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EFFICIENT AND QUALIFIED MESH GENERATION FOR
GAUSSIAN MOLECULAR SURFACE USING ADAPTIVE

PARTITION AND PIECEWISE POLYNOMIAL APPROXIMATION∗

TIANTIAN LIU† , MINXIN CHEN‡ , AND BENZHUO LU§

Abstract. Recent developments for mathematical modeling and numerical simulation of bio-
molecular systems raise new demands for qualified, stable, and efficient surface meshing, especially
in implicit-solvent modeling [B. Z. Lu et al., Commun. Comput. Phys., 3 (2008), pp. 973–1009]. In
our former work, we have developed an algorithm for manifold triangular meshing for large Gaussian
molecular surfaces, TMSmesh [M. Chen and B. Lu, J. Chem. Theory Comput., 7 (2011), pp. 203–212;
M. Chen, B. Tu, and B. Lu, J. Molecular Graphics Model., 38 (2012), pp. 411–418]. In this paper, we
present new algorithms to greatly improve the meshing efficiency and qualities, and implement them
into a new program version, TMSmesh 2.0. In TMSmesh 2.0, in the first step, a new adaptive parti-
tion and estimation algorithm is proposed to locate the cubes in which the surface is approximated
by a piecewise trilinear surface with controllable precision. Then, the piecewise trilinear surface is di-
vided into single valued pieces by tracing along the fold curves, which ensures that the generated sur-
face meshes are manifolds. Numerical test results show that TMSmesh 2.0 is capable of handling arbi-
trary sizes of molecules and achieves ten to hundreds of times speedup over the previous algorithm. In
all of our extensively tested molecules, the resulting surface meshes are all manifolds and can be used
in boundary element method (BEM) and finite element method (FEM) simulation. The binary ver-
sion of TMSmesh 2.0 is downloadable from the web page http://lsec.cc.ac.cn/∼lubz/Meshing.html.

Key words. surface mesh generation, Gaussian surface, triangulation, adaptive partition, tri-
linear polynomial
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1. Introduction. Molecular surface mesh generation is a prerequisite for us-
ing the boundary element method (BEM) and the finite element method (FEM) in
implicit-solvent modeling (e.g., see a review in [25]). Recent developments in implicit-
solvent modeling of biomolecular systems raise new demands for qualified, stable, and
efficient surface meshing. The main concerns for improvement on existing methods
for molecular surface mesh generation are efficiency, robustness, and mesh quality.
Efficiency is necessary for simulations/computations requiring frequent mesh gener-
ation or requiring meshing for large systems. Robustness here means the meshing
method is stable and can treat various, even arbitrary, sizes of molecular systems
within computer power limitations. Mesh quality relates to mesh smoothness (avoid-
ing sharp solid angles, etc.), uniformness (avoiding elements with very sharp angles

∗Submitted to the journal’s Computational Methods in Science and Engineering section October
21, 2016; accepted for publication (in revised form) January 22, 2018; published electronically April
5, 2018.

http://www.siam.org/journals/sisc/40-2/M109970.html
Funding: This work was funded by the Science Challenge Project (SCP TZ2016003-1), National

Key Research and Development Program China (2016YFB0201304), China NSF (NSFC 91530102,
NSFC 21573274, NSFC 11301368, NSFC 11404300), and NSF of Jiangsu Province (BK20130278).
†Department of Mathematics, Soochow University, Suzhou 215006, China, and State Key Lab-

oratory of Scientific and Engineering Computing, Academy of Mathematics and Systems Science,
Chinese Academy of Sciences, Beijing 100190, China (liutt@lsec.cc.ac.cn).
‡Corresponding author. Department of Mathematics, Soochow University, Suzhou 215006, China

(chenminxin@suda.edu.cn).
§State Key Laboratory of Scientific and Engineering Computing, Academy of Mathematics and

Systems Science, Chinese Academy of Sciences, Beijing 100190, China (bzlu@lsec.cc.ac.cn).

B507

D
ow

nl
oa

de
d 

04
/1

7/
18

 to
 1

24
.1

6.
14

8.
8.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

http://lsec.cc.ac.cn/~lubz/Meshing.html
http://www.siam.org/journals/sisc/40-2/M109970.html
mailto:liutt@lsec.cc.ac.cn
mailto:chenminxin@suda.edu.cn
mailto:bzlu@lsec.cc.ac.cn


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

B508 TIANTIAN LIU, MINXIN CHEN, AND BENZHUO LU

or zero area), topological correctness (manifoldness, avoiding isolated vertices, ele-
ment intersection, single-element-connected edges, etc.), and fidelity (faithful to the
original defined molecular surface). The quality requirement is critical for some nu-
merical techniques, such as the FEM, to achieve converged and reasonable results,
which makes it a more demanding task in this aspect than the mesh generations only
for the purposes of visualization or some structural geometry analysis.

There are various kinds of definitions for molecular surface, including the van der
Waals (VDW) surface, the solvent accessible surface (SAS) [21], the solvent excluded
surface (SES) [30], the minimal molecular surface [1], the molecular skin surface [16],
and the Gaussian surface. The VDW surface is defined as the surface of the union of
the spherical atomic surfaces with VDW radius of each atom within the molecule. The
SAS and SES are represented by the trajectory of the center and the interboundary
of a rolling probe on the VDW surface, respectively. The minimal molecular surface
is defined as the result of the minimization of a type of surface energy. The molecular
skin surface is the envelope of an infinite family of spheres derived from atoms by
convex combination and shrinking. The Gaussian surface is defined as a level set of
the summation of the Gaussian kernel functions, for which descriptions of the specific
forms will be given in the next section.

For SAS and SES, numerous works have been committed to the computation of
the molecular surface in the literature. In 1983, Connolly proposed algorithms to cal-
culate the molecular surface and SAS analytically [9, 10]. In 1995, a popular program,
GRASP, for visualizing molecular surfaces was presented [29]. An algorithm named
SMART for triangulating SAS into curvilinear elements was proposed by Zauhar [40].
The software MSMS was proposed by Sanner, Olson, and Spehner in 1996 to mesh
the SES and is a widely used program for molecular surface triangulation due to its
high efficiency [32]. In 1997, Vorobjev and Hermans proposed SIMS, a method of
calculating a smooth invariant molecular dot surface, in which an exact method for
removing self-intersecting parts and smoothing the singular regions of the SES was
presented [35]. Ryu, Park, and Kim proposed a method based on beta shapes [31],
which is a generalization of alpha shapes [17]. Can, Chen, and Wang proposed LSMS
to generate the SES on grid points using level-set methods [3]. In 2009, a program,
EDTsurf, based on LSMS was proposed for generating the VDW surface, SES, and
SAS [37]. A ray-casting-based algorithm, NanoShaper, was proposed to generate SES,
skin surface, and Gaussian surface in 2013 [12].

For skin surface, Chavent, Levy, and Maigret presented MetaMtal to visualize
the molecular skin surface using the ray-casting method [4], and Cheng and Shi used
restricted union of balls to generate mesh for molecular skin surface [8]. For minimal
surface, Bates, Wei, and Zhao [1] constructed a surface-based energy functional and
used minimization and isosurface extraction processes to obtain a so-called minimal
molecular surface.

For the Gaussian surface, existing techniques for triangulating an implicit surface
can be used to mesh the Gaussian surface. These methods are divided into two main
categories: spatial partition and continuation methods. The well-known marching
cube method [24] and dual contouring method [19] are examples of the spatial par-
tition methods. In 2006, Zhang, Xu, and Bajaj [42] used a modified dual contouring
method to generate meshes for biomolecular structures. A later tool, GAMer [38], was
developed for both the generation and improvement of the Gaussian surface meshes.
An efficient mesh generation algorithm accelerated by multicore CPU and GPU was
also proposed in 2013 [22].

Most of those softwares have some issues according to the above-mentioned crite-
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ria for mesh generation; e.g., MSMS and GAMer generate many nonmanifold defects
in the mesh, fidelity is not well preserved for the EDTsurf and GAMer surfaces, and
some traditional grid-based methods require a lot of memory for molecules with large
size. More detailed comparison and discussion of the software can be found in [23].
As MSMS is a most commonly used software in this area, we will still use it as a main
reference for our new algorithm in this article.

In 2011, we proposed an algorithm and implemented it in the program TMSmesh
for triangular meshing of the Gaussian surface [6, 7, 23]. The trace technique, which
is a generalization of the adaptive predictor-corrector technique, is used in TMSmesh
to connect sampled surface points. TMSmesh contains two steps. The first step is
to compute the intersection points between the molecular Gaussian surface and the
lines parallel to the x-axis. In the second step, the sampled surface points are con-
nected through three algorithms to form loops, and the whole closed manifold surface
is decomposed into a collection of patches enclosed by loops on the surface. The
patches are finally divided into single valued pieces, which means that on each piece
of this type, each component of the normal direction (φx, φy, φz) does not change
sign. So these pieces can be treated as two-dimensional polygons and can be easily
triangulated through standard triangulation algorithms. In TMSmesh, there are no
problems of overlapping, gap filling, or selecting seeds that need to be considered
in traditional continuation methods. TMSmesh performs well in the following as-
pects. First, TMSmesh is robust. TMSmesh succeeds in generating surface meshes
for biomolecules comprised of more than one million atoms. Second, the meshes pro-
duced by TMSmesh have good qualities (uniformness and manifoldness). Third, the
generated surface mesh preserves the original molecular surface features and proper-
ties (topology, surface area and enclosed volume, and local curvature). However, as
to the aspect of computational efficiency, although the computational complexity is
linear with respect to the number of atoms as shown in [7], the overall low efficiency
of TMSmesh still needs to be improved.

In this paper, we propose a new algorithm and updated program version, TMSmesh
2.0, to mesh the Gaussian surface efficiently. TMSmesh 2.0 is capable of handling arbi-
trary sizes of molecules and achieves ten to hundreds of times speedup over TMSmesh.

This paper is organized as follows. The new algorithm for triangulating the Gaus-
sian surface is introduced in section 2. In section 3, some examples and applications
are presented. Finally, section 4 gives some concluding remarks.

2. Meshing algorithm. The Gaussian surface is defined as a level set of the
summation of Gaussian kernel functions,

(1) {~x ∈ R3, φ (~x) = c},

where

(2) φ (~x) =

N∑
i=1

e−D(‖~x−~xi‖2−r2i )

and ~xi and ri are the location and radius of the ith atom. The radius ri is usually
the VDW radius of the ith atom. D is the decay rate of the Gaussian kernel. c
is the isovalue, and it controls the volume enclosed by the Gaussian surface. These
two parameters, D and c, can be chosen properly to make the Gaussian surface
approximate the SES, SAS, and VDW surfaces well [23]. Figure 1 shows an example
of a Gaussian surface. Figure 1(a) shows the atoms included in the molecule, and
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(a)

(b)

Fig. 1. An example of Gaussian molecular surface. The molecule is 30S Ribosome. (a) shows
the VDW surface, and (b) shows the Gaussian molecular surface generated by TMSmesh [7] with
parameter D and c is 0.5 and 1.0, respectively. All coordinates and corresponding radii are drawn
from the PQR file that is transformed from the PDB file, 1FJF, using the PDB2PQR tool [13].

Figure 1(b) shows the Gaussian molecular surface. The definition of the Gaussian
surface is quite different from many other types of molecular surface definitions. But
so far, it is still arguable which one is the “correct one.” The Gaussian surface and the
other mentioned surface types are all widely used in the community [23]. Comparing
with the other definitions, the Gaussian surface has the following advantages:

• The Gaussian surface is smooth.
• The Gaussian surface provides a realistic representation of the electron density

of a molecule as compared to other molecular surface definitions [14].
• The Gaussian surface is well established [6, 22, 38, 42] and has a wide range of

applications in computational biology, such as docking problems [26], molec-
ular shape comparisons [18], calculating SAS areas [36], and the generalized
Born models [39].
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In this work, we focus on developing algorithms for the triangular mesh generation of
the Gaussian molecular surface.

In this section, we describe the algorithms to construct the triangular surface
meshes. The inputs of our method are PQR files which contain a list of centers and
radii of atoms. The output of our method are OFF files which contain the triangular
meshes. The algorithm outline is as follows:

• First, the space is adaptively divided into cubes, and an algorithm of dividing
cubes and estimating the error between the Gaussian surface and approxi-
mated trilinear polynomial in each cube is developed. With this algorithm,
the Gaussian surface is approximated by the piecewise trilinear surface.

• Second, in each cube, the trilinear surface is divided into a collection of single
valued pieces in the x, y, and z directions by tracing along fold curves (in the
trilinear surface case the fold curve can be directly calculated analytically).

• Third, each single valued piece is triangulated by standard polygon triangu-
lation algorithms, such as the ear clipping algorithm [15, 27], using monotone
polygons [11], Seidel’s decomposition algorithm [33], or Chazelle’s triangula-
tion method [5].

In the following subsections, each stage is described in detail.

2.1. Approximating the Gaussian surface by piecewise trilinear surface.
In this stage, the space is divided into cubes adaptively, and in each final cube, the
Gaussian surface is close to a trilinear surface whose error is controllable. Initially, the
molecule is placed in a three-dimensional orthogonal grid consisting of nx × ny × nz
cubes. The initial grid is very coarse. Then the grid is refined adaptively by the
following estimation and division steps:

• Step 1. In each cube, φ(x, y, z) is approximated by an nth-degree polyno-
mial P̃ (x, y, z); i.e., the Gaussian surface φ(x, y, z) = c is replaced by the
polynomial surface P̃ (x, y, z) = c.

• Step 2. The lower and the upper bounds of P̃ (x, y, z), denoted by L and U , in
each cube are estimated. If the isovalue c belongs to [L,U ], the cube has an
intersection with the surface P̃ (x, y, z) = c, and we go to Step 3; otherwise,
the cube is abandoned.

• Step 3. Divide each remaining cube into 8 smaller child cubes, and compute
the expression of P̃ (x, y, z) in each child cube. When the child cubes be-
come smaller, the coefficients of higher order terms (higher than the linear
order) of P̃ (x, y, z) go to zero. If they are under some user-specified bound,
approximate P̃ (x, y, z) by trilinear polynomial; otherwise, go to Step 2.

With the above processes, the Gaussian surface finally is approximated by piece-
wise trilinear surfaces in cubes with different sizes. In the following subsections, we
explain the details of the above estimation and division process.

2.1.1. Approximation with nth-degree polynomial. First, without loss of
generality, we only consider the case of D = 1; then (2) is written in the following
form:

(3) φ (~x) =

N∑
i=1

e−(‖~x−~xi‖2−r2i ) =

N∑
i=1

er
2
i e−(x−xi)

2

e−(y−yi)
2

e−(z−zi)
2

.

In an arbitrary cube [a, b]× [c, d]× [e, f ], equation (3) can be approximated by

(4) P (x, y, z) =

N∑
i=1

er
2
i Pn(x, xi, a, b)Qn(y, yi, c, d)Rn(z, zi, e, f),
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where

(5) Pn(x, xi, a, b) =

n∑
j=0

αj(xi, a, b)Lj

(
2x− (a+ b)

b− a

)
,

(6) Qn(y, yi, c, d) =

n∑
j=0

βj(yi, c, d)Lj

(
2y − (c+ d)

d− c

)
,

(7) Rn(z, zi, e, f) =

n∑
j=0

γj(zi, e, f)Lj

(
2z − (e+ f)

f − e

)
,

and

αj =
2

b− a

∫ b

a

φ

(
2x− (a+ b)

b− a

)
Lj

(
2x− (a+ b)

b− a

)
dx,

βj =
2

d− c

∫ d

c

φ

(
2y − (c+ d)

d− c

)
Lj

(
2y − (c+ d)

d− c

)
dy,

γj =
2

f − e

∫ f

e

φ

(
2z − (e+ f)

f − e

)
Lj

(
2z − (e+ f)

f − e

)
dz,

Lj(·) is Legendre polynomial of order j, and n is set as 3 in our work. However,
P (x, y, z) is not continuous between neighbored cubes, so we do the following cor-
rections of P (x, y, z) to make P (x, y, z) be C0 continuous in the whole domain. For
one component Pn(x, xi, a, b), we introduce two variables ε0(xi, a, b) and ε1(xi, a, b) as
follows to do corrections:
(8)

P̃n(x, xi, a, b) = Pn(x, xi, a, b) + ε0(xi, a, b)Ln−1

(
2x− (a+ b)

b− a

)
+ ε1(xi, a, b)Ln

(
2x− (a+ b)

b− a

)
= α0(xi, a, b)L0

(
2x− (a+ b)

b− a

)
+ · · ·+ αn(xi, a, b)Ln

(
2x− (a+ b)

b− a

)
+ ε0(xi, a, b)Ln−1

(
2x− (a+ b)

b− a

)
+ ε1(xi, a, b)Ln

(
2x− (a+ b)

b− a

)
.

The following two equations make P̃n(x, xi, a, b) equal to the x component of φ (~x) on
the boundary of the box and C0 continuous along the x directions:{

P̃n(a, xi, a, b) = e−(a−xi)
2

,(9a)

P̃n(b, xi, a, b) = e−(b−xi)
2

.(9b)

ε0(xi, a, b) and ε1(xi, a, b) can be easily solved from (9). Then P̃n(x, xi, a, b) is written
as follows:

(10) P̃n(x, xi, a, b) =

n∑
j=0

α̃j(xi, a, b)Lj

(
2x− (a+ b)

b− a

)
,
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where

(11) α̃j(xi, a, b) =


αj(xi, a, b), j < n− 1,

αn−1(xi, a, b) + ε0(xi, a, b), j = n− 1,

αn(xi, a, b) + ε1(xi, a, b), j = n.

After the above correction, P̃n(x, xi, a, b) is the best least square approximation
for the x component of φ(~x) in the space spanned by {Li, i = 0, . . . , n− 2}, and it is
also C0 continuous on the boundaries of the cubes along the x direction. The same
method should be used to correct Qn(y, yi, c, d) and Rn(z, zi, e, f) to make P̃ (x, y, z)
be C0 continuous along the y, z directions. We have

(12) Q̃n(y, yi, c, d) =

n∑
j=0

β̃j(yi, c, d)Lj

(
2y − (c+ d)

d− c

)
,

(13) R̃n(z, zi, e, f) =

n∑
j=0

γ̃j(zi, e, f)Lj

(
2z − (e+ f)

f − e

)
,

where the forms of β̃j(yi, c, d) and γ̃j(zi, e, f) are similar to α̃j(xi, a, b) in (11). Then
the new nth polynomial is written as

(14) P̃ (x, y, z) =

N∑
i=1

er
2
i P̃n(x, xi, a, b)Q̃n(y, yi, c, d)R̃n(z, zi, e, f)

for x ∈ [a, b], y ∈ [c, d], z ∈ [e, f ]. In practical computation of P̃ (x, y, z), we only need
to compute the summation in (14) with respect to the neighborhood {xi, yi, zi} of the

cube [a, b]∗ [c, d]∗ [e, f ], since the kernel e−||~x−~xi||2 decays very quickly when ||~x−~xi||
becomes large.

2.1.2. Estimation of upper and lower bounds of P̃ (x, y, z). In order to
rule out the cubes having no surface points, the lower and upper bounds of P̃ (x, y, z)
in the cube are estimated. P̃ (x, y, z) in (14) can be written in the form of the product
of tensors:

(15) P̃ (x, y, z) = A×̄1
~L

(
2x− (a+ b)

b− a

)
×̄2
~L

(
2y − (c+ d)

d− c

)
×̄3
~L

(
2z − (e+ f)

f − e

)
,

where A =
∑N
i=1 e

r2iBi and

Bi = b
(1)
i ⊗ b

(2)
i ⊗ b

(3)
i ,(16a)

b
(1)
i = (α̃0(xi, a, b), α̃1(xi, a, b), . . . , α̃n(xi, a, b)),(16b)

b
(2)
i = (β̃0(yi, c, d), β̃1(yi, c, d), . . . , β̃n(yi, c, d)),(16c)

b
(3)
i = (γ̃0(zi, e, f), γ̃1(zi, e, f), . . . , γ̃n(zi, e, f)),(16d)

~L

(
2x− (a+ b)

b− a

)
=

(
L0

(
2x− (a+ b)

b− a

)
, . . . , Ln

(
2x− (a+ b)

b− a

))
,(16e)

~L

(
2y − (c+ d)

d− c

)
=

(
L0

(
2y − (c+ d)

d− c

)
, . . . , Ln

(
2y − (c+ d)

d− c

))
,(16f)

~L

(
2z − (e+ f)

f − e

)
=

(
L0

(
2z − (e+ f)

f − e

)
, . . . , Ln

(
2z − (e+ f)

f − e

))
.(16g)
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⊗ is the product of tensor. ×̄k is the k-mode (vector) product of a tensor X ∈
RI1×I2×I3 with a vector V ∈ RIk denoted by X×̄kV and is of size I1 × · · · × Ik−1 ×
Ik+1 × · · · × I3 [20]. Its i1 · · · ik−1ik+1 · · · i3 entry is as follows:

(17) (X×̄kV )i1···ik−1ik+1···i3 =

Ik∑
ik=1

xi1xi2xi3vik .

A is a three-dimensional tensor whose size is (n+1)× (n+1)× (n+1), where n is the
degree of the polynomial P̃ (x, y, z). To get the lower and upper bounds of P̃ (x, y, z),
first, the main part of P̃ (x, y, z) is obtained by doing singular value decomposition
(SVD) for A. Second, the upper and the lower bounds of the main part and the
remainder are estimated, respectively.

Here we use SVD for A to approximate P̃ (x, y, z) by a multiplication of three
polynomials in x, y, z, respectively. Taking n = 3 and A = [aijk]4×4×4, for example,
the algorithm of SVD is as follows.

Step 1. Transform A into a two-dimensional matrix:

(18) A1 =


a111 . . . a141 a211 . . . a241 a311 . . . a341 a411 . . . a441
a112 . . . a142 a212 . . . a242 a312 . . . a342 a412 . . . a442
a113 . . . a143 a213 . . . a243 a313 . . . a343 a413 . . . a443
a114 . . . a144 a214 . . . a244 a314 . . . a344 a414 . . . a444

 .
Step 2. Do SVD to A1,

(19) A1 = UDV ∗,

where U = (~u1, ~u2, ~u3, ~u4) is a 4× 4 matrix, V ∗ is a 4× 16 matrix, and

(20) D =


σ1 0 0 0
0 σ2 0 0
0 0 σ3 0
0 0 0 σ4

 .
If j satisfies

(21) min

{
j :

j∑
i=1

σi ≥ 0.99

4∑
i=1

σi

}
,

we reserve σ1, . . . , σj and abandon σj+1, . . . , σ4.
Step 3. Transform each row of V ∗ into a square matrix. If

(22) V ∗ =


v1,1 v1,2 . . . v1,16
v2,1 v2,2 . . . v2,16
v3,1 v3,2 . . . v3,16
v4,1 v4,2 . . . v4,16

 ,
we can transform the ith row of V ∗ into a 4× 4 matrix denoted by Vi:

(23) Vi =


vi,1 vi,2 vi,3 vi,4
vi,5 vi,6 vi,7 vi,8
vi,9 vi,10 vi,11 vi,12
vi,13 vi,14 vi,15 vi,16
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Step 4. Do SVD for Vi, respectively,

(24) Vi = WiDiZi,

where Wi = ( ~wi1,
~wi2,

~wi3,
~wi4), Di = diag(di1, d

i
2, d

i
3, d

i
4), Zi = (~zi1,

~zi2,
~zi3,

~zi4)T . If ji
satisfies

min

{
ji :

ji∑
k=1

dik ≥ 0.99

4∑
k=1

dik

}
,

di1, . . . , d
i
ji

are reserved and diji+1, . . . , d
i
4 are abandoned. Therefore, Vi can be ap-

proximated by the following formula:

(25) Vi ≈ di1 ~wi1 ⊗ ~zi1 + · · ·+ diji
~wij1 ⊗

~ziji .

Through the above calculation, A can be approximated by

(26) A ≈
j∑
i=1

σi~ui ⊗
( ji∑
k=1

dki
~wki ⊗ ~zki

)
.

The summation on the right-hand side of (26) is denoted by Ã. As a result, A can be
split by A = Ã+R, where Ã is the main part and R is the residue part.

With the above SVD process, P̃ (x, y, z) can be converted to the following form:

(27) P̃ (x, y, z) = S(x, y, z) + T (x, y, z),

where

(28) S(x, y, z) = Ã×1
~L

(
2x− (a+ b)

b− a

)
×2

~L

(
2y − (c+ d)

d− c

)
×3

~L

(
2z − (e+ f)

f − e

)
,

(29) T (x, y, z) = R×1
~L

(
2x− (a+ b)

b− a

)
×2

~L

(
2y − (c+ d)

d− c

)
×3

~L

(
2z − (e+ f)

f − e

)
.

For S(x, y, z), the upper bound and lower bound are estimated through the fol-
lowing steps:

(30) S(x, y, z) =

j∑
i=1

σiŨ
i(x)

[
ji∑
k=1

dikW̃
i
k(y)Z̃ik(z)

]
,

where 

Ũ i(x) = ~ui · ~L
(

2x− (a+ b)

b− a

)
,(31a)

W̃ i
k(y) = ~wik · ~L

(
2y − (c+ d)

d− c

)
,(31b)

Z̃ik(z) = ~zik · ~L
(

2z − (e+ f)

f − e

)
.(31c)

First, we estimate the upper bound and lower bound of one-dimensional poly-
nomials W̃ i

k(y) and Z̃ik(z), respectively. The upper and lower bounds of W̃ i
k(y) are
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denoted by My
k and my

k. And the upper and lower bounds of Z̃ik(z) are denoted by

Mz
k and mz

k. Second, the upper bound and lower bound of W̃ i
k(y)Z̃ik(z) are estimated

by

(32) Myz
k = max{My

kM
z
k ,M

y
km

z
k,m

y
kM

z
k ,m

y
km

z
k},

(33) myz
k = min{My

kM
z
k ,M

y
km

z
k,m

y
kM

z
k ,m

y
km

z
k}.

Then the upper bound of
∑ji
k=1 d

i
kW̃

i
k(y)Z̃ik(z) is

(34) Myz
i =

ji∑
k=1

dikM
yz
k ,

and the lower bound is

(35) myz
i =

ji∑
k=1

dikm
yz
k .

Finally, we estimate the upper bound and the lower bound of Ũ i(x), which are denoted

by Mx
i and mx

i . Then the bounds of Ũ i(x)[
∑ji
k=1 d

i
kW̃

i
k(y)Z̃ik(z)] can be estimated by

(36) Mi = max{Mx
i M

yz
i ,Mx

i m
yz
i ,m

x
iM

yz
i ,mx

im
yz
i },

(37) mi = min{Mx
i M

yz
i ,Mx

i m
yz
i ,m

x
iM

yz
i ,mx

im
yz
i }.

Therefore, the upper bound and lower bound of S(x, y, z) are

(38) M =

j∑
i=1

σiMi

and

(39) m =

j∑
i=1

σimi.

The range of each entry of ~L(·) is [−1, 1]. Therefore, T (x, y, z) can be estimated
by
(40)

|T (x, y, z)| =
∣∣∣∣R×1

~L

(
2x− (a+ b)

b− a

)
×2

~L

(
2y − (c+ d)

d− c

)
×3

~L

(
2z − (e+ f)

f − e

)∣∣∣∣
≤
∣∣∣∣∑Rijk

∣∣∣∣
≤
∑
|Rijk|,

where Rijk is the (i, j, k) entry of R.

As a result, the upper and lower bounds of P̃ (x, y, z) are

(41) U = M +
∑
|Rijk|,

(42) L = m−
∑
|Rijk|.

If the bounds satisfy the condition that L ≤ c ≤ U , the surface may have an intersec-
tion with the cube. Otherwise, the cube should be ruled out.

D
ow

nl
oa

de
d 

04
/1

7/
18

 to
 1

24
.1

6.
14

8.
8.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

MESH GENERATION FOR GAUSSIAN MOLECULAR SURFACE B517

Table 1
The number of cubes after each time of partition for an ADP molecule.

Level Number of all cubes Number of empty cubes Number of nonempty cubes
1 882 641 241
2 1928 597 1331
3 4516 128 4388

2.1.3. Approximation by trilinear polynomial. In each remaining cube,
φ(x, y, z) is approximated by polynomial P̃ (x, y, z) as shown in (15). Then we divide
each remaining cube into 8 smaller child cubes and express P̃ (x, y, z) in each child
cube by Legendre polynomials as follows:
(43)

P̃ (x, y, z) = A′ ×1
~L

(
2x− (a1 + b1)

b1 − a1

)
×2

~L

(
2y − (c1 + d1)

d1 − c1

)
×3

~L

(
2z − (e1 + f1)

f1 − e1

)
,

where x ∈ [a1, b1], y ∈ [c1, d1], and z ∈ [e1, f1]. Here, [a1, b1]× [c1, d1]× [e1, f1] is the
range of the child cube, and A′ is the coefficient tensor of the Legendre polynomials
in the child cube. When the child cubes become smaller, the coefficients of the higher
order Legendre polynomials in the coefficient tensor go to zero. The division process
is repeated until the coefficients of the higher order Legendre polynomials are close to
zero enough to be neglected in all the remaining cubes. Table 1 shows the number of
empty cubes and nonempty cubes after each round of division in TMSmesh 2.0 for an
adenosine diphosphate (ADP) molecule. The nonempty cubes intersect the Gaussian
molecular surface. The empty cubes are detected by checking whether the isovalue c
is between the upper and lower bounds of P̃ (x, y, z) in each cube. The level in Table 1
means the number of rounds of division. From Table 1, we can see that after the first
round of division, more than 70% of the cubes are deleted. In the second and third
rounds of division, some empty cubes are deleted, but they are a lower proportion.
At the finest level, most of the cubes are not empty because the cubes are closer to
the Gaussian surface, and the cubes that do not intersect the Gaussian surface are
abandoned. Figure 2 shows that for ADP, after the adaptive division and estimation
process, most cubes that do not intersect the Gaussian molecular surface are ruled
out.

After the above division and estimation process, in each remaining cube, we ap-
proximate the surface P̃ (x, y, z) = c by the following trilinear interpolation. Supposing
the range of the remaining cube is [−1, 1]× [−1, 1]× [−1, 1], the trilinear interpolation
can be written in terms of the vertex values:

(44) g(x, y, z) =
1

8

∑
α∈{1,−1}

∑
β∈{1,−1}

∑
γ∈{1,−1}

P̃ (α, β, γ)(1+α∗x)(1+β ∗y)(1+γ ∗z).

To ensure the continuity of trilinear interpolation between two adjacent boxes with
different sizes, the vertex value of the smaller box should be drawn from the trilinear
interpolation of the adjacent larger box.

2.2. Triangulating the trilinear surface. In this subsection, we introduce our
method of triangulating the piecewise trilinear surface in cubes with different sizes.
Without loss of generality, suppose in cube [−1, 1] × [−1, 1] × [−1, 1] the trilinear
surface is g(x, y, z) = c.

This method contains three steps, which are shown in Figure 3. This figure shows
the triangulation process in two neighbored cubes. First, the intersection points
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Fig. 2. The cubes intersecting the Gaussian molecular surface for an ADP molecule. These
cubes are represented in blue, and the molecular surface is represented in red.MESH GENERATION FOR GAUSSIAN MOLECULAR SURFACE B13

(a) (b)

(c)

(d)

Fig. 3. Method of triangulating the trilinear surface. (a) Step 1, compute the intersection points
and extreme points on the faces of the cubes. The green points are intersection points between the
surface and the edge of the cube and the blue points are extreme points. (b) Step 2, connect the
green intersection points and the blue extreme points by surface curves on the faces of the cubes to
form red loop in the remaining cube and black loop in the right cube. (c) The green lines are fold
curves and the magenta points are critical points. (d) Step 3, the surface patches enclosed by the
red and black loops are divided into six single valued pieces by the fold curves.
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Fig. 3. Method of triangulating the trilinear surface. (a) Step 1, compute the intersection points
and extreme points on the faces of the cubes. The green points are intersection points between the
surface and the edge of the cube and the blue points are extreme points. (b) Step 2, connect the
green intersection points and the blue extreme points by surface curves on the faces of the cubes to
form red loop in the remaining cube and black loop in the right cube. (c) The green lines are fold
curves and the magenta points are critical points. (d) Step 3, the surface patches enclosed by the
red and black loops are divided into six single valued pieces by the fold curves.
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Fig. 3. Method of triangulating the trilinear surface. (a) Step 1, compute the intersection points
and extreme points on the faces of the cubes. The green points are intersection points between the
surface and the edge of the cube and the blue points are extreme points. (b) Step 2, connect the
green intersection points and the blue extreme points by surface curves on the faces of the cubes to
form red loop in the remaining cube and black loop in the right cube. (c) The green lines are fold
curves and the magenta points are critical points. (d) Step 3, the surface patches enclosed by the
red and black loops are divided into six single valued pieces by the fold curves.
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Fig. 3. Method of triangulating the trilinear surface. (a) Step 1, compute the intersection points
and extreme points on the faces of the cubes. The green points are intersection points between the
surface and the edge of the cube and the blue points are extreme points. (b) Step 2, connect the
green intersection points and the blue extreme points by surface curves on the faces of the cubes to
form red loop in the remaining cube and black loop in the right cube. (c) The green lines are fold
curves and the magenta points are critical points. (d) Step 3, the surface patches enclosed by the
red and black loops are divided into six single valued pieces by the fold curves.

(d)

Fig. 3. Method of triangulating the trilinear surface. (a) Step 1: Compute the intersection
points and extreme points on the faces of the cubes. The green points are intersection points between
the surface and the edge of the cube, and the blue points are extreme points. (b) Step 2: Connect
the green intersection points and the blue extreme points by surface curves on the faces of the cubes
to form the red loop in the remaining cube and the black loop in the right cube. (c) The green lines
are fold curves, and the magenta points are critical points. (d) Step 3: The surface patches enclosed
by the red and black loops are divided into six single valued pieces by the fold curves.
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between g(x, y, z) = c and the edges of a cube are computed. They are defined as

(45)


g(x, y, z) = c,

α = a,

β = b.

α, β ∈ {x, y, z}, α 6= β, a, b ∈ {1,−1},

The extreme points on the faces of cubes are also computed. The extreme points in
the x, y, and z directions are defined as

(46)


g(x, y, z) = c,

α = a,

∂g(x, y, z)

∂α
= 0.

α ∈ {x, y, z}, a ∈ {1,−1},

Second, the intersection points and extreme points defined by (45) and (46) are con-
nected by surface curves on the faces of cubes and form closed loops. Since the surface
curves on the faces of cubes are simple hyperbola and the expression of the curves is
explicit, it is easy to determine which two points are neighbored in the same branch
of the hyperbola. The surface patches enclosed by these loops may contain holes and
tunnels. In the third step, the surface patches are divided into single valued pieces
along the x, y, and z directions by fold curves. “Single valued pieces” here means
that on each piece of this type, each component of the normal direction (gx, gy, gz)
does not change sign. Here the fold curves for the x, y, and z directions are defined
as

(47)

{
g (x, y, z) = c,

∂g(x, y, z)

∂α
= 0

}
, α ∈ {x, y, z}.

Generally, the fold curves are not straight lines (see Figure 3 in [7]). But for the
trilinear surface, the fold curves are straight line segments whose ends are extreme
points. The fold curves along different directions may have intersections; they are
critical points satisfying

(48)


g(x, y, z) = c,

∂g(x, y, z)

∂α
= 0,

∂g(x, y, z)

∂β
= 0.

α, β ∈ {x, y, z}, α 6= β,

Figure 4 shows an example of subdividing a surface patch into single valued pieces
along the x, y, and z directions by fold curves. The trilinear surface defined in (44)
is folded at the fold curves. Cutting the trilinear surface along these fold curves
ensures that on each of the resulting pieces, the signs of the x, y, and z components
of the normal direction are invariant. Subdividing the loops along fold curves helps
avoid incorrect connections during triangulation and helps find missed small surface
structures, such as tunnels and holes, because these structures also fold at these
curves. After the third step, each single valued piece is homomorphic to a two-
dimensional polygon and can be triangulated by a standard method, such as ear
clipping [15, 27], monotone polygons [11], Seidel’s decomposition algorithm [33], or
Chazelle’s triangulation method [5].
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Fig. 4. An example of connecting surface extreme points along the fold curves. The green points
are intersection points, and the blue points are extreme points. The green lines are fold curves. The
red curve forms a closed loop on the trilinear surface. The surface patch enclosed by the red loop is
not single valued along the x, y, z directions, and it is divided into six single valued pieces along the
x, y, z directions by the fold curves.

Table 2
Test molecules in the PQR benchmark which can be downloaded from http://lsec.cc.ac.cn/

∼lubz/Download/PQR benchmark.tar.

Molecule
(name or PDB code) Number of atoms Description

GLY 7 a single glycine residue
ADP 39 ADP molecule
2LWC 75 Met-enkephalin in DPMC SUV
FAS2 906 fasciculin2, a peptidic inhibitor of AChE

AChE monomer 8280 mouse acetylcholinesterase monomer
AChE tetramer 36638 the structure of AChE tetramer, taken from [29]
30S ribosome 88431 30S ribosome, the PDB code is 1FJF
70S ribosome 165337 obtained from 70S ribosome3.7A model140.pdb.gz on

http://rna.ucsc.edu/rnacenter/ribosome downloads.html
3K1Q 203135 PDB code, a backbone model of an aquareovirus virion
2X9XX 510727 a complex structure of the 70S ribosome bound to release

factor 2 and a substrate analog, which has 4 split PDB entries:
2X9R, 2X9S, 2X9T, and 2X9U

1K4R 1082160 PDB code, the envelope protein of the dengue virus

To summarize, the manifoldness of the generated mesh is guaranteed at algorithm
level. First, the summation of Gaussian kernels is approximated by the piecewise nth-
degree polynomial with C0 continuity. And piecewise trilinear approximation is used
in the surface extraction which also preserves the C0 continuity between adjacent
boxes. Therefore the piecewise trilinear surface is a manifold. Second, in each cube,
the trilinear surface is divided into single valued pieces by fold curves. According
to Morse theory [28], for nondegenerated surfaces, each single valued piece enclosed
by the fold curves is homomorphic to a two-dimensional polygon, and they do not
intersect each other. Third, each single valued surface piece is homomorphic to a
two-dimensional polygon and can be triangulated into triangles without intersections
by a standard polygon triangulation algorithm.

3. Experimental results.

3.1. Efficiency and robustness. Because MSMS is the most widely used ef-
ficient software for molecular surface triangulation, in this section, the performance
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Table 3
CPU time used for molecular surface generation by TMSmesh and MSMS.

Molecule Natoms
Number of vertices CPU time

TMSmesh TMSmesh 2.0 MSMS TMSmesh TMSmesh 2.0 MSMS
FAS2 906 5170 6849 5258 6.4 0.36 0.13

8309 8579 7888 8 0.43 0.18
AChE monomer 8280 24556 45711 34819 52 1.79 0.72

39289 63836 51784 60 2.05 0.96
AChE tetramer 36638 95433 163736 132803 224 5.90 4.99

152035 220089 192545 260 6.91 5.94
30S ribosome 88431 274297 489325 353272 721 14.89 13.21

439020 631448 520986 1120 17.59 15.43
70S ribosome 165337 698055 869930 845550 1218 24.12 36.44

1111399 1160622 Fail 1361 30.34 Fail
3K1Q 203135 509390 678915 666517 1440 26.92 36.85

812774 975334 984234 1728 30.72 40.48
2X9XX 510727 1585434 2132433 Fail 4809 68.64 Fail

2521233 2933346 Fail 5762 84.71 Fail
1K4R 1082160 3325975 4050952 Fail 7296 141.51 Fail

5298234 5540049 Fail 12905 178.85 Fail

of TMSmesh 2.0 is compared with those of MSMS and the old version of TMSmesh.
A set of biomolecules with different sizes is chosen as a test benchmark (see Ta-
ble 2); this set was used in our previous work [6, 7] and can be downloaded from
http://lsec.cc.ac.cn/∼lubz/Download/PQR benchmark.tar. The meshing softwares
are run on molecular PQR files (PDB plus atomic charges and radii information). To
make a reasonable comparison with MSMS, appropriate parameters, such as the error
tolerance between Gaussian surface and approximated piecewise trilinear surface, are
chosen for TMSmesh to achieve the surface vertex densities 1/Å2 and 2/Å2 used in
MSMS mesh generation. The probe radius in MSMS is set to be 1.4Å. All computa-
tions were run on a computer with Intel Xeon CPU E5-4650 v2, 2.4GHz, and 126GB
memory under a 64-bit Linux system.

Table 3 shows the CPU time cost of MSMS and TMSmesh with 1 and 2 vertex/Å2

mesh densities. In Table 3, TMSmesh denotes the old version in 2012 [7], and
TMSmesh 2.0 is the new version used in this paper. The discrepancies between the
numbers of vertices of the TMSmesh mesh and the MSMS mesh are due to different
definitions of molecular surface and different meshing methods used in the two pro-
grams. The CPU time cost of TMSmesh 2.0 is much less than the cost of the old
version of TMSmesh. TMSmesh 2.0 is at least 30 times faster than the old version.
This is due to the following reasons. First, the new adaptive way of partitioning the
process to locate the surface reduces the number of surface-intersecting cubes. We
use different sizes of cubes according to the approximation accuracy of the piecewise
trilinear surface in the new method instead of using the same sized cubes from the
previous method. Fewer cubes are used to precisely locate the surface. Second, a
more efficient and much sharper bound estimator of summation of Gaussian kernels
in a cube is adopted, as shown in section 2.1.2. Third, the trilinear polynomials are
used to approximate the surface to reduce computation costs greatly. For the trilinear
surface, the surface points and fold curves can be computed explicitly, and the fold
curves are explicitly straight lines, which makes the tracing process easier.

For the small molecules, the CPU time cost of MSMS is less than that of TMSmesh
2.0. But for the large molecules, MSMS requires more time than TMSmesh 2.0. This
is because the computational complexity of MSMS is O[N log(N)], where N is the
number of atoms. And the complexity of TMSmesh 2.0 is almost O(N), which is

shown in Figure 5. In TMSmesh 2.0, as the exponential kernels e−||~x−~xi||2 in the
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Fig. 5. Computational performance of TMSmesh 2.0.

Gaussian surface decay very quickly when the distances ||~x − ~xi|| become large, all
the calculations are done locally, and so no global information is needed in the whole
process. TMSmesh 2.0 can successfully generate surface mesh for the biomolecules
consisting of more than one million atoms, such as the dengue virus 1K4R. Because the
virus’s structure is among the largest in the Protein Data Bank, together with consid-
eration of good algorithm stability, TMSmesh 2.0 is capable of handling biomolecules
with arbitrary sizes.

3.2. Manifoldness and faithfulness. We study the manifoldness of the meshes
generated by TMSmesh 2.0 and MSMS. The generated surface meshes should be
manifold. A nonmanifold mesh can cause numerical problems in BEM and FEM
simulations of biomolecules. Also, a nonmanifold surface cannot be directly used
to generate the corresponding volume mesh due to its nonmanifold errors, such as
intersections of triangles. The previous TMSmesh version has been shown to be
able to guarantee manifold mesh generation [7]. Here, we check whether the meshes
produced by TMSmesh 2.0 and MSMS are manifolds. A manifold mesh for a closed
molecular surface should satisfy the following three necessary conditions [7]:
(a) Each edge should be shared by two and only two faces of the mesh.
(b) Each vertex should have one and only one neighborhood node loop.
(c) The mesh has no intersecting face pairs.

Table 4 shows the number of nonmanifold defects and the number of intersecting
triangle pairs in the meshes produced by TMSmesh 2.0 and MSMS. Here, the num-
ber of nonmanifold defects is the number of vertices whose neighborhood does not
satisfy aforementioned necessary conditions (a) and (b) for a manifold mesh. The
meshes produced by TMSmesh 2.0 all satisfy the three necessary conditions for a
manifold mesh. However, the meshes of large biomolecules generated by MSMS are
not manifold.

It is also important to keep the features of the biomolecular surface. The meshes
generated by our method are faithful to the original surface due to the following
reasons. In the first step of our method, the Gaussian surface is approximated by
a piecewise nth order polynomial surface on a uniform grid. In step two, we do
the adaptive division and estimation process until the nth order polynomial in each
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Table 4
Number of nonmanifold errors in meshes produced by TMSmesh 2.0 and MSMS.

Molecule Natoms
Number of nonmanifold defects Number of intersecting triangle pairs

TMSmesh 2.0 MSMS TMSmesh 2.0 MSMS
FAS2 906 0 0 0 0

0 0 0 0
AChE monomer 8280 0 0 0 220

0 0 0 265
AChE tetramer 36638 0 3 0 499

0 50 0 662
30S ribosome 88431 0 2 0 1583

0 4 0 2504
70S ribosome 165337 0 11 0 5235

0 Fail 0 Fail
3K1Q 203135 0 15 0 893

F 0 15 0 1890
2X9XX 510727 0 Fail 0 Fail

0 Fail 0 Fail
1K4R 1082160 0 Fail 0 Fail

0 Fail 0 Fail

box can be approximated well enough by trilinear interpolation. In the third step, the
piecewise trilinear surface is triangulated. So the differences between the final triangle
meshes between the Gaussian surface are influenced by the approximation errors in
these three steps. And the final voxel density is also affected by the approximated error
in these three steps. When the error in the first step is large and the error in the second
step goes to zero, the voxel density can also go to infinity. So we cannot say that only
the voxel density is sufficient for capturing all features of the Gaussian surface. We
only can state that our method finds all feature lines on the approximated piecewise
trilinear surface. According to Morse theory [28], for a nondegenerate surface, the
topological change appears around the critical points. In our algorithm, we find all
the critical points and the fold curves across the critical points for the trilinear surface,
which can guarantee to characterize all the features of the trilinear surface.

3.3. Boundary element method simulation. The surface mesh generated
by TMSmesh 2.0 can be applied not only to molecular visualization and analysis of
surface area, topology, and volume in computational structure biology and structural
bioinformatics, but also to BEM simulations. We test the meshes in boundary element
calculations of the Poission–Boltzmann electrostatics. The BEM software used is a
publicly available PB solver, AFMPB [41]. As a representative molecular system, we
choose the structure AChE monomer (see Table 2). The surface mesh is generated by
TMSmesh 2.0 and contains 87044 nodes. Figure 6 shows the computed electrostatic
potentials mapped on the molecular surface. The surface potential correctly captures
the molecular charge property, which verifies the effectiveness and applicability of the
mesh generated by our method.

3.4. Convergence. Figure 7 shows the surface areas and molecular volumes as
well as the solvation energies computed from the meshes of three small molecules,
GLY, ADP, and 2LWC (see Table 2), using different mesh densities. The surface area
S is determined using the following formula:

(49) S =
1

2

m∑
i=1

‖
−−−→
Ai2A

i
1 ×
−−−→
Ai3A

i
1‖,

where m is the number of triangle elements and Ai1, Ai2, Ai3 denote the coordinates
of the three vertices for the ith triangle. The volume V enclosed by the surface mesh
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Fig. 6. Electrostatic potential surface of AChE calculated by AFMPB.

is determined using the following formula:

(50) V =
1

6

m∑
i=1

−−−→
Ai2A

i
1 ×
−−−→
Ai3A

i
1 •
−−→
OAi1,

where O is the origin point. The solvation energy is computed by a boundary element
Poisson–Boltzmann solver called AFMPB [41].

The red lines in Figure 7 are generated by TMSmesh 2.0, and the black lines are
generated by TMSmesh. The results show that the meshes produced by TMSmesh 2.0
lead to convergent and reasonable results for energy, area, and volume when the mesh
density increases. The largest disparities between the results of TMSmesh 2.0 and
TMSmesh are less than 3%. In the conditions of high vertex density, the disparities
of the results are less than 1%. The results computed by TMSmesh converge a little
more smoothly than those of TMSmesh 2.0 when the number of triangles is small.
This is because we use the trilinear polynomial instead of a high order polynomial to
approximate the Gaussian surface. Having fewer triangles leads to lower precision of
the approximation, which causes more uncertainties.

3.5. Volume mesh generation conforming surface mesh. The surface mesh
generated by TMSmesh 2.0 can be directly used to generate the corresponding surface
conforming volume mesh. And the volume mesh generated by this method can be ap-
plied to FEM simulation directly. Figure 8 shows a cross section of the volume mesh
for the ion channel, VDAC (PDB code: 2JK4). The VDAC serves an essential role in
the transport of metabolites and electrolytes between the cell matrix and mitochon-
dria [2]. For this example, the molecular surface mesh is generated by TMSmesh 2.0,
and the corresponding volume mesh is generated by TetGen [34]. The channel pore
is clearly represented in the mesh, and the detailed topology is correctly preserved,
which is important for ion channel simulations. In addition, from the cross section we
can see that the surface mesh is dense at the rugged parts and sparse at the smooth
parts.

4. Conclusion. We have described a new algorithm in TMSmesh 2.0 for tri-
angulating the Gaussian molecular surface. In TMSmesh 2.0, an adaptive surface
partition is developed using a new method to estimate the upper and lower bounds of
the surface function in a cell. In each located cube, a trilinear polynomial is used to
approximate the Gaussian surface within controllable precision. The fold curves are
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Fig. 7. Area (left column), volume (middle column), and solvation energy (right column) for
GLY (first row), ADP (second row), and 2LWC (third row).

Fig. 8. A cross section of the volume mesh for VDAC. The surface mesh is generated by
TMSmesh 2.0, and the volume mesh is generated by TetGen.

used to divide the trilinear surface in each cube into single valued pieces to guarantee
a manifold mesh generation. Compared with the old version, TMSmesh 2.0 is more
than 30 times faster. TMSmesh 2.0 is shown to be a robust and efficient software
to mesh the Gaussian molecular surface. The meshes generated by TMSmesh 2.0
are manifold without intersections. And the mesh can be directly used in boundary
element type simulations and volume mesh generations.
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