system. Remarkably, PI-IONet handles 
discontinuities in the input functions and output solutions across the interface more effectively, resulting in more accurate numerical 
results. Specifically, the average relative 𝐿2 errors of PI-IONet in the first to third rows are measured at 4.32 × 10−3, 8.50 × 10−3 and 
2.01 × 10−2, respectively. These results further underscore the robustness and generalization capability of PI-IONet.

4.2. Parametric elliptic interface problems in two dimensions

Example 3. To further investigate the capability of IONet, we consider a parametric interface problem (1) with a sharp and compli-
cated interface Γ which is given as

𝑥1(𝜗) = 0.65cos(𝜗)3,

𝑥2(𝜗) = 0.65sin(𝜗)3, 0 ≤ 𝜗 ≤ 𝜋.

Here, the source term 𝑓 is the input parameter of the target solution operator. In this example, we model the input function in the 
following way:

𝑓𝑖(𝐱) ∶= 𝑓 (𝐱)
|||Ω𝑖 = 𝑝𝑖1

[1 + 10(𝑥21 + 𝑥
2
2)]

2
−

𝑝𝑖2(𝑥
2
1 + 𝑥

2
2)

[1 + 10(𝑥21 + 𝑥
2
2)]

3
, 𝑖 = 1,2,

where (𝑝𝑖1, 𝑝
𝑖
2) comes from [50, 100] × [1550, 1650]. The computational domain is a regular square Ω = [−1, 1]2 (see Fig. 9 for an 

illustration). The coefficient 𝑎(𝐱) is a piece-wise constant, which is given by 𝑎(𝐱)|Ω1
= 2 and 𝑎(𝐱)|Ω2

= 1. The interface conditions on 
Γ are set as

𝑔𝐷(𝐱) =
1

1 + 10(𝑥21 + 𝑥
2
2)
,

11

𝑔𝑁 (𝐱) = 0,
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Fig. 8. Numerical results of PI-IONet and PI-DeepONet for out-of-distribution test input samples. Here, we keep 𝑎1 = 1.2, 𝑎2 = 1.8, ℎ0 = −0.12 and ℎ1 = 0.12. The 
input functions in (𝐴1), (𝐴2), (𝐵2), and (𝐶1) are generated using GRF with length scale 𝑙 = 0.15. Input functions 𝑓1 in (𝐵1) and 𝑏1 in (𝐶2) are fixed as exp(𝑥), while 
𝑓2 in (𝐵1) and 𝑏2 in (𝐶2) are fixed as sin(𝑥). The reference solutions (solid lines) and numerical solutions (dashed lines) obtained by PI-IONet and PI-DeepONet are 
shown in the third and fourth columns. The gray point-dashed lines represent the location of the interface.

Fig. 9. Computational domain and sensor locations in Example 3. Here, the number of sensors is 100.

and ℎ(𝐱) on boundary 𝜕Ω is given as

ℎ(𝐱) = 2
1 + 10(𝑥21 + 𝑥

2
2)
.

12

One can observe that if we take 𝑓1(𝐱) = 𝑓2(𝐱) with (𝑝11, 𝑝
1
2) = (𝑝21, 𝑝

2
2) = (80, 1600), then Eq. (1) has following exact solution [33]
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Fig. 10. The mean and one standard deviation of test errors of PI-IONet in Example 3. (Left) Training PI-IONet using different depth and width of the network 
architecture, where #Sensors = 100 and #Samples = 320. (Middle) Training PI-IONet using different number of training samples, where width = 50, depth = 4 and 
#Sensors = 100. (Right) Training PI-IONet using different number of sensors, where width = 50, depth = 4 and #Samples = 320. These errors represent the average of 
3 different runs corresponding to different set of training input functions and network initialization.

Fig. 11. The profile of the exact solution, the numerical solution obtained by PI-IONet, and the corresponding point-wise error are showcased from left to right. Here, 
width = 50, depth = 4, #Sensors = 100, and #Samples = 320.

𝑢(𝐱) =

⎧⎪⎪⎨⎪⎪⎩

1
1 + 10(𝑥21 + 𝑥

2
2)
, in Ω1,

2
1 + 10(𝑥21 + 𝑥

2
2)
, in Ω2.

To this end, we randomly sample some input functions from the given data distribution, except for the case (𝑝11, 𝑝
1
2) = (𝑝21, 𝑝

2
2) =

(80, 1600), which is reserved for testing purposes. The sensors for the input functions in the whole domain are equidistant grid points 
in the square [−1, 1]2. Take advantage of being mesh-free, IONet can easily handle problems with irregular interfaces.

In this study, we discuss the effects of the depth and width of the network, as well as the number of sensors and training samples, 
on the performance of the PI-IONet. We train PI-IONet by minimizing the physics-informed loss function (6) with 𝜆1 = 𝜆2 = 1, 
𝜆3 = 10 and 𝜆4 = 100 for 4 × 104 iterations of optimization. Fig. 10 illustrates the average error of three different runs of PI-IONet. 
Specifically, the left panel shows the relative 𝐿2 error, i.e.

‖𝑢− 𝑢𝜃‖2‖𝑢‖2 =

√√√√√∑𝑁
𝑖=1

(
𝑢(𝐱𝑖) − 𝑢𝜃(𝐱𝑖)

)2∑𝑁
𝑖=1 𝑢(𝐱𝑖)2

,

between the exact solution 𝑢 and the PI-IONet solution 𝑢𝜃 measured at 𝑁 = 101 × 101 test points over the whole domain, with 
varying depths (ranging from 2 to 4) and widths (ranging from 5 to 300) of the network architecture. We observe that increasing 
the expressiveness of the network leads to improved solution accuracy, eventually reaching a plain where the error reduction levels 
off. A similar trend is also observed on the middle panel as the number of training input samples (denoted as #Samples) increases. 
These might be caused by optimization errors. Additionally, as the input function 𝑓 (𝐱) in this case is controlled by four parameters 
(i.e., 𝑝𝑖1 and 𝑝𝑖2 with 𝑖 = 1, 2), a small number of sensors could be enough to capture all necessary frequency information of the input 
functions. As depicted on the right panel of this figure, although the accuracy of PI-IONet does not significantly improve with an 
increase in #Sensors, the average 𝐿∞ error and relative 𝐿2 error of PI-IONet with different #Sensors can both reach the order of 10−3. 
Moreover, it can be seen from Fig. 11, the numerical solution is in excellent agreement with the exact solution, where the relative 𝐿2

error is measured at 2.60 × 10−3. These results demonstrate the consistent and reliable performance of IONet in generating accurate 
numerical results, even in scenarios where the interface is irregular.

Example 4. This example aims to investigate the performance of IONet in handling a two-dimensional parametric interface problem 
13

with variable boundary conditions and coefficients. Computational domain is defined as Ω ∶= [0, 1]2, and the interface is defined as 
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Fig. 12. Computational domain for Example 4. The black solid line indicates the interface location.

Table 3

Test errors and training costs for PI-IONet, DD-IONet and DD-DeepONet. The error corresponds to the relative 𝐿2

error, recorded in the form of mean ± standard deviation based on all test input functions in Example 4. Here, 
#Sensors = 128 and #Samples = 1600.

Model Activation Depth Width #Parameters 𝐿2(𝜃 ,) Training time (hours)

PI-IONet Tanh 5 120 365 K 5.03e-2±1.58e-2 1.26
DD-IONet ReLU 5 120 365 K 1.70e-2±4.79e-3 0.47
DD-DeepONet ReLU 5 206 368 K 7.56e-2±1.99e-2 0.20

Γ ∶= {𝐱 ∶= (𝑥1, 𝑥2) | 𝑥2 = 0.5, 𝐱 ∈Ω}. Without losing generality, we defined Ω1 ∶= {𝐱 | 𝑥2 > 0.5, 𝐱 ∈Ω} and Ω2 ∶= {𝐱 | 𝑥2 < 0.5, 𝐱 ∈
Ω} (see Fig. 12 for an illustration). Specifically, the interface problem takes the following specific form:

−∇ ⋅ (𝑎∇𝑢(𝐱)) = 0, 𝐱 ∈Ω,

𝑢(𝐱) = ℎ(𝐱), 𝐱 ∈ 𝜕Ω,
(13)

with interface conditions 𝑔𝐷 = 0 and 𝑔𝑁 = 0. Our goal here is to learn the solution operator that maps the coefficient 𝑎(𝑥) and the 
boundary condition ℎ(𝐱) to the solution 𝑢(𝐱) to Eq. (13), i.e.,

 ∶ (ℎ(𝑥), 𝑎(𝑥))→ 𝑢(𝑥).

In this example, we randomly sample 3, 200 and 100 pairs of input functions (ℎ, 𝑎) for training and testing, respectively. Here, 
the boundary conditions ℎ𝑖(𝐱) ∶= ℎ(𝐱)|𝜕Ω∩Ω𝑖 with 𝑖 = 1, 2 are independently generated using GRF according to ℎ𝑖 ∼ 𝜇|𝜕Ω∩Ω𝑖 , where 
𝜇 ∼  (0, 103(−Δ + 100𝐼)−4) with zero Neumann boundary conditions on the Laplacian,1 while the coefficient 𝑎(𝑥) is modeled 
as a piece-wise constant function, where 𝑎1 ∶= 𝑎|Ω1

and 𝑎2 ∶= 𝑎2|Ω2
are uniformly sampled from the intervals [0.5, 1] and [2, 3], 

respectively. For each pair of input, the reference solution is obtained by the ℙ1 Lagrangian finite element method2 on a uniform 
mesh of 1025 by 1025, while the test error of the numerical solution is measured at its 65 by 65 submesh.

In this study, to accommodate two input functions, the IONet architecture consists of four branch nets and two trunk nets, 
while the DeepONet architecture consists of one branch net and one trunk net. Specifically, the inputs for branch nets in IONet are 
[ℎ(𝑦11), ⋯ , ℎ(𝑦1𝑛1 )], [ℎ(𝑦

2
1), ⋯ , ℎ(𝑦2𝑛2 )], [𝑎1] and [𝑎2], while for DeepONet it is [ℎ(𝑦1), ⋯ , ℎ(𝑦𝑛), 𝑎1, 𝑎2], where {𝑦𝑖}𝑛𝑖=1 = {𝑦1

𝑖
}𝑛1
𝑖=1 ∪{𝑦

2
𝑖
}𝑛2
𝑖=1

is the set of sensors over the whole domain.
In the following experiments, the numerical results are recorded after 1 × 105 optimization iterations. The detailed network sizes 

are provided in Table 3. Fig. 13 illustrates the accuracy of PI-IONet, DD-IONet and DD-DeepONet with respect to the number of 
sensors or training samples. Specifically, the left panel of this figure depicts the variation of the relative 𝐿2 error for PI-IONet, which 
is trained by minimizing the physics-informed loss function (6) with 𝜆1 = 𝜆2 = 1, 𝜆3 = 10 and 𝜆4 = 100. It can be seen that the relative 
𝐿2 error measured at two subdomains decreases rapidly when #Sensors is less than 64; however, it tends to level off as #Sensors
is further augmented due to other factors such as optimization errors and generalization errors. In addition, the errors in the two 
subdomains exhibit close proximity to one another, indicating the effectiveness of the proposed method in balancing errors across the 
subdomains. In order to ascertain the effect of #Samples on the performance of PI-IONet, DD-IONet and DD-DeepONet, we maintain 
#Sensors = 128. As illustrated in the right panel of Fig. 13, the relative 𝐿2 errors tend to decrease with an increase in the number 
of samples. This observation aligns with the findings of Example 3, which concerns a parameterized interface problem with a single 
input source. It is noteworthy that the accuracy of PI-IONet is less sensitive to #Samples compared to DD-IONet and DD-DeepONet. 
For instance, when the number of training samples is limited to #Samples = 200, PI-IONet achieves the lowest relative 𝐿2 error 
among the three models without any paired input-output measurements. Table 3 shows the relative 𝐿2 error and the training cost 
of PI-IONet, DD-IONet and DD-DeepONet when #Sensors = 128 and #Samples = 1600. It is observed that with a sufficiently large 

1 One common approach is to use a random number generator to sample from a normal distribution with zero mean and unit variance and then apply a spectral 
representation to generate the desired spatial correlation structure, see [49] for more details.
14

2 The implementation is based on the Fenics platform [59].
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Fig. 13. Numerical results of Example 4. Left: the relative 𝐿2 error of PI-IONet with respect to #Sensors, where #Samples = 1600. Right: The relative 𝐿2 error of 
PI-IONet, DD-IONet and DD-DeepONet with different number of training samples, where #Sensors= 128.

Fig. 14. The profile of the reference solution, the numerical solution obtained by PI-IONet, and the corresponding point-wise error in the whole domain for a 
representative example in the test dataset.

number of samples, the relative 𝐿2 error of all three models can reach the order of 10−2 , and DD-IONet outperforms DD-DeepONet. 
An illustration of a numerical solution obtained using PI-IONet is presented in Fig. 14, with the relative 𝐿2 error measured at 
4.13 × 10−2. The numerical solution derived from PI-IONet exhibits consistency with the reference solution.

4.3. Parametric elliptic interface problems in three dimensions

Example 5. To illustrate the capability of the proposed method for solving nonlinear interface problems, we consider the Poisson-
Boltzmann equation (PBE), a prevalent implicit continuum model utilized in the estimation of biomolecular electrostatic potentials 
Φ(𝐱). Similar equations occur in various applications, including electrochemistry and semiconductor physics. The molecule in the 
PBE is represented by a series of 𝑁𝑚 charges 𝑞𝑖 at positions 𝐜𝑖, where 𝑞𝑖 = 𝑧𝑖𝑒𝑐 , 𝑧𝑖 ∈ℝ, 𝑖 = 1, ⋯ , 𝑁𝑚. Specifically, we choose a real 
molecule (PDBID: ADP) with 𝑁𝑚 = 39 atoms as an example. Without loss of generality, the molecule is translated from the average 
coordinate center of all atoms to the center of Ω = [−10, 10]3. Then, in the special case of 1 ∶ 1 electrolyte, the PBE can be formulated 
for dimensionless potential 𝑢(𝐱) = 𝑒𝑐𝑘−1𝐵 𝑇

−1Φ(𝐱) as follows:

−∇ ⋅ (𝜖(𝐱)∇𝑢(𝐱)) + 𝜅̄2(𝐱) sinh(𝑢(𝐱)) = 𝛼
𝑁𝑚∑
𝑖=1
𝑧𝑖𝛿(𝐱 − 𝐜𝐢), 𝐱 ∈Ω,

�𝑢(𝐱)� = 0, 𝐱 ∈ Γ,

�𝜖(𝐱)𝜕𝑢(𝐱)
𝜕𝐧

� = 0, 𝐱 ∈ Γ,

𝑢(𝐱) = 𝛼

4𝜋𝜖(𝐱)

𝑁𝑚∑
𝑖=1
𝑧𝑖
𝑒−𝜅‖𝐱−𝐜𝑖‖‖𝐱 − 𝐜𝑖‖ , 𝐱 ∈ 𝜕Ω,

(14)

where 𝛿(⋅) is the Dirac delta function, the permittivity 𝜖(𝐱) takes the values of 𝜖𝑚𝜖0 and 𝜖𝑠𝜖0 in the molecular region Ω1 and the 
solution region Ω2, respectively. The modified Debye-Hückel takes the values 𝜅̄ = 0 in Ω1 and 𝜅̄ =

√
𝜖𝑚𝜖0𝜅 in Ω2, and constant 

𝛼 = 𝑒2𝑐
𝑘𝐵𝑇

. Here, constants 𝜖0, 𝑒𝑐 , 𝛽, 𝜅 and 𝑇 represent the vacuum dielectric constant, fundamental charge, Boltzmann’s constant, 
Debye-Hückel constant and absolute temperature, respectively. Our goal is to learn an operator  mapping from the permittivity 𝜖(𝐱)
to the solution 𝑢(𝐱) to PBE. Note that 𝜖 has a piece-wise constant nature, allowing us to directly utilize the function values as inputs 
15

for IONet without requiring sensor-based discretization.
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Table 4

Test errors and training costs for PI-IONet, DD-IONet, and DD-DeepONet. The error corresponds to the relative 𝐿2

error, recorded in the form of mean ± standard deviation based on all test input functions in Example 5.

Model Activation Depth Width #Parameters 𝐿2(𝜃 ,) Training time (hours)

PI-IONet Tanh 5 150 364 K 1.24e-2±8.31e-5 0.51
DD-IONet ReLU 5 150 364 K 4.33e-3±1.61e-3 0.17
DD-DeepONet ReLU 5 215 373 K 1.54e-2±3.80e-4 0.10

Fig. 15. Surface potentials for protein ADP. Here, 𝜖𝑚 = 2 and 𝜖𝑠 = 80.

To numerically solve PBE (14), we use a solution decomposition scheme to overcome the singular difficulty caused by the Dirac 
delta distributions. Similar to our former work [33], 𝑢 is decomposed as 𝑢(𝐱) = 𝐺̄(𝐱) + 𝑢̄(𝐱), where

𝐺̄(𝐱) = 𝛼

4𝜋𝜖𝑚𝜖0

𝑁𝑚∑
𝑖=1

𝑧𝑖‖𝐱 − 𝐜𝑖‖ , ∇𝐺̄(𝐱) = − 𝛼

4𝜋𝜖𝑚𝜖0

𝑁𝑚∑
𝑖=1
𝑧𝑖

𝐱 − 𝐜𝑖‖𝐱 − 𝐜𝑖‖3
are restricted to Ω1, and 𝑢̄(𝐱) satisfies the following PDE:

−∇ ⋅ (𝜖𝑚𝜖0∇𝑢̄(𝐱)) = 0, 𝐱 ∈Ω1,

−∇ ⋅ (𝜖𝑠𝜖0∇𝑢̄(𝐱)) + 𝜅̄2 sinh(𝑢̄(𝐱)) = 0, 𝐱 ∈Ω2,

�𝑢̄(𝐱)� = 𝐺̄(𝐱), 𝐱 ∈ Γ,

�𝜖(𝐱)𝜕𝑢̄(𝐱)
𝜕𝐧

� = 𝜖𝑚𝜖0
𝜕𝐺̄(𝐱)
𝜕𝐧

, 𝐱 ∈ Γ,

𝑢̄(𝐱) = 𝛼

4𝜋𝜖𝑠𝜖0

𝑁𝑚∑
𝑖=1
𝑧𝑖
𝑒−𝜅‖𝐱−𝐜𝑖‖‖𝐱 − 𝐜𝑖‖ , 𝐱 ∈ 𝜕Ω.

The training dataset comprises 1, 000 input functions (constants) uniformly and randomly sampled from the space (𝜖𝑚, 𝜖𝑠) ∈
[1, 2] × [80, 100], while the test dataset is composed of equidistant grid points arranged in a 6 × 6 grid within this space. For each 
test sample, we solved PBE (14) using piece-wise linear FEM [7] on an interface-fitted mesh to generate the reference solution. 
Specifically, the grid points of the FEM mesh consist of 1407, 3403, 2743 and 2402 points in Ω1, Ω2, Γ and 𝜕Ω, respectively. During 
the training phase, for each input function, the training points used to evaluate the loss function consist of a collection of one-tenth 
randomly sampled grid points, rather than a set of randomly sampled scatter points within the domain. This approach ensures 
consistency in the interface across different methods. Note that the unit outward normal vector for each point on the interface Γ is 
approximated by taking the average of the outward normal directions of all elements that contain the corresponding point.

In this example, we approximate the solution operator of PBE (14) using PI-IONet, DD-IONet and DD-DeepONet. Herein, the 
weights in the loss function (6) of PI-IONet are set as 𝜆1 = 𝜆2 = 𝜆3 = 1 and 𝜆4 = 100. Table 4 records test errors measured at 4810 
grid points in Ω1 and Ω2 and training costs of these three models after 5 × 104 parameter updates. It can be observed that DD-IONet 
achieves the lowest relative 𝐿2 error. Additionally, despite lacking any paired input-output measurements, except for the boundary 
conditions, the error accuracy of PI-IONet is comparable to that of DD-DeepONet, albeit with slightly higher training costs. A visual 
comparison of the reference and predicted surface potentials of the protein ADP is shown in Fig. 15. These findings further emphasize 
the capability of IONet handle parametric interface problems within irregular interface. While our current work demonstrates the 
16

effectiveness of IONet in solving PBE with a real small-molecule ADP, further research is needed to investigate the computational 
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efficiency of PI-IONet and other neural network-based methods in solving large-scale computational problems in biophysics, such as 
solving PBE with real macromolecules. We will postpone this part of the work to future research.

In this example, we approximate the solution operator of PBE (14) using PI-IONet, DD-IONet and DD-DeepONet. Herein, the 
weights in the loss function (6) of PI-IONet are set as 𝜆1 = 𝜆2 = 𝜆3 = 1 and 𝜆4 = 100, and the network hyperparameters are presented 
in Table 4. In all cases, the neural networks are trained after 5 × 104 parameter updates. The test errors and training costs of these 
three models are shown in Table 4. It can be observed that DD-IONet achieves the lowest relative 𝐿2 error. Additionally, despite 
lacking any paired input-output measurements, except for the boundary conditions, the error accuracy of PI-IONet is comparable 
to that of DD-DeepONet, albeit with slightly higher training costs. In addition, a visual comparison of the reference and predicted 
surface potentials of the protein ADP is shown in Fig. 15. These findings further emphasize the capability of IONet to effectively 
handle parametric interface problems within irregular interface. While our current work demonstrates the effectiveness of IONet 
in solving PBE with a real small-molecule ADP, further research is needed to investigate the computational efficiency of PI-IONet 
and other neural network-based methods in solving large-scale computational problems in biophysics, such as solving PBE with real 
macromolecules. We will postpone this part of the work to future research.

4.4. Parametric elliptic interface problems in six dimensions

Example 6. Our final example aims to highlight the ability of the proposed framework to handle high-dimensional parametric 
interface problems. Here, we consider Eq. (1) defined on a 6-dimension sphere of radius 0.6 domain Ω enclosing another smaller 
6-dimension sphere of radius 0.5 as the interior domain Ω1. Our goal is to learn the solution operator mapping from the source term 
𝑓 to the latent solution of Eq. (1), i.e.,  ∶ 𝑓 (𝐱) → 𝑢(𝐱). In this case, 𝑓 has the following specific forms

𝑓 (𝐱) =

⎧⎪⎪⎨⎪⎪⎩
− 𝑝1

6∏
𝑖=1

exp(𝑥𝑖), 𝐱 ∈Ω1,

− 𝑝2
6∏
𝑖=1

sin(𝑥𝑖), 𝐱 ∈Ω2,

where (𝑝1, 𝑝2) randomly sample from [1, 10] × [−10−2, −10−3]. For the problem setup, the coefficient

𝑎(𝐱) =
{

1, 𝐱 ∈Ω1,

10−3, 𝐱 ∈Ω2,

has a large contrast (𝑎1∕𝑎2 = 103), the boundary condition is given as ℎ(𝐱) = ∏6
𝑖=1 sin(𝑥𝑖), the interface conditions are chosen as 

𝑔𝐷(𝐱) =
∏6
𝑖=1 sin(𝑥𝑖) −

∏6
𝑖=1 exp(𝑥𝑖), and

𝑔𝑁 (𝐱) =
5
3

(
10−3

6∑
𝑖=1

(
𝑥𝑖 cos(𝑥𝑖)

6∏
𝑗=1,𝑗≠𝑖

sin(𝑥𝑗 )

)
−

( 6∑
𝑖=1
𝑥𝑖

) 6∏
𝑗=1

exp(𝑥𝑗 )

)
.

Note that, when we take 𝑓 with 𝑝1 = 6 and 𝑝2 = −6 × 10−3, Eq. (1) exists an exact solution [40]

𝑢(𝐱) =

⎧⎪⎪⎨⎪⎪⎩

6∏
𝑖=1

exp(𝑥𝑖), 𝐱 ∈Ω1,

6∏
𝑖=1

sin(𝑥𝑖), 𝐱 ∈Ω2.

In this study, we train PI-IONet 𝜃 with different scales of architecture to approximate the solution operator and then test the 
trained model in the case of input 𝑓 with 𝑝1 = 6 and 𝑝2 = −6 × 10−3. In all cases, we train PI-IONet by minimizing the loss function 
(6) with 𝜆1 = 𝜆2 = 𝜆3 = 1 and 𝜆4 = 100 for 4 × 104 iterations of parameter updates, utilizing 100 randomly sampled input functions. 
The sensors for discretizing the input functions comprise a set of randomly sampled points in the computational domain, as opposed 
to lattice points in a higher dimensional space. Specifically, we set the number of sensors as 40.

Table 5 illustrates the test errors measured at 10, 000 test data points over the whole domain and the computational costs for 
training PI-IONet. It is shown that the accuracy of the numerical solution improves while the training cost grows as the number of 
trainable parameters increases. The final 𝐿∞ error and relative 𝐿2 error are about 0.7% and 0.2%, respectively, with low deviations. 
These findings suggest that PI-IONet has the potential to achieve high performance in dealing with high-dimensional output solutions 
of parametric elliptic interface problems, even in scenarios involving high-contrast coefficients.

5. Conclusions

In this work, we have investigated deep neural network-based operator learning methods and proposed the interfaced operator 
17

network (IONet) to tackle parametric elliptic interface problems. The main contribution is that we first combine the domain-
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Table 5

𝐿∞ and relative 𝐿2 errors for PI-IONet with different widths and depths. These errors are obtained by 
averaging the results from three independent experiments, each involving different network random ini-
tialization and randomly generated training dataset.

Depth Width #Parameters ‖‖𝑢− 𝑢𝜃‖‖∞ ‖‖𝑢−𝑢𝜃‖‖2‖𝑢‖2 Training time (hours)

3 30 9k 3.35e-2±1.95e-2 1.38e-2±6.18e-4 0.42
4 40 21k 1.36e-2±6.06e-3 8.04e-3±4.01e-3 0.55
5 50 43k 7.67e-3±1.46e-3 1.56e-3±6.84e-4 0.66

decomposed method with the operator learning methods and employ multiple branch nets and trunk nets to explicitly handle 
the discontinuities across the interface in the input and output functions. In addition, we introduce tailored physics-informed loss 
designed to constrain the physical consistency of the proposed model. This strategy reduces the requirement for training data and 
empowers the IONet to remain effective even in the absence of paired input-output training data. We also provide theory and nu-
merical experiments to demonstrate that the proposed IONet is effective and reliable for approximating the solution operator of 
parametric interface problems. In our simulations, we systematically studied the effects of different factors on the accuracy of IONet 
and existing state-of-the-art operator networks. The results show that the proposed IONet is more robust and accurate in dealing with 
many kinds of parametric interface problems due to its discontinuity-preserving architecture.

Despite the preliminary success, there are still many issues that need further investigation. As an advantage of neural operators 
is their fast predictions, an important aspect of interest regarding IONet is the systematic comparison of its computational cost with 
other numerical methods for solving interface problems. In addition, one limitation is the absence of treating geometry configuration 
as an input function in our current work. Integrating the geometry configuration into IONet could potentially enhance its capabil-
ities and further broaden its range of applications. Furthermore, we have not yet obtained the convergence rate for IONet, which 
would provide valuable insights into both the accuracy and stability of the model. Inspired by the works on the error estimates for 
DeepONets [60] and generalization performance analysis of deep learning for PDEs [61–64], including interface problems [65], it is 
interesting to improve the convergence properties and the error estimation of IONet for solving parametric elliptic interface prob-
lems. Moreover, IONet can be viewed as a specific DeepONet preserving discontinuity, and we are also interested in exploring the 
feasibility of integrating recent advancements and extensions from DeepONet (e.g., DeepONet with proper orthogonal decomposition 
[51], DeepONet based on latent representations and autoencoders [66], DeepONet using Laplace transform [67]) into IONet.
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Appendix A. Proof of Theorem 1

Here we provide the proof of Theorem 1, which relies on the universal approximation theorem of FNNs (see, e.g., [68]) and the 
tensor product decomposition of operators [50].

Proof. Denote 𝑇𝑖 = {𝑎|Ω𝑖 | 𝑎 ∈ 𝑇 } ⊂ 𝐶(Ω𝑖) where 𝑖 = 1, ⋯ , 𝐼 . Consider an operator ̃ mapping from 𝑇1 ×⋯ × 𝑇𝐼 to 𝑋(Ω) as
18

̃(𝑎1,⋯ , 𝑎𝐼 ) ∶= (𝑎), where 𝑎(𝑥) = 𝑎𝑖(𝑥), if 𝑥 ∈Ω𝑖. (A.1)
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Observing the fact that the function values evaluated at given points are equivalent to the piece-wise linear functions of Faber-
Schauder basis, and by corollary 2.6 in [50], for any 𝜀 > 0, there exist positive integers 𝑚𝑖, 𝐾 and continuous functions 𝑔𝑖,𝑘 ∈ 𝐶(ℝ𝑚𝑖 )
and 𝑢𝑘 ∈𝑋(Ω) and 𝐲1

𝑖
, ⋯ , 𝐲𝑖𝑚𝑖 ∈Ω𝑖, where 𝑘 = 1, ⋯ , 𝐾 , 𝑖 = 1, ⋯ , 𝐼 , such that

sup
𝑎1∈𝑇1 , 𝑎2∈𝑇2

‖‖‖‖‖‖̃(𝑎1,⋯ , 𝑎𝐼 )(⋅) −
𝐾∑
𝑘=1

𝐼∏
𝑖=1
𝑔𝑖,𝑘(𝑎𝑖(𝐲1𝑖 ),⋯ , 𝑎𝑖(𝐲

𝑖
𝑚𝑖
)) ⋅ 𝑢𝑘(⋅)

‖‖‖‖‖‖𝑋(Ω)

≤
𝜀

2
. (A.2)

Since 𝑇𝑖 is a collection of continuous functions, and Ω is bounded, we have that 𝐴𝑖 ∶= {(𝑎𝑖(𝐲1𝑖 ), ⋯ , 𝑎𝑖(𝐲
𝑚𝑖
𝑖
))|𝑎𝑖 ∈ 𝑇𝑖} ∈ℝ𝑚𝑖 is bounded 

for 𝑖 = 1, ⋯ , 𝐼 , and there exists a cuboid containing 𝐴𝑖. Consequently, by the approximation theorems of tanh FNN [68], for any 
𝛿 > 0, there exist tanh FNNs 𝑏𝑖

∶ℝ𝑚𝑖 →ℝ𝐾 ,  𝑖
𝑡 ∶ Ω𝑖→ℝ𝐾 , such that‖‖‖[𝑏𝑖

]𝑘 − 𝑔𝑖,𝑘
‖‖‖𝐶∞(𝐴𝑖)

≤ 𝛿, ‖‖‖[ 𝑖
𝑡 ]𝑘 − 𝑢𝑘|Ω𝑖‖‖‖𝐻2(Ω𝑖)

≤ 𝛿, 𝑖 = 1,⋯ , 𝐼, 𝑘 = 1,⋯ ,𝐾,

where [ ]𝑘 denotes the 𝑘-th component of  . Denote

𝑀𝑘 =max{‖‖𝑔1,𝑘‖‖𝐶∞(𝐴1)
,⋯ , ‖‖𝑔𝐼,𝑘‖‖𝐶∞(𝐴𝐼 )

,‖‖𝑢𝑘‖‖𝑋(Ω)}, 𝑘 = 1,⋯ ,𝐾.

Subsequently, we can choose a sufficiently small 𝛿 such that

‖‖‖ 𝐾∑
𝑘=1

𝐼∏
𝑖=1

[𝑏𝑖
]𝑘(𝑎𝑖(𝐲1𝑖 ),⋯ , 𝑎𝑖(𝐲

𝑖
𝑚𝑖
)) ⋅ [ 𝑖

𝑡 ]𝑘(⋅) −
𝐾∑
𝑘=1

𝐼∏
𝑖=1
𝑔𝑖,𝑘(𝑎𝑖(𝐲1𝑖 ),⋯ , 𝑎𝑖(𝐲

𝑖
𝑚𝑖
)) ⋅ 𝑢𝑘(⋅)

‖‖‖𝐻2(Ω𝑖)

≤
𝐾∑
𝑘=1

(𝑀𝑘 + 𝛿)𝐼+1 −𝑀𝐼+1
𝑘

≤
𝜀

2
.

(A.3)

Finally, combining definition (A.1), estimates (A.2) and (A.3), we conclude that for 𝑖 = 1, ⋯ , 𝐼 ,

sup
𝑎∈𝑇

‖‖‖‖(𝑎)(⋅) − 
(
𝑏1

(𝑎(𝐲11),⋯ , 𝑎(𝐲
1
𝑚1
))⊙𝑏2

(𝑎(𝐲21),⋯ , 𝑎(𝐲
2
𝑚2
))⊙ 𝑖

𝑡 (⋅)
)‖‖‖‖𝐻2(Ω𝑖)

≤ sup
𝑎∈𝑇

‖‖‖‖‖‖̃(𝑎|Ω1
,⋯ , 𝑎|Ω𝐼 )(⋅) − 𝐾∑

𝑘=1

𝐼∏
𝑖=1
𝑔𝑖,𝑘(𝑎𝑖(𝐲1𝑖 ),⋯ , 𝑎𝑖(𝐲

𝑖
𝑚𝑖
)) ⋅ 𝑢𝑘(⋅)

‖‖‖‖‖‖𝐻2(Ω𝑖)

+ sup
𝑎∈𝑇

‖‖‖‖‖‖
𝐾∑
𝑘=1

𝐼∏
𝑖=1

[𝑏𝑖
]𝑘(𝑎𝑖(𝐲1𝑖 ),⋯ , 𝑎𝑖(𝐲

𝑖
𝑚𝑖
)) ⋅ [ 𝑖

𝑡 ]𝑘(⋅) −
𝐾∑
𝑘=1

𝐼∏
𝑖=1
𝑔𝑖,𝑘(𝑎𝑖(𝐲1𝑖 ),⋯ , 𝑎𝑖(𝐲

𝑖
𝑚𝑖
)) ⋅ 𝑢𝑘(⋅)

‖‖‖‖‖‖𝐻2(Ω𝑖)

≤
𝜀

2
+ 𝜀

2
= 𝜀,

which completes the proof. □
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