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Abstract. In this work, an inverse averaging finite element method (IAFEM) is devel-
oped for solving the size-modified Poisson-Nernst-Planck (SMPNP) equations. Com-
paring with the classical Poisson-Nernst-Planck (PNP) equations, the SMPNP equa-
tions add a nonlinear term to each of the Nernst-Planck (NP) fluxes to describe the
steric repulsion which can treat multiple nonuniform particle sizes in simulations.
Since the new terms include sums and gradients of ion concentrations, the nonlinear
coupling of SMPNP equations is much stronger than that of PNP equations. By in-
troducing a generalized Slotboom transform, each of the size-modified NP equation is
transformed into a self-adjoint equation with exponentially behaved coefficient, which
has similar simple form to the standard NP equation with the Slotboom transforma-
tion. This treatment enables employing our recently developed inverse averaging tech-
nique to deal with the exponential coefficients of the reformulated formulations, fea-
tured with advantages of numerical stability and flux conservation especially in strong
nonlinear and convection-dominated cases. Comparing with previous stabilization
methods, the IAFEM developed in this paper can still possess the numerical stability
when dealing with convection-dominated problems. And it is more concise and eas-
ier to be numerically implemented. Numerical experiments about a model problem
with analytic solutions are presented to verify the accuracy and order of IAFEM for
SMPNP equations. Studies about the size-effects of a sphere model and an ion channel
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system are presented to show that our IAFEM is more effective and robust than the tra-
ditional finite element method (FEM) when solving SMPNP equations in simulations
of biological systems.

AMS subject classifications: 35J61, 65N30, 92C40

Key words: Size-modified Poisson-Nernst-Planck equations, generalized Slotboom transform,
inverse averaging finite element method, sphere model, ion channel.

1 Introduction

“The effects of finite particle size on electrostatics, density profiles, and diffusion have
been a long-existing topic in the study of ionic solution.” [30] As a continuous elec-
trodiffusion model, the classical Poisson-Nernst-Planck (PNP) equations play an im-
portant role in the electrodiffusion reaction process and have been widely used to de-
scribe the electrodiffusion of ions and charge transport in applications including the
solvated biomolecular system [29, 31], semiconductors [21, 33, 37], electrochemical sys-
tems [4, 10, 32] and ion channels [7, 11, 39]. Although the PNP equations have achieved
a lot of success in various applications, it still has some limitations due to the neglected
steric effects of ions in its mean-field derivation, for example, the PNP model leads to un-
physical crowding of ions near charged surfaces and incorrect dynamics of ion transport,
and the difference between two cations with the same charge cannot be distinguished
when simulating the concentration distribution of ions. To incorporate the effects of fi-
nite particle sizes in the study of ionic solutions, many improvements are made through
introducing exclusion terms from the liquid-state theory or the density functional theory
(DFT), e.g. see [15,16,34,36] and references therein. In addition, based on the framework
of the PNP model, several versions of the modified PNP theory have been developed
in the literature to account for steric effects [20, 22, 23, 25, 35, 38]. Among these theories,
the Borukhov model [5] attracts people’s attention because it captures basic size effects
only with a simplified model. The Borukhov model modifies the free energy functional
of the ionic system (mean-field approximation) by adding an ideal-gas-like solvent en-
tropy term, which represents the unfavorable energy used to model the over-packing or
crowding of the ions and solvent molecules. Thus the steric effects are taken into account
in the model. Lu and Zhou by generalizing the Borukhov model get a class of size-
modified Poisson-Nernst-Planck (SMPNP) equations via the inclusion of the entropy of
solvent molecules in the electrostatic free-energy functional [30]. Different from many
other works, the SMPNP model is able to treat multiple nonuniform particle sizes in sim-
ulations.

Comparing with the classical PNP equations [29], the SMPNP model adds a nonlinear
term to each of Nernst-Planck (NP) equations aiming at describing the steric repulsion
(see Eq. (2.2)). Since the new term includes sums and gradients of ion concentrations,
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the nonlinear coupling of SMPNP equations is much stronger than that of PNP equa-
tions. This brings many difficulties for solving SMPNP equations. The NP equations
are typical convection-diffusion equations. And the convection dominance will lead
to numerical oscillations (e.g. negative ion concentration values). Many stabilization
schemes are proposed to avoid non-physical numerical oscillations, e.g. see [8, 43, 45].
Tu et al. [43] employed the streamline upwind/Petrov-Galerkin (SUPG) method and the
Pseudo Residual-Free Bubble function (PRFB) scheme to enhance the numerical robust-
ness and convergence of the finite element scheme. However, for some macro-molecular
systems, e.g., the KcsA ion channel, the SUPG method cannot eliminate all non-physical
numerical oscillations or produce convergent numerical solutions [45]. By combining
the “upwind” characteristic of the SUPG method and the polishing effect of the inte-
rior penalty (IP) method [6, 13], Wang et al. [45] proposed a SUPG-IP method to solve
PNP equations, which performs better in preserving numerical solution positivity and is
much more robust than the standard FEM and the SUPG method when simulating KcsA
ion channels. For modified PNP equations with steric effect, based on the “SUPG” frame-
work, a fast stabilized finite element method is proposed for solving the modified PNP
equations with uniform particle sizes [8]. However, in the above stabilization schemes,
derivations of stabilization terms need a lot of complex interface jump integral calcula-
tions, which increases the complexity of their numerical implementations, especially with
irregular geometric biological channels. In addition, selecting appropriate stabilization
parameters is skillful for different macro-molecule systems. Large stabilization param-
eters are helpful to numerical convergence, but they will affect numerical accuracy. In
addition, the stabilized methods generally have no flux conservation properties.

Especially, we noticed that the modified PNP equations with ionic steric effects
(SPNP) were studied by finite difference methods based on harmonic-mean approxi-
mations to the exponential coefficients of the reformulated NP equations in [12]. The
difference from [12] is that the exponential coefficients are approximated based on the in-
verse averaging of the integral on the element instead of directly on the entire grid node
in this paper. Although the finite difference method has been widely used to solve the
PNP equations, e.g. see [14, 18, 26] and references therein, the implementation and accu-
racy of the numerical solution are not so good when it is applied to simulate the actual
biomolecular systems with highly irregular surfaces, such as cell membrane, DNA and
ion channels. The Finite element method (FEM) has more flexibility and adaptability in
irregular regions, which has shown great advantages in solving PNP and modified PNP
equations in many actual biomolecular simulations [27, 29, 30, 41, 46]

Inspired by [48], we apply the inverse averaging finite element method (IAFEM)
for solving SMPNP equations and derive an effective and robust numerical scheme for
biomolecular system simulations with the SMPNP model. In this work, we notice that
distributions of ion concentrations cannot be approximated with piecewise polynomials
directly, but the size-modified flux densities vary moderately in biological channels. Thus
we treat each of the size-modified flux densities as a whole by introducing a set of gener-
alized Slotboom variables, which eliminate cross-terms in the size-modified NP (SMNP)
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equations. Then SMNP equations are transformed into self-adjoint second-order elliptic
equations with exponentially behaved coefficients. In order to deal with these exponen-
tial coefficients, we employ an inverse averaging technique introduced in [48]. The main
idea is to use the exponential coefficients’ harmonic averages to approximate them on
every tetrahedral element. And their harmonic averages are calculated on each edge of
the tetrahedral element with an inverse averaging technique. This strategy is reasonable
because it takes advantage of the moderate variations of size-modified flux densities.

The rest of the paper is organized as follows. In Section 2, the mathematical model
and relevant governing equations are introduced. The singular decomposition of perma-
nent charges for Poisson equations and the reformulation of SMNP equations with the
help of generalized Slotboom variables are also presented in this section. In Section 3, the
IAFEM is introduced to discretize the SMNP equations. Numerical experiments about a
model problem with analytic solutions are presented to verify the accuracy and order of
the IAFEM for SMPNP equations. And studies about the size-effects of a sphere model
and the an ion channel system are also reported in Section 4. This paper is ended with
Section 5.

2 The mathematical model

In this section we briefly overview the problem and review the relevant equations.

2.1 Governing equations

Let Ω⊂Rd (d=2,3) be an open domain. In this work, we consider the SMPNP equations
[30] by coupling the SMNP equations

∂ci

∂t
=−∇· Ji, i=1,2,··· ,K, in Ωs, (2.1)

Ji =−Di

(
∇ci+βqici∇ϕ+

kici

1−∑
l

a3
l cl

∑
l

a3
l∇cl

)
, (2.2)

and the Poisson equation with the internal interface Γm = Ω̄s∩Ω̄m:

−∇·(ϵ∇ϕ)=ρ f +λ
K

∑
i=1

qici, in Ω=Ωs∪Ωm, (2.3)

ϕm =ϕs, ϵm
∂ϕm

∂⃗n
=ϵs

∂ϕs

∂⃗n
, x∈Γm, (2.4)

where ci(x,t) is the concentration of the ith ion species carrying charge qi = ziec, zi is the
valence of the ith ion species, and ec is the elementary charge. Ji is the size-modified flux
density, in which Di is a spatial-dependent diffusion coefficient, and ϕ is the electrostatic
potential, K is the number of diffusive ion species considered in the solution system.
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The constant β = 1/(kBT) is the inverse Boltzmann energy, where kB is the Boltzmann
constant, and T is the absolute temperature. ϵ is the piecewise dielectric constant with
ϵ= ϵmϵ0 in Ωm and ϵ= ϵsϵ0 in Ωs, where ϵ0 is the dielectric constant of vacuum, and the
typical values of ϵm and ϵs are 2 and 80, respectively. The characteristic function λ is the
indicator function of Ωs, that is

λ=

{
0, in Ωm,
1, in Ωs,

which suggests that mobile ions only exist in the solvent region. The permanent (fixed)
charge distribution

ρ f (x)=∑
j

qjδ
(
x−xj

)
,

which is a sum of singular charges qj located at xj inside the biomolecule, and δ is the
Dirac-delta function. The constant ki = a3

i /a3
0, where ai is the effective size of the ith ion

species, and a0 is the solvent molecule size. The size ai can be arbitrary, and does not
need to be larger than the solvent molecule size a0.

Comparing with the classical PNP equations (cf. [29]), the SMPNP equations add non-
linear terms kici

1−∑
l

a3
l cl

∑
l

a3
l∇cl (l = 1,2,··· ,K), to flux densities in (2.2) to describe the steric

repulsion. If size-effects are not considered, that is, ki=0 (or ai=0), SMNP equations (2.1)
directly reduce to classical NP equations as follows

∂ci

∂t
=∇·Di

(
∇ci+βqici∇ϕ

)
, i=1,2,··· ,K, in Ωs. (2.5)

For brevity, we write the NP equations and SMNP equations as

∂ci

∂t
=−∇· Ji, in Ωs, i=1,2,··· ,K, (2.6)

Ji =−Di

(
∇ci+βqici∇ϕ+Nki(ci)

)
,

where

Nki(ci)= ki
ci

1−∑
l

a3
l cl

∑
l

a3
l∇cl , ki

{
=0, for NP equations,
̸=0, for SMNP equations.

(2.7)

2.2 Boundary conditions

In this work, including the internal interface conditions (2.4) for the Poisson equation
(2.3), we consider the following boundary conditions

[ϕ]=0, [ϵ ∂ϕ
∂⃗n ]=0, on Γm,

ϕ=ϕ0, on Γs,
ci = c∞

i , on Γs

Ji ·n⃗=0, on Γm,

(2.8)
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Figure 1: A 2-D schematic view of the biological systems: (a) a fixed biomolecule; (b) an ion channel (or similar
a nanopore) embedded in a biomolecular membrane.

where [·] denotes the jump of the electrostatic potential at the internal interface Γm. The
interface conditions (2.4) represent the continuity conditions for the electrostatic potential
on the interface Γm. Γs is the outer boundary of the solvent region Ωs, in which the
Dirichlet boundary ΓD and the Neumann boundary ΓN are all considered for the mixed
boundary case. For example, domains and boundaries of demo systems are shown in
Fig. 1: a 2-D schematic view of biological systems. c∞

i and ϕ0 are the bulk concentration
of the ith ionic species and the applied potential, respectively. ∂ϕ

∂⃗n denotes the normal
derivative at the boundary with the exterior unit normal n⃗. The homogeneous Neumann
boundary conditions preserve the conservation of the system and the continuity of the
electrostatic potential at the internal interface Γm.

2.3 Singular decomposition for the Poisson equation

In this paper, we only consider the steady-state PNP model, that is ∂ci
∂t =0. To deal with

the singular permanent charges, an effective strategy for solving Eq. (2.3) is to decompose
the solution of the Poisson equation into three components: a singular component, a
harmonic component and a regular component [9, 29, 30], that is, ϕ = ϕs+ϕh+ϕr. For
the sake of completeness, we introduce the decomposition process and their governing
equations, respectively.

Firstly, the singular component ϕs is restricted into Ωm, and it is the solution of

−ϵm∆ϕs(x)=ρ f (x), x∈R3. (2.9)
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In fact, ϕs(x) can be given analytically by the sum of Coulomb potentials, that is

ϕs(x)=
N

∑
j=1

qj

ϵm4π
∣∣x−xj

∣∣ ,
where N is the total number of particles in the biomolecule, and |x−xj| denotes the dis-
tance between the current position x and the particle center xj.

The harmonic component ϕh is the solution of a Laplace equation:

−∆ϕh(x)=0, x∈Ωm,

ϕh(x)=−ϕs(x), x∈Γm.
(2.10)

Subtracting the above two components ϕs and ϕh from Eq. (2.3), we get the governing
equation of the regular component ϕr(x):

−∇·(ϵ∇ϕr(x,t))=λ∑
i

qici(x,t), x∈Ω, (2.11)

and the interface conditions

ϕr
s−ϕr

m =0, ϵs
∂ϕr

s
∂n
−ϵm

∂ϕr
m

∂n
=ϵm

∂
(
ϕs+ϕh)

∂n
, x∈Γm.

It is worth noting that there is no decomposition of the electrostatic potential in the sol-
vent region, thus ϕ(x)=ϕr(x) in Ωs. Hence, the final regularized SMPNP/PNP equations
consist of the regularized Poisson equation (2.11) and the SMNP/NP equations

−∇·
(

Di(x)(∇ci(x)+βqici(x)∇ϕr(x))+Nki(ci(x))
)
=0, x∈ Ωs. (2.12)

In the following content, we still also use ϕ to represent the regular component ϕr(x),
and the singular and harmonic components have been considered to get the complete
electrostatic potential inside molecules.

Compared to the original model (2.1)-(2.4), the above decompositions (see (2.9)-(2.11))
have a number of nice properties. Firstly, the decomposition of the electrostatic potential
only occurs inside biomolecules, so the numerical solution of ϕr in Ωs does not pos-
sess the numerical instability problem [19]. Secondly, the singular and harmonic com-
ponents only need to be solved one time in advance when decoupling the regularized
SMPNP/PNP equations. More comments and relative comparisons can be found in [29]
and the references therein.
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2.4 A transformed form of the SMPNP equations

By introducing a set of generalized Slotboom variables [30], the regularized SMPNP
equations (2.11)-(2.12) can be written as

−∇·(D̄i∇C̄i)=0, (2.13)

−∇·
(
ϵ∇ϕ

)
−λ

K

∑
i

qiC̄ie−Ψi =0, (2.14)

with 
Ψi =βqiϕ−ki ln

(
1−

K
∑
l

a3
l cl

)
, ki = a3

i /a3
0,

D̄i =Die−Ψi ,
C̄i = cieΨi .

(2.15)

Physically, Ψi can be seen as a modification of the electrostatic potential ϕ due to the
size effects. If the size effect is not considered (ki = 0 or ai = 0), the transformed forms
(2.13)-(2.15) reduce to the classical Slotboom transform of PNP equations [29, 40, 42].

The transformed SMNP equation (2.13) is a self-adjoint second-order elliptic equa-
tion about the Slotboom variable C̄i. Different from the classical NP equations, the co-
efficient D̄i depends on ϕ and ci in SMNP equations. Therefore, a semi-implicit scheme
is employed in our scheme. In the iterative process of equations decoupling, we use the
solution at the (n−1)th step cn−1

i to calculate the coefficient D̄i, and then solve the trans-
formed Eq. (2.13) to obtain the solution at the current nth step cn

i . This strategy can make
the stiffness matrices symmetric for the generalized Slotboom variable C̄i. And the con-
dition number of the stiffness matrix derived from discretizing the transformed Eq. (2.13)
may be smaller than that of the stiffness matrix produced by the original Eq. (2.12). Thus
the decoupling iterative methods applied to the linear system might converge faster [30].
However, in biomolecular simulations, as shown in [29], the discretization of the trans-
formed Eq. (2.13) always leads to an ill-conditioned stiffness matrix because a strong
electrostatic field exists near the molecular surface. In addition, the introduction of Slot-
boom variables makes the Poisson equation (2.14) become nonlinear for the electrostatic
potential ϕ. So a nonlinear iterative scheme, e.g. Newton method, is necessary for solv-
ing the nonlinear Poisson equation, which may cost much more CPU time. In practical
numerical simulations, our previous experience shows that the Newton method is sen-
sitive to the initial value, especially in macromolecular biological channel simulations,
e.g. KcsA K+ channels, see [27, 45]. In order to avoid multi-level nonlinear iteration and
improve the efficiency and robustness of the our method, we use the normal unknown
variables when solving SMPNP equations (2.13)-(2.14) in this work.
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At first, we use the normal variables ci to rewrite (2.13)-(2.15) as follows:

−∇·
(

Die−Ψi∇(eΨi ci)
)
=0, in Ωs, (2.16)

−∇·
(
ϵ∇ϕ

)
=λ

K

∑
i

qici, in Ω, (2.17)

with

Ψi =βqiϕ−ki ln
(

1−
K

∑
l

a3
l cl

)
, ki = a3

i /a3
0. (2.18)

Let u = βecϕ to nondimensionalize the electrostatic potential, and qi = ziec. Then
Eqs. (2.16)-(2.18) become:

−∇·
(

Die−Ψi∇(eΨi ci)
)
=0, in Ωs, (2.19)

−∇·
(
ϵ∇u

)
=βe2

c λ
K

∑
i

zici, in Ω, (2.20)

where

Ψi = ziu−ki ln

(
1−

K

∑
l

a3
l cl

)
, ki = a3

i /a3
0. (2.21)

The corresponding boundary conditions become
[u]=0, [ϵ ∂u

∂⃗n ]=βecϵm
∂(ϕs+ϕh)

∂⃗n , on Γm,

u=u0, on ΓD,

ci = c∞
i , on ΓD

Ji ·n⃗=0, on Γm,

(2.22)

where u0 = βecϕ0, Ji =−
(

Die−Ψi∇(eΨi ci)
)
, and ϕ0, c∞

i are the applied potential and bulk
concentrations defined by (2.8).

3 Inverse averaging finite element method for SMPNP
equations

In this section, we will introduce the IAFEM for the reformulated SMPNP equations
(2.19)-(2.22) in detail. In order to facilitate the presentation and understanding of the
latter contents, we first report some preliminary notations of the finite element discretiza-
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tion. Let H1(Ω) be the Sobolev space of weakly differentiable functions. Denoted by

L2(Ω)≡
{

w : Ω→R |
∫

Ω
w2dx<∞

}
,

H1(Ω)≡
{

w∈L2(Ω) |
∫

Ω
|∇w|2dx<∞

}
,

H1
0(Ω)≡

{
w∈H1(Ω) |w|ΓD =0

}
be the spaces with associated norms:

∥w∥0≡
(∫

Ω
w2dx

)1/2

, |w|1≡
(∫

Ω
|∇w|2dx

)1/2

, ∥w∥2
1≡|w|21+∥w∥2

0,

and ∥w∥∞≡supx∈Ω |w(x)|, and the inner product ( f ,g)Ω :=
∫

Ω f gdx.

3.1 Weak forms and finite element discretization of the reformulated SMPNP
equations

Integrating by parts, and noting the interface conditions in (2.22), the weak forms of the
reformulations (2.19)-(2.22) are to find ci∈H1(Ωs) (1≤ i≤K) and u∈H1(Ω) satisfying(

Die−Ψi∇(eΨi ci),∇v
)

Ωs
=0, ∀v∈H1

0(Ω), (3.1)(
ϵ∇u,∇w

)
Ω =

(
βe2

c λ
K

∑
i

zici,w
)

Ω
−βec

(
ϵm

∂
(
ϕs+ϕh)

∂⃗n
,w
)

Γm
, ∀w∈H1

0(Ω), (3.2)

where Ψi is defined by (2.21).
Let Th = {T} be a triangulation of Ω with (triangular/tetrahedral) elements T, Xh =

{xi}Nv
i=1 be the set of all vertices of Th. Let Vh ⊂ H1

0(Ω) be the piecewise linear finite
element space, and H1

0(Ω) is a Sobolev space of weakly differentiable functions which
vanish on the boundary of the domain Ω. Denote the nodal basis function in Vh with
φi, i=1,2,··· ,Nv, which is linear on the T and

φi (xi)=1, φi
(
xj
)
=0, j ̸= i. (3.3)

For a given T∈Th, we have∫
T
∇uh ·∇vhdx=∑

i,j
eT

ijuh (xi)vh
(
xj
)

, ∀uh,vh∈Vh. (3.4)

Note that eT
ij =

∫
T∇φj ·∇φidT represents some geometric information of the element T,

and it holds for linear Lagrangian finite element basis functions that eT
ii =−∑j ̸=i eT

ij . Then
we can easily transform (3.4) to the following simple but important identity∫

T
∇uh ·∇vhdx=−∑

i,j
eT

ij(uh(xi)−uh(xj))(vh(xi)−vh(xj)), ∀uh,vh∈Vh. (3.5)
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Let the test function vh take the linear Lagrangian basis function φi at xi, we have∫
T
∇uh ·∇φidx=− ∑

xj∈T
eT

ij(uh(xi)−uh(xj)). (3.6)

The finite element discretization of (3.1)-(3.2) is to find ci,h ∈Vh(Ωs), 1≤ i≤K, and uh ∈
Vh(Ω), such that (

Die−Ψi,h∇(eΨi,h ci,h),∇vh
)

Ωs
=0, ∀vh∈Vh, (3.7)(

ϵ∇uh,∇wh
)

Ω =
(

βe2
c λ

K

∑
i=1

zici,h,wh

)
Ω
−βec

(
ϵm

∂
(
ϕs+ϕh)

∂⃗n
,wh

)
Γm

, ∀wh∈Vh, (3.8)

where

Ψi,h = ziuh−ki ln

(
1−

K

∑
l

a3
l cl,h

)
, ki = a3

i /a3
0. (3.9)

In order to show differences between finite element approximations of the reformulated
and traditional schemes clearly, we also present the standard finite element scheme for
(2.12) as follows:

For each i, 1≤ i≤K, find ci,h∈Vh(Ωs) and uh∈vh(Ω), such thatDi

(
∇ci,h+zici,h∇uh+

kici,h

1−∑
l

a3
l cl,h

∑
l

a3
l∇cl,h

)
,∇vh


Ωs

=0, ∀vh∈Vh, (3.10)

and the finite element discretization for Poisson equation is same as (3.8).
We decouple the nonlinear coupling system (3.7)-(3.8) with Gummel iteration [17]. In

each iteration, the Poisson equation and each NP equation are solved successively. The
ion concentrations are treated as known functions when solving the electrostatic poten-
tial, and vice versa. The process repeats until the difference of solutions in two adjacent
iterations becomes smaller than a given tolerance.

For the steady-state case, in order to make iterations between the Poisson and SMNP
equations converge, it is necessary to employ the under-relaxation technique, especially
when macromolecules exist. In other words, solutions are updated with a linear combi-
nation of solutions respectively obtained from the last iteration and the current iteration,
rather than just using solutions derived from the current iteration. This under-relaxation
scheme [30, 31, 42] is described by

unew =αuold +(1−α)unew ,

cnew
i =αcold

i +(1−α)cnew
i , i=1,2,··· ,K,

where the relaxation parameter 0< α<1 is a predefined constant. We note that without
the under-relaxation technique, the iterations may not converge. More specifically, the
iterative process will be presented in Section 4.
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3.2 Inverse averaging technique

From the aforementioned content, if one wants to solve the finite element approximation
equation (3.7) with the normal unknown variable ci accurately, the numerical difficulty
lies in dealing with the exponential coefficients e−Ψl and eΨl . In this subsection, an inverse
averaging technique is developed for SMPNP equations to calculate the inverse averages
of the exponential coefficients on the edge Eij=xixj of the element T. Especially, in order
not to cause confusion and avoid using more notations, starting from this section, the
index l in the formula represents the lth ion species, and other indexes, such as i, j, k refer
to the node number on the element T.

3.2.1 The inverse average of the exponential coefficient

The inverse average of the exponential coefficient on the edge Eij = xixj is denoted with

E(Ψ)Eij =

(∫ xj
xi

e−Ψds∣∣Eij
∣∣

)−1

≜ I
(
Eij
)

, (3.11)

where Ψ is defined by (2.21) in this paper. In the other cases, Ψ may have its own spe-
cific definition, e.g. [48, 49]. The work [48] shows that the inverse averaging technique
is significant to control the effect of large electrostatic fields on currents and enhance the
stability of numerical methods for solving the standard PNP equations, particularly with
rapidly varying coefficients when solving the three-dimensional drift-diffusion model in
semiconductor device simulations. Inspired by this, we also use the inverse averaging
technique to deal with the exponential coefficients in our work for solving the reformu-
lated finite element approximation Eq. (3.7) when simulating biomolecular systems and
ion channels.

Firstly, similar to [48], we also assume that Ψ is linear on the edge Eij, that is

Ψ(x)=

(
Ψj−Ψi∣∣Eij

∣∣
)
(x−xi)+Ψi, x∈

[
xi, xj

]
. (3.12)

From (3.11) and (3.12), we get

I(Eij)=

∫ xj

xi

e−Ψi∣∣Eij
∣∣
(

eΨi

eΨj

) x−xi
|Eij |

dx

−1

=

(∫ xj

xi

e−Ψi∣∣Eij
∣∣ e(Ψi−Ψj)·

x−xi
|Eij | dx

)−1

=

(
e−Ψi

Ψi−Ψj

∫ xj

xi

e
(Ψi−Ψj)·

x−xi
|Eij | d

( (Ψi−Ψj)(x−xi)

|Eij|

))−1

=

(
e−Ψi

Ψi−Ψj
e
(Ψi−Ψj)·

x−xi
|Eij |
∣∣∣xj

xi

)−1

= eΨi B
(
Ψi−Ψj

)
, (3.13)
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where B(t) is the Bernoulli function defined by

B(t)=

{
t

et−1 , t ̸=0,

1, t=0.

For numerical stability, if the difference between two nodal values of Ψi is very small,
the corresponding terms “B(Ψi−Ψj)” should be calculated using Taylor expansions. For
more details, please refer to [48] and the references therein. Especially, the Bernoulli
function B(t) is calculated by

B(t)=


t

et−1 , |t|>10−4,((
− 1

720 t2+ 1
12

)
t− 1

2

)
t+1, otherwise,

in our computation.

3.2.2 Inverse averaging finite element scheme for the reformulated SMNP equations

Now we give a derivation of the IAFEM for the reformulated Eq. (3.7). First of all, re-
ferring to the mean value theorem of integrals and approximating the exponential coeffi-
cient e−Ψ with E(−Ψ)Eij on the edge Eij of the element T, we have

0=
(

Dle−Ψl,h∇(eΨl,h cl,h),∇vh
)

Ωs

=
∫

Ωs

Dle−Ψl,h∇(eΨl,h cl,h)·∇vhdΩs

= ∑
T∈Th

∫
T

Dle−Ψl,h∇(eΨl,h cl,h)·∇vhdT

≈ ∑
T∈Th

DlE(−Ψ)Eij

∫
T
∇(eΨl,h cl,h)·∇vhdT. (3.14)

In the following content, we introduce the computation of the element-wise stiffness ma-
trix for (3.14), i.e., A=(aT

ij)T∈Th , in detail.
On a element T, let vh take the associated piecewise linear finite element basis func-

tion. By using (3.6), we have

DlE(−Ψ)Eij

∫
T
∇(eΨl,h cl,h)·∇vhdT

=DlE(−Ψ)Eij ∑
xj∈T

(eΨl,h cl,h)(xj)
∫

T
∇φj ·∇φidT

=DlE(−Ψ)Eij ∑
xj∈T

(eΨl,h cl,h)(xj)eT
ij

=−Dl ∑
xj∈T,xj ̸=xi

E(−Ψ)Eij

(
(eΨl,h cl,h)(xi)−(eΨl,h cl,h)(xj)

)
eT

ij . (3.15)
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Furthermore, the approximated coefficient E(−Ψ)Eij is calculated by (3.13) on the edge
Eij, then we get

DlE(−Ψ)Eij

∫
T
∇(eΨl,h cl,h)·∇vhdT

=−Dl ∑
xj∈T,xj ̸=xi

E(−Ψ)Eij

(
(eΨl,h cl,h)(xi)−(eΨl,h cl,h)(xj)

)
eT

ij

=− ∑
xj∈T,xj ̸=xi

Dle−Ψl,h B(Ψj−Ψi)(eΨl,h cl,h)(xi)eT
ij

+ ∑
xj∈T,xj ̸=xi

Dl(e−Ψl,h B(Ψi−Ψj)(eΨl,h cl,h)(xj)eT
ij

=

− ∑
xj∈T,xj ̸=xi

Dl B(Ψj−Ψi)eT
ij

cl,h(xi)+ ∑
xj∈T,xj ̸=xi

(
Dl B(Ψi−Ψj)eT

ij

)
cl,h(xj). (3.16)

The nonzero entries of the element-wise stiffness matrix A=(aT
ij)T∈Th can be written as

aT
ij =

Dl B(Ψi−Ψj)eT
ij , j ̸= i,

− ∑
k ̸=i

Dl B(Ψk−Ψi)eT
ik, j= i,

where
eT

ij =
∫

T
∇φj ·∇φidT,

and φi, i=1,···Nh are nodal basis functions in Vh, which satisfy (3.3).

4 Numerical tests and application in simulating biomolecular
systems and ion channels

In this section, we will use the IAFEM to solve the SMPNP (PNP) equations for simulat-
ing biomolecular systems and ion channels. To demonstrate the accuracy and robustness
of the IAFEM, a model problem with analytic solutions on a cube is firstly tested. Then
the size-effect simulations on a biomolecular sphere with different charges and an ion
channel are respectively implemented. All the numerical algorithms are implemented
based on the three-dimensional parallel finite element toolbox Parallel Hierarchical Grid
(PHG) [47]. The computations were done on the high performance computers of State
Key Laboratory of Scientific and Engineering Computing, Chinese Academy of Sciences.

As mentioned above, the Gummel iterative method is used to decouple the nonlin-
ear coupling system (3.7)-(3.8), and also used for solving the traditional finite element
approximation (3.8) and (3.10). In order to clearly understand the Gummel iterative pro-
cess and calculation process in this work, we present the iterative process with IAFEM in
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Algorithm 1: Gummel iteration for SMPNP equations with IAFEM

1 Step 1: Initialization for nonlinear iteration:
2 Initialize error tolerance tol and maximize iteration number max−N ;
3 Initialize iterative step counter n=0;
4 Initialize electrostatic potential un

h =0;
5 for each i∈1,2,··· ,K do
6 Initialize concentration cn

i,h =0 and auxiliary variable cn+1
i,h =0;

7 end for
8 Step 2: Nonlinear iteration: n≥1, solving the decoupled equations:

9 while
∥∥∥un+1

h −un
h

∥∥∥> tol and j≤max−N do
10

(
ϵ∇un+1

h ,∇wh
)

Ω =
(

βe2
c λ

K

∑
i

zicn+1
i,h ,wh

)
Ω
−βec

(
ϵm

∂
(
ϕs+ϕh)

∂⃗n
,wh

)
Γm

, (3.17)

Ψn
i,h = ziun

h−ki ln

(
1−

K

∑
l

a3
l cn

l,h

)
, ki = a3

i /a3
0, (3.18)(

Die
−Ψn

i,h∇(eΨn
i,h cn+1

i,h ),∇vh
)

Ωs
=0, (3.19)

11 if ∥un+1
h −un

h∥< tol then
12 break;
13 else
14 un+1

h ←αun
h+(1−α)un+1

h ;
15 cn+1

i,h ←αcn
i,h+(1−α)cn+1

i,h ;
16 end
17 n←n+1;
18 end
19 Step 3: Output the electrostatic potential ϕn+1

h :=un+1
h /(βec) and concentrations

cn+1
i,h .

Algorithm 1. Similarly, the nonlinear iterative process of the traditional FEM for SMPNP
equations is presented in Algorithm 2.

In the following, some numerical experiments are reported to verify the effectiveness
and robustness of the IAEEM for solving SMPNP equations. At first, a model problem
with analytic solutions is presented to numerically verify the accuracy and convergence
order of the new scheme. Then, a sphere model and an ion channel system are separately
considered.
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Algorithm 2: Gummel iteration for SMPNP equations by FEM

1 Step 1: The same as step 1 in Algorithm 1;
2 Step 2: Nonlinear iteration: n≥1, solving the coupled equations:

3 while
∥∥∥un+1

h −un
h

∥∥∥> tol and n≤max−N do

4 Step 2.1 Solving Poisson equation for un+1
h through Eq. (3.17);

5 Step 2.2 Solving SMNP equations for cn+1
i,h through the following equationDi

(
∇cn+1

i,h +zicn+1
i,h ∇un

h+
kicn+1

i,h

1−∑
l

a3
l cn

l,h
∑

l
a3

l∇cn
l,h

)
,∇vh


Ωs

=0, (4.1)

if
∥∥un+1−un

∥∥< tol then
6 break;
7 else
8 un+1

h ←αun
h+(1−α)un+1

h ;
9 cn+1

i,h ←αcn
i,h+(1−α)cn+1

i,h ;
10 end
11 n←n+1;
12 end
13 Step 3: Output the electrostatic potential ϕn+1

h :=un+1
h /(βec) and concentrations

cn+1
i,h .

4.1 Accuracy and convergence tests

In this subsection, we report the numerical accuracy tests on the IAFEM for SMPNP
equations through a model problem with analytic solutions.

Example 4.1. In this example, we consider a model problem with analytic solutions on a
cube. Let the computational domain Ω=[0,1]3, and two charged species are considered
in the system. Specially, we use cp and cn to denote the positive and negative concentra-
tions respectively in this test, and their diffusion coefficients are Dp = 0.196, Dn = 0.203.
Consider the following dimensionless SMPNP model problem

−∇·(∇u)=(cp−cn)+ fu, in Ω,

−∇·Dp(∇cp+cp∇u+ kpcp

1−γ∑
l

a3
l cl

∑
l

a3
l∇cl)= fp, in Ω,

−∇·Dn(∇cn−cn∇u+ kncn
1−γ∑

l
a3

l cl
∑
l

a3
l∇cl)= fn, in Ω,

(4.2)

where ki = a3
i /a3

0 (i= p, n) with a0 =3.1, ap =1.51, an =2.37, and γ=6.022140857×10−4.
The right-hand functions fu, fp, fn and the boundary conditions are respectively given
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Table 1: L2 and H1 errors of the IAFEM for SMPNPEs (Example 4.1).

h ∥uh−u∥0 Order ∥cp,h−cp∥0 Order ∥cn,h−cn∥0 Order
1/4 6.1793E-02 − 8.0782E-02 − 1.3742E-01 −
1/8 1.9120E-02 1.69 6.2609E-02 0.37 9.6801E-02 0.51
1/16 5.0597E-03 1.92 1.9858E-02 1.66 3.8814E-02 1.32
1/32 1.2967E-03 1.96 5.2659E-03 1.91 1.1011E-02 1.82
1/64 3.3956E-04 1.93 1.3353E-03 1.98 2.9460E-03 1.90
1/128 8.7309E-05 1.96 3.3437E-04 2.00 7.4430E-03 1.98

h ∥uh−u∥1 Order ∥cp,h−cp∥1 Order ∥cn,h−cn∥1 Order
1/4 4.5797E-01 − 1.0250E+00 − 3.1852E+00 −
1/8 1.8227E-01 1.33 9.0683E-01 0.18 2.2351E+00 0.51
1/16 8.1152E-02 1.17 3.5981E-01 1.33 9.2410E-01 1.27
1/32 3.9094E-02 1.05 1.5825E-01 1.19 3.8890E-01 1.25
1/64 1.9352E-02 1.01 7.5885E-02 1.06 1.8214E-01 1.09
1/128 9.6521E-02 1.00 3.7521E-02 1.02 9.0360E-02 1.01

by the following analytic solutions
u=sin(πx)sin(πy)sin(πz),
cp =sin(2πx)sin(2πy)sin(2πz),
cn =sin(3πx)sin(3πy)sin(3πz).

(4.3)

In this example, the piecewise linear finite element basis functions are used to discretize
the SMPNP model (4.2). The L2 norm and H1 norm errors are reported in Table 1. The first
column represents the mesh size of the uniform meshes. The numerical errors in L2 norm
and H1 norm are second-order and first-order reduction, respectively. This numerically
demonstrates the convergence accuracy and reliability of the IAFEM for solving SMPNP
equations.

4.2 Simulation on a molecular sphere model

In this subsection, we will use the IAFEM to solve the SMPNP/PNP equations on a
sphere model. These tests capture the fundamental difference between the SMPNP
model and the classical PNP model. In the sphere model, a sphere with a negative charge
in the center is used to simulates the solute molecule. The geometry and mesh of the
sphere model are shown in Fig. 2, where R= 80Å, r = 10Å. Particularly, for the conve-
nience of description and distinguish for the different positive and negative ions, in the
following, the symbols K+, Na+, and Cl− are used to refer to two different cations and
anions.
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R

r

(a) (b)

Figure 2: Schematic of the geometry (a) and mesh (b) of the sphere model.

• Case 1:
To evaluate the effectiveness and robustness of the IAFEM in bimolecule simulations,

both SMPNP and PNP (ki=0, see (2.7)) equations are solved by setting different negative
charges in the center of the molecular sphere. We first consider a 1 : 1 KCl solution in
our sphere model, where the bulk concentration cbulk = 0.1M and the applied potential
ϕ0=0V. The negative charges in the center of the sphere are set as: q1=−10ec, q2=−20ec,
q3=−30ec, q4=−35ec, q5=−40ec, and q6=−45ec, where ec is the elementary charge.

Our previous numerical experience shows that the traditional finite element schemes
for solving PNP equations often lead to nonphysical oscillations (negative concentration
values) in practical computations, e.g. see [45]. As we all know, in the simulation of
the molecular spheres, the counter-ion concentration near the surface of the molecular
sphere increases as charges on the sphere accumulate. The counter-ion (K+) concentra-
tions with different charge quantity on the center sphere solved from the classical PNP
equations with the standard finite element method (FEM) and IAFEM are respectively
displayed in Fig. 3. When using the FEM to solve the PNP equations, Fig. 3(a) shows that
the counter-ion concentration appears layer as the amount of charge increases to a certain
value, e.g., q4 =−35ec, q5 =−40ec, q6 =−45ec. However, it’s an impossible phenomenon
for a single univalent ion without competition in these mean field models (the counter-
ion concentration should decrease monotonically in this case). In other words, these lay-
ers are nonphysical solutions caused by traditional FEM. Especially, Fig. 3(a) also shows
that the results of FEM start from zero. This is because the convection dominated is en-
hanced when the amount of charge increases to a certain value, and the traditional finite
element scheme cannot control the nonphysical oscillation (the negative value) caused
by the convection dominance. The the negative part is rounded off and the truncation
is made at the zero when saving the value. Compared to Fig. 3(a), it is apparent from
Fig. 3(b) that the curves of the counter-ion concentrations are always monotonous as the
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Figure 3: Cation (K+) distributions near the surface of the sphere under different charges based on PNP
equations which are solved by FEM (a) and IAFEM (b).

amount of charges increases. And the concentration value decreases rapidly to the bulk
concentration value with the increase of the radial distance.

• Case 2:
Similarly, in order to demonstrate the effectiveness of the IAFEM for solving the

SMPNP model in biomolecule simulations. In this case, we choose the ion size of cation
and anion as aK = 2.51Å and aCl = 6.37Å, respectively, and the other parameters are the
same as that mentioned in Case 1. The numerical results are shown in Fig. 4. The curves
in (a) are obtained from FEM with the standard scheme (3.10) for SMNP equations, and
the curves in (b) are computed with IAFEM. Similarly, it is observed from Fig. 4(a) that
there also exist layers (nonphysical solutions) when solving SMPNP equations with FEM
when the amount of charge increases bigger than a certain value. This illustrates that the
SMPNP equations almost degenerate to PNP equations for counterion when the size of
the counterion is less than the size of the solvent molecule. Fig. 4(b) shows that if the
IAFEM is used to solve the SMPNP equations, the layer will not appear even if the quan-
tity charges is high. The effectiveness and robustness of the IAFEM are further verified
for solving SMPNP/PNP equations in biomolecule simulation. In addition, comparing
with Fig. 3(b), from Fig. 4(b), it is seen that the counter-ion concentration solved from
SMPNP equations is less than that obtained from PNP equations at the same amount of
charges because of the ion size-effects. Specially, it can be seen from Figs. 3-4 that the nu-
merical results near the surface of the sphere for the FEM and IAFEM are not completely
consistent for the small central charges−10ec,−20ec, and−30ec, which may be caused by
the lack of the finer mesh. On the other hand, since this is a practical application simula-
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Figure 4: Cation (K+) distributions near the surface of the sphere under different charges based on SMPNP
equations which are solved by FEM (a) and IAFEM (b). The solvent molecular size is 3.1Å, the counterion and
coion size are aK =2.51Å and aCl =6.37Å, respectively. The ionic bulk densities are 0.1M.

tion problem without an exact solution and two completely different numerical schemes
are used, we do find that the numerical value of the IAFEM is slightly smaller than that of
FEM. The deeper reasons shall be studied in our next work for more PNP-like equations.

We know that the ion size effect has a certain inhibitory effect on the ion concentra-
tion distribution [30]. In order to further reflect the influence of the ion size-effects on
counterion concentration distributions, we fix the center charge of the sphere q=−20ee
and the anion size aCl = 6.37Å. Then the concentration distributions of counterions are
studied by changing the size of the counterions. The results based on the PNP equations
and SMPNP equations with different counterions sizes are listed in Fig. 5. These models
are solved by IAFEM. When the ion size is larger, the concentration of the counterion
near the surface of the sphere is smaller because of the inhibition of ion size effects.

• Case 3:
In this test, a 1 : 1 : 2 mixed solution of Na+, K+ and Cl− is taken into account, in

which the bulk concentration is cNa+ = cK+ = 0.1M, cCl− = 0.2M, and the diffusion co-
efficients are DNa+ = 0.133Å/s, DK+ = 0.196Å/s, DCl− = 0.203Å/s for Na+, K+ and Cl−,
respectively. For the ion size, we consider the hydration layer diameter of ions, that is
aNa+ =4.79Å, aK+ =5.51Å, aCl−=6.37Å (cf. [24, 35]). Similar to Case 1, we investigate the
convergence of the traditional FEM and IAFEM with various quantities of charges in the
center of the sphere. In particular, in order to eliminate the influence of relevant factors
of Gummel iteration on iterative convergence, we set the relaxation parameter α = 0.1.
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Figure 5: Cation (K+) distributions near the surface of the sphere based on PNP equations (dashed line) and
SMPNP equations under different counterion size (solid lines). Both the PNP and SMPNP equations are solved
by IAFEM. The solvent molecular size is 3.1Å, the coion size aCl =6.37Å. The ionic bulk densities are 0.1M.

Table 2: The convergence of Gummel iteration (convergence: ✓, non-convergence: ×).

q −10ec −20ec −25ec ··· −28ec −29ec −30ec −35ec −38ec

FEM ✓ ✓ ✓ ✓ ✓ × × × ×
IAFEM ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

The error tolerance tol is set as 1.0×10−6. If ∥u−uold∥2
∥u∥2

<tol, which represents the nonlinear
iterative convergence, then the computation stops. The convergence results for FEM and
IAFEM with different amounts of charges in the center of the sphere are listed in Table
2, where the notations “✓” and “×” represent whether the Gummel iteration has con-
verged. The ellipsis (···) in the fifth column represents that the Gummel iteration can
converge normally when the quantity of charges is in the interval (−25ec,−28ec) both for
the traditional FEM and IAFEM. Compared with the traditional FEM, Table 2 indicates
that the IAFEM can simulate the highly charged molecular sphere with the size effect of
the hydration layer of ions for a mixed solution.

Furthermore, in order to investigate the influence of the size effect of the counterion
on the robustness of our methods, we set the charge amount q=−20ec and the size of the
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Table 3: The convergence of Gummel iteration (convergence: ✓, non-convergence: ×).

(aNa+ ,aK+)(Å) (4.79,5.51) (5.79,6.51) (6.79,7.51) (7.79,8.51) (8.79,9.51)
FEM ✓ ✓ ✓ ✓ ×
IAFEM ✓ ✓ ✓ ✓ ✓

(aNa+ ,aK+)(Å) (9.79,10.51) (10.79,11.51) (11.79,12.51) (12.79,13.51)
FEM × × × ×
IAFEM ✓ ✓ ✓ ✓

coion aCl =6.37Å, and the SMPNP equations are solved based on FEM and IAFEM with
various sizes of the counter-ions. We choose the hydration layer diameter of Na+ and
K+, that is (aNa+ , aK+) = (4.79Å, 5.51Å), as the starting point and increase the ion size
by one unit (1Å) at a time. The convergence results of the traditional FEM and IAFEM
are reported in Table 3. It is seen from Table 3 that the IAFEM can simulate the SMPNP
equations with the strong counter-ion size effect (the counter-ion size is greater than 10Å)
under some proper conditions. However, the traditional FEM can solve the SMPNP equa-
tions only with weak counterion size effects under the same conditions. These numerical
experiments further verify the robustness and effectiveness of the IAFEM for solving the
SMPNP equations with large-size effects in biomolecule simulations.

4.3 Size-effects in ion transports: a numerical simulation of a gA channel

In this subsection, we use the IAFEM to solve the SMPNP equations and PNP equations
in the simulation of an ion channel. Gramicidin A (gA) is a well-characterized short
polypeptide including hundreds of atoms with a helix structure. Fig. 6 shows a schematic
picture of a single gA channel embedded in the lipid bilayer. This peptide is relatively
easy to be synthesized and manipulated, compared with a typical sodium channel which
has thousands of atoms. The gA channel is also relatively stable, therefore, it has been
widely applied in biochemical and biophysical studies. Upon head to head dimerization,
gA forms an elongated channel in the lipid bilayer that is permeable to small monovalent
cations [44].

In our work, we utilize the SMPNP and PNP equations to calculate the concentration
distributions of the cations in the channel. The size effects on the ion concentration dis-
tributions in the channel are further studied for different ions. In our computation, the
gA channel system setup is similar to the model presented in [42]. The whole domain
of the gA channel consists of the membrane protein region, bulk region, and channel re-
gion. The gA channel region is along the z-direction. The schematic of the simulation
box and the gA channel meshes are shown in Figs. 7 and 8. In our simulations, the box
size is [−50Å,50Å]3, the channel region is [−14Å,7Å], and the total number of tetrahedral
elements is 92480.
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Figure 6: A schematic picture of a single gramicidin A pore embedded in a lipid bilayer (see [46]).

(a) (b)

Figure 7: (a) The gA channel embedded in the simulation box. (b) A cut plane through the center of the
simulation box along the z-axis.

• Case 1:
At first, similar to the sphere model, we consider a 1:1 KCl solution in our gA channel

system, where the bulk concentration cbulk=0.1M is on the top and bottom of the box, and
the potential ϕ0 =−0.15V is applied with the potential difference along the z-direction.
The diffusion coefficients for cation and anion, for example, K+ and Cl−, in the bulk re-
gion are set to their experimental values: DK = 0.196Å2/ps, DCl = 0.203Å2/ps. While
there is no experimental measurement of exact values for the diffusion coefficients inside
the channel, it is known that the diffusion coefficients in the bulk region and the channel
region should be different. In this work, the diffusion coefficients inside the channel are
set by the same way as shown in [42]. In order to study the influence of size effects on
the cation concentration distribution in the channel, both the PNP equations and SMPNP
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(a) (b)

Figure 8: Schematic of the gA channel meshes: a) top view. b) lateral view.
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Figure 9: The cation density profile in the channel computed by PNP equations (dashed line) and SMPNP
equations with different cation size (solid lines), where the anion size aCl = 4.37Å, and the solvent molecular
size a0 =3.1Å.

equations with different ionic sizes are solved by the IAFEM for the gA system. The
size of the anion (Cl−) is fixed at 4.37Å, and the solvent molecular size a0 = 3.1Å. The
cation size is arbitrarily given in this test. Fig. 9 shows the cation concentration profile in-
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side the channel solved from PNP equations and SMPNP equations with different cation
sizes. If the size of the cation is larger, the cation concentration in the channel obtained
from SMPNP equations is lower compared with that solved from PNP equations. This
is because the large size of the cation can strengthen the spatial repulsion of the model.
Therefore, the SMPNP model, especially with large size effects, can be used to control
the infinite increase of ion concentrations in the channel. For example, the ion currents
matched with the experimental data (cf. [1–3]) can be obtained through numerical simu-
lations with high bulk concentrations and high applied voltage difference, which will be
studied in our next work.

• Case 2:
In this case, we consider the influence of the size effects on ion competitions in the

channel. Similar to the test in Case 3 of the biomolecular sphere model mentioned above,
we still consider a 1 : 1 : 2 mixed salt solution for Na+, K+ and Cl−, in which the bulk
concentration is cNa+ = cK+ = 0.1M, cCl− = 0.2M, and the diffusion coefficients and the
applied potential are the same as that in Case 1. In addition, the solvent molecular size
and the anion size are respectively fixed as a0 =3.1Å and aCl =4.37Å. Both the PNP and
SMPNP equations are solved via the IAFEM.

For SMPNP equations, to evaluate the influence of ion size effects on cation distribu-
tions in the channel, we arbitrarily change and increase the sizes of Na+ and K+ in our
computation. It is worth noting that the actual size of K+ is larger than the size of Na+,
so we always make the ion size for K+ one unit (1Å) larger than the size for Na+ at a time
in the test. We considered the concentration distributions in the gA channel along the
z-axis. The numerical results are displayed in Fig. 10. The subfigure (a) is the concentra-
tion profile for Na+ and K+ obtained by PNP equations without the size effects, and the
subfigures (b)-(f) show the concentration profile obtained from SMPNPEs with different
ion sizes for Na+ and K+. Fig. 10(a) demonstrates that the traditional PNP equations can-
not distinguish the two cations with the same valence. In particular, for comparison, the
concentration distributions computed through PNP equations are also shown in figures
(b)-(f). It is observed from Fig. 10 that, similar to PNP equations, the ion distributions
for Na+ and K+ calculated with SMPNP equations still cannot be distinguished in the
channel when the ion size is small (see subfigures (b)-(d)). However, the subfigures (e)-
(f) show that the concentration distributions of Na+ and K+ in the channel can be clearly
distinguished by SMPNP equations when the cation size becomes larger. In addition,
the concentration profiles from subfigures (e)-(f) also show that the concentration of K+

is less than that of Na+, which indicates that the size of the ion can strengthen the size
inhibition effect.

At last, in order to show the computational efficiency of IAFEM for solving the
SMPNP equations in ion channel simulations, we select three different bulk concentra-
tions (the applied potential ϕ0 fixed as 100mV) and applied potential (the bulk concen-
trations fixed as 0.1M ) to evaluate the CPU time of FEM and IAFEM, respectively. Here,
the 1 : 1 : 2 mixed salt solution for Na+, K+ and Cl− is considered, and the ion size is
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Figure 10: Cation distributions in the gA channel under a fixed membrane voltage (ϕ0 =−0.15V) and bulk
concentration (cNa+ = cK+ = 0.1M, cCl− = 0.2M) computed by PNP equations (dashed line) and SMPNP
equations with different ion size (solid lines). (a): The ion distributions both for Na+ and K+ by PNP
equations; (b)-(f): The ion distributions based on SMPNP equations with different cation size (solid lines).
The anion size aCl and the solvent molecular size a0 is fixed as 4.37Å and 3.1Å, respectively.

Table 4: The CPU time (seconds) of the FEM and IAFEM for solving the SMPNP equations in ion channel
simulations.

ϕ0 cbulk FEM IAFEM cbulk ϕ0 FEM IAFEM

100mV
0.1M 119.07 51.81

0.1M
50mV 113.31 50.56

0.2 M 115.27 52.65 100mV 119.07 51.81
0.3 M 121.60 51.23 150mV 116.13 51.69

set as aNa+ = 5.5Å, aK+ = 6.5Å, and aCl− = 4.37Å, respectively. The CPU time both for
the FEM and IAFEM are reported in Table 4. It is seen from Table 4 that the CPU time
cost of the IAFEM is almost half of that of the standard FEM whatever changing the bulk
concentrations or applied potential.

5 Conclusion

In this work, we introduce a generalized Slotboom transformation and an IAFEM to solve
the SMPNP equations. With the generalized Slotboom transform, the original SMNP
equations are transformed into new reformulations which are self-adjoint equations with
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exponentially behaved coefficients. Then the inverse averaging technique over the edges
of the element can be used to deal with the exponential coefficients. Numerical exper-
iments are reported to confirm the efficiency and robustness of the new schemes for
SMPNP equations. Firstly, a model problem with analytic solutions on a cube box is
tested to numerically verify the accuracy and order of the new schemes for SMPNP equa-
tions. Then, based on the averaging technique, simulations of both biomolecular sphere
systems and ion channel systems are studied to demonstrate the effectiveness and ro-
bustness of the IAFEM for SMPNP equations. In particular, the averaging technique
introduced in this paper can be easily extended to more complex PNP-like models for
simulating biomolecular systems, such as the variable dielectric Poisson-Nernst-Planck
(VDPNP) equations and Born-energy-modified PNP (BPNP) equations [27, 28], in which
the dielectric coefficients depend on the ion concentrations and spatial positions, respec-
tively. This will be studied in our future work. In addition, because of the strong cou-
pling non-linearity of the system and the proposed scheme is based on the reformulation
of the SMNP equations with exponential terms, the convergence analysis is not a matter
of standard analysis. We leave it as the future work. Especially, the data that support the
findings of this study are available within the article. The source code for this paper is
available from https://github.com/rgshen/SMPNP-IAFEM.
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