
Journal of Computational Physics 514 (2024) 113217

Contents lists available at ScienceDirect

Journal of Computational Physics

journal homepage: www.elsevier.com/locate/jcp

Solving parametric elliptic interface problems via interfaced

operator network

Sidi Wu a,b, Aiqing Zhu b, Yifa Tang b, Benzhuo Lu b,∗

a School of Mathematical Sciences, Peking University, Beijing 100871, China
b LSEC, ICMSEC, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China

A R T I C L E I N F O A B S T R A C T

Keywords:

Parametric elliptic interface problems
Interfaced operator network
Operator regression
Mesh-free method

Learning operators mapping between infinite-dimensional Banach spaces via neural networks
has attracted a considerable amount of attention in recent years. In this paper, we propose an
interfaced operator network (IONet) to solve parametric elliptic interface PDEs, where different
coefficients, source terms, and boundary conditions are considered as input features. To capture
the discontinuities in both the input functions and the output solutions across the interface, IONet
divides the entire domain into several separate subdomains according to the interface and uses
multiple branch nets and trunk nets. Each branch net extracts latent representations of input
functions at a fixed number of sensors on a specific subdomain, and each trunk net is responsible
for output solutions on one subdomain. Additionally, tailored physics-informed loss of IONet is
proposed to ensure physical consistency, which greatly reduces the training dataset requirement
and makes IONet effective without any paired input-output observations inside the computational
domain. Extensive numerical studies demonstrate that IONet outperforms existing state-of-the-art
deep operator networks in terms of accuracy and versatility.

1. Introduction

Elliptic interface problems have widespread applications across various fields, including fluid mechanics [1,2], materials science
[3,4], electromagnetics [5], biomimetics [6,7], and flow in porous media [8]. Accurate modeling and rapid evaluation of these
differential equations are critical in both scientific research and engineering applications. Many computational tasks arising in science
and engineering often involve repeated evaluation of the outputs of an expensive forward model for many statistically similar inputs.
These tasks, known as parametric PDE problems, encompass various areas such as inverse problems, control and optimization, risk
assessment, and uncertainty quantification [9,10]. When dealing with parametric PDEs with discontinuous coefficients across certain
interfaces, i.e., parametric interface problems, the low global regularity of the solution and the irregular geometry of the interface
give rise to additional challenges, particularly for problems with non-smooth interfaces containing geometric singularities such as
sharp edges, tips, and cusps.

Consider an open and bounded domain Ω ⊂ ℝ𝑑 with a Lipschitz boundary 𝜕Ω. The domain Ω is separated into two disjoint
subdomains, Ω1 and Ω2, by an interface Γ. A sketch of the computational domain considered in 2D is shown in Fig. 1. Then
parametric second-order linear elliptic interface problems are of the form:

* Corresponding author.
Available online 26 June 2024
0021-9991/© 2024 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.

E-mail address: bzlu@lsec.cc.ac.cn (B. Lu).

https://doi.org/10.1016/j.jcp.2024.113217
Received 28 August 2023; Received in revised form 16 June 2024; Accepted 19 June 2024

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcp
mailto:bzlu@lsec.cc.ac.cn
https://doi.org/10.1016/j.jcp.2024.113217
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcp.2024.113217&domain=pdf
https://doi.org/10.1016/j.jcp.2024.113217

Journal of Computational Physics 514 (2024) 113217S. Wu, A. Zhu, Y. Tang et al.

Fig. 1. Domain Ω, its subdomains Ω1 , Ω2 . The interface Γ divides Ω into two disjoint subdomains.

−∇ ⋅ (𝑎∇𝑢) + 𝑏𝑢 = 𝑓, in Ω ⧵ Γ, (1a)

�𝑢� = 𝑔𝐷, on Γ, (1b)

�𝑎∇𝑢 ⋅ 𝐧� = 𝑔𝑁 , on Γ, (1c)

𝑢 = ℎ, on 𝜕Ω, (1d)

where 𝐧 denotes the outward unit normal vectors of the interface Γ (from Ω1 to Ω2), �⋅� denotes the jump across the interface, for a
point 𝐱𝛾 ∈ Γ,

�𝑢�(𝐱𝛾) ∶ = lim
𝐱∈Ω2
𝐱→𝐱𝛾

𝑢(𝐱) − lim
𝐱∈Ω1
𝐱→𝐱𝛾

𝑢(𝐱),

�𝑎∇𝑢 ⋅ 𝐧�(𝐱𝛾) ∶ = lim
𝐱∈Ω2
𝐱→𝐱𝛾

𝑎(𝐱)∇𝑢(𝐱) ⋅ 𝐧− lim
𝐱∈Ω1
𝐱→𝐱𝛾

𝑎(𝐱)∇𝑢(𝐱) ⋅ 𝐧.

Here, 𝑔𝐷(𝐱) ∶ Γ → ℝ and 𝑔𝑁 (𝐱) ∶ Γ → ℝ are the interface conditions, and ℎ(𝐱) ∶ 𝜕Ω → ℝ is the boundary condition; the coefficient
𝑎(𝐱) ∶ Ω →ℝ is continuous and positive in each of the subdomains but discontinuous across the interface; the coefficient 𝑏(𝐱) ∶Ω →ℝ
and source 𝑓 (𝐱) ∶ Ω →ℝ are continuous in each of the subdomains but may be discontinuous across the interface. Additionally, we
will also consider a nonlinear example, i.e., replacing 𝑏𝑢 here with 𝑏(𝑢). The latent solution 𝑢(𝐱) ∶ Ω →ℝ to this problem typically has
higher regularity in each subdomain, but lower global regularity across the whole domain, even with discontinuities at the interface.
Solving these parametric elliptic interface problems requires learning the solution operator that maps variable PDE parameters such as
the coefficient 𝑎(𝐱) and the source term 𝑓 (𝐱) directly to the corresponding solution 𝑢. This paper introduces a novel operator network
for approximating operators involving discontinuities in both input and output functions. We then demonstrate its effectiveness in
approximating the solution operator of parametric elliptic interface problems.

Classical numerical methods for solving elliptic interface problems can be roughly divided into two categories: interface-fitted
methods and interface-unfitted methods. The first type of approach is suitable for solving PDE problems defined in complex domains.
The methods in this category include classical finite element method (FEM) [11–13], boundary element method (BEM) [14], weak
Galerkin method [15], and so on. To maintain optimum convergence behavior, these methods require the mesh surface to be aligned
with the interface. This alignment ensures that interface conditions are correctly applied, enhancing the accuracy of numerical solu-
tions. However, generating interface-fitted meshes for irregular domains or interfaces could result in significant computational costs
[16], especially when high accuracy is required. To alleviate the burden of mesh generation, many works employ interface-unfitted
meshes (e.g., a uniform Cartesian mesh) to discretize the computational domain and enforce interface conditions by modifying finite
difference stencils or finite element bases near the interface. For instance, the immersed boundary method (IBM) [17], the immersed
interface method (IIM) [18], the immersed finite element method [19], the ghost fluid method (GFM) [20] and its improvement
(xGFM) [21], the cartesian grid finite volume approach (FVM) [22,23], the matched interface and boundary method [24], the ex-
tended finite element methods (XFEM) [25,26], and references therein. In general, the numerical solution of these methods becomes
more accurate with mesh refinement, but also more time consuming.

Besides the mesh-based methods, there are also numerous efforts focusing on mesh-free numerical methods for interface problems,
such as direct meshless local Petrov-Galerkin method [27], the global RBF-QR collection method [28], the local RBF meshless
methods [29], and the meshless method based on pascal polynomials and multiple-scale approach [30]. Alternatively, there is
a growing interest in utilizing neural network-based methods to solve elliptic interface problems. For instance, [31] employed a
shallow neural network to remove the inhomogeneous boundary conditions and developed a deep Ritz-type approach to solve the
interface problem with continuous solutions. An important development in this direction is the combination of deep learning and
domain decomposition methods due to the observation that the solution to the interface problem is typically piece-wise continuous.
The solution to Eq. (1) can be approximated by minimizing a loss function derived from either the least squares principle [32,33]
or the variational principle [34,35]. Moreover, adaptively setting appropriate penalty weights among different terms in the loss
function could improve accuracy [33,36,37]. And specially designed neural network structures, such as incorporating multi-scale
features [38,39] and augmenting extra feature input [40–42], are also able to further enhance the performance of neural models.

Although these numerical methods have been shown to be effective to some extent, they are only employed to solve a given
instance of the elliptic interface problem (1), where the coefficient functions 𝑎(𝐱) and 𝑏(𝐱), the forcing term 𝑓 (𝐱), the interface
2

conditions 𝑔𝐷(𝐱) and 𝑔𝑁 (𝐱), and the boundary condition ℎ(𝐱) are given in advance. In other words, these methods treat a PDE

Journal of Computational Physics 514 (2024) 113217S. Wu, A. Zhu, Y. Tang et al.

with different parameters as different tasks, each of which needs to be solved end-to-end, which is computationally expensive and
time-consuming. To address these challenges, one approach is to employ a reduced-order model that leverages a set of high-fidelity
solution snapshots to construct rapid emulators [43,44]. However, the validity of this method relies on the assumption that the
solution set is contained approximately in a low-dimensional manifold, which could potentially lead to compromised accuracy and
generalization performance [45,46].

Recently, as an emerging paradigm in scientific machine learning, several operator neural networks, such as PDE-Nets [47],
deep operator network (DeepONet) [48] and Fourier neural operator (FNO) [49], have been developed to directly learn the solution
mapping between two infinite-dimensional function spaces. Although prediction accuracy may be limited, the ability of neural
networks to learn from data makes them particularly well suited to this task. Such methods have great potential for developing fast
forward and inverse solvers for PDE problems, and have shown good performance in building surrogate models for many types of
PDEs, including the Burgers’ equation [48,50], Navier-Stokes equations [49,51], Darcy flow [51], diffusion-reaction PDE [52], and
so on.

Despite the aforementioned success, these operator learning methods typically have difficulty effectively capturing the disconti-
nuities of input and output functions due to the following two reasons. Theoretically, their approximation theory usually assumes
that the input and output functions are continuous [48]. Practically, to handle input functions numerically, we typically need to
discretize the input functions and evaluate them at a set of locations. This approach may overlook the discontinuity of the true input
functions, as the input functions were expected to be continuous. In addition, the output functions are represented by a network
which is a continuous approximator. However, for interface problems, the global regularity of the coefficients and the solutions is
usually very low, even discontinuous [53]. These limit the ability of operator networks to accurately represent and learn the complex
behavior associated with interface problems.

To address these limitations, in this paper we propose a novel mesh-free method for approximating the solution operator of
parametric elliptic interface problems. Different from existing operator networks, we divide the whole domain into several separate
subdomains according to the interface, and leverage multiple branch nets and trunk nets. Specifically, each branch net encodes
the input function at a fixed number of sensors in each subdomain, and each trunk net is responsible for output solutions in each
subdomain. Such an architecture allows the model to accommodate irregularities in input functions and solutions. In addition,
tailored physics-informed loss is proposed to ensure physical consistency, which greatly reduces the requirement for training datasets
and makes the network effective without any paired input-output observations in the interior of the computational domain. The
proposed method circumvents mesh generation and numerical discretization at the interface(s), thus easily handling problems in
irregular domains. And the model can be trained only once for fast simulation with different input functions. Herein, we name this
neural operator as the Interfaced Operator Network (IONet). Numerical results show that IONet exhibits better accuracy, as well as
generalization properties for various input parameters, compared with state-of-the-art neural models.

The rest of this paper is organized as follows: In Section 2, we review the basic idea of the operator network and the DeepONet
method. In Section 3, we introduce the proposed interfaced neural network in detail. Then, in Section 4, we investigate the per-
formance of the proposed methods in several typical numerical examples. Finally, we conclude the paper and discuss some future
directions in Section 5.

2. Learning operators with neural networks

In this section, we briefly introduce the DeepONet model architecture [48] and its two extensions, the Multi-input operator
network (MIONet) [50] and the Physics-informed DeepONet (PI-DeepONet) [52], for learning nonlinear operators between infinite
function spaces.

Let  and  be two Banach spaces, and let  be an operator that maps between these two infinite-dimensional function spaces,
i.e.,  ∶  → . We assume that for each 𝑣(𝐲) ∶ 𝐲 → ℝ in  , there exists a unique corresponding output function 𝑢 in  that can
be represented as (𝑣)(𝐱) ∶ 𝐱 → ℝ. Analogously, in the context of parametric PDE problems,  and  are denoted as the input
function space and the solution space, respectively. Following the original works of [48,52], an unstacked DeepONet 𝜃 is trained to
approximate the target solution operator , where 𝜃 prediction of a function (an input parameter) 𝑣 ∈  evaluated at a point 𝐱 can
be expressed as

𝜃(𝑣)(𝐱) =𝑏(𝑣(𝐲1), 𝑣(𝐲2),⋯ , 𝑣(𝐲𝑚))𝑇
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑏𝑟𝑎𝑛𝑐ℎ 𝑛𝑒𝑡

𝑡(𝐱)
⏟⏟⏟
𝑡𝑟𝑢𝑛𝑘 𝑛𝑒𝑡

+ 𝑏0
⏟⏟⏟
𝑏𝑖𝑎𝑠

=
𝐾∑
𝑘=1
𝑏𝑘𝑡𝑘 + 𝑏0,

where 𝜃 denotes all the trainable parameters, i.e., the set consisting of the parameters in the branch net 𝑏 and the trunk net
𝑡 and the bias 𝑏0 ∈ ℝ. Here, [𝑏1, 𝑏2, ⋯ , 𝑏𝐾]𝑇 ∈ ℝ𝐾 denotes the output of 𝑏 as a feature embedding of the input function 𝑣,
[𝑡1, 𝑡2, ⋯ , 𝑡𝐾]𝑇 ∈ℝ𝐾 represents the output of 𝑡, and {𝐲1, 𝐲2, ⋯ , 𝐲𝑚} is a collection of fixed point locations referred to as “sensors”,
where we discretize the input function 𝑣. DeepONets are capable of approximating arbitrary continuous operators [54,48], making
them a powerful tool in the field of scientific computing.

MIONet [50] extends the architecture and approximation theory of DeepONet to the case of operators defined on multiple Banach
3

spaces. Let  be a multi-input operator defined on the product of Banach spaces:

Journal of Computational Physics 514 (2024) 113217S. Wu, A. Zhu, Y. Tang et al.

 ∶ 1 × 2 ×⋯ × 𝑞 → ,

where 1, 2, ⋯ , 𝑞 are 𝑞 different input Banach spaces that can be defined on different domains, and  denotes the output Banach
space. Then, when we employ a MIONet 𝜃 to approximate the operator , for a given input function (𝑣1, 𝑣2, ⋯ , 𝑣𝑞) ∈ 1×2×⋯ ×𝑞 ,
the prediction of 𝜃(𝑣1, 𝑣2, ⋯ , 𝑣𝑞) at a point 𝐱 is formulated as

𝜃(𝑣1, 𝑣2,⋯ , 𝑣𝑞)(𝐱) = 

⎛⎜⎜⎜⎜⎝
𝑏1

(𝒗𝟏)
⏟⏞⏟⏞⏟
𝑏𝑟𝑎𝑛𝑐ℎ1

⊙𝑏2
(𝒗𝟐)

⏟⏞⏟⏞⏟
𝑏𝑟𝑎𝑛𝑐ℎ2

⊙⋯⊙𝑏𝑞
(𝒗𝒒)

⏟⏞⏟⏞⏟
𝑏𝑟𝑎𝑛𝑐ℎ𝑞

⊙ 𝑡(𝐱)
⏟⏟⏟
𝑡𝑟𝑢𝑛𝑘

⎞⎟⎟⎟⎟⎠
+ 𝑏0
⏟⏟⏟
𝑏𝑖𝑎𝑠

=
𝐾∑
𝑘=1
𝑡𝑘

𝑞∏
𝑖=1
𝑏𝑖
𝑘
+ 𝑏0.

Here,  is the sum of all the components of a vector, and ⊙ represents the Hadamard product. Each input function 𝑣𝑖 is projected
onto finite-dimensional spaces ℝ𝑚𝑖 as 𝒗𝒊 ∶= [𝑣𝑖(𝐲𝑖1), 𝑣𝑖(𝐲

𝑖
2), ⋯ , 𝑣𝑖(𝐲𝑖𝑚𝑖)]

𝑇 in the same manner as in DeepONet, where {𝐲𝑖
𝑗
}𝑚𝑖
𝑗=1 is the set

of sensors in the domain of 𝑣𝑖. Similarly, [𝑏𝑖1, 𝑏
𝑖
2, ⋯ , 𝑏𝑖

𝐾
] and [𝑡1, 𝑡2, ⋯ , 𝑡𝐾] denote the output of the 𝑖-th branch net 𝑏𝑖

(𝒗𝒊) and the
trunk net 𝑡(𝐱), respectively.

In the framework of vanilla DeepONet, a data-driven (DD) approach is used to train the network. Specifically, the training dataset
consists of paired input-output observations, and the trainable parameters 𝜃 can be identified by minimizing the following empirical
loss function:

Loss(𝜃) = 1
𝑁𝑃

𝑁∑
𝑛=1

𝑃∑
𝑝=1

|||𝜃(𝑣𝑛)(𝐱𝑛,𝑝) − (𝑣𝑛)(𝐱𝑛,𝑝)
|||2 ,

where {𝑣𝑛}𝑁
𝑛=1 denotes 𝑁 input functions sampled from the parameter space  . For each input function of DeepONet, the training

data points {𝐱𝑛,𝑝}𝑃𝑝=1 are randomly sampled from the computational domain of (𝑣𝑛) and can be set to vary for different 𝑛.
Given that the DeepONet architecture provides a continuous approximation of the target functions that is independent of the

resolution, the derivatives of the output function can be computed during training. This import feature motivated the work of PI-
DeepONet [52], where the trainable parameters can be optimized by minimizing the residuals of the governing equations and the
corresponding boundary conditions through the use of automatic differentiation [55]. Specifically, consider a generic parametric
PDE expressed as:

(𝑣, 𝑢) = 0, in Ω,

𝑢 = ℎ, on 𝜕Ω,

where 𝑣 and 𝑢 denote the input function and latent solution, respectively. Then, the physics-informed loss function of PI-DeepONet
can be formulated as

Loss(𝜃) = 𝜆𝑟Loss𝑟(𝜃) + 𝜆𝑏Loss𝑏(𝜃).

Here, 𝜆𝑟 and 𝜆𝑏 are non-negative weights, the loss term

Loss𝑟(𝜃) =
1
𝑁𝑃𝑟

𝑁∑
𝑛=1

𝑃𝑟∑
𝑝=1

|||(𝑣𝑛,𝜃(𝑣𝑛))(𝐱𝑟𝑛,𝑝)|||
forces the operator network to satisfy the underlying physical constraints, and

Loss𝑏(𝜃) =
1
𝑁𝑃𝑏

𝑁∑
𝑛=1

𝑃𝑏∑
𝑝=1

|||𝜃(𝑣𝑛)(𝐱𝑏𝑛,𝑝) − ℎ(𝐱𝑏𝑛,𝑝)|||
penalizes the violation of the boundary conditions, where {𝐱𝑟𝑛,𝑝}

𝑃𝑟
𝑝=1 and {𝐱𝑏𝑛,𝑝}

𝑃𝑏
𝑝=1 denote the training data points randomly sampled

from the interior and the boundary of the domain Ω, respectively.

3. Interfaced operator network

In this section, we discuss neural network-based methods for numerically solving parametric interface problems. The main idea
of our new method is to approach the solution operator through multiple suboperators while remaining consistent with the potential
physical constraints. To simplify the explanation, we mainly present our method for the case of two subdomains. Note that this
setting can be easily generalized to a multi-domain scenario, depending on the number of distinct domains involved. Specifically, we
consider Eq. (1) as a parametric interface problem of general form. In the following, we illustrate our method with the example of
4

learning the solution operator  that maps the coefficient function 𝑎(𝐱) to the solution 𝑢(𝐱) of Eq. (1), i.e.,  ∶ 𝑎(𝐱) → 𝑢(𝐱).

Journal of Computational Physics 514 (2024) 113217S. Wu, A. Zhu, Y. Tang et al.

Fig. 2. A schematic diagram of the IONet for solving the parametric elliptic interface problem by minimizing the physics-informed loss function. Here, the input
function is the coefficient 𝑎(𝐱).

3.1. Network architecture of IONet

To preserve the inherent discontinuity of interface problems, we decompose the computational domain into two subdomains
according to the interface and leverage two operator networks that share some parameters, each of which is responsible for the
solution in one subdomain. In particular, the IONet architecture is given as follows:

𝜃(𝑎)(𝐱) =
{

1
𝜃
(𝑎)(𝐱), if 𝐱 ∈Ω1,

2
𝜃
(𝑎)(𝐱), if 𝐱 ∈Ω2,

(2)

where 𝑎 is the input function and 𝐱 denotes the location where the output function is evaluated. Note that input functions are
discretized and evaluated at a set of sensors typically. To retain the irregularity of the input function on the interface, we divide
the set of sensors according to the interface and use two branch nets, denoted as 𝑏1

and 𝑏2
, to extract latent representations of

input functions on the corresponding subdomains. Similar to the vanilla DeepONet [48], within each suboperator 𝑖
𝜃
, we use a trunk

net denoted as  𝑖
𝑡 to extract continuous input coordinates where the output functions are evaluated. Finally, following the MIONet

[50], we merge the outputs of all the sub-networks through a Hadamard product and a summation, followed by the addition of a
bias in the last stage. More specifically, the suboperator in 𝜃 (2) is constructed as follows:

𝑖
𝜃
(𝑎)(𝐱) = 

⎛⎜⎜⎜⎜⎝
𝑏1

(𝑎(𝐲11),⋯ , 𝑎(𝐲
1
𝑚1
))

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑏𝑟𝑎𝑛𝑐ℎ1

⊙𝑏2
(𝑎(𝐲21),⋯ , 𝑎(𝐲

2
𝑚2
))

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑏𝑟𝑎𝑛𝑐ℎ2

⊙  𝑖
𝑡 (𝐱)

⏟⏟⏟
𝑡𝑟𝑢𝑛𝑘

⎞⎟⎟⎟⎟⎠
+ 𝑏𝑖0
⏟⏟⏟
𝑏𝑖𝑎𝑠

=
𝐾∑
𝑘=1
𝑡𝑖
𝑘
𝑏1𝑘𝑏2𝑘 + 𝑏𝑖0.

(3)

Here, 𝜃 denotes the trainable parameters in this architecture. For 𝑖 = 1, 2, {𝐲𝑖
𝑗
}𝑚𝑖
𝑗=1 represents the collection of sensors for evaluating

𝑎(𝐱) in subdomain Ω𝑖, [𝑏𝑖1, 𝑏𝑖2, ⋯ , 𝑏𝑖𝐾] and [𝑡𝑖1, 𝑡
𝑖
2, ⋯ , 𝑡𝑖

𝐾
] denote the output features of the branch nets 𝑏𝑖

and the trunk net  𝑖
𝑡 ,

respectively. The network architecture of IONet is schematically visualized on the left side of Fig. 2. To demonstrate the capability
and performance alone, we apply the simplest feedforward neural networks (FNNs) as the branch and trunk nets in this paper, and we
note that other neural networks such as ResNet and CNN can be chosen as the sub-networks in IONet according to specific problems.

The IONet structure can be easily generalized to a multi-domain scenario. Next, we show that IONet is able to approximate
arbitrary continuous operators with discontinuous inputs and outputs. For later analysis, we define the following space

𝑋(Ω) =
𝐼⋂
𝑖=1
𝐻2(Ω𝑖)

⋂
𝐻0(Ω)
5

equipped with the norm

Journal of Computational Physics 514 (2024) 113217S. Wu, A. Zhu, Y. Tang et al.

‖𝑢‖𝑋(Ω) =
𝐼∑
𝑖=1

‖𝑢‖𝐻2(Ω𝑖) .

Then, the approximation theorem of IONet is given as follows.

Theorem 1. Let Ω ⊂ ℝ𝑑 be a bounded domain, Ω𝑖 with 𝑖 = 1, ⋯ , 𝐼 − 1 be disjoint open domains and Ω𝐼 = Ω ⧵
⋃𝐼−1
𝑖=1 Ω𝑖. Assume  ∶⋂𝐼

𝑖=1𝐶(Ω𝑖)
⋂
𝐿∞(Ω) → 𝑋(Ω) is a continuous operator and 𝑇 ⊂

⋂𝐼
𝑖=1𝐶(Ω𝑖)

⋂
𝐿∞(Ω) is a compact set. Then for any 𝜀 > 0, there exist

positive integers 𝑚𝑖, 𝐾 , tanh FNNs 𝑏𝑖
∶ℝ𝑚𝑖 →ℝ𝐾 ,  𝑖

𝑡 ∶ℝ
𝑑 →ℝ𝐾 , and 𝐲𝑖1, ⋯ , 𝐲𝑖𝑚𝑖 ∈Ω𝑖 with 𝑖 = 1, ⋯ , 𝐼 , such that

sup
𝑎∈𝑇

‖‖‖‖(𝑎)(⋅) − 
(
𝑏1

(𝑎(𝐲11),⋯ , 𝑎(𝐲
1
𝑚1
))⊙⋯⊙𝑏𝐼

(𝑎(𝐲𝐼1),⋯ , 𝑎(𝐲
𝐼
𝑚𝐼

))⊙ 𝑖
𝑡 (⋅)

)‖‖‖‖𝐻2(Ω𝑖)
≤ 𝜀,

where  is the summation of all the components of a vector, and ⊙ is the Hadamard product.

Proof. The proof can be found in Appendix A. □

Remark 1. There exist various continuous operator  ∶
⋂𝐼
𝑖=1𝐶(Ω𝑖)

⋂
𝐿∞(Ω) → 𝑋(Ω). For example, for interface problem (1), the

operator mapping from the source term 𝑓 ∈
⋂𝐼
𝑖=1𝐶(Ω𝑖)

⋂
𝐿∞(Ω) to the solution 𝑢 ∈𝑋(Ω) is continuous, due to the estimate [56]

that ‖𝑢‖𝑋 ≤ 𝐶 ‖𝑓‖𝐿2(Ω) ≤ 𝐶∑𝐼
𝑖=1 ‖𝑓‖𝐶(Ω𝑖).

3.2. Loss function of IONet

Similar to DeepONet, a data-driven approach can be used to train IONet and optimize the parameters 𝜃 by minimizing the
following mean square error loss:

𝐿𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟(𝜃) =
1

𝑁𝑜𝑃𝑜

𝑁𝑜∑
𝑛=1

𝑃𝑜∑
𝑝=1

|||𝜃(𝑎𝑛𝑜)(𝐱𝑜𝑛,𝑝) − (𝑎𝑛𝑜)(𝐱
𝑜
𝑛,𝑝)

|||2 , (4)

where {𝑎𝑛𝑜}
𝑁𝑜
𝑛=1 denotes 𝑁𝑜 input functions sampled from the parameter space; for 𝑛 = 1, ⋯ , 𝑁𝑜, the training data points {𝐱𝑜𝑛,𝑝}

𝑃𝑜
𝑝=1 ⊂Ω

denotes the set of locations to evaluate the output function and can be set to vary for different 𝑛; (𝑎𝑛𝑜)(𝐱
𝑜
𝑛,𝑝) and 𝜃(𝑎𝑛𝑜)(𝐱

𝑜
𝑛,𝑝) are

evaluated values of the output functions of the solution operator  and IONet 𝜃 at location 𝐱𝑜𝑛,𝑝 when 𝑎𝑛𝑜 is the input function. This
type of training method relies on the assumption that there is sufficient labeled data{(

𝑎𝑛𝑜(𝐲
1
1),⋯ , 𝑎

𝑛
𝑜(𝐲

1
𝑚1
), 𝑎𝑛𝑜(𝐲

2
1),⋯ , 𝑎

𝑛
𝑜(𝐲

2
𝑚2
), 𝐱𝑜𝑛,𝑝, (𝑎

𝑛
𝑜)(𝐱

𝑜
𝑛,𝑝)

)}
𝑛=1,⋯,𝑁𝑜, 𝑝=1,⋯,𝑃𝑜

to train the model. However, the costs associated with experimental data acquisition and high-quality numerical simulation are
generally expensive. In many practical scenarios, we are inevitably faced with limited or even intractable training data. In the
following, we introduce the physics-informed loss function for IONet.

By the definitions of IONet (2) and (3), the output function of 𝜃 , such as

𝜃(𝑎𝑛)(𝐱) =
⎧⎪⎨⎪⎩

(
𝑏1

(𝑎𝑛(𝐲11),⋯ , 𝑎
𝑛(𝐲1𝑚1))⊙𝑏2

(𝑎𝑛(𝐲21),⋯ , 𝑎
𝑛(𝐲2𝑚2))⊙ 1

𝑡 (𝐱)
)
+ 𝑏10, if 𝐱 ∈Ω1,


(
𝑏1

(𝑎𝑛(𝐲11),⋯ , 𝑎
𝑛(𝐲1𝑚1))⊙𝑏2

(𝑎𝑛(𝐲21),⋯ , 𝑎
𝑛(𝐲2𝑚2))⊙ 2

𝑡 (𝐱)
)
+ 𝑏20, if 𝐱 ∈Ω2,

has a continuous representation in each subdomain. Provided that the trunk net  𝑖
𝑡 are smooth enough, the derivatives of 𝜃(𝑎𝑛) at

𝐱𝑖𝑛,𝑝 can be easily obtained by automatic differentiation [55]. Inspired by PINN [57] and PI-DeepONet, for given parametric elliptic
interface problems, we define

𝐿𝑟𝑖 (𝜃) ∶=
𝑁∑
𝑛=1

𝑃𝑖∑
𝑝=1

||||−∇ ⋅
(
𝑎𝑛(𝐱𝑖𝑛,𝑝)∇𝜃(𝑎

𝑛)(𝐱𝑖𝑛,𝑝)
)
+ 𝑏(𝐱𝑖𝑛,𝑝)𝜃(𝑎

𝑛)(𝐱𝑖𝑛,𝑝) − 𝑓 (𝐱
𝑖
𝑛,𝑝)

||||2 (5)

and

𝐿𝑏(𝜃) ∶=
𝑁∑
𝑛=1

𝑃𝑏∑
𝑝=1

|||𝜃(𝑎𝑛)(𝐱𝑏𝑛,𝑝) − ℎ(𝐱𝑏𝑛,𝑝)|||2 ,
where {𝐱𝑖𝑛,𝑝}

𝑃𝑖
𝑝=1 with 𝑖 = 1, 2 and {𝐱𝑏𝑛,𝑝}

𝑃𝑏
𝑝=1 are randomly sampled from the subdomain Ω𝑖 and its boundary 𝜕Ω, respectively. Let

𝐿Γ(𝜃) =𝐿Γ𝐷 +𝐿Γ𝑁 , where

𝐿 (𝜃) =
𝑁∑ 𝑃𝛾∑||� (𝑎𝑛)�(𝐱𝛾) − 𝑔 (𝐱𝛾)||2 = 𝑁∑ 𝑃𝛾∑||2(𝑎𝑛)(𝐱𝛾) − 1(𝑎𝑛)(𝐱𝛾) − 𝑔 (𝐱𝛾)||2 ,
6

Γ𝐷
𝑛=1 𝑝=1

| 𝜃 𝑛,𝑝 𝐷 𝑛,𝑝 |
𝑛=1 𝑝=1

| 𝜃 𝑛,𝑝 𝜃 𝑛,𝑝 𝐷 𝑛,𝑝 |

Journal of Computational Physics 514 (2024) 113217S. Wu, A. Zhu, Y. Tang et al.

and

𝐿Γ𝑁 (𝜃) =
𝑁∑
𝑛=1

𝑃𝛾∑
𝑝=1

|||�𝑎𝑛∇𝜃(𝑎𝑛) ⋅ 𝐧�(𝐱𝛾𝑛,𝑝) − 𝑔𝑁 (𝐱
𝛾
𝑛,𝑝)

|||2
=

𝑁∑
𝑛=1

𝑃𝛾∑
𝑝=1

|||𝑎𝑛2(𝐱)∇2𝜃(𝑎𝑛)(𝐱𝛾𝑛,𝑝) ⋅ 𝐧− 𝑎𝑛1(𝐱)∇
1
𝜃
(𝑎𝑛)(𝐱𝛾𝑛,𝑝) ⋅ 𝐧− 𝑔𝑁 (𝐱

𝛾
𝑛,𝑝)

|||2 .
Here, {𝐱𝛾𝑛,𝑝}

𝑃𝛾

𝑝=1 represents a set of training points sampled from the interface Γ for the 𝑛-th input function. Then, the physics-informed
loss function for IONet is formulated as follows:

𝐿𝑝ℎ𝑦𝑠𝑖𝑐𝑠(𝜃) = 𝜆1𝐿𝑟1 (𝜃) + 𝜆2𝐿𝑟2 (𝜃) + 𝜆3𝐿Γ(𝜃) + 𝜆4𝐿𝑏(𝜃), (6)

where 𝐿𝑟𝑖 (𝜃) (5) with 𝑖 = 1, 2 are to approximately restrict the IONet output function to obey the given governing PDE (1a), while
𝐿𝑏(𝜃) and 𝐿Γ(𝜃) penalize IONet for violating the boundary condition (1d) and the interface conditions (1b) and (1c), respectively.
Such physics-informed loss function of IONet is schematically depicted on the right side of Fig. 2. By incorporating physics constraints
to ensure that the IONet output function aligns with the given interface PDE (1), the proposed IONet can effectively learn the
solution operator for parametric interface problems, even in the absence of labeled training data (excluding boundary and interface
conditions). If both data and PDEs are available, we combine the loss functions (4) and (6) and minimize the following composite
loss function to obtain the parameter 𝜃 of IONet:

𝐿(𝜃) = 𝜆𝑝𝐿𝑝ℎ𝑦𝑠𝑖𝑐𝑠(𝜃) + 𝜆𝑜𝐿𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟(𝜃). (7)

4. Numerical Results

In this section, the proposed IONet is tested on a range of parametric elliptic interface problems. Throughout all benchmarks,
the branch nets and the trunk nets are FNNs. Particularly when 𝐿𝑝ℎ𝑦𝑠𝑖𝑐𝑠 is included in (7), i.e., 𝜆𝑝 ≠ 0, they are FNNs with smooth
activation function Tanh, due to the necessity for high-order derivatives. All operator network models are trained via stochastic
gradient descent using Adam optimizer with default settings. The learning rate is set to exponential decay with a decay-rate of 0.95
per #Epochs∕100 iterations, where #Epochs denotes the maximum number of optimization iterations. Unless otherwise specified, the
training data points used to evaluate the loss function are scattered points randomly sampled in the computational domain, while
those used to evaluate the output solution of neural models are equidistant grid points. After training, the average relative 𝐿2 error
between the reference solution operator  and the numerical solution operator 𝜃 is measured as

𝐿2(,𝜃) =
1
𝑁

𝑁∑
𝑛=1

√√√√√ ∫Ω
||(𝑎𝑛𝑡𝑒𝑠𝑡)(𝑥) − 𝜃(𝑎𝑛𝑡𝑒𝑠𝑡)(𝑥)||2 𝑑𝑥

∫Ω
||(𝑎𝑛𝑡𝑒𝑠𝑡)(𝑥)||2 𝑑𝑥 ,

where 𝑁 denotes the number of test input functions {𝑎𝑛𝑡𝑒𝑠𝑡}
𝑁
𝑛=1, and the integration is computed by the Monte Carlo method. For

simplicity, IONet using the loss function (7) with 𝜆𝑝 = 1 and 𝜆𝑜 = 0 is referred to as “PI-IONet”, while IONet using the loss function
(7) with 𝜆𝑝 = 0 and 𝜆𝑜 = 1 is denoted as “DD-IONet”. All experiments are tested on one NVIDIA Tesla V100 GPU. The code and
experimental data used in this paper are publicly available from the GitHub repository https://github .com /bzlu -Group /IONet.

4.1. Parametric elliptic interface problems in one dimension

Example 1. As the first example, we investigate the effectiveness of the proposed method in handling non-zero interface conditions
in the elliptic interface problem (1), defined on the interval Ω = [0, 1] with an interface point at 𝑥𝛾 = 0.5:

−∇ ⋅ (𝑎(𝑥)∇𝑢(𝑥)) = 0, 𝑥 ∈ Ω,

𝑔𝐷(𝑥𝛾) = 1, 𝑔𝑁 (𝑥𝛾) = 0,

𝑢(0) = 1, 𝑢(1) = 0.

(8)

Here, our goal is to learn a solution operator  that maps the discontinuous coefficient function 𝑎(𝑥) to the latent solution 𝑢(𝑥) that
is explicitly discontinuous across the interface.

To make the input function

𝑎(𝑥) =

{
𝑎1(𝑥), 𝑥 ∈Ω1 ∶= [0,0.5]

𝑎2(𝑥), 𝑥 ∈Ω2 ∶= (0.5,1]

strictly positive, we let 𝑎𝑖(𝑥) = 𝑎̃𝑖(𝑥) − min𝑥 𝑎̃𝑖(𝑥) + 1 with 𝑖 = 1, 2, where 𝑎̃𝑖(𝑥) is randomly sampled from a mean-zero Gaussian
7

random field (GRF) with a radial basis function (RBF) kernel

https://github.com/bzlu-Group/IONet

Journal of Computational Physics 514 (2024) 113217S. Wu, A. Zhu, Y. Tang et al.

Table 1

Test errors and training costs for DD-DeepONet, DD-IONet, PI-DeepONet, and PI-IONet. The error corresponds to the
relative 𝐿2 error, recorded in the form of mean ± standard deviation based on all test input functions in Example 1.

Models Activation Depth Width #Parameters 𝐿2(𝜃 ,) Training time (hours)

DD-DeepONet ReLU 5 140 172 K 9.82e-2±1.71e-2 0.10
DD-IONet ReLU 5 100 172 K 3.95e-3±1.43e-3 0.17

PI-DeepONet Tanh 5 140 172 K 4.70e-1±1.02e-1 0.36
PI-IONet Tanh 5 100 172 K 8.30e-3 ±7.92e-3 0.44

Fig. 3. The mean and one standard deviation of relative 𝐿2 error for PI-IONet with different weights in the physics-informed loss function (6). Left: 𝜆1 = 1 and
𝜆3 = 𝜆4 = 100. Middle: 𝜆2 = 1 and 𝜆3 = 𝜆4 = 100. Right: 𝜆1 = 𝜆2 = 1.

𝑘𝑙(𝑥1, 𝑥2) = exp

(
−
‖𝑥1 − 𝑥2‖2

2𝑙2

)
using a length scale 𝑙 = 0.25 (see the left panel of Fig. 4 for an illustration). We randomly sample 10, 000 and 1, 000 input functions
𝑎(𝑥) for training and testing, respectively. The sensor of the input function consists of 100 equidistant grid points in the interval
[0, 1]. For each input function, we solve Eq. (8) on a uniform mesh of size 1000 using the matched interface and boundary (MIB)
method with second-order accuracy [24] to obtain the reference solution and paired input-output training data. The test error of all
neural models is measured on the same mesh of size 1000.

In this example, we investigate the performance of DD-IONet and PI-IONet as well as two state-of-the-art neural models, namely
vanilla DeepONet (DD-DeepONet) [48] and physics-informed DeepONet (PI-DeepONet) [52], in solving Eq. (8) with variable co-
efficients 𝑎(𝑥). For PI-DeepONet, the neural network 𝜃 is trained by minimizing a physics-informed loss function of the form
𝐿𝑝ℎ𝑦𝑠𝑖𝑐𝑠(𝜃) = 𝜆𝑟𝐿𝑟(𝜃) + 𝜆3𝐿Γ(𝜃) + 𝜆4𝐿𝑏(𝜃), where 𝐿Γ = 𝐿Γ𝐷 + 𝐿Γ𝑁 , 𝜆𝑟 = (𝜆1 + 𝜆2)∕2, and weights 𝜆𝑖 with 𝑖 = 1, 2, 3 and 4 are
those in PI-IONet. Note that the output function space of DeepONet is a subset of the space of continuous functions, implying that
�𝜃(𝑎)(𝑥𝛾)� = 0 holds for any input function 𝑎. Hence, we approximate the interface loss functions 𝐿Γ𝐷 and 𝐿Γ𝑁 in PI-DeepONet by
difference schemes

𝐿Γ𝐷 (𝜃) =
𝑁∑
𝑛=1

|||𝜃(𝑎𝑛)(𝑥𝛾 + 𝜖) − 𝜃(𝑎𝑛)(𝑥𝛾 − 𝜖) − 1|||2
and

𝐿Γ𝑁 (𝜃) =
𝑁∑
𝑛=1

|||�𝑎𝑛∇𝜃(𝑎𝑛) ⋅ 𝐧�(𝑥𝛾)|||2
=

𝑁∑
𝑛=1

||||𝑎𝑛2(𝑥𝛾)𝜃(𝑎𝑛)(𝑥𝛾 + 𝜖) − 𝜃(𝑎𝑛)(𝑥𝛾)
𝜖

− 𝑎𝑛1(𝑥
𝛾)
𝜃(𝑎𝑛)(𝑥𝛾) − 𝜃(𝑎𝑛)(𝑥𝛾 − 𝜖)

𝜖

||||
2

(9)

with 𝜖 = 10−5 in practice. In all cases, the neural networks are trained after 4 × 104 parameter updates. The network architecture
details and training costs are shown in Table 1.

We first investigate the effect of the weights in loss function (6) on the accuracy of PI-IONet. It can be observed in Fig. 3 that
the weights of interface and boundary loss terms (i.e. 𝜆3 and 𝜆4) have more significant impacts on the numerical results compared
with those of PDE residuals (i.e., 𝜆1 and 𝜆2). This phenomenon could be attributed to the fact that the investigated interface problem
exhibits low-contrast. In the following, we fix the weights in physics-informed loss function of PI-IONet as 𝜆1 = 𝜆2 = 1, 𝜆3 = 10, and
𝜆4 = 100.

Table 1 reports the relative 𝐿2 errors between the reference solution and the numerical solution for DD-DeepONet, DD-IONet,
PI-DeepONet, and PI-IONet. Under different training frameworks, it can be observed that the accuracy of DD-IONet is significantly
8

superior to that of DD-DeepONet with the same paired input-output training data, while the error of PI-DeepONet is about 50 times

Journal of Computational Physics 514 (2024) 113217S. Wu, A. Zhu, Y. Tang et al.

Fig. 4. Left column: Five input functions randomly selected from the test set (distinguished by different colors). Second and third columns: The reference solutions
(solid lines) versus the numerical solutions (dashed lines) of DD-DeepONet, DD-IONet, PI-DeepONet, and PI-IONet. Fourth column: The mean and one standard
deviation of the numerical solutions, averaged over these 5 test examples.

that of PI-IONet when trained by minimizing the physics-informed loss functions. Furthermore, one can also see that DD-IONet
outperforms PI-IONet, as the latter is trained without relying on any high-quality paired training data but instead through solving
a highly complex optimization problem involving derivatives. In terms of the training time for neural models, as shown in this
table, training physics-informed models (PI-DeepONet and PI-IONet) generally takes longer than training data-driven models (DD-
DeepONet and DD-IONet). It is mainly due to the fact that physics-informed models require the computation of the PDE and interface
residuals via automatic differentiation, and the loss terms are computed in a serial manner.

Fig. 4 shows a comparison between the reference and the numerical solutions for five randomly sampled input functions from the
test dataset. The second column gives the numerical results of DD-DeepONet and PI-DeepONet. It can be observed that the numerical
solution of DD-DeepONet agrees well with the reference solution away from the interface (𝑥Γ = 0.5), but there are large errors near
the interface (refer to the error plot in the first row), while PI-DeepONet fails to yield accurate results. The main reason is due
to the fact that the output function space of DeepONet is a subset of continuous function space, which limits its effectiveness in
capturing discontinuities in solution functions to interface problems. In addition, we remark that DD-DeepONet is trained with high-
quality paired training data using least squares regression, enabling the continuous output function of DeepONet to approximate
the discontinuous output of the target operator point by point. However, PI-DeepONet employs a physics-informed loss function
involving derivatives and the loss of interface conditions is approximated using difference schemes, exacerbating the challenge
of handling discontinuities. This results in the numerical accuracy of DD-DeepONet being superior to that of PI-DeepONet. The
numerical results for DD-IONet and PI-IONet are displayed in the third column, where it can be seen that the numerical solutions
naturally maintain the discontinuous nature of the numerical solution at the interface, demonstrating excellent agreement with the
reference solutions (see the error plot in the fourth column). These numerical results show that IONet is more adaptable to the
irregularities in the input function and the solution, which exhibits a greater ability to represent the solutions of interface problems
compared with the conventional DeepONet architecture.

Next, we show that IONet is able to be extended to finite number of subdomains (greater than two). Consider Eq. (8) with three
subdomains, i.e.,

−∇ ⋅ (𝑎(𝑥)∇𝑢(𝑥)) = 0, 𝑥 ∈ Ω,

𝑔𝐷(𝑥𝛾1) = 1, 𝑔𝑁 (𝑥𝛾1) = 0,

𝑔𝐷(𝑥𝛾2) = −1
2
, 𝑔𝑁 (𝑥𝛾2) = 0,

𝑢(0) = 1, 𝑢(1) = 0,

(10)

where 𝑥𝛾1 = 0.3 and 𝑥𝛾1 = 0.7.
We approximate the solution operator  of Eq. (10) by PI-IONet. The chosen model architecture and other hyperparameters

remain consistent with those used for two subdomain scenarios, except for the use of three branch nets and three trunk nets. Fig. 5
shows the numerical results of PI-IONet. The final mean of relative 𝐿2 error over five test input functions in this figure is measured
9

at 3.83 × 10−3. These results demonstrate that IONet also performs well in multi-subdomain scenarios.

Journal of Computational Physics 514 (2024) 113217S. Wu, A. Zhu, Y. Tang et al.

Fig. 5. Left: Five input functions randomly selected from the test set (distinguished by different colors). Middle: Reference solutions (solid lines) versus the numerical
solutions (dashed lines) of PI-IONet. Right: Absolute point-wise errors over the whole domain. The gray point-dashed lines represent the location of the interfaces.

Fig. 6. The mean and one standard deviation of test 𝐿2 errors for PI-IONet with varying numbers of sensors.

Example 2. Next, we consider Eq. (1) with zero interface conditions, defined on Ω = [0, 1] with an interface point at 𝑥𝛾 = 0.5:

−∇ ⋅ (𝑎(𝑥)∇𝑢(𝑥)) + 𝑏(𝑥)𝑢(𝑥) = 𝑓 (𝑥), 𝑥 ∈ Ω,

𝑔𝐷(𝑥𝛾) = 0, 𝑔𝑁 (𝑥𝛾) = 0,

𝑢(0) = ℎ0, 𝑢(1) = ℎ1.

(11)

From the setting of the interface conditions, we know that the latent solution 𝑢 to Eq. (11) is continuous, while its derivative may
be discontinuous on the interface due to the different values of 𝑎 in different subdomains. In this example, our goal is to learn an
operator  that maps the source term 𝑓 (𝑥), boundary condition ℎ(𝑥), and coefficients 𝑎(𝑥) and 𝑏(𝑥) to the solution 𝑢, i.e.,

 ∶ (𝑓 (𝑥), ℎ(𝑥), 𝑎(𝑥), 𝑏(𝑥))→ 𝑢(𝑥). (12)

To obtain the dataset, we randomly sample 10, 000 and 1, 000 sets of input functions (𝑓, ℎ, 𝑎, 𝑏) for training and testing,
respectively. Specifically, the input functions 𝑓1 ∶= 𝑓 |Ω1

and 𝑓2 ∶= 𝑓 |Ω2
are independently sampled from a zero-mean GRF

with length scales 𝑙1 = 0.2 and 𝑙1 = 0.1, respectively. The coefficients 𝑏𝑖 ∶= 𝑏|Ω𝑖 with 𝑖 = 1, 2 are independently sampled via
𝑏(𝑥) = 𝑏̃(𝑥) − min𝑥 𝑏̃(𝑥) + 1, where 𝑏̃(𝑥) is randomly sampled from a zero-mean GRF with length scale 𝑙 = 0.25. The coefficient
𝑎(𝑥) is modeled as a piece-wise constant function, with 𝑎|Ω1

= 𝑎1 and 𝑎|Ω2
= 𝑎2, where 𝑎1 and 𝑎2 are sampled from uniform dis-

tributions over the intervals [0.5, 1] and [2, 3], respectively. Additionally, we sample ℎ0 and ℎ1 from uniform distributions over the
intervals [−0.1, 0] and [0, 0.1], respectively, to set the variable boundary conditions ℎ(0) = ℎ0 and ℎ(1) = ℎ1. In this setting, it is easy
to verify the existence and uniqueness of the solution to problem (11). For each set of input, the reference solution 𝑢(𝑥) is obtained
by the MIB method with a uniform mesh of size 1000. The test error of all neural models is measured on the same mesh of size 1000.

In this case, we investigate the performance of PI-IONet and PI-DeepONet in solving Eq. (11) without any paired input-output
training data. In order to adapt to multiple input functions, for PI-IONet, we first divide the set of sensors {𝑦𝑖}𝑛𝑖=1 into two subsets
{𝑦1
𝑖
}𝑛1
𝑖=1 and {𝑦2

𝑖
}𝑛2
𝑖=1 with 𝑛1 +𝑛2 = 𝑛 according to the interface. Then we employ 8 branch nets to extract latent representations of the

4 input functions on the corresponding sub-domain. Specifically, the inputs for branch nets are [𝑓 (𝑦11), ⋯ , 𝑓 (𝑦1𝑛1)], [𝑓 (𝑦
2
1), ⋯ , 𝑓 (𝑦2𝑛2)],

[𝑏(𝑦11), ⋯ , 𝑏(𝑦1𝑛1)], [𝑏(𝑦
2
1), ⋯ , 𝑏(𝑦2𝑛2)], [𝑎1], [𝑎2], [ℎ0] and [ℎ1], respectively. For PI-DeepONet, we employ the most direct approach by

concatenating the four input functions together, i.e., [𝑓 (𝑦1), ⋯ , 𝑓 (𝑦𝑛), 𝑏(𝑦1), ⋯ , 𝑏(𝑦𝑛), 𝑎1, 𝑎2, ℎ0, ℎ1], to serve as a single input for the
branch net.

We first utilize the PI-IONet network architecture, employing branch and trunk nets consisting of 5-layer FNN with 70 units per
layer, to approximate the solution operator (12). The neural network is trained by minimizing the loss function (6) with 𝜆1 = 𝜆2 = 1,
𝜆3 = 10, and 𝜆4 = 100, over 4 × 104 iterations of optimization. Fig. 6 illustrates the variation in relative 𝐿2 errors of the numerical
10

solution and its derivative with respect to the number of sensors (denoted as #Sensors). Note that, in each case, the set of sensors

Journal of Computational Physics 514 (2024) 113217S. Wu, A. Zhu, Y. Tang et al.

Table 2

Test errors and training costs for PI-IONet and PI-DeepONet. The error corresponds to the relative 𝐿2 error, recorded in the form of mean
± standard deviation based on all test input functions in Example 2.

Model Activation Depth Width #Parameters 𝐿2(𝜃 ,) 𝐿2(∇𝜃 ,∇) Training time (hours)

PI-IONet Tanh 5 70 213 K 3.48e-3± 3.05e-3 8.84e-3±4.51e-3 0.76
PI-DeepONet Tanh 5 151 214 K 2.96e-1± 1.99e-1 3.06e-1± 1.97e-1 0.30

Fig. 7. An illustration of randomly sampled input functions (distinguished by different colors): Source term 𝑓 (𝐴1), boundary condition ℎ (𝐴2), coefficient 𝑎 (𝐴3) and
coefficient 𝑏 (𝐴4); and the corresponding reference solutions (solid lines) obtained by MIB method and numerical solutions (dashed lines) obtained by PI-IONet (𝐴5)
and PI-DeepONet (𝐴6). The gray point-dashed lines represent the location of the interface.

consists of equidistant grid points in the interval [0, 1]. As we can see from this figure, the test errors generally decrease as #Sensors
increases until it is sufficient to capture all the necessary frequency information for the input function.

In the following experiments, we keep #Sensors = 100, while keeping other hyperparameters consistent with those used in PI-
IONet. Here, 𝐿Γ𝐷 (𝜃) = 0 holds for any output function of PI-DeepONet, and 𝐿Γ𝑁 is approximated using Eq. (9). Table 2 records
the network structures and the test errors for two neural models. As can be seen from the table, the final relative 𝐿2 errors of the
numerical solutions and their derivatives obtained by PI-IONet can be of the order of 10−3 . Some visualizations of the input function,
the reference solution, and the numerical result are shown in Fig. 7. As can be seen from the figure, the numerical solution obtained
by PI-IONet aligns more consistently with the reference solution, even in the case where the ground truth is continuous. These results
suggest that IONet is able to effectively handle multiple inputs for parametric interface problems.

It is remarked that other advantages of DeepONet also hold true for IONet, for example, the capability of providing accurate
predictions for out-of-distribution test data [52,58]. Fig. 8 illustrates the numerical results of PI-IONet and PI-DeepONet for regen-
erated test input functions. In this study, we not only use GRF to generate the input functions (see the first row), but also include
two certain functions, i.e., exp(𝑥) and sin(𝑥), as input functions (see the second and third rows). As shown in the third and fourth
columns of this figure, both PI-IONet and PI-DeepONet integrate the constraints of physical laws as well as boundary conditions
directly into model training, enabling the models to capture the fundamental behavior of the system. Remarkably, PI-IONet handles
discontinuities in the input functions and output solutions across the interface more effectively, resulting in more accurate numerical
results. Specifically, the average relative 𝐿2 errors of PI-IONet in the first to third rows are measured at 4.32 × 10−3, 8.50 × 10−3 and
2.01 × 10−2, respectively. These results further underscore the robustness and generalization capability of PI-IONet.

4.2. Parametric elliptic interface problems in two dimensions

Example 3. To further investigate the capability of IONet, we consider a parametric interface problem (1) with a sharp and compli-
cated interface Γ which is given as

𝑥1(𝜗) = 0.65cos(𝜗)3,

𝑥2(𝜗) = 0.65sin(𝜗)3, 0 ≤ 𝜗 ≤ 𝜋.

Here, the source term 𝑓 is the input parameter of the target solution operator. In this example, we model the input function in the
following way:

𝑓𝑖(𝐱) ∶= 𝑓 (𝐱)
|||Ω𝑖 = 𝑝𝑖1

[1 + 10(𝑥21 + 𝑥
2
2)]

2
−

𝑝𝑖2(𝑥
2
1 + 𝑥

2
2)

[1 + 10(𝑥21 + 𝑥
2
2)]

3
, 𝑖 = 1,2,

where (𝑝𝑖1, 𝑝
𝑖
2) comes from [50, 100] × [1550, 1650]. The computational domain is a regular square Ω = [−1, 1]2 (see Fig. 9 for an

illustration). The coefficient 𝑎(𝐱) is a piece-wise constant, which is given by 𝑎(𝐱)|Ω1
= 2 and 𝑎(𝐱)|Ω2

= 1. The interface conditions on
Γ are set as

𝑔𝐷(𝐱) =
1

1 + 10(𝑥21 + 𝑥
2
2)
,

11

𝑔𝑁 (𝐱) = 0,

Journal of Computational Physics 514 (2024) 113217S. Wu, A. Zhu, Y. Tang et al.

Fig. 8. Numerical results of PI-IONet and PI-DeepONet for out-of-distribution test input samples. Here, we keep 𝑎1 = 1.2, 𝑎2 = 1.8, ℎ0 = −0.12 and ℎ1 = 0.12. The
input functions in (𝐴1), (𝐴2), (𝐵2), and (𝐶1) are generated using GRF with length scale 𝑙 = 0.15. Input functions 𝑓1 in (𝐵1) and 𝑏1 in (𝐶2) are fixed as exp(𝑥), while
𝑓2 in (𝐵1) and 𝑏2 in (𝐶2) are fixed as sin(𝑥). The reference solutions (solid lines) and numerical solutions (dashed lines) obtained by PI-IONet and PI-DeepONet are
shown in the third and fourth columns. The gray point-dashed lines represent the location of the interface.

Fig. 9. Computational domain and sensor locations in Example 3. Here, the number of sensors is 100.

and ℎ(𝐱) on boundary 𝜕Ω is given as

ℎ(𝐱) = 2
1 + 10(𝑥21 + 𝑥

2
2)
.

12

One can observe that if we take 𝑓1(𝐱) = 𝑓2(𝐱) with (𝑝11, 𝑝
1
2) = (𝑝21, 𝑝

2
2) = (80, 1600), then Eq. (1) has following exact solution [33]

Journal of Computational Physics 514 (2024) 113217S. Wu, A. Zhu, Y. Tang et al.

Fig. 10. The mean and one standard deviation of test errors of PI-IONet in Example 3. (Left) Training PI-IONet using different depth and width of the network
architecture, where #Sensors = 100 and #Samples = 320. (Middle) Training PI-IONet using different number of training samples, where width = 50, depth = 4 and
#Sensors = 100. (Right) Training PI-IONet using different number of sensors, where width = 50, depth = 4 and #Samples = 320. These errors represent the average of
3 different runs corresponding to different set of training input functions and network initialization.

Fig. 11. The profile of the exact solution, the numerical solution obtained by PI-IONet, and the corresponding point-wise error are showcased from left to right. Here,
width = 50, depth = 4, #Sensors = 100, and #Samples = 320.

𝑢(𝐱) =

⎧⎪⎪⎨⎪⎪⎩

1
1 + 10(𝑥21 + 𝑥

2
2)
, in Ω1,

2
1 + 10(𝑥21 + 𝑥

2
2)
, in Ω2.

To this end, we randomly sample some input functions from the given data distribution, except for the case (𝑝11, 𝑝
1
2) = (𝑝21, 𝑝

2
2) =

(80, 1600), which is reserved for testing purposes. The sensors for the input functions in the whole domain are equidistant grid points
in the square [−1, 1]2. Take advantage of being mesh-free, IONet can easily handle problems with irregular interfaces.

In this study, we discuss the effects of the depth and width of the network, as well as the number of sensors and training samples,
on the performance of the PI-IONet. We train PI-IONet by minimizing the physics-informed loss function (6) with 𝜆1 = 𝜆2 = 1,
𝜆3 = 10 and 𝜆4 = 100 for 4 × 104 iterations of optimization. Fig. 10 illustrates the average error of three different runs of PI-IONet.
Specifically, the left panel shows the relative 𝐿2 error, i.e.

‖𝑢− 𝑢𝜃‖2‖𝑢‖2 =

√√√√√∑𝑁
𝑖=1

(
𝑢(𝐱𝑖) − 𝑢𝜃(𝐱𝑖)

)2∑𝑁
𝑖=1 𝑢(𝐱𝑖)2

,

between the exact solution 𝑢 and the PI-IONet solution 𝑢𝜃 measured at 𝑁 = 101 × 101 test points over the whole domain, with
varying depths (ranging from 2 to 4) and widths (ranging from 5 to 300) of the network architecture. We observe that increasing
the expressiveness of the network leads to improved solution accuracy, eventually reaching a plain where the error reduction levels
off. A similar trend is also observed on the middle panel as the number of training input samples (denoted as #Samples) increases.
These might be caused by optimization errors. Additionally, as the input function 𝑓 (𝐱) in this case is controlled by four parameters
(i.e., 𝑝𝑖1 and 𝑝𝑖2 with 𝑖 = 1, 2), a small number of sensors could be enough to capture all necessary frequency information of the input
functions. As depicted on the right panel of this figure, although the accuracy of PI-IONet does not significantly improve with an
increase in #Sensors, the average 𝐿∞ error and relative 𝐿2 error of PI-IONet with different #Sensors can both reach the order of 10−3.
Moreover, it can be seen from Fig. 11, the numerical solution is in excellent agreement with the exact solution, where the relative 𝐿2

error is measured at 2.60 × 10−3. These results demonstrate the consistent and reliable performance of IONet in generating accurate
numerical results, even in scenarios where the interface is irregular.

Example 4. This example aims to investigate the performance of IONet in handling a two-dimensional parametric interface problem
13

with variable boundary conditions and coefficients. Computational domain is defined as Ω ∶= [0, 1]2, and the interface is defined as

Journal of Computational Physics 514 (2024) 113217S. Wu, A. Zhu, Y. Tang et al.

Fig. 12. Computational domain for Example 4. The black solid line indicates the interface location.

Table 3

Test errors and training costs for PI-IONet, DD-IONet and DD-DeepONet. The error corresponds to the relative 𝐿2

error, recorded in the form of mean ± standard deviation based on all test input functions in Example 4. Here,
#Sensors = 128 and #Samples = 1600.

Model Activation Depth Width #Parameters 𝐿2(𝜃 ,) Training time (hours)

PI-IONet Tanh 5 120 365 K 5.03e-2±1.58e-2 1.26
DD-IONet ReLU 5 120 365 K 1.70e-2±4.79e-3 0.47
DD-DeepONet ReLU 5 206 368 K 7.56e-2±1.99e-2 0.20

Γ ∶= {𝐱 ∶= (𝑥1, 𝑥2) | 𝑥2 = 0.5, 𝐱 ∈Ω}. Without losing generality, we defined Ω1 ∶= {𝐱 | 𝑥2 > 0.5, 𝐱 ∈Ω} and Ω2 ∶= {𝐱 | 𝑥2 < 0.5, 𝐱 ∈
Ω} (see Fig. 12 for an illustration). Specifically, the interface problem takes the following specific form:

−∇ ⋅ (𝑎∇𝑢(𝐱)) = 0, 𝐱 ∈Ω,

𝑢(𝐱) = ℎ(𝐱), 𝐱 ∈ 𝜕Ω,
(13)

with interface conditions 𝑔𝐷 = 0 and 𝑔𝑁 = 0. Our goal here is to learn the solution operator that maps the coefficient 𝑎(𝑥) and the
boundary condition ℎ(𝐱) to the solution 𝑢(𝐱) to Eq. (13), i.e.,

 ∶ (ℎ(𝑥), 𝑎(𝑥))→ 𝑢(𝑥).

In this example, we randomly sample 3, 200 and 100 pairs of input functions (ℎ, 𝑎) for training and testing, respectively. Here,
the boundary conditions ℎ𝑖(𝐱) ∶= ℎ(𝐱)|𝜕Ω∩Ω𝑖 with 𝑖 = 1, 2 are independently generated using GRF according to ℎ𝑖 ∼ 𝜇|𝜕Ω∩Ω𝑖 , where
𝜇 ∼  (0, 103(−Δ + 100𝐼)−4) with zero Neumann boundary conditions on the Laplacian,1 while the coefficient 𝑎(𝑥) is modeled
as a piece-wise constant function, where 𝑎1 ∶= 𝑎|Ω1

and 𝑎2 ∶= 𝑎2|Ω2
are uniformly sampled from the intervals [0.5, 1] and [2, 3],

respectively. For each pair of input, the reference solution is obtained by the ℙ1 Lagrangian finite element method2 on a uniform
mesh of 1025 by 1025, while the test error of the numerical solution is measured at its 65 by 65 submesh.

In this study, to accommodate two input functions, the IONet architecture consists of four branch nets and two trunk nets,
while the DeepONet architecture consists of one branch net and one trunk net. Specifically, the inputs for branch nets in IONet are
[ℎ(𝑦11), ⋯ , ℎ(𝑦1𝑛1)], [ℎ(𝑦

2
1), ⋯ , ℎ(𝑦2𝑛2)], [𝑎1] and [𝑎2], while for DeepONet it is [ℎ(𝑦1), ⋯ , ℎ(𝑦𝑛), 𝑎1, 𝑎2], where {𝑦𝑖}𝑛𝑖=1 = {𝑦1

𝑖
}𝑛1
𝑖=1 ∪{𝑦

2
𝑖
}𝑛2
𝑖=1

is the set of sensors over the whole domain.
In the following experiments, the numerical results are recorded after 1 × 105 optimization iterations. The detailed network sizes

are provided in Table 3. Fig. 13 illustrates the accuracy of PI-IONet, DD-IONet and DD-DeepONet with respect to the number of
sensors or training samples. Specifically, the left panel of this figure depicts the variation of the relative 𝐿2 error for PI-IONet, which
is trained by minimizing the physics-informed loss function (6) with 𝜆1 = 𝜆2 = 1, 𝜆3 = 10 and 𝜆4 = 100. It can be seen that the relative
𝐿2 error measured at two subdomains decreases rapidly when #Sensors is less than 64; however, it tends to level off as #Sensors
is further augmented due to other factors such as optimization errors and generalization errors. In addition, the errors in the two
subdomains exhibit close proximity to one another, indicating the effectiveness of the proposed method in balancing errors across the
subdomains. In order to ascertain the effect of #Samples on the performance of PI-IONet, DD-IONet and DD-DeepONet, we maintain
#Sensors = 128. As illustrated in the right panel of Fig. 13, the relative 𝐿2 errors tend to decrease with an increase in the number
of samples. This observation aligns with the findings of Example 3, which concerns a parameterized interface problem with a single
input source. It is noteworthy that the accuracy of PI-IONet is less sensitive to #Samples compared to DD-IONet and DD-DeepONet.
For instance, when the number of training samples is limited to #Samples = 200, PI-IONet achieves the lowest relative 𝐿2 error
among the three models without any paired input-output measurements. Table 3 shows the relative 𝐿2 error and the training cost
of PI-IONet, DD-IONet and DD-DeepONet when #Sensors = 128 and #Samples = 1600. It is observed that with a sufficiently large

1 One common approach is to use a random number generator to sample from a normal distribution with zero mean and unit variance and then apply a spectral
representation to generate the desired spatial correlation structure, see [49] for more details.
14

2 The implementation is based on the Fenics platform [59].

Journal of Computational Physics 514 (2024) 113217S. Wu, A. Zhu, Y. Tang et al.

Fig. 13. Numerical results of Example 4. Left: the relative 𝐿2 error of PI-IONet with respect to #Sensors, where #Samples = 1600. Right: The relative 𝐿2 error of
PI-IONet, DD-IONet and DD-DeepONet with different number of training samples, where #Sensors= 128.

Fig. 14. The profile of the reference solution, the numerical solution obtained by PI-IONet, and the corresponding point-wise error in the whole domain for a
representative example in the test dataset.

number of samples, the relative 𝐿2 error of all three models can reach the order of 10−2 , and DD-IONet outperforms DD-DeepONet.
An illustration of a numerical solution obtained using PI-IONet is presented in Fig. 14, with the relative 𝐿2 error measured at
4.13 × 10−2. The numerical solution derived from PI-IONet exhibits consistency with the reference solution.

4.3. Parametric elliptic interface problems in three dimensions

Example 5. To illustrate the capability of the proposed method for solving nonlinear interface problems, we consider the Poisson-
Boltzmann equation (PBE), a prevalent implicit continuum model utilized in the estimation of biomolecular electrostatic potentials
Φ(𝐱). Similar equations occur in various applications, including electrochemistry and semiconductor physics. The molecule in the
PBE is represented by a series of 𝑁𝑚 charges 𝑞𝑖 at positions 𝐜𝑖, where 𝑞𝑖 = 𝑧𝑖𝑒𝑐 , 𝑧𝑖 ∈ℝ, 𝑖 = 1, ⋯ , 𝑁𝑚. Specifically, we choose a real
molecule (PDBID: ADP) with 𝑁𝑚 = 39 atoms as an example. Without loss of generality, the molecule is translated from the average
coordinate center of all atoms to the center of Ω = [−10, 10]3. Then, in the special case of 1 ∶ 1 electrolyte, the PBE can be formulated
for dimensionless potential 𝑢(𝐱) = 𝑒𝑐𝑘−1𝐵 𝑇

−1Φ(𝐱) as follows:

−∇ ⋅ (𝜖(𝐱)∇𝑢(𝐱)) + 𝜅̄2(𝐱) sinh(𝑢(𝐱)) = 𝛼
𝑁𝑚∑
𝑖=1
𝑧𝑖𝛿(𝐱 − 𝐜𝐢), 𝐱 ∈Ω,

�𝑢(𝐱)� = 0, 𝐱 ∈ Γ,

�𝜖(𝐱)𝜕𝑢(𝐱)
𝜕𝐧

� = 0, 𝐱 ∈ Γ,

𝑢(𝐱) = 𝛼

4𝜋𝜖(𝐱)

𝑁𝑚∑
𝑖=1
𝑧𝑖
𝑒−𝜅‖𝐱−𝐜𝑖‖‖𝐱 − 𝐜𝑖‖ , 𝐱 ∈ 𝜕Ω,

(14)

where 𝛿(⋅) is the Dirac delta function, the permittivity 𝜖(𝐱) takes the values of 𝜖𝑚𝜖0 and 𝜖𝑠𝜖0 in the molecular region Ω1 and the
solution region Ω2, respectively. The modified Debye-Hückel takes the values 𝜅̄ = 0 in Ω1 and 𝜅̄ =

√
𝜖𝑚𝜖0𝜅 in Ω2, and constant

𝛼 = 𝑒2𝑐
𝑘𝐵𝑇

. Here, constants 𝜖0, 𝑒𝑐 , 𝛽, 𝜅 and 𝑇 represent the vacuum dielectric constant, fundamental charge, Boltzmann’s constant,
Debye-Hückel constant and absolute temperature, respectively. Our goal is to learn an operator  mapping from the permittivity 𝜖(𝐱)
to the solution 𝑢(𝐱) to PBE. Note that 𝜖 has a piece-wise constant nature, allowing us to directly utilize the function values as inputs
15

for IONet without requiring sensor-based discretization.

Journal of Computational Physics 514 (2024) 113217S. Wu, A. Zhu, Y. Tang et al.

Table 4

Test errors and training costs for PI-IONet, DD-IONet, and DD-DeepONet. The error corresponds to the relative 𝐿2

error, recorded in the form of mean ± standard deviation based on all test input functions in Example 5.

Model Activation Depth Width #Parameters 𝐿2(𝜃 ,) Training time (hours)

PI-IONet Tanh 5 150 364 K 1.24e-2±8.31e-5 0.51
DD-IONet ReLU 5 150 364 K 4.33e-3±1.61e-3 0.17
DD-DeepONet ReLU 5 215 373 K 1.54e-2±3.80e-4 0.10

Fig. 15. Surface potentials for protein ADP. Here, 𝜖𝑚 = 2 and 𝜖𝑠 = 80.

To numerically solve PBE (14), we use a solution decomposition scheme to overcome the singular difficulty caused by the Dirac
delta distributions. Similar to our former work [33], 𝑢 is decomposed as 𝑢(𝐱) = 𝐺̄(𝐱) + 𝑢̄(𝐱), where

𝐺̄(𝐱) = 𝛼

4𝜋𝜖𝑚𝜖0

𝑁𝑚∑
𝑖=1

𝑧𝑖‖𝐱 − 𝐜𝑖‖ , ∇𝐺̄(𝐱) = − 𝛼

4𝜋𝜖𝑚𝜖0

𝑁𝑚∑
𝑖=1
𝑧𝑖

𝐱 − 𝐜𝑖‖𝐱 − 𝐜𝑖‖3
are restricted to Ω1, and 𝑢̄(𝐱) satisfies the following PDE:

−∇ ⋅ (𝜖𝑚𝜖0∇𝑢̄(𝐱)) = 0, 𝐱 ∈Ω1,

−∇ ⋅ (𝜖𝑠𝜖0∇𝑢̄(𝐱)) + 𝜅̄2 sinh(𝑢̄(𝐱)) = 0, 𝐱 ∈Ω2,

�𝑢̄(𝐱)� = 𝐺̄(𝐱), 𝐱 ∈ Γ,

�𝜖(𝐱)𝜕𝑢̄(𝐱)
𝜕𝐧

� = 𝜖𝑚𝜖0
𝜕𝐺̄(𝐱)
𝜕𝐧

, 𝐱 ∈ Γ,

𝑢̄(𝐱) = 𝛼

4𝜋𝜖𝑠𝜖0

𝑁𝑚∑
𝑖=1
𝑧𝑖
𝑒−𝜅‖𝐱−𝐜𝑖‖‖𝐱 − 𝐜𝑖‖ , 𝐱 ∈ 𝜕Ω.

The training dataset comprises 1, 000 input functions (constants) uniformly and randomly sampled from the space (𝜖𝑚, 𝜖𝑠) ∈
[1, 2] × [80, 100], while the test dataset is composed of equidistant grid points arranged in a 6 × 6 grid within this space. For each
test sample, we solved PBE (14) using piece-wise linear FEM [7] on an interface-fitted mesh to generate the reference solution.
Specifically, the grid points of the FEM mesh consist of 1407, 3403, 2743 and 2402 points in Ω1, Ω2, Γ and 𝜕Ω, respectively. During
the training phase, for each input function, the training points used to evaluate the loss function consist of a collection of one-tenth
randomly sampled grid points, rather than a set of randomly sampled scatter points within the domain. This approach ensures
consistency in the interface across different methods. Note that the unit outward normal vector for each point on the interface Γ is
approximated by taking the average of the outward normal directions of all elements that contain the corresponding point.

In this example, we approximate the solution operator of PBE (14) using PI-IONet, DD-IONet and DD-DeepONet. Herein, the
weights in the loss function (6) of PI-IONet are set as 𝜆1 = 𝜆2 = 𝜆3 = 1 and 𝜆4 = 100. Table 4 records test errors measured at 4810
grid points in Ω1 and Ω2 and training costs of these three models after 5 × 104 parameter updates. It can be observed that DD-IONet
achieves the lowest relative 𝐿2 error. Additionally, despite lacking any paired input-output measurements, except for the boundary
conditions, the error accuracy of PI-IONet is comparable to that of DD-DeepONet, albeit with slightly higher training costs. A visual
comparison of the reference and predicted surface potentials of the protein ADP is shown in Fig. 15. These findings further emphasize
the capability of IONet handle parametric interface problems within irregular interface. While our current work demonstrates the
16

effectiveness of IONet in solving PBE with a real small-molecule ADP, further research is needed to investigate the computational

Journal of Computational Physics 514 (2024) 113217S. Wu, A. Zhu, Y. Tang et al.

efficiency of PI-IONet and other neural network-based methods in solving large-scale computational problems in biophysics, such as
solving PBE with real macromolecules. We will postpone this part of the work to future research.

In this example, we approximate the solution operator of PBE (14) using PI-IONet, DD-IONet and DD-DeepONet. Herein, the
weights in the loss function (6) of PI-IONet are set as 𝜆1 = 𝜆2 = 𝜆3 = 1 and 𝜆4 = 100, and the network hyperparameters are presented
in Table 4. In all cases, the neural networks are trained after 5 × 104 parameter updates. The test errors and training costs of these
three models are shown in Table 4. It can be observed that DD-IONet achieves the lowest relative 𝐿2 error. Additionally, despite
lacking any paired input-output measurements, except for the boundary conditions, the error accuracy of PI-IONet is comparable
to that of DD-DeepONet, albeit with slightly higher training costs. In addition, a visual comparison of the reference and predicted
surface potentials of the protein ADP is shown in Fig. 15. These findings further emphasize the capability of IONet to effectively
handle parametric interface problems within irregular interface. While our current work demonstrates the effectiveness of IONet
in solving PBE with a real small-molecule ADP, further research is needed to investigate the computational efficiency of PI-IONet
and other neural network-based methods in solving large-scale computational problems in biophysics, such as solving PBE with real
macromolecules. We will postpone this part of the work to future research.

4.4. Parametric elliptic interface problems in six dimensions

Example 6. Our final example aims to highlight the ability of the proposed framework to handle high-dimensional parametric
interface problems. Here, we consider Eq. (1) defined on a 6-dimension sphere of radius 0.6 domain Ω enclosing another smaller
6-dimension sphere of radius 0.5 as the interior domain Ω1. Our goal is to learn the solution operator mapping from the source term
𝑓 to the latent solution of Eq. (1), i.e.,  ∶ 𝑓 (𝐱) → 𝑢(𝐱). In this case, 𝑓 has the following specific forms

𝑓 (𝐱) =

⎧⎪⎪⎨⎪⎪⎩
− 𝑝1

6∏
𝑖=1

exp(𝑥𝑖), 𝐱 ∈Ω1,

− 𝑝2
6∏
𝑖=1

sin(𝑥𝑖), 𝐱 ∈Ω2,

where (𝑝1, 𝑝2) randomly sample from [1, 10] × [−10−2, −10−3]. For the problem setup, the coefficient

𝑎(𝐱) =
{

1, 𝐱 ∈Ω1,

10−3, 𝐱 ∈Ω2,

has a large contrast (𝑎1∕𝑎2 = 103), the boundary condition is given as ℎ(𝐱) = ∏6
𝑖=1 sin(𝑥𝑖), the interface conditions are chosen as

𝑔𝐷(𝐱) =
∏6
𝑖=1 sin(𝑥𝑖) −

∏6
𝑖=1 exp(𝑥𝑖), and

𝑔𝑁 (𝐱) =
5
3

(
10−3

6∑
𝑖=1

(
𝑥𝑖 cos(𝑥𝑖)

6∏
𝑗=1,𝑗≠𝑖

sin(𝑥𝑗)

)
−

(6∑
𝑖=1
𝑥𝑖

) 6∏
𝑗=1

exp(𝑥𝑗)

)
.

Note that, when we take 𝑓 with 𝑝1 = 6 and 𝑝2 = −6 × 10−3, Eq. (1) exists an exact solution [40]

𝑢(𝐱) =

⎧⎪⎪⎨⎪⎪⎩

6∏
𝑖=1

exp(𝑥𝑖), 𝐱 ∈Ω1,

6∏
𝑖=1

sin(𝑥𝑖), 𝐱 ∈Ω2.

In this study, we train PI-IONet 𝜃 with different scales of architecture to approximate the solution operator and then test the
trained model in the case of input 𝑓 with 𝑝1 = 6 and 𝑝2 = −6 × 10−3. In all cases, we train PI-IONet by minimizing the loss function
(6) with 𝜆1 = 𝜆2 = 𝜆3 = 1 and 𝜆4 = 100 for 4 × 104 iterations of parameter updates, utilizing 100 randomly sampled input functions.
The sensors for discretizing the input functions comprise a set of randomly sampled points in the computational domain, as opposed
to lattice points in a higher dimensional space. Specifically, we set the number of sensors as 40.

Table 5 illustrates the test errors measured at 10, 000 test data points over the whole domain and the computational costs for
training PI-IONet. It is shown that the accuracy of the numerical solution improves while the training cost grows as the number of
trainable parameters increases. The final 𝐿∞ error and relative 𝐿2 error are about 0.7% and 0.2%, respectively, with low deviations.
These findings suggest that PI-IONet has the potential to achieve high performance in dealing with high-dimensional output solutions
of parametric elliptic interface problems, even in scenarios involving high-contrast coefficients.

5. Conclusions

In this work, we have investigated deep neural network-based operator learning methods and proposed the interfaced operator
17

network (IONet) to tackle parametric elliptic interface problems. The main contribution is that we first combine the domain-

Journal of Computational Physics 514 (2024) 113217S. Wu, A. Zhu, Y. Tang et al.

Table 5

𝐿∞ and relative 𝐿2 errors for PI-IONet with different widths and depths. These errors are obtained by
averaging the results from three independent experiments, each involving different network random ini-
tialization and randomly generated training dataset.

Depth Width #Parameters ‖‖𝑢− 𝑢𝜃‖‖∞ ‖‖𝑢−𝑢𝜃‖‖2‖𝑢‖2 Training time (hours)

3 30 9k 3.35e-2±1.95e-2 1.38e-2±6.18e-4 0.42
4 40 21k 1.36e-2±6.06e-3 8.04e-3±4.01e-3 0.55
5 50 43k 7.67e-3±1.46e-3 1.56e-3±6.84e-4 0.66

decomposed method with the operator learning methods and employ multiple branch nets and trunk nets to explicitly handle
the discontinuities across the interface in the input and output functions. In addition, we introduce tailored physics-informed loss
designed to constrain the physical consistency of the proposed model. This strategy reduces the requirement for training data and
empowers the IONet to remain effective even in the absence of paired input-output training data. We also provide theory and nu-
merical experiments to demonstrate that the proposed IONet is effective and reliable for approximating the solution operator of
parametric interface problems. In our simulations, we systematically studied the effects of different factors on the accuracy of IONet
and existing state-of-the-art operator networks. The results show that the proposed IONet is more robust and accurate in dealing with
many kinds of parametric interface problems due to its discontinuity-preserving architecture.

Despite the preliminary success, there are still many issues that need further investigation. As an advantage of neural operators
is their fast predictions, an important aspect of interest regarding IONet is the systematic comparison of its computational cost with
other numerical methods for solving interface problems. In addition, one limitation is the absence of treating geometry configuration
as an input function in our current work. Integrating the geometry configuration into IONet could potentially enhance its capabil-
ities and further broaden its range of applications. Furthermore, we have not yet obtained the convergence rate for IONet, which
would provide valuable insights into both the accuracy and stability of the model. Inspired by the works on the error estimates for
DeepONets [60] and generalization performance analysis of deep learning for PDEs [61–64], including interface problems [65], it is
interesting to improve the convergence properties and the error estimation of IONet for solving parametric elliptic interface prob-
lems. Moreover, IONet can be viewed as a specific DeepONet preserving discontinuity, and we are also interested in exploring the
feasibility of integrating recent advancements and extensions from DeepONet (e.g., DeepONet with proper orthogonal decomposition
[51], DeepONet based on latent representations and autoencoders [66], DeepONet using Laplace transform [67]) into IONet.

CRediT authorship contribution statement

Sidi Wu: Writing – review & editing, Writing – original draft, Visualization, Software, Methodology, Investigation, Formal
analysis, Data curation, Conceptualization. Aiqing Zhu: Writing – review & editing, Validation, Methodology, Formal analysis,
Conceptualization. Yifa Tang: Writing – review & editing, Supervision, Resources, Funding acquisition. Benzhuo Lu: Writing –
review & editing, Validation, Supervision, Project administration, Funding acquisition.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

I have shared the link to my data.

Acknowledgements

This research was funded by the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB0500000)
and the National Natural Science Foundation of China (Grant Nos. 12371413, 22073110 and 12171466).

Appendix A. Proof of Theorem 1

Here we provide the proof of Theorem 1, which relies on the universal approximation theorem of FNNs (see, e.g., [68]) and the
tensor product decomposition of operators [50].

Proof. Denote 𝑇𝑖 = {𝑎|Ω𝑖 | 𝑎 ∈ 𝑇 } ⊂ 𝐶(Ω𝑖) where 𝑖 = 1, ⋯ , 𝐼 . Consider an operator ̃ mapping from 𝑇1 ×⋯ × 𝑇𝐼 to 𝑋(Ω) as
18

̃(𝑎1,⋯ , 𝑎𝐼) ∶= (𝑎), where 𝑎(𝑥) = 𝑎𝑖(𝑥), if 𝑥 ∈Ω𝑖. (A.1)

Journal of Computational Physics 514 (2024) 113217S. Wu, A. Zhu, Y. Tang et al.

Observing the fact that the function values evaluated at given points are equivalent to the piece-wise linear functions of Faber-
Schauder basis, and by corollary 2.6 in [50], for any 𝜀 > 0, there exist positive integers 𝑚𝑖, 𝐾 and continuous functions 𝑔𝑖,𝑘 ∈ 𝐶(ℝ𝑚𝑖)
and 𝑢𝑘 ∈𝑋(Ω) and 𝐲1

𝑖
, ⋯ , 𝐲𝑖𝑚𝑖 ∈Ω𝑖, where 𝑘 = 1, ⋯ , 𝐾 , 𝑖 = 1, ⋯ , 𝐼 , such that

sup
𝑎1∈𝑇1 , 𝑎2∈𝑇2

‖‖‖‖‖‖̃(𝑎1,⋯ , 𝑎𝐼)(⋅) −
𝐾∑
𝑘=1

𝐼∏
𝑖=1
𝑔𝑖,𝑘(𝑎𝑖(𝐲1𝑖),⋯ , 𝑎𝑖(𝐲

𝑖
𝑚𝑖
)) ⋅ 𝑢𝑘(⋅)

‖‖‖‖‖‖𝑋(Ω)

≤
𝜀

2
. (A.2)

Since 𝑇𝑖 is a collection of continuous functions, and Ω is bounded, we have that 𝐴𝑖 ∶= {(𝑎𝑖(𝐲1𝑖), ⋯ , 𝑎𝑖(𝐲
𝑚𝑖
𝑖
))|𝑎𝑖 ∈ 𝑇𝑖} ∈ℝ𝑚𝑖 is bounded

for 𝑖 = 1, ⋯ , 𝐼 , and there exists a cuboid containing 𝐴𝑖. Consequently, by the approximation theorems of tanh FNN [68], for any
𝛿 > 0, there exist tanh FNNs 𝑏𝑖

∶ℝ𝑚𝑖 →ℝ𝐾 ,  𝑖
𝑡 ∶ Ω𝑖→ℝ𝐾 , such that‖‖‖[𝑏𝑖

]𝑘 − 𝑔𝑖,𝑘
‖‖‖𝐶∞(𝐴𝑖)

≤ 𝛿, ‖‖‖[ 𝑖
𝑡]𝑘 − 𝑢𝑘|Ω𝑖‖‖‖𝐻2(Ω𝑖)

≤ 𝛿, 𝑖 = 1,⋯ , 𝐼, 𝑘 = 1,⋯ ,𝐾,

where []𝑘 denotes the 𝑘-th component of  . Denote

𝑀𝑘 =max{‖‖𝑔1,𝑘‖‖𝐶∞(𝐴1)
,⋯ , ‖‖𝑔𝐼,𝑘‖‖𝐶∞(𝐴𝐼)

,‖‖𝑢𝑘‖‖𝑋(Ω)}, 𝑘 = 1,⋯ ,𝐾.

Subsequently, we can choose a sufficiently small 𝛿 such that

‖‖‖ 𝐾∑
𝑘=1

𝐼∏
𝑖=1

[𝑏𝑖
]𝑘(𝑎𝑖(𝐲1𝑖),⋯ , 𝑎𝑖(𝐲

𝑖
𝑚𝑖
)) ⋅ [ 𝑖

𝑡]𝑘(⋅) −
𝐾∑
𝑘=1

𝐼∏
𝑖=1
𝑔𝑖,𝑘(𝑎𝑖(𝐲1𝑖),⋯ , 𝑎𝑖(𝐲

𝑖
𝑚𝑖
)) ⋅ 𝑢𝑘(⋅)

‖‖‖𝐻2(Ω𝑖)

≤
𝐾∑
𝑘=1

(𝑀𝑘 + 𝛿)𝐼+1 −𝑀𝐼+1
𝑘

≤
𝜀

2
.

(A.3)

Finally, combining definition (A.1), estimates (A.2) and (A.3), we conclude that for 𝑖 = 1, ⋯ , 𝐼 ,

sup
𝑎∈𝑇

‖‖‖‖(𝑎)(⋅) − 
(
𝑏1

(𝑎(𝐲11),⋯ , 𝑎(𝐲
1
𝑚1
))⊙𝑏2

(𝑎(𝐲21),⋯ , 𝑎(𝐲
2
𝑚2
))⊙ 𝑖

𝑡 (⋅)
)‖‖‖‖𝐻2(Ω𝑖)

≤ sup
𝑎∈𝑇

‖‖‖‖‖‖̃(𝑎|Ω1
,⋯ , 𝑎|Ω𝐼)(⋅) − 𝐾∑

𝑘=1

𝐼∏
𝑖=1
𝑔𝑖,𝑘(𝑎𝑖(𝐲1𝑖),⋯ , 𝑎𝑖(𝐲

𝑖
𝑚𝑖
)) ⋅ 𝑢𝑘(⋅)

‖‖‖‖‖‖𝐻2(Ω𝑖)

+ sup
𝑎∈𝑇

‖‖‖‖‖‖
𝐾∑
𝑘=1

𝐼∏
𝑖=1

[𝑏𝑖
]𝑘(𝑎𝑖(𝐲1𝑖),⋯ , 𝑎𝑖(𝐲

𝑖
𝑚𝑖
)) ⋅ [ 𝑖

𝑡]𝑘(⋅) −
𝐾∑
𝑘=1

𝐼∏
𝑖=1
𝑔𝑖,𝑘(𝑎𝑖(𝐲1𝑖),⋯ , 𝑎𝑖(𝐲

𝑖
𝑚𝑖
)) ⋅ 𝑢𝑘(⋅)

‖‖‖‖‖‖𝐻2(Ω𝑖)

≤
𝜀

2
+ 𝜀

2
= 𝜀,

which completes the proof. □

References

[1] M. Sussman, E. Fatemi, An efficient, interface-preserving level set redistancing algorithm and its application to interfacial incompressible fluid flow, SIAM J. Sci.
Comput. 20 (4) (1999) 1165–1191.

[2] E.A. Fadlun, R. Verzicco, P. Orlandi, J. Mohd-Yusof, Combined immersed-boundary finite-difference methods for three-dimensional complex flow simulations,
J. Comput. Phys. 161 (1) (2000) 35–60.

[3] Y. Liu, M. Sussman, Y. Lian, M.Y. Hussaini, A moment-of-fluid method for diffusion equations on irregular domains in multi-material systems, J. Comput. Phys.
402 (2020) 109017.

[4] L. Wang, H. Zheng, X. Lu, L. Shi, A Petrov-Galerkin finite element interface method for interface problems with Bloch-periodic boundary conditions and its
application in phononic crystals, J. Comput. Phys. 393 (2019) 117–138.

[5] J.S. Hesthaven, High-order accurate methods in time-domain computational electromagnetics: a review, Adv. Imaging Electron Phys. 127 (2003) 59–123.
[6] B. Lu, Y. Zhou, M. Holst, J. McCammon, Recent progress in numerical methods for the Poisson-Boltzmann equation in biophysical applications, Commun.

Comput. Phys. 3 (5) (2008) 973–1009.
[7] N. Ji, T. Liu, J. Xu, L.Q. Shen, B. Lu, A finite element solution of lateral periodic Poisson–Boltzmann model for membrane channel proteins, Int. J. Mol. Sci.

19 (3) (2018) 695.
[8] J. Philip, Flow in porous media, Annu. Rev. Fluid Mech. 2 (1) (1970) 177–204.
[9] Y. Khoo, J. Lu, L. Ying, Solving parametric pde problems with artificial neural networks, Eur. J. Appl. Math. 32 (3) (2021) 421–435.

[10] Y. Zhu, N. Zabaras, P.-S. Koutsourelakis, P. Perdikaris, Physics-constrained deep learning for high-dimensional surrogate modeling and uncertainty quantification
without labeled data, J. Comput. Phys. 394 (2019) 56–81.

[11] I. Babuška, The finite element method for elliptic equations with discontinuous coefficients, Computing 5 (3) (1970) 207–213.
[12] J.H. Bramble, J.T. King, A finite element method for interface problems in domains with smooth boundaries and interfaces, Adv. Comput. Math. 6 (1996)

109–138.
[13] Y. Chen, S. Hou, X. Zhang, A bilinear partially penalized immersed finite element method for elliptic interface problems with multi-domain and triple-junction

points, Results Appl. Math. 8 (2020) 100100.
[14] B. Zhang, J. DeBuhr, D. Niedzielski, S. Mayolo, B. Lu, T. Sterling, DASHMM accelerated adaptive fast multipole Poisson-Boltzmann solver on distributed memory

architecture, Commun. Comput. Phys. 25 (4) (2019) 1235–1258.
19

[15] L. Mu, J. Wang, X. Ye, S. Zhao, A new weak Galerkin finite element method for elliptic interface problems, J. Comput. Phys. 325 (2016) 157–173.

http://refhub.elsevier.com/S0021-9991(24)00466-2/bibEEE456EB6FEE0474C3E3367266F079A4s1
http://refhub.elsevier.com/S0021-9991(24)00466-2/bibEEE456EB6FEE0474C3E3367266F079A4s1
http://refhub.elsevier.com/S0021-9991(24)00466-2/bibDCC463AA90587603E76E00D50CDEA92Es1
http://refhub.elsevier.com/S0021-9991(24)00466-2/bibDCC463AA90587603E76E00D50CDEA92Es1
http://refhub.elsevier.com/S0021-9991(24)00466-2/bibEE006280F72FB51AD1416FEE16EE9F00s1
http://refhub.elsevier.com/S0021-9991(24)00466-2/bibEE006280F72FB51AD1416FEE16EE9F00s1
http://refhub.elsevier.com/S0021-9991(24)00466-2/bib41B938CA39AD29F3C856F21C702CE9B1s1
http://refhub.elsevier.com/S0021-9991(24)00466-2/bib41B938CA39AD29F3C856F21C702CE9B1s1
http://refhub.elsevier.com/S0021-9991(24)00466-2/bibB917A9B94E73AAEA47E5DC6F7164CFC7s1
http://refhub.elsevier.com/S0021-9991(24)00466-2/bibB61134CD17F13B33E55DFE9D50059459s1
http://refhub.elsevier.com/S0021-9991(24)00466-2/bibB61134CD17F13B33E55DFE9D50059459s1
http://refhub.elsevier.com/S0021-9991(24)00466-2/bib0308949E6F38A05E8E12724BCA1F1BF0s1
http://refhub.elsevier.com/S0021-9991(24)00466-2/bib0308949E6F38A05E8E12724BCA1F1BF0s1
http://refhub.elsevier.com/S0021-9991(24)00466-2/bibB17424760C010721863797A389D8B070s1
http://refhub.elsevier.com/S0021-9991(24)00466-2/bib92251C92346A2B74A293501EC1712363s1
http://refhub.elsevier.com/S0021-9991(24)00466-2/bibA9CEDAFF449F99AF2ADC9EF8243EED8Es1
http://refhub.elsevier.com/S0021-9991(24)00466-2/bibA9CEDAFF449F99AF2ADC9EF8243EED8Es1
http://refhub.elsevier.com/S0021-9991(24)00466-2/bib8763A52388A8DAC3BF1F6CA07A637B1Bs1
http://refhub.elsevier.com/S0021-9991(24)00466-2/bibF1E2699F821F9893DDF2ACC306A3FEBBs1
http://refhub.elsevier.com/S0021-9991(24)00466-2/bibF1E2699F821F9893DDF2ACC306A3FEBBs1
http://refhub.elsevier.com/S0021-9991(24)00466-2/bib32E4EF3078D18B0AF9FF7FA671AF4C98s1
http://refhub.elsevier.com/S0021-9991(24)00466-2/bib32E4EF3078D18B0AF9FF7FA671AF4C98s1
http://refhub.elsevier.com/S0021-9991(24)00466-2/bibD24429157D2BD3B67355A921FA72E978s1
http://refhub.elsevier.com/S0021-9991(24)00466-2/bibD24429157D2BD3B67355A921FA72E978s1
http://refhub.elsevier.com/S0021-9991(24)00466-2/bibFC9A21C3A1AE6810B49B16444DADD408s1

Journal of Computational Physics 514 (2024) 113217S. Wu, A. Zhu, Y. Tang et al.

[16] T. Liu, M. Chen, B. Lu, Efficient and qualified mesh generation for Gaussian molecular surface using adaptive partition and piecewise polynomial approximation,
SIAM J. Sci. Comput. 40 (2) (2018) B507–B527.

[17] C.S. Peskin, The immersed boundary method, Acta Numer. 11 (2002) 479–517.
[18] R.J. LeVeque, Z. Li, The immersed interface method for elliptic equations with discontinuous coefficients and singular sources, SIAM J. Numer. Anal. 31 (4)

(1994) 1019–1044.
[19] Z. Chen, Y. Xiao, L. Zhang, The adaptive immersed interface finite element method for elliptic and Maxwell interface problems, J. Comput. Phys. 228 (14)

(2009) 5000–5019.
[20] R.P. Fedkiw, T. Aslam, B. Merriman, S. Osher, A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method), J. Comput.

Phys. 152 (2) (1999) 457–492.
[21] R. Egan, F. Gibou, xGFM: recovering convergence of fluxes in the ghost fluid method, J. Comput. Phys. 409 (2020) 109351.
[22] D. Bochkov, F. Gibou, Solving elliptic interface problems with jump conditions on Cartesian grids, J. Comput. Phys. 407 (2020) 109269.
[23] W. Thacher, H. Johansen, D. Martin, A high order Cartesian grid, finite volume method for elliptic interface problems, J. Comput. Phys. 491 (2023) 112351.
[24] K. Xia, M. Zhan, G.-W. Wei, Mib method for elliptic equations with multi-material interfaces, J. Comput. Phys. 230 (12) (2011) 4588–4615.
[25] I. Babuška, U. Banerjee, Stable generalized finite element method (sgfem), Comput. Methods Appl. Mech. Eng. 201 (2012) 91–111.
[26] H. Liu, L. Zhang, X. Zhang, W. Zheng, Interface-penalty finite element methods for interface problems in h1, h (curl), and h (div), Comput. Methods Appl. Mech.

Eng. 367 (2020) 113137.
[27] A. Taleei, M. Dehghan, Direct meshless local Petrov–Galerkin method for elliptic interface problems with applications in electrostatic and elastostatic, Comput.

Methods Appl. Mech. Eng. 278 (2014) 479–498.
[28] F. Gholampour, E. Hesameddini, A. Taleei, A global rbf-qr collocation technique for solving two-dimensional elliptic problems involving arbitrary interface, Eng.

Comput. 37 (4) (2021) 3793–3811.
[29] M. Ahmad, S. ul Islam, E. Larsson, Local meshless methods for second order elliptic interface problems with sharp corners, J. Comput. Phys. 416 (2020) 109500.
[30] Ö. Oruç, An efficient meshfree method based on Pascal polynomials and multiple-scale approach for numerical solution of 2-d and 3-d second order elliptic

interface problems, J. Comput. Phys. 428 (2021) 110070.
[31] Z. Wang, Z. Zhang, A mesh-free method for interface problems using the deep learning approach, J. Comput. Phys. 400 (2020) 108963.
[32] C. He, X. Hu, L. Mu, A mesh-free method using piecewise deep neural network for elliptic interface problems, J. Comput. Appl. Math. 412 (2022) 114358.
[33] S. Wu, B. Lu, INN: interfaced neural networks as an accessible meshless approach for solving interface PDE problems, J. Comput. Phys. 470 (2022) 111588.
[34] H. Guo, X. Yang, Deep unfitted Nitsche method for elliptic interface problems, Commun. Comput. Phys. 31 (4) (2022) 1162–1179.
[35] Q. Sun, X. Xu, H. Yi, Dirichlet-Neumann learning algorithm for solving elliptic interface problems, 2023.
[36] J. Berg, K. Nyström, A unified deep artificial neural network approach to partial differential equations in complex geometries, Neurocomputing 317 (2018)

28–41.
[37] A.D. Jagtap, G.E. Karniadakis, Extended physics-informed neural networks (xpinns): a generalized space-time domain decomposition based deep learning

framework for nonlinear partial differential equations, Commun. Comput. Phys. 28 (5) (2020) 2002–2041.
[38] Z. Liu, W. Cai, Z.-Q. John Xu, Multi-scale deep neural network (MscaleDNN) for solving Poisson-Boltzmann equation in complex domains, Commun. Comput.

Phys. 28 (5) (2020) 1970–2001.
[39] J. Ying, J. Liu, J. Chen, S. Cao, M. Hou, Y. Chen, Multi-scale fusion network: a new deep learning structure for elliptic interface problems, Appl. Math. Model.

114 (2023) 252–269.
[40] W.-F. Hu, T.-S. Lin, M.-C. Lai, A discontinuity capturing shallow neural network for elliptic interface problems, J. Comput. Phys. 469 (2022) 111576.
[41] M.-C. Lai, C.-C. Chang, W.-S. Lin, W.-F. Hu, T.-S. Lin, A shallow Ritz method for elliptic problems with singular sources, J. Comput. Phys. 469 (2022) 111547.
[42] Y.-H. Tseng, T.-S. Lin, W.-F. Hu, M.-C. Lai, A cusp-capturing pinn for elliptic interface problems, J. Comput. Phys. (2023) 112359.
[43] D.J. Lucia, P.S. Beran, W.A. Silva, Reduced-order modeling: new approaches for computational physics, Prog. Aerosp. Sci. 40 (1–2) (2004) 51–117.
[44] A. Quarteroni, A. Manzoni, F. Negri, Reduced Basis Methods for Partial Differential Equations: An Introduction, vol. 92, Springer, 2015.
[45] A.J. Majda, D. Qi, Strategies for reduced-order models for predicting the statistical responses and uncertainty quantification in complex turbulent dynamical

systems, SIAM Rev. 60 (3) (2018) 491–549.
[46] Z. Ye, X. Huang, H. Liu, B. Dong, Meta-auto-decoder: a meta-learning based reduced order model for solving parametric partial differential equations, preprint,

arXiv :2302 .08263, 2023.
[47] Z. Long, Y. Lu, B. Dong, Pde-net 2.0: learning pdes from data with a numeric-symbolic hybrid deep network, J. Comput. Phys. 399 (2019) 108925.
[48] L. Lu, P. Jin, G. Pang, Z. Zhang, G.E. Karniadakis, Learning nonlinear operators via deeponet based on the universal approximation theorem of operators, Nat.

Mach. Intell. 3 (3) (2021) 218–229.
[49] Z. Li, N.B. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya, A.M. Stuart, A. Anandkumar, Fourier neural operator for parametric partial differential

equations, in: International Conference on Learning Representations, 2021.
[50] P. Jin, S. Meng, L. Lu, Mionet: learning multiple-input operators via tensor product, SIAM J. Sci. Comput. 44 (6) (2022) A3490–A3514.
[51] L. Lu, X. Meng, S. Cai, Z. Mao, S. Goswami, Z. Zhang, G.E. Karniadakis, A comprehensive and fair comparison of two neural operators (with practical extensions)

based on fair data, Comput. Methods Appl. Mech. Eng. 393 (2022) 114778.
[52] S. Wang, H. Wang, P. Perdikaris, Learning the solution operator of parametric partial differential equations with physics-informed deeponets, Sci. Adv. 7 (40)

(2021), eabi8605.
[53] W. Littman, G. Stampacchia, H.F. Weinberger, Regular points for elliptic equations with discontinuous coefficients, Ann. Sc. Norm. Super. Pisa, Cl. Sci. 17 (1–2)

(1963) 43–77.
[54] T. Chen, H. Chen, Universal approximation to nonlinear operators by neural networks with arbitrary activation functions and its application to dynamical

systems, IEEE Trans. Neural Netw. 6 (4) (1995) 911–917.
[55] A.G. Baydin, B.A. Pearlmutter, A.A. Radul, J.M. Siskind, Automatic differentiation in machine learning: a survey, J. Mach. Learn. Res. 18 (2018) 1–43.
[56] Z. Chen, J. Zou, Finite element methods and their convergence for elliptic and parabolic interface problems, Numer. Math. 79 (2) (1998) 175–202.
[57] M. Raissi, P. Perdikaris, G.E. Karniadakis, Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving

nonlinear partial differential equations, J. Comput. Phys. 378 (2019) 686–707.
[58] M. Zhu, H. Zhang, A. Jiao, G.E. Karniadakis, L. Lu, Reliable extrapolation of deep neural operators informed by physics or sparse observations, Comput. Methods

Appl. Mech. Eng. 412 (2023) 116064.
[59] A. Logg, G.N. Wells, DOLFIN: automated finite element computing, ACM Trans. Math. Softw. 37 (2) (2010) 20:1–20:28.
[60] S. Lanthaler, S. Mishra, G.E. Karniadakis, Error estimates for deeponets: a deep learning framework in infinite dimensions, Transactions of Mathematics and Its

Applications 6 (1) (2022) tnac001.
[61] Y. Lu, H. Chen, J. Lu, L. Ying, J.H. Blanchet, Machine learning for elliptic pdes: fast rate generalization bound, neural scaling law and minimax optimality, in:

The Tenth International Conference on Learning Representations, ICLR, 2022.
[62] Y. Shin, J. Darbon, G. Em Karniadakis, On the convergence of physics informed neural networks for linear second-order elliptic and parabolic type PDEs,

Commun. Comput. Phys. 28 (5) (2020) 2042–2074.
[63] T. Luo, H. Yang, Two-layer neural networks for partial differential equations: optimization and generalization theory, preprint, arXiv :2006 .15733, 2020.
20

[64] Y. Jiao, Y. Lai, D. Li, X. Lu, Y. Wang, J.Z. Yang, Convergence analysis for the PINNs, preprint, arXiv :2109 .01780, 2021.

http://refhub.elsevier.com/S0021-9991(24)00466-2/bib1C87C43BCA3F514F99B0628B0EE5A081s1
http://refhub.elsevier.com/S0021-9991(24)00466-2/bib1C87C43BCA3F514F99B0628B0EE5A081s1
http://refhub.elsevier.com/S0021-9991(24)00466-2/bib35D4BF3C0BA143F913CE00B659613EA3s1
http://refhub.elsevier.com/S0021-9991(24)00466-2/bib0BD79D164D7C8DB22ED2C0BA46718192s1
http://refhub.elsevier.com/S0021-9991(24)00466-2/bib0BD79D164D7C8DB22ED2C0BA46718192s1
http://refhub.elsevier.com/S0021-9991(24)00466-2/bib22994F3611310DC0BDA8CCAB979AE9D0s1
http://refhub.elsevier.com/S0021-9991(24)00466-2/bib22994F3611310DC0BDA8CCAB979AE9D0s1
http://refhub.elsevier.com/S0021-9991(24)00466-2/bibD7A20885E39EF939402F03781B8BC5D1s1
http://refhub.elsevier.com/S0021-9991(24)00466-2/bibD7A20885E39EF939402F03781B8BC5D1s1
http://refhub.elsevier.com/S0021-9991(24)00466-2/bib67276747E40FBE7A08CD0903FB3B6BE0s1
http://refhub.elsevier.com/S0021-9991(24)00466-2/bib041730A14F0ED4CB2FAE684927A59495s1
http://refhub.elsevier.com/S0021-9991(24)00466-2/bibB4DD608439E30D37C6FE20240259231Bs1
http://refhub.elsevier.com/S0021-9991(24)00466-2/bib62F3553DBA5114B79563A9E3B102CD8As1
http://refhub.elsevier.com/S0021-9991(24)00466-2/bib0F0F13BF382B2A4676E8902317BF7834s1
http://refhub.elsevier.com/S0021-9991(24)00466-2/bibDFE7D292AD7E790E8C8D98FE5B44BDBAs1
http://refhub.elsevier.com/S0021-9991(24)00466-2/bibDFE7D292AD7E790E8C8D98FE5B44BDBAs1
http://refhub.elsevier.com/S0021-9991(24)00466-2/bibA74E11D89A8CF21EB20063845E95C3F8s1
http://refhub.elsevier.com/S0021-9991(24)00466-2/bibA74E11D89A8CF21EB20063845E95C3F8s1
http://refhub.elsevier.com/S0021-9991(24)00466-2/bibD80BE6A8729E85A513F4594FFD0D0B43s1
http://refhub.elsevier.com/S0021-9991(24)00466-2/bibD80BE6A8729E85A513F4594FFD0D0B43s1
http://refhub.elsevier.com/S0021-9991(24)00466-2/bib4E6C8007D1D159C9E8A3E42BF97C83EBs1
http://refhub.elsevier.com/S0021-9991(24)00466-2/bib3E18E72D0F8F8A32481B054E1B350374s1
http://refhub.elsevier.com/S0021-9991(24)00466-2/bib3E18E72D0F8F8A32481B054E1B350374s1
http://refhub.elsevier.com/S0021-9991(24)00466-2/bib217EB843D9C4D4C15FBBB34E7D3C707Bs1
http://refhub.elsevier.com/S0021-9991(24)00466-2/bib46B646BE74954B540086865CB48185ADs1
http://refhub.elsevier.com/S0021-9991(24)00466-2/bibC197DDFC8040ECB9D345C4E6833509C2s1
http://refhub.elsevier.com/S0021-9991(24)00466-2/bibBE36140F755F2026BD6BD1ECF726D46As1
http://refhub.elsevier.com/S0021-9991(24)00466-2/bib85351E7C924F69D41CFADDDC06E9FB9Es1
http://refhub.elsevier.com/S0021-9991(24)00466-2/bibFC4842A568C88609B22601AEF52175CCs1
http://refhub.elsevier.com/S0021-9991(24)00466-2/bibFC4842A568C88609B22601AEF52175CCs1
http://refhub.elsevier.com/S0021-9991(24)00466-2/bibA54B7FB0DF7B5643C05165F259A9B1BFs1
http://refhub.elsevier.com/S0021-9991(24)00466-2/bibA54B7FB0DF7B5643C05165F259A9B1BFs1
http://refhub.elsevier.com/S0021-9991(24)00466-2/bibD6BDFB31846C6FC57EB4AC8727D7477Fs1
http://refhub.elsevier.com/S0021-9991(24)00466-2/bibD6BDFB31846C6FC57EB4AC8727D7477Fs1
http://refhub.elsevier.com/S0021-9991(24)00466-2/bib5C90698BDFF9041895FBECA5AFCEB998s1
http://refhub.elsevier.com/S0021-9991(24)00466-2/bib5C90698BDFF9041895FBECA5AFCEB998s1
http://refhub.elsevier.com/S0021-9991(24)00466-2/bib15D572795BE1D275EB610E88035E99D2s1
http://refhub.elsevier.com/S0021-9991(24)00466-2/bibB36ACC320C68A79153B89D7B2C7B103Ds1
http://refhub.elsevier.com/S0021-9991(24)00466-2/bibE8C715DFB3711C88AC836C25CF579E84s1
http://refhub.elsevier.com/S0021-9991(24)00466-2/bibE977B22F207769B918D14800949C9428s1
http://refhub.elsevier.com/S0021-9991(24)00466-2/bib26337C285590904F243C0067BFE1ABE5s1
http://refhub.elsevier.com/S0021-9991(24)00466-2/bib38C94EADE9C58F78C5AA220B3833D259s1
http://refhub.elsevier.com/S0021-9991(24)00466-2/bib38C94EADE9C58F78C5AA220B3833D259s1
http://refhub.elsevier.com/S0021-9991(24)00466-2/bib0CC9EDACA6F24F464DE96DCBCA4FBAB9s1
http://refhub.elsevier.com/S0021-9991(24)00466-2/bib0CC9EDACA6F24F464DE96DCBCA4FBAB9s1
http://refhub.elsevier.com/S0021-9991(24)00466-2/bibA15ABD5DD1F8C51F805DA86330219F60s1
http://refhub.elsevier.com/S0021-9991(24)00466-2/bib81EAB26E706334F3E737F5ACF5A3AE3Fs1
http://refhub.elsevier.com/S0021-9991(24)00466-2/bib81EAB26E706334F3E737F5ACF5A3AE3Fs1
http://refhub.elsevier.com/S0021-9991(24)00466-2/bibFC8FB73051CAC6CA4C75FA7725ADBDA1s1
http://refhub.elsevier.com/S0021-9991(24)00466-2/bibFC8FB73051CAC6CA4C75FA7725ADBDA1s1
http://refhub.elsevier.com/S0021-9991(24)00466-2/bibEAA6123A5C81FC6EDB33BAA71DBFF494s1
http://refhub.elsevier.com/S0021-9991(24)00466-2/bibFE3A9A5FF17867936D377A5DFFDBD708s1
http://refhub.elsevier.com/S0021-9991(24)00466-2/bibFE3A9A5FF17867936D377A5DFFDBD708s1
http://refhub.elsevier.com/S0021-9991(24)00466-2/bib2073C708A102B1FC33CF928DFF9185A2s1
http://refhub.elsevier.com/S0021-9991(24)00466-2/bib2073C708A102B1FC33CF928DFF9185A2s1
http://refhub.elsevier.com/S0021-9991(24)00466-2/bibA9D5BFF1AB20CBB2FBF0E95BA45A220Fs1
http://refhub.elsevier.com/S0021-9991(24)00466-2/bibA9D5BFF1AB20CBB2FBF0E95BA45A220Fs1
http://refhub.elsevier.com/S0021-9991(24)00466-2/bibE5D53DFCBA13557D69464A5E07C13973s1
http://refhub.elsevier.com/S0021-9991(24)00466-2/bibE5D53DFCBA13557D69464A5E07C13973s1
http://refhub.elsevier.com/S0021-9991(24)00466-2/bib76C5AB9AAE568B5DD1A272BB4586CB39s1
http://refhub.elsevier.com/S0021-9991(24)00466-2/bib1F335ADABF325C0F3324D54C5195BAA7s1
http://refhub.elsevier.com/S0021-9991(24)00466-2/bib53EF7BEEFFBCC434AC4215FA1276D943s1
http://refhub.elsevier.com/S0021-9991(24)00466-2/bib53EF7BEEFFBCC434AC4215FA1276D943s1
http://refhub.elsevier.com/S0021-9991(24)00466-2/bibB439F9A87D02197141C24CA31F899940s1
http://refhub.elsevier.com/S0021-9991(24)00466-2/bibB439F9A87D02197141C24CA31F899940s1
http://refhub.elsevier.com/S0021-9991(24)00466-2/bibC0073468B942C45C3C7BDF4A21229F7Ds1
http://refhub.elsevier.com/S0021-9991(24)00466-2/bibFE822658A6FED8904F1D47B939DA723Bs1
http://refhub.elsevier.com/S0021-9991(24)00466-2/bibFE822658A6FED8904F1D47B939DA723Bs1
http://refhub.elsevier.com/S0021-9991(24)00466-2/bib112626DA94F85ECAF1FEB58E68C2FB90s1
http://refhub.elsevier.com/S0021-9991(24)00466-2/bib112626DA94F85ECAF1FEB58E68C2FB90s1
http://refhub.elsevier.com/S0021-9991(24)00466-2/bib99F78B9B87599DBA15726CE73C871C0Bs1
http://refhub.elsevier.com/S0021-9991(24)00466-2/bib99F78B9B87599DBA15726CE73C871C0Bs1
http://refhub.elsevier.com/S0021-9991(24)00466-2/bibBE6341D9EEB434D06E0C51A6FB4CF4C4s1
http://refhub.elsevier.com/S0021-9991(24)00466-2/bibA2A9081E3301D9DB0AB790DF76307BFCs1

Journal of Computational Physics 514 (2024) 113217S. Wu, A. Zhu, Y. Tang et al.

[65] S. Wu, A. Zhu, Y. Tang, B. Lu, Convergence of physics-informed neural networks applied to linear second-order elliptic interface problems, Commun. Comput.
Phys. 33 (2) (2023) 596–627.

[66] K. Kontolati, S. Goswami, G.E. Karniadakis, M.D. Shields, Learning in latent spaces improves the predictive accuracy of deep neural operators, preprint, arXiv :
2304 .07599, 2023.

[67] Q. Cao, S. Goswami, G.E. Karniadakis, Lno: Laplace neural operator for solving differential equations, preprint, arXiv :2303 .10528, 2023.
21

[68] T. De Ryck, S. Lanthaler, S. Mishra, On the approximation of functions by tanh neural networks, Neural Netw. 143 (2021) 732–750.

http://refhub.elsevier.com/S0021-9991(24)00466-2/bib20256CBA5E23B85C58F91AFC08B26897s1
http://refhub.elsevier.com/S0021-9991(24)00466-2/bib20256CBA5E23B85C58F91AFC08B26897s1
http://refhub.elsevier.com/S0021-9991(24)00466-2/bib20914C6EAA9BB9305A52135EE03D21BAs1
http://refhub.elsevier.com/S0021-9991(24)00466-2/bib20914C6EAA9BB9305A52135EE03D21BAs1
http://refhub.elsevier.com/S0021-9991(24)00466-2/bib5E7DF30F6DFE394438C91C4FCB5AE41Fs1
http://refhub.elsevier.com/S0021-9991(24)00466-2/bibD4584AC0CE7398C77B566B8F5A6C99AEs1

	Solving parametric elliptic interface problems via interfaced operator network
	1 Introduction
	2 Learning operators with neural networks
	3 Interfaced operator network
	3.1 Network architecture of IONet
	3.2 Loss function of IONet

	4 Numerical Results
	4.1 Parametric elliptic interface problems in one dimension
	4.2 Parametric elliptic interface problems in two dimensions
	4.3 Parametric elliptic interface problems in three dimensions
	4.4 Parametric elliptic interface problems in six dimensions

	5 Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgements
	Appendix A Proof of Theorem 1
	References

