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Abstract

®

CrossMark

Different from conventional computed tomography (CT), spectral CT using

energy-resolved photon-counting detectors is able to provide

the unprece-

dented material compositions. However accurate spectral CT needs to account
for the detector response function (DRF), which is often distorted by factors
such as pulse pileup and charge-sharing. In this work, we propose material
reconstruction methods for spectral CT with DRF. The simulation results
suggest that the proposed methods reconstructed more accurate material
compositions than the conventional method without DRF. Moreover, the
proposed linearized method with linear data fidelity from spectral resampling
had improved reconstruction quality from the nonlinear method directly based

on nonlinear data fidelity.

Keywords: computed tomography, sparsity regularization, image reconstruction

(Some figures may appear in colour only in the online journal)

1. Introduction

When the x-ray photon passes through a subject, it carries the information of a line integral of
attenuation coefficients along the photon trajectory. This so-called x-ray transform is the
forward model for x-ray computed tomography (CT), an inverse problem to reconstruct
internal mapping of attenuation coefficients where multiple source—detector pairs generate
boundary measurements from various angular views around the subject [1]. The x-ray photon
transport is essentially polyenergetic rather than monoenergetic. That is both x-ray photons
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and attenuation coefficients have the spectral dependence. Thus the ideal forward model
should be also polyenergetic. However, since the conventional CT detectors are charge-
integrating with no spectral resolution, the CT inverse problem is often based on the
monoenergetic forward model and equivalently reconstructs a spectrally-averaged attenuation
image. As a result, the imaging quality can be significantly deteriorated, the so-called beam
hardening artifact, when the imaging subject contains the material for which the modeling
error using monoenergetic forward model is significant, such as the metal implant or the bony
structure of a patient [2]. This can be addressed by the recent development in energy-resolved
photon-counting detector. Equipped with the photon-counting detector, spectral CT provides
the unprecedented possibility to simultaneously reconstruct a series of spectral images [3—10].

Spectral CT allows the use of polyenergetic forward model and therefore its image
reconstruction should be more accurate than the conventional CT. More importantly, it
potentially meets the clinical and industrial needs of energy-resolved CT images or parti-
cularly material compositions, such as spectral breast CT [11-13] and K-edge imaging
[14, 15]. In terms of reconstruction algorithm for spectral CT, the material compositions can
be reconstructed with two different methodologies: a two-step procedure with first the
reconstruction of spectral images and then material decomposition from these spectral images
to material compositions [7, 12, 16-22] or alternatively first material-specific sinogram
decomposition and then material reconstruction [15, 23-25]; a one-step procedure that
directly reconstructs the material compositions by incorporating the material-image model
into the reconstruction [7, 26]. Ideally the latter is preferred for two reasons: first the direct
material reconstruction can fully utilize the structural similarity among materials; second it
avoids to reconstruct an overdetermined system of images for material decomposition since
the number of energy bins, correspondingly the number of spectral images, is often more than
the number of materials to be reconstructed. Various sparsity-based reconstruction methods
have been developed with the energy-by-energy reconstruction such as dictionary learning
[16], tight frame [12, 19] and bilateral filtration [20], and the joint reconstruction to utilize the
structural similarity in the spectral dimension such as total variation (TV) [22], nonlocal TV
[27], patch-based low-rank model [21], rank-and-sparsity decomposition model [7] and tensor
rank-and-sparsity decomposition model [18].

However, without considering the detector response function (DRF), the reconstruction
quality of spectral CT can be significantly reduced, particularly for the photon-counting
detector with high count rate and high spatial resolution [28, 29]. The DRF refers to the
recorded spectral distribution for a monoenergetic incident beam at the detector [15]. Ideally
the DRF should be a Gaussian distribution centered at the incident energy with a small
standard deviation. Practically the DRF is distorted by factors such as pulse pileup and
charge-sharing, and thus needs to be experimentally calibrated [15, 30, 31]. The methods to
deal with the data distortion can be mostly classified into two categories: data correction and
data compensation [32]. The key idea for data correction methods is to recover the data from
the distortion, which can be used in turn for reconstruction [33-35]. However, the data
correction strategy suffers from the fundamental ill-posedness in practice: the number of
energy intervals for measurements is much smaller than the number of energy intervals in
order for accurately discretizing the DRF. In contrast, the data compensation directly
reconstructs spectral images from distorted data using DRF [36-39]. In this work, we con-
sider DRF-based material reconstruction, i.e., the direct reconstruction of material composi-
tions instead of first reconstructing spectral images and then material compositions, as the
image-to-material decomposition problem can be overdetermined and the separate image
reconstruction can have degraded reconstruction quality.
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Figure 1. Left: the incident and detected spectrum with 65 keV tube voltage; right:
material-attenuation function (log scale).

2. Method

2.1. Detector response function

For the purpose of accurate spectral CT, we consider the DRF to account for the detector
response distortion due to factors such as pulse pileup and charge-sharing. Since the analytic
determination of DREF is generally not available due to various complex physical processes, it
is often estimated experimentally using monoenergetic photon spectra, such as synchrotron
sources or radioactive isotopes [15, 30] or fluorescent characteristic emission [31]. Comparing
with x-ray fluorescence, synchrotron sources may not be practically available and radioactive
isotopes can be time-consuming or dangerous. Thus we adopt the DRF calibrated for a Silicon
strip photon-counting detector using x-ray fluorescence. Here the Silicon detector is con-
sidered for its high spatial resolution and photon-counting rate. Note that although this
specific DRF will be used throughout this work, the proposed method is generally applicable
to other DRFs as well.
In this work, we adopt the following DRF calibrated using x-ray fluorescence [31]

D(E', E)

c(E), forE/2 < E' < E — 30, )
=9 _a® _(E'—E)P 2¢3(E) f“ (_(E’—E)Z) ' / _

Toro® exp( 0@ ) + o ® J exp 20 @) dE’, for E' > E — 30.

In (1), E denotes the incident photon energy at the detector, while E’ is the received photon
energy by the detector. Here the DRF is determined by four parameters that are
experimentally calibrated: the standard deviation of the primary Gaussian peak o (E); three
fitting parameters ¢ (E), ¢ (E) and c3(E) that are related to the fitted charge-sharing fractions
[31]. This DRF models the energy response over the entire dynamic range and is reasonably
accurate through experimental calibrations, where the energy dependence of the energy
resolutions is characterized by the second-order polynomial and the least-square fitting is
utilized for the charge-sharing fraction to account for the nonlinearity. For example, the fitted
incident and detected spectrum with 65keV tube voltage is plotted in the left image of
figure 1.
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2.2. Forward model

In this section, we give the polyenergetic x-ray forward model with DRF. For the dis-
cretization purpose, let us consider an incident spectrum s(E) that consists of N, intervals, i.e.,
{AE,, n=1,---,N,} with AE, as the length of the nth energy interval, and a set of poly-
energetic measurement {Y,,, i = 1,---,N;, m = 1,---,M,}, where M, is the number of ener-
gies at the detector, NV, the number of projection views, N, the number of detectors per view,
and N; = Ny - N,. Let M = N, - M, be the total number of spectral data available for image
reconstruction, AE, the length of the mth energy response interval at the detector, and L, the
path of line integral for Y;,. Here we assume the spectral measurement Y;,, follows Poisson
statistics with the expectation Y;* . With the above DRF (1) taken into account, the expectation
Y;¥ obeys the following forward model

Yo = LE dE’ZfAE D(E', E)S(E)e*fL,”“’E)"xdE, 2

Clearly many energy intervals (i.e., {AE,, n = 1,---,N,}) are needed for accurate dis-
cretization of the forward model (2), which implies the necessity of reconstructing a fair
number of u (x, E), i.e., N, spectral images. However, the goal of spectral CT is to reconstruct
the material compositions. To avoid such a redundant step of reconstructing an over-
determined system of u(x, E), we utilize the linear dependence of u(x, £) on material
compositions Z to directly reconstruct Z, i.e.,

N,

u(x, E) = ) Zi(x)Bi (E). 3)
k=1

Here N, is the number of basis materials, Z;(x) is the material composition of the kth basis

material at the spatial location x, and By(E) is the attenuation coefficient of the kth basis

material at the energy E. Note that Z;(x) is spectrally independent, while Bi(E) is spatially

independent. As an example, the material-attenuation function B(E) for several materials is

plotted in the right image of figure 1.

Then let us consider the spatial discretization of (2) on a piecewise-constant spatial grid
{x;,j = 1,---,N;}. Let A be the system matrix for discretized x-ray transform with the matrix
element A;;, e.g., the length of the ray L; overlapping with the grid x;. Then our forward model
with DRF for the direct reconstruction of material compositions is

* / / *Zinj(Z Z/kBk(E))
= > X , DE. BSE . dE, @)

where Zj is the kth material composition at the grid x;.
Next we introduce the effective attenuation coefficient By, of the kth basis material for the
energy interval AE, with respect to the incident spectrum, i.e.,

lejjl = 267 ZjAfj(szjkBkrz)an, (5)
with

Ry = fA A L , DE B)S(E)E. 6)

m

Here (5) is justified by the mean value theorem for definite integrals, thanks to the continuity
of B(E) with respect to E.
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In the matrix notation, (5) is
Y* = e 4%BR. @)

In (7), A € RY*M jg the system matrix, Z € R¥*™ the material composition, B € R¥*N the
material-attenuation matrix, R € R¥**™. the energy response matrix, and Y* € RM*M. the
spectral measurement. Note that we unfold Y and Z to column vectors as needed in the
following.

Finally, our polyenergetic x-ray forward model with DRF for given spectral CT data Y
obeying the Poisson distribution is based on the following maximum likelihood function

Yo )lm
p¥iz) = [ T v, @®)
; Y,,!
im im
and particularly its logarithmic version
L(Z) = —In(p(Y|2))
= — Y (YuIn([e *?2R];,) — [e *72R];n), ®

where [-];, denotes the matrix element and In(Y;,!) is ignored since it does not affect the
optimization.

2.3. Material reconstruction with nonlinear data fidelity

We first consider the material reconstruction with nonlinear data fidelity (9), i.e.,
Z = argmin L(Z) + \VZ|, (10)
z

where we use the isotropic TV term [40] for image regularization with a nonnegative
regularization parameter ), e.g., 2D isotropic TV term

IVZl, = (0:2)* + (0,2)>. (11)

Although the main purpose of this paper is to study material reconstruction for spectral CT
with DRF rather than the sparsity regularization, other choices of sparsity transform may
improve the result, such as tensor framelet as a generalized isotropic TV norm [12, 19, 41-43]
or low-rank models [7, 18, 21, 44, 45].

Note that the minimization problem is convex since both |VZ|; and nonlinear data fidelity
term are convex. The convexity of nonlinear data fidelity (9) essentially follows from the
convexity of Poisson distribution [46]. It can also be directly verified as shown in the
appendix.

2.4. Material reconstruction with linear data fidelity

Despite the convexity of nonlinear data fidelity based material reconstruction (10), its
reconstruction quality may suffer from the nonlinearity. Alternatively we consider the fol-
lowing linear data fidelity based material reconstruction. Here the essential idea is to colla-
boratively resample incident energy intervals and detected energy intervals so that
R € RN*M. g invertible with optimized condition number. Thus N, = M,.

Note that there are two spectral discretizations: one is with respect to spectral data, i.e.,
the number of rows of R indexed by m in (2); the other is with respect to DREF, i.e., the
number of columns of R indexed by # in (2). Here n needs to be large enough in order to
accurately represent DRF, assuming equal spectral partitions. Therefore,  is often larger than
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m, and thus R is non-invertible. In the following, we shall optimize the spectral partitions so
that R can be resampled as an invertible matrix without losing its accuracy for represent-
ing DRF.

A heuristically robust method is to first group the incident energy intervals AE, using S
(E) to achieve the equal weighting, i.e.,

1
fAE! S(E)dE = HZLE s(E)dE. (12)

N

and then group the detected energy intervals AE,, using D(E’, E)S(E) to also achieve the
equal weighting, i.e.,

/ / _ L / /
LE; dE %:LE”D(E . E)s(E)dE = Mez,,,:fAE,; dE me; D(E', E)s(E)dE.  (13)

In this work, we adopt the heuristic method (12) and (13) and it works well with the
aforementioned DRF (1). Note that R is now invertible after resampling, while it is not
invertible originally in (7). Thus instead of the previous nonlinear data fidelity based material
reconstruction (10), we have the following linear data fidelity based material reconstruction
from (7)

Z* = arg min ||[AZB — P|% + NVZ|, (14)
z

where P = —In(YR™!) € RM>*M. and ||-||r is matrix Frobenius norm.

2.5. Material-attenuation matrix

Here we consider how to determine the material-attenuation matrix By, in (5).
Assuming Z is known for the calibration purpose, we can compute B by solving the
following overdetermined nonlinear system (15)

e AR =Y. (15)

Alternatively, without assuming Z is known, we rewrite (5) as

f dE'S" f D(E', E)S(E)e 24 (S, 4:B:8) g
AE/, —~JAE,

(16)
= Y e~ XiAu(ZBu) fA dE’ fA D(E', E)S(E)dE.
n E}‘; EVI

Now considering the ray passing through the center of a unit circular/spherical domain of the
kth material only, (16) is reduced to the following overdetermined nonlinear system

fAE’

m

=S e B f dE’ f D(E', E)S(E)dE.
- AE/! AE,

m

dE' Y f D(E', E)S(E)e B-EdE
n AE,
)

On the other hand, when using the linearized data fidelity model (14), when Z is known,
similar to (15), we can simply solve the following overdetermined linear system (18)

AZB = P. (18)
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When Z is unknown,similar to (17), we can solve the following full-rank linear system (19)
By, = —[In(Y*R™D)],. (19)
k M, i K — —B(E
where Y* € R¥ with [Y*],, = fAE, dE’ Z"fAEnD(E/’ E)S(E)e B:®(E.

m

In this work, given the material-attenuation function B(E) (e.g., the right image of
figure 1), the material-attenuation matrix B is computed by (17) or (19).

2.6. Solution algorithm

The solution algorithm for sparsity-based reconstruction problems (10) and (14) can be based
on alternating direction method of multipliers [47] or split Bregman method [48]. Here we
give the details for solving (10) and (14).

In order to solve the L1-type problems (10) and (14) with non-differentiable L.1 norm, we
introduce a dummy variable d = VZ to decouple the sparsity regularization from the data
fidelity, i.e.,

minL(Z) + Ne|, st ¢ = VZ (20)
(Z,¢)

Then the augmented Lagrangian of (20) is
J(Z, ¢, b) = L(Z) + £|VZ — ¢ + b5 + Alel. 1)

To obtain saddle points of the augmented Lagrangian (21) based on ADMM is to
iteratively solve

Z1 = arg min J (Z, c*, b¥),

z
ck+1 = arg min J(ZF ¢, bb), 22)
pr+l = pk L Zk+1 okl

Note that the solution algorithm for either nonlinear or linear data fidelity is based on the
ADMM loop (22). While the sparsity subproblem (c-subproblem) is the same, the data fidelity
subproblem (Z-subproblem) is different. Next we provide the solution algorithm for the Z-
subproblem in (22) with nonlinear data fidelity (10) or linear data fidelity (14).

* For nonlinear data fidelity (10), we apply the nonlinear conjugate gradient method to
generate the sequence Z&4, ¢ > 1 with an initial guess Z* as Z*9, i.e.

{Zk,q — 7ka 1 a4, @3)

ditl = —gatl 1 34944,

where the positive step size af is obtained by a line search and g7*! is

g4t = VL(ZM) + pVT(VZ — & + bY) 24

with VL (Z%%) computed using (31) and the update parameter 3¢ is given by
(g1t V2J (Z84, ¢k, bk)ad

T @YV (ZR, ok, bRyae

where V2J (Z%4, ¢k, b*) is the Hessian matrix given by

V2 (ZF4, ¢k, bF) = V2L(Z%9) + pV'V (26)

651

(25)

7
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with V2L (Z5%) computed using (32). Last, we update Z**! using the final inner-loop
solution Z*-4.

e For linear data fidelity (14), the optimal condition for the first subproblem in (22)
provides

AT(AZB — P)B" + pV"(VZ — ¢k + b¥) = 0. 27)

The equation (27) is a linear system that can be efficiently solved by standard conjugate
gradient method (see [49] for example).

The vector d**! in the second subproblem in (22) can be analytically solved by applying
the following isotropic soft-shrinkage formula pointwisely

k+1 (‘3,[Zk+bf . k kN2 k ky2 A
o7 J@.Z5+ b1 + 0,25+ bl max(\/(a"z T G274 by)” = 0. 0). (28)

CkJrl _ 04‘.Zk+bb‘],(
Y J@ZF+ bE) + (0,24 + b))

max (@2 + BEY + @25 + b))~ 2. 0).

For the convenience of implementation, the solution algorithm for nonlinear data fidelity
(10) or linear data fidelity (14) is summarized as follows.

Algorithm 1. Material reconstruction with nonlinear data fidelity.

7Z°=0,k=0
while |ZX+1 — ZK|, > 6, do
780 = 7, g0 = VL(ZK0) + pVT(VZH0 — k4 %), d = —g% g =0
while||g?]l, > 6, do
a? by line search
Zka = Zka 4+ qiqdd
g1+ = VL(Zk) + pVT (VZM1 — ck + b
3o = T L) + T

@9 (V2L(ZR4) + pVTV)de
ditl = — g+l + pBadq

q=q+1
end while
Zk+l — Zk,q
0. Z + bk A

Cf“ B J@ z"+;k)2 ++<a Z5 + b2 - max (\/(6ka T b)f)z T (QVZ" T bf)z s 0)

kt1 0,2 bk ( k1 k2 ko pk2 A )

= - ma 0, Z b 0,7 bX¥? — 2,0
© JOZ + bV + 9,2k + b * ‘/( R R

b = b+ (0,24 — e
b)lerl — b\{( + (a‘zk+l _ c}{<+1)
k=k+ 1

end while

Algorithm 2. Material reconstruction algorithm with linear data fidelity.

Z0=0,k=0
WhileHZKJrl — ZK||2 > 6 do
Zk0 — Zk, gO — ATW(AZk’OB _ P)BT + va(vzk,O — ck +fk), 4% = _gO’ s0 = (gO)TgO’ q= 0
while [[g7][, > 6,,do
HY = ATWAZMBB" + pV'VZk4
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Figure 2. The simulation phantom.

(Continued.)

al = 5

(d9 HY

Zka = zka 4 44
gq+l — gk + oaH
skt :q(}g]qul)quJrl
s

B4 =
59
4t = _gq+l + Bqdq
end while
Zk+1 — qufl
0.7k + bk ¢ A
C.Fl = [(0xZF + bEY? + (0yZF + bF)? . max(\/(OXZk * bf)z - (aka i b;)z o 0)
y O x pd ¥y
. 0,7k + b ( ko pky2 ko pky — 2 )
) = - max a‘(Z b 0,z by -0
R e J@OZF + b + 9,28+ blP =2

b){»’+l — b){» + (axszrl _ C){»’+l)

byt = by + (0,2 — cf T

k=k+1 ’
end while

3. Results

Simulations were performed at tube voltage of 65 kVp. The mean glandular dose was esti-
mated to be approximately 2 mGy for a 10 cm breast with 40% density. A 10 cm PMMA
phantom (figure 2) which contains both iodine and calcium of various concentrations (table 1)
was used. The simulation environment was MATLAB R2013b using NVIDIA Tesla K80
GPU. The x-ray transform and its adjoint (computationally dominant components) were
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Table 1. The concentration and size of phantom objects.

Object Material Radius  Concentration

1 Adipose 48 mm

2 Iodine 8 mm 16 mgml~'

3,10 Iodine 8 mm 8mgml

4 Iodine 8 mm 4mgml™!

5,11  Todine 8 mm 2mgml™’

6 Calcium 8§ mm 400 mg ml~"
7,10  Calcium 8mm 200 mgml ™’

8 Calcium 8§ mm 100 mg ml !

9,11 Calcium 8 mm 50 mg ml ™"

12 Calcium 4 mm 400 mg ml™!
13 Calcium  2mm 400 mg ml~"
14 Calcium 0.6mm 400 mgml™’

Table 2. Energy bins(AE,, = (E,,_1, E,.), AE,, = (E)_1, EL)).
m 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
E, 1 22 25 27 29 31 33 35 37 39 42 45 47 51 55 65
E/ 1 20 23 25 27 29 31 33 35 37 39 42 44 39 48 52

computed on-the-fly in parallel on GPU [50], while the rest was computed on CPU. The total
computational time was less than twenty minutes for each nonlinear data fidelity based
material reconstruction and less than ten minutes for each linear data fidelity based material
reconstruction.

To mimic the generation of projection data in practice, we obtained 66 measurements
linearly with respect to the energy with 1keV gap, i.e.,

65
Y = > e AZBiR (n, m"), for m' = 1,---,65, (29)

n=1

where AZB was computed with 600 views and 768 detectors per view and with total exposure
of 1200mR for each energy scan.

Then, we divided the energy 1 < E < 65 into fifteen energy groups (table 2).

Then we added the Poisson noise to the measurements from each energy bin, i.e.,

Y, = Possionrnd[ > Ym/], for m=1,---,15, (30)
m'€AE,),

where Possionrnd ()\) returns random numbers generated by the Poisson distribution with the
parameter \.
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Figure 3. Simulation results. (a) standard material reconstruction method without DRF;
(b) the proposed method with DRF and nonlinear data fidelity; (c) the proposed method
with DRF and linear data fidelity. (1) adipose; (2) iodine; (3) calcium.

To compare with the proposed material reconstruction methods with DRF (10) and (14),
we considered standard material reconstruction method without DRF [27], which has the
same formulation as (9) except that the DRF D (E’, E) does not appear in the data fidelity
term (2) and can be solved similarly by the ADMM algorithm (22) with a distinct data
fidelity step.

The reconstructed material composition images with simulated data are shown in
figure 3. Our proposed material reconstruction methods with DRF (10) and (14) were able to
accurately reconstruct the phantom material compositions into adipose, iodine and calcium
basis while the standard method failed to do so. Moreover, the reconstruction quality with
linear data fidelity (14) is better than that with nonlinear data fidelity (10). Note that the
problem under consideration is nonlinear due to DRF. Since the problem is nonlinear,
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Figure 4. Left: material concentration of iodine (object 2-5); right: material
concentration of calcium (object 6-9).

although the nonlinear data fidelity based method here did not achieve satisfactory recon-
struction quality, better solution algorithm may be available.

The mean material concentration is plotted in figure 4, which again shows that the
proposed methods with DRF provided accurate material compositions.

4. Conclusion
We have proposed material reconstruction methods for spectral CT with DRF, which pro-
vided more accurate material compositions than the standard methods without DRF. More-

over, the proposed method with linear data fidelity had improved reconstruction quality from
the proposed method with nonlinear data fidelity.
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Appendix
Lemma 1. The nonlinear data fidelity 1(Z) (9) is a convex function.

Proof 1. let us first consider the first-order gradient of L(Z) (9) with respect to Zj is

ILZ) 3 O (L, e S TR, ) o3, e TR, )
OZ//k/ i,m {)Zj,k, 02“., ’

Ay S e DAi(SZinb) g, R,,, SN A 7B
j Zn S g SAy Y T At R,
e 2k ZikBn) R

€2y

= zim Yo
,

i,m n
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Then we consider the second-order gradient of L(Z) (9), i.e.,

oly A She 345 (S 2k B/"”)Bkrnk,m,
im
Zn e Zj/\ij (Zk Zjk Bk")R,, )

~3 4(3, ZiBu
vLE) g " ] - Ea(Ai, S e LA ) By, R,
ZydZmy Zyyr

i,m i,m 8Zj”k"

—Aj Ay (Zn e D Ni(SkZikBn) B, B R )(Zn e S (Sk i), )
= D Y
i,m

s

2
(Zn e Zj Alj (Zk Z/k Bkn)Rmn )
(Aij’ (Zn e ZjAzj(Zk Z,'kBkn)Bk,n an)(_Aij” Z” e Zin/'(zk ijHkn)Bk,,anm)
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Thus,
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Since the Hessian matrix (32) is positive semidefinite for Z € R¥*¥ [(Z) is convex.
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