
Chapter 4

Spectral Methods for Second-Order Two-Point
Boundary Value Problems

We consider in this chapter spectral algorithms for solving the two-point boundary

value problem:

−εU ��+ p(x)U �+ q(x)U = F, in I := (−1,1), (4.1)

(where ε > 0) with the general boundary conditions

a−U(−1)+ b−U �(−1) = c−, a+U(1)+b+U
�(1) = c+, (4.2)

which include in particular the Dirichlet boundary conditions (a± = 1 and b± = 0),
Neumann boundary conditions (a± = 0 and b± =±1), and Robin (or mixed) bound-
ary conditions (a− = b+ = 0 or a+ = b− = 0). Whenever possible, we shall give a
uniform treatment for all these boundary conditions. Without loss of generality, we

assume that:

(i) a± ≥ 0;
(ii) a2−+ b2− �= 0, a−b− ≤ 0; a2++ b2+ �= 0, a+b+ ≥ 0;
(iii) q(x)− p�(x)/2≥ 0, ∀x ∈ I;

(iv) p(1)> 0 if b+ �= 0; p(−1)< 0 if b− �= 0.

(4.3)

The above conditions are necessary for the well-posedness of (4.1)–(4.2).

Let us first reduce the problem (4.1)–(4.2) to a problem with homogeneous

boundary conditions.

• Case I. a± = 0 and b± �= 0
We set ũ = βx2+ γx, where β and γ are uniquely determined by asking ũ to

satisfy (4.2), namely,

−2b−β + b−γ = c−,

2b+β + b+γ = c+.
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• Case II. a2−+ a2+ �= 0
We set ũ= βx+ γ , where β and γ again can be uniquely determined by requiring
ũ to satisfy (4.2). Indeed, we have

(−a−+ b−)β + a−γ = c−,

(a++ b+)β + a+γ = c+.

The determinant of the coefficient matrix is

DET=−2a−a++ a+b−− a−b+.

The assumption (4.3) implies that b− ≤ 0 and b+ ≥ 0, so we have DET< 0.

Now, we set

u=U − ũ, f = F− (−ε ũ��+ p(x)ũ�+ q(x)ũ).

Then u satisfies the following equation

−ε u��+ p(x)u�+ q(x)u= f , in I = (−1,1), (4.4)

with the homogeneous boundary condition

a−u(−1)+ b−u�(−1) = 0, a+u(1)+ b+u
�(1) = 0. (4.5)

Let us denote

H1
� (I) =

�

u ∈ H1(I) : u(±1) = 0 if b± = 0
�

, (4.6)

and

h− =

�

0, if a−b− = 0,
a−
b− , if a−b− �= 0, h+ =

�

0, if a+b+ = 0,
a+
b+
, if a+b+ �= 0. (4.7)

Then, a standard weak formulation for (4.4)-(4.5) is:

�

Find u ∈ H1
� (I) such that

B(u,v) = ( f ,v), ∀v ∈ H1
� (I),

(4.8)

where

B(u,v) := ε (u�,v�)+ ε h+u(1)v(1)− ε h−u(−1)v(−1)
+ (p(x)u�,v)+ (q(x)u,v).

(4.9)

It is easy to see that the bilinear form B(·, ·) defined above is continuous and co-
ercive in H1

� (I)×H1
� (I) under the conditions (4.3) (see Problem 4.1). One derives

immediately from the Lax-Milgram lemma (see Appendix B) that the problem (4.8)

admits a unique solution. Note that only the Dirichlet boundary condition(s) is en-

forced exactly in H1
� (I), but all other boundary conditions are treated naturally.
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The rest of this chapter is organized as follows. In the first section, we con-

sider the problem (4.1)–(4.2) with constant coefficients and present severalGalerkin

schemes based on weak formulations using continuous inner products. In the sec-

ond section, we consider the Galerkin method with numerical integration which is

based on the weak formulation (4.8) using discrete inner products. In the third sec-

tion, we present the collocation methods which look for approximate solutions to

satisfy (4.2) and (4.1) exactly at a set of collocation points. In Sect. 4.4, we intro-

duce some preconditioned iterative methods for solving the linear systems arising

from spectral approximations of two-point boundary value problems. In Sect. 4.5,

we provide error analysis for two model cases and the one-dimensional Helmholtz

equation.

For a thorough discussion on other numerical methods for more general two-

point boundary value problems, we refer to Ascher et al. (1995).

4.1 Galerkin Methods

To simplify the presentation, we shall restrict ourselves in this section to a special

case of (4.4), namely,

− u��+αu= f , in I = (−1,1),
a−u(−1)+ b−u�(−1) = 0, a+u(1)+ b+u

�(1) = 0,
(4.10)

where α ≥ 0 is a given constant. The general case (4.1)-(4.2) will be treated in

Sects. 4.2 and 4.3.

As a special case of (4.8), the standard weak formulation for (4.10) is











Find u ∈H1
� (I) such that

(u�,v�)+ h+u(1)v(1)−h−u(−1)v(−1)
+α(u,v) = ( f ,v), ∀v ∈ H1

� (I).

(4.11)

4.1.1 Weighted Galerkin Formulation

We consider the approximation of (4.10) by using a weighted Galerkin method in

the polynomial space

X̃N =
�

φ ∈ PN : φ(±1) = 0 if b± = 0
�

. (4.12)
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A straightforward extension of (4.11) using the weighted inner product leads to

the following formulation:


















Find uN ∈ X̃N such that

(u�N ,ω
−1(vNω)�)ω +ω(1)h+uN(1)vN(1)

−ω(−1)h−uN(−1)vN(−1)+α(uN ,vN)ω

= ( f ,vN)ω , ∀vN ∈ X̃N .

(4.13)

However, there are several problems associated with this formulation. First, the

above formulation does not make sense if limx→±1ω(x) does not exist, except in
the case of Dirichlet boundary conditions. Hence, it can not be used for the Jacobi

weight function with α < 0 or β < 0, including in particular the Chebyshev weight
(cf. Canuto and Quarteroni (1994) and pp. 194–196 in Funaro (1992) for some spe-

cial weighted weak formulations of (4.10)). Secondly, as it will become clear later

in this section, even in the case ω(x) ≡ 1, this formulation will not lead to a sparse
or special linear system that can be inverted efficiently. The cure is to use a new

weighted weak formulation in which the general boundary conditions in (4.10) are

enforced exactly rather than approximately in (4.13).

Let us denote

XN =
�

v ∈ PN : a±v(±1)+ b±v�(±1) = 0
�

. (4.14)

The new weighted Galerkin method for (4.10) is
�

Find uN ∈ XN such that

−(u��N ,vN)ω +α(uN ,vN)ω = ( fN ,vN)ω , ∀ vN ∈ XN ,
(4.15)

where fN is an appropriate polynomial approximation of f , which is usually taken to

be the interpolation of f associated with the Gauss-type quadrature points. The main

difference with (4.13) is that the Robin boundary conditions are enforced exactly

here. We shall see below that by choosing appropriate basis functions of XN , we

shall be able to reduce (4.15) to a linear system with a sparse or special coefficient

matrix that can be solved efficiently.

Given a set of basis functions {φ j}N−2j=0 of XN , we denote

fk =
�

I
fN φkωdx, f= ( f0, f1, . . . , fN−2)

T ;

uN =
N−2
∑
j=0

û jφ j, u= (û0, û1, . . . , ûN−2)
T ;

sk j =−
�

I
φ ��
j φkωdx, mk j =

�

I
φ j φkωdx,

(4.16)

and

S=
�

sk j
�

0≤k, j≤N−2, M =
�

mk j

�

0≤k, j≤N−2.

Taking vN = φk, 0 ≤ k ≤ N − 2 in (4.15), we find that (4.15) is equivalent to the
following linear system:

�

S+αM
�

u= f. (4.17)

Below, we determine the entries of S and M for two special cases: ω = 1,(1−
x2)−1/2.
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4.1.2 Legendre-Galerkin Method

We set ω(x)≡ 1 and fN = IN f (the Legendre interpolation polynomial of f relative

to the Legendre-Gauss-Lobatto points (cf. Sect. 3.3)). Then (4.15) becomes

−
�

I
u��NvN dx+α

�

I
uN vN dx=

�

I
IN f vN dx, ∀ vN ∈ XN , (4.18)

which is referred to as the Legendre-Galerkin method for (4.10).

The actual linear system for (4.18) depends on the choice of basis functions of

XN . Just as in the finite-element methods, where neighboring points are used to form

basis functions so as to minimize their interactions in the physical space, neighbor-

ing orthogonal polynomials should be used to form basis functions in a spectral-

Galerkin method so as to minimize their interactions in the frequency space. There-

fore, we look for basis functions as a compact combination of Legendre polynomials

(cf. Shen (1994)), namely,

φk(x) = Lk(x)+ akLk+1(x)+ bkLk+2(x), (4.19)

where the parameters {ak,bk} are chosen to satisfy the boundary conditions in
(4.10). Such basis functions are referred to as modal basis functions.

Lemma 4.1. For all k ≥ 0, there exists a unique set of {ak,bk} such that φk(x) =
Lk(x)+ akLk+1(x)+ bkLk+2(x) verifies the boundary conditions in (4.10).

Proof. Since Lk(±1) = (±1)k and L�k(±1) = 1
2
(±1)k−1k(k+ 1) (see Sect. 3.3), the

boundary conditions in (4.10) lead to the following system for {ak,bk}:

�

a++
b+

2
(k+1)(k+2)

�

ak+
�

a++
b+

2
(k+2)(k+3)

�

bk

=−a+− b+

2
k(k+ 1),

−
�

a−− b−
2
(k+1)(k+2)

�

ak+
�

a−− b−
2
(k+2)(k+3)

�

bk

=−a−+
b−
2

k(k+ 1).

(4.20)

The determinant of the coefficient matrix is

DETk = 2a+a−+ a−b+(k+2)2− a+b−(k+2)2

−b−b+(k+1)(k+2)2(k+3)/2.
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We then derive from (4.3) that the four terms (including the signs before them) of

DETk are all nonnegative, and at least one is positive for any k. Hence, {ak,bk} can
be uniquely determined by solving (4.20), namely,

ak =(2k+3)(a+b−+ a−b+)/DETk,

bk =
�

− 2a−a++(k+ 1)2
�

a+b−− a−b+
�

+
b−b+
2

k(k+ 1)2(k+2)
��

DETk.

(4.21)

This completes the proof. ��

Note that in particular:

• If a± = 1 and b± = 0 (Dirichlet boundary conditions), we have ak = 0 and

bk =−1.
• If a± = 0, b± = ±1 (Neumann boundary conditions), we have ak = 0 and bk =

−k(k+ 1)/((k+2)(k+ 3)).

It is obvious that {φk} are linearly independent. Therefore, by dimension argu-
ment, we have

XN = span
�

φk : k = 0,1, . . . ,N− 2
�

.

Remark 4.1. In the very special case

−uxx = f , x ∈ (−1,1); ux(±1) = 0,

with the condition
� 1
−1 f dx = 0, since the solution is only determined up to a con-

stant, we should use

XN = span
�

φk : k = 1,2, . . . ,N− 2
�

.

This remark also applies to the Chebyshev-Galerkin method presented below.

Lemma 4.2. The stiffness matrix S is a diagonal matrix with

skk =−(4k+ 6)bk, k = 0,1, . . . . (4.22)

The mass matrix M is symmetric penta-diagonal whose nonzero elements are

mjk = mk j =







































2

2k+ 1
+ a2k

2

2k+ 3
+ b2k

2

2k+ 5
, j = k,

ak
2

2k+ 3
+ ak+1bk

2

2k+ 5
, j = k+ 1,

bk
2

2k+ 5
, j = k+2.

(4.23)
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Proof. Integrating by parts and using the fact that {φk} satisfy the boundary condi-
tions (4.5), we find that

s jk =−
�

I
φ ��
k (x)φ j(x)dx

=

�

I
φ �
k(x)φ �

j(x)dx+ h+φk(1)φ j(1)− h−φk(−1)φ j(−1)

=−
�

I
φk(x)φ ��

j (x)dx= sk j ,

(4.24)

where h± are defined in (4.7). It is then obvious from (4.24) and the definition of

{φk} that S is a diagonal matrix. Thanks to (3.176c) and (3.174), we find

skk =−bk

�

I
L��k+2(x)Lk(x)dx

=−bk(k+1/2)(4k+ 6)

�

I
L2k(x)dx=−bk(4k+6).

The nonzero entries forM in (4.23) can be easily obtained by using (3.174). ��

Remark 4.2. An immediate consequence is that {φk}N−2k=0 forms an orthogonal basis

of XN with respect to the inner product −(u��N ,vN). Furthermore, an orthonormal

basis of XN with respect to this inner product is

φ̃k(x) :=
1

�

−bk(4k+6)
φk(x).

Notice that under the assumption (4.3), bk < 0 for all k.

We now provide a detailed implementation procedure. Given the values of f

at the LGL points {x j}Nj=0, we determine the values of uN (solution of (4.15)) at

{x j}Nj=0 as follows:

1. (Pre-computation) Compute the LGL points, {ak,bk} and nonzero elements of S
andM.

2. Evaluate the Legendre coefficients of IN f from { f (x j)}Nj=0 (forward Legendre
transform, see (3.193)) and evaluate f.

3. Solve u from (4.17).

4. Evaluate uN(x j) = ∑N−2
i=0 ûiφi(x j), j= 0,1, . . . ,N (backward Legendre transform,

see (3.194)).

Although the solution of the linear system (4.17) can be done in O(N) flops, the
two discrete Legendre transforms in the above procedure cost about 2N2 flops. To re-

duce the cost of the discrete transforms between the physical and frequency spaces,

a natural choice is to use Chebyshev polynomials so that the discrete Chebyshev

transforms can be accelerated by using FFT.
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4.1.3 Chebyshev-Galerkin Method

We set ω = (1− x2)−1/2 and fN = IcN f (the Chebyshev interpolation polynomial

of f relative to the Chebyshev-Gauss-Lobatto points (see Sect. 3.4)). Then, (4.15)

becomes

−
�

I
u��N vN ω dx+α

�

I
uN vN ω dx=

�

I
IcN f vNω dx, ∀vN ∈ XN , (4.25)

which is referred to as the Chebyshev-Galerkin method for (4.10).

As before, we would like to seek the basis functions of XN in the form

φk(x) = Tk(x)+ akTk+1(x)+ bkTk+2(x). (4.26)

Lemma 4.3. For all k ≥ 0, there exists a unique set of {ak,bk} such that φk(x) =
Tk(x)+ akTk+1(x)+ bkTk+2(x) satisfies the boundary conditions in (4.10).

Proof. Since Tk(±1) = (±1)k and T �
k (±1) = (±1)k−1k2, we find from (4.5) that

{ak,bk} must satisfy the system

(a++ b+(k+1)
2)ak+(a++ b+(k+2)

2)bk =−a+− b+k
2,

−(a−− b−(k+1)
2)ak+(a−− b−(k+2)

2)bk =−a−+ b−k
2,

(4.27)

whose determinant is

DETk = 2a+a−+
�

(k+1)2+(k+ 2)2
��

a−b+− a+b−
�

− 2b−b+(k+1)2(k+2)2.

As in the Legendre case, the conditions in (4.3) imply that DETk > 0. Hence,

{ak,bk} are uniquely determined by

ak =4(k+1)(a+b−+ a−b+)/DETk,

bk =
�

(−2a−a++(k2+(k+ 1)2)(a+b−− a−b+)

+ 2b−b+k
2(k+1)2

�

/DETk.

(4.28)

This ends the proof. ��

Therefore, we have from the dimension argument that

XN = span
�

φk : k = 0,1, . . . ,N− 2
�

.

One easily derives from (3.214) that the mass matrix M is a symmetric positive

definite penta-diagonal matrix whose nonzero elements are
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mjk = mk j =























π

2
(ck+ a2k + b2k), j = k,

π

2
(ak+ ak+1bk), j = k+ 1,

π

2
bk, j = k+2,

(4.29)

where c0 = 2 and ck = 1 for k ≥ 1. However, the computation of sk j is much more
involved. Below, we shall derive the explicit expression of sk j for two special cases.

Lemma 4.4. For the case a± = 1 and b± = 0 (Dirichlet boundary conditions), we

have ak = 0, bk =−1 and

sk j =











2π(k+1)(k+2), j = k,

4π(k+1), j = k+ 2,k+4,k+6, . . .,

0, j < k or j+ k odd.

(4.30)

For the case a± = 0, b+ = 1 and b− =−1 (Neumann boundary conditions), we have

ak = 0, bk =− k2

(k+2)2
and

sk j =











2π(k+1)k2/(k+2), j = k,

4π j2(k+1)/(k+ 2)2, j = k+ 2,k+4,k+6, . . .,

0, j < k or j+ k odd.

(4.31)

Proof. One observes immediately that

sk j =−
�

I
φ ��
j φkω dx= 0, for j < k.

Hence, S is an upper triangular matrix. By the odd-even parity of the Chebyshev

polynomials, we have also sk j = 0 for j+ k odd.

Thanks to (3.216b), we have

T ��
k+2(x) =

1

ck
(k+2)

�

(k+2)2− k2
�

Tk(x)

+
1

ck−2
(k+2)

�

(k+2)2− (k− 2)2
�

Tk−2(x)+ . . . .

(4.32)

We first consider the case a± = 1 and b± = 0. From (4.21), we find φk(x) =
Tk(x)−Tk+2(x). It follows immediately from (4.32) and (3.214) that

−(φ ��
k ,φk)ω = (T ��

k+2,Tk)ω =
1

ck
(k+2)

�

(k+2)2− k2
�

(Tk,Tk)ω

= 2π(k+1)(k+2).
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Setting φ ��
j (x) = ∑

j
n=0dnTn(x), by a simple computation using (4.32), we derive

dn =















− 4

c j

( j+1)( j+ 2), n= j,

− 1

cn
{( j+2)3− j3− 2n2}, n< j.

Hence for j = k+2,k+4, . . ., we find

−(φ ��
j ,φk)ω =−dk(Tk,Tk)ω+dk+2(Tk+2,Tk+2)ω = 4π(k+1).

The case with a± = 0 and b± =±1 can be treated similarly as above. ��

Similar to the Legendre-Galerkinmethod, the implementation of the Chebyshev-

Galerkin method for (4.10) involves the following steps:

1. (pre-computation) Compute {ak,bk} and nonzero elements of S andM.

2. Evaluate the Chebyshev coefficients of IcN f from { f (x j)}Nj=0 (forward Chebyshev
transform, see (3.222)) and evaluate f.

3. Solve u from (4.17).

4. Evaluate uN(x j) = ∑N−2
i=0 ûiφi(x j), j = 0,1, . . . ,N (backward Chebyshev trans-

form, see (3.223)).

Remark 4.3. Note that the forward and backward Chebyshev transforms can be

performed by using FFT in O(N log2N) operations. However, the cost of Step 3

depends on the boundary conditions in (4.5). For the special but important cases

described in the above lemma, the special structures of S would allow us to solve the

system (4.17) in O(N) operations. More precisely, in (4.30) and (4.31), the nonzero

elements of S take the form sk j = a( j)∗b(k). Hence, a special Gaussian elimination

procedure for (4.17) (cf. Shen (1995)) would only require O(N) flops instead of

O(N3) flops for a general full matrix.

Therefore, thanks to FFT, the computational complexity of Chebyshev-Galerkin

method for the above cases is O(N log2N) which is quasi-optimal (i.e., optimal up

to a logarithmic term).

Remark 4.4. In the case of Dirichlet boundary conditions, one can also use the

basis functions ψk(x) = (1−x2)Tk(x) (cf. Heinrichs (1989)), which lead to a banded

stiffness matrix.

4.1.4 Chebyshev-Legendre Galerkin Method

The main advantage of using Chebyshev polynomials is that the discrete Chebyshev

transforms can be performed in O(N log2N) operations by using FFT. However,
the Chebyshev-Galerkin method leads to non-symmetric formulations which may
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cause difficulties in analysis and implementation. On the other hand, the Legendre-

Galerkin method leads to symmetric formulation and sparse matrices for problems

with constant coefficients, but the discrete Legendre transforms are expensive (with

O(N2) operations). In order to take advantage of both the Legendre and Cheby-
shev methods (cf. Don and Gottlieb (1994)), one may use the so-called Chebyshev-

Legendre Galerkin method (cf. Shen (1996)):

−
�

I
u��N vN dx+α

�

I
uN vN dx=

�

I
IcN f vN dx, (4.33)

where IcN denotes the interpolation operator relative to the Chebyshev-Gauss-

Lobatto points. So the only difference with (4.18) is that the Chebyshev interpo-

lation operator IcN is used here to replace the Legendre interpolation operator in

(4.18). Therefore, (4.33) leads to the linear system (4.17) with u, S and M defined

in (4.16) and (4.22)-(4.23), but with f defined by

fk =

�

I
IcN f φkdx, f= ( f0, f1, . . . , fN−2)

T . (4.34)

Hence, the solution procedure of (4.33) is essentially the same as that of (4.18)

except that Chebyshev-Legendre transforms (between the value of a function at the

CGL points and the coefficients of its Legendre expansion) are needed instead of

the Legendre transforms. More precisely, given the values of f at the CGL points

{xi = cos( iπN )}0≤i≤N , we determine the values of uN (solution of (4.33)) at the CGL

points as follows:

1. (Pre-computation) Compute {ak,bk} and nonzero elements of S andM.
2. Evaluate the Legendre coefficients of IcN f from { f (xi)}Ni=0 (forward Chebyshev-
Legendre transform).

3. Evaluate f from (4.34) and solve u from (4.17).

4. Evaluate uN(x j) = ∑N−2
i=0 ûiφi(x j), j = 0,1, . . . ,N (“modified” backward

Chebyshev-Legendre transform).

The forward and (“modified”) backward Chebyshev-Legendre transforms can be

implemented efficiently. Indeed, each Chebyshev-Legendre transform can be split

into two steps:

1. The transform between its physical values at Chebyshev-Gauss-Lobatto points

and the coefficients of its Chebyshev expansion. This can be done by using FFT

in O(N log2N) operations.
2. The transform between the coefficients of the Chebyshev expansion and of the

Legendre expansion. Alpert and Rokhlin (1991) developed an O(N) algorithm
for this transform given a prescribed precision.

Therefore, the total computational cost for (4.33) is of order O(N log2N).
The algorithm in Alpert and Rokhlin (1991) is based on the fast multipole method

(cf. Greengard and Rokhlin (1987)). Hence, it is most attractive for very large N.

For small to moderate N, a simple algorithm described in Shen (1996) appears to be

more competitive.
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4.2 Galerkin Method with Numerical Integration

The Galerkin methods presented in the previous section lead to very efficient

algorithms for problems with constant coefficients. However, they are not feasi-

ble for problems with general variable coefficients for which the exact integration

is often not possible. Therefore, for problems with variable coefficients, we need to

replace the continuous inner product by a suitable discrete inner product, leading

to the so-called Galerkin method with numerical integration. More precisely, the

Legendre-Galerkin method with numerical integration for (4.8) is

�

Find uN ∈ X̃N = PN ∩H1
� (I) such that

BN(uN ,vN) = � f ,vN�N , ∀vN ∈ X̃N ,
(4.35)

where

BN(uN ,vN) := ε �u�N ,v�N�N + ε h+uN(1)vN(1)− ε h−uN(−1)vN(−1)
+ �p(x)u�N ,vN�N + �q(x)uN ,vN�N ,

with �·, ·�N being the discrete inner product relative to the Legendre-Gauss-Lobatto
quadrature.

Let
�

h j

�

be the Lagrange basis polynomials (also referred to as nodal basis)

associated with {x j}Nj=0. To fix the idea, we assume b± �= 0, so X̃N = PN and we can

write

uN(x) =
N

∑
j=0

uN(x j)h j(x). (4.36)

Plugging the above expression into (4.35) and taking vN = hk, we find that (4.35)

reduces to the linear system

Bw=W f, (4.37)

where

w=
�

uN(x0),uN(x1), . . . ,uN(xN)
�T
;

bk j = BN(h j,hk), B= (bk j)k, j=0,1,...,N ;

f=
�

f (x0), f (x1), . . . , f (xN)
�T
;

W = diag(ω0,ω1, . . . ,ωN),

(4.38)

with {ωk}Nk=0 being the weights of the Legendre-Gauss-Lobatto quadrature (see
Theorem 3.29).
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The entries bk j can be determined as follows. Let {x j}Nj=0 be arranged in ascend-
ing order1 with x0 =−1 and xN = 1. Using (3.59) and integration by parts, we have

�h�j,h�k�N = (h�j,h
�
k) =−(h��j ,hk)+ h�jhk

�

�

1

−1
=−

�

D2
�

k j
ωk+ dN jδNk − d0 jδ0k.

(4.39)

Consequently,

bk j =
�

− ε
�

D2
�

k j
+ p(xk)dk j+ q(xk)δk j

�

ωk

+ ε (dN j + h+δN j)δNk − ε (d0 j+ h−δ0 j)δ0k.
(4.40)

We can also reinterpret (4.35) as a collocation form. Observe that

�u�N ,h�k�N =−u��N(xk)ωk+ u�N(1)δNk− u�N(−1)δ0k, 0≤ k≤ N.

Then, taking vN = h j in (4.35) for j = 0,1, . . . ,N, since ω0 = ωN = 2
N(N+1)

, we find















































− ε u��N(x j)+ p(x j)u
�
N(x j)+ q(x j)uN(x j) = f (x j), 1≤ j ≤ N−1,

a−uN(−1)+ b−u
�
N(−1) =−b−

ε

2

N(N+1)
�

f (−1)− (−ε u��N(−1)+ p(−1)u�N(−1)+ q(−1)uN(−1))
�

,

a+uN(1)+ b+u
�
N(1) =

b+

ε

2

N(N+1)
�

f (1)− (−ε u��N(1)+ p(1)u�N(1)+ q(1)uN(1))
�

.

(4.41)

Remark 4.5. Note that the solution of (4.35) satisfies (4.4) exactly at the interior

collocation points {x j}N−1j=1 , but the boundary conditions (4.5) are only satisfied ap-

proximately with an error proportional to the residual of (4.4), with u replaced by

the approximate solution uN, at the boundary. Thus, (4.35) does not correspond

exactly to a collocation method, so it is sometimes referred to as a collocation

method in the weak form. However, it is clear from (4.41) that in the Dirichlet

case (i.e., b± = 0), (4.41) becomes a collocation method (see the next section). In

other words, the Galerkin method with numerical integration (4.35), in the case of

Dirichlet boundary conditions, is equivalent to the collocation method.

Remark 4.6. The matrix B in the linear system (4.37), even for the simplest dif-

ferential equation, is full and ill-conditioned, so it is in general not advisable to

solve (4.37) using a direct method for large N. Instead, an iterative method using

an appropriate preconditioner should be used, see Sect. 4.4.

1 Historically (cf. Gottlieb and Orszag (1977)), the Chebyshev-collocation points were defined as

x j = cos
jπ
N
which were in descending order. For the sake of consistency, we choose to arrange the

collocation points in ascending order in this book.
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4.3 Collocation Methods

The collocation method, or more specifically the collocation method in the strong

form, is fundamentally different from the Galerkin method, in the sense that it is not

based on a weak formulation. Instead, it looks for an approximate solution which

enforces the boundary conditions in (4.5) and collocates (4.4) at a set of interior

collocation points. On the other hand, the collocation method in the weak form

presented in the last section is based on a weak formulation in which the general

boundary conditions are treated naturally and are only satisfied asymptotically, and

the approximate solution verifies (4.4) at a set of interior collocation points.

We describe below the collocation method for the two-point boundary value

problem (4.1) with the general boundary conditions (4.2). Notice that the non-

homogeneous boundary conditions can be treated directly in a collocation method

so there is no need to “homogenize” the boundary conditions as we did previously

for the Galerkin methods.

Given any set of distinct collocation points {x j}Nj=0 on [−1,1] in ascending order
with x0 =−1 and xN = 1, the collocation method for (4.1) with (4.2) is











Find uN ∈ PN such that

− ε u��N(xi)+ p(xi)u
�
N(xi)+ q(xi)uN(xi) = F(xi), 1≤ i≤ N− 1,

a−uN(−1)+ b−u
�
N(−1) = c−, a+uN(1)+ b+u

�
N(1) = c+.

(4.42)

Let
�

h j

�

be the Lagrange basis polynomials associated with {x j}Nj=0, and let D =
�

dk j := h�j(xk)
�

k, j=0,1,...,N
.Writing wj = uN(x j) and uN(x) =∑N

j=0wjh j(x), we have

uN(xk) =
N

∑
j=0

wjh j(xk) = wk,

u�N(xk) =
N

∑
j=0

wjh
�
j(xk) =

N

∑
j=0

dk jwj

=
N−1
∑
j=1

dk jwj + dk0w0+ dkNwN ,

u��N(xk) =
N

∑
j=0

wjh
��
j (xk) =

N

∑
j=0

�

D2
�

k j
w j

=
N−1
∑
j=1

�

D2
�

k j
w j +

�

D2
�

k0
w0+

�

D2
�

kN
wN .
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Substituting the above into (4.42) leads to























N

∑
j=0

�

−ε
�

D2
�

i j
+ p(xi)di j+ q(xi)δi j

�

wj = F(xi), i= 1,2, . . . ,N− 1,

a−w0+ b−
N

∑
j=0

d0 jw j = c−, a+wN + b+

N

∑
j=0

dN jwj = c+.

(4.43)

Let us denote

ai j =−ε
�

D2
�

i j
+ p(xi)di j + q(xi)δi j, 1≤ i≤ N− 1, 0≤ j ≤ N,

a0 j = a−δ0 j+ b−d0 j, aN j = a+δN j + b+dN j , 0≤ j ≤ N,

b=
�

c−,F(x1),F(x2), . . . ,F(xN−1),c+
�T

,

w=
�

w0,w1, . . . ,wN

�T
, A= (ai j)0≤i, j≤N .

(4.44)

Then, the linear system (4.43) reduces to

Aw= b. (4.45)

Remark 4.7. Notice that the above formulation is valid for any set of collocation

points. However, the choice of collocation points is essential for the stability, con-

vergence and efficiency of the collocation method. For two-point boundary value

problems, the Gauss-Lobatto points are commonly used. Due to the global nature

of the Lagrange basis polynomials, the system matrix A in (4.45) is always full and

ill-conditioned, even for problems with constant coefficients.

Remark 4.8. For the case of homogeneous Dirichlet boundary conditions, i.e.,

u(±1) = 0, the collocation method (4.42) with {x j} being the Legendre-Gauss-

Lobatto points, as observed in Remark 4.5, is equivalent to the Galerkin method

with numerical integration (4.35).

It is interesting to note that in the case of Dirichlet boundary conditions, after

eliminating w0 and wN from (4.37) and (4.45), the reduced (N − 1)× (N − 1)
matrices B and A are related by B = WA, where W is the diagonal matrix

W = diag(ω1,ω2, . . . ,ωN−1). Furthermore, the condition number of A behaves

like O(N4) (cf. Orszag (1980)), while that of B behaves like O(N3) (cf. Bernardi
and Maday (1992a)).

Remark 4.9. If the bilinear form B(·, ·) in (4.9) is self-adjoint, then the matrix B in

(4.37) from the Galerkin method with numerical integration is symmetric. However,

the matrix A in (4.45) from the collocation method is always non-symmetric.
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4.3.1 Galerkin Reformulation

We show below that in the case of homogeneous Dirichlet boundary conditions, the

collocation method (4.42) with {x j} being the Jacobi-Gauss-Lobatto points, can be
reformulated as a Galerkin method with numerical integration.

Lemma 4.5. Let ω = (1 + x)α (1 − x)β be the Jacobi weight function with

α,β >−1, {x j}Nj=0 be the Jacobi-Gauss-Lobatto points, and �·, ·�N,ω be the discrete

inner product associated with the Jacobi-Gauss-Lobatto quadrature (cf. Theorem

3.27). Then (4.42) with b± = c± = 0 is equivalent to











Find uN ∈ P0N = PN ∩H1
0 (I) such that

ε �u�N ,ω−1(vNω)��N,ω + �p(x)u�N ,vN�N,ω
+ �q(x)uN ,vN�N,ω = �F,vN�N,ω , ∀vN ∈ P0N .

(4.46)

Proof. By a direct computation, we find that

ω−1(vNω)� = ω−1(v�Nω + vNω �) = v�N −
�

α(1+ x)−β (1− x)
� vN

1− x2
.

Since vN(±1) = 0 and vN ∈ PN , we derive that ω−1(vNω)� ∈ PN−1. Therefore,
thanks to (3.59), we find that

�u�N ,ω−1(vNω)��N,ω = (u�N ,ω
−1(vNω)�)ω

=−(u��N ,vN)ω =−�u��N ,vN�N,ω .
(4.47)

Therefore, the formulation (4.46) is equivalent to

�−εu��N + p(x)u�N + q(x)uN ,vN�N,ω = �F,vN�N,ω , ∀vN ∈ P0N . (4.48)

Notice that

P0N = span
�

h1(x),h2(x), . . . ,hN−1(x)
�

,

Taking vN = hi for 1≤ i≤ N−1 in (4.48) leads to (4.42) with b± = c± = 0.
On the other hand, taking the discrete inner product of (4.42) with hk(x) for

1 ≤ k ≤ N − 1, we find that the solution uN of (4.42) with b± = c± = 0 verifies

(4.46). ��

This lemma indicates that for (4.4) with Dirichlet boundary conditions, the

Jacobi-collocation method, including the Legendre- and Chebyshev-collocation

methods, can be reformulated as a Galerkin method with numerical integration.

An obvious advantage of this reformulation is that error estimates for the Jacobi-

collocation method can be carried out in the same way as the Jacobi-Galerkin

method.
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4.3.2 Petrov-Galerkin Reformulation

Except for the Dirichlet case, the collocation method (4.42) can not be reformulated

as a Galerkin method with numerical integration. However, it can be reformulated as

a Petrov-Galerkin method for which the trial functions and test functions are taken

from different spaces.

Lemma 4.6. Let ω = (1 + x)α (1 − x)β be the Jacobi weight function with

α,β >−1, {x j}Nj=0 be the set of Jacobi-Gauss-Lobatto points, and �·, ·�N,ω be

the discrete inner product associated with the Jacobi-Gauss-Lobatto quadrature

(cf. Theorem 3.27). Then, (4.42) with c± = 0 is equivalent to the following Petrov-

Galerkin method:















Find uN ∈ XN such that

ε
�

u�N ,ω
−1(vNω)�

�

N,ω
+
�

p(x)u�N ,vN
�

N,ω

+
�

q(x)uN ,vN
�

N,ω
=
�

F,vN
�

N,ω
, ∀vN ∈ P0N ,

(4.49)

where XN is defined in (4.14).

Proof. By definition, the solution uN of (4.42) with c± = 0 is in XN . The property

(4.47) still holds for uN ∈ XN and vN ∈ P0N , so does (4.48). Taking the discrete inner
product of (4.42) with hk(x) for k = 1,2, . . . ,N− 1, we find that the solution uN of

(4.42) with c± = 0 verifies (4.49). Conversely, taking vN = hi for 1 ≤ i ≤ N− 1 in
(4.48) gives (4.42) with c± = 0. ��

This reformulation will allow us to obtain error estimates for the collocation method

(4.42) by using the standard techniques developed for Petrov-Galerkin methods.

4.4 Preconditioned Iterative Methods

As noted in the previous two sections, there is no suitable direct spectral solver for

equations with general variable coefficients. Hence, an appropriate iterative method

should be used. Since the bilinear form associated with (4.4)–(4.5) is generally not

symmetric nor necessarily positive definite, it is in general not advisable to apply an

iterative method directly, unless the equation is diffusion dominant, i.e., ε is suffi-
ciently large, when compared with p(x). Instead, it is preferable to transform (4.4)-
(4.5) into an equivalent equation whose bilinear form becomes positive definite.

Indeed, multiplying (4.4) by the function

a(x) = exp

�

− 1
ε

�

p(x)dx

�
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and using −ε a�(x) = a(x)p(x), we find that (4.4) is equivalent to

−(a(x)u�(x))�+ b(x)u(x) = g(x), (4.50)

where b(x) = a(x)q(x)/ε and g(x) = a(x) f (x)/ε . Hereafter, we assume that there
are three constants c1, c2 and c3 such that

0< c1 ≤ a(x)≤ c2, 0≤ b(x)≤ c3, ∀x ∈ [−1,1]. (4.51)

We denote

B(u,v) :=

� 1

−1
a(x)u�v�dx+ a(1)h+u(1)v(1)−a(−1)h−u(−1)v(−1)

+

� 1

−1
b(x)uvdx, ∀u,v ∈ H1

� (I),

(4.52)

where H1
� (I) and h± are defined in (4.6) and (4.7), respectively. The weak formula-

tion associated with (4.50) with general boundary conditions (4.5) is

�

Find u ∈ H1
� (I) such that

B(u,v) = (g,v), ∀v ∈ H1
� (I).

(4.53)

Hence, under the conditions (4.3) and (4.51), we find that B(u,v) is self-adjoint,
continuous and coercive in H1

� (I) so that the problem (4.53) admits a unique so-

lution. Instead of dealing with the original equation (4.4)–(4.5), we shall consider

below the equivalent problem (4.53) whose bilinear form is symmetric and positive

definite.

4.4.1 Preconditioning in the Modal Basis

Let pk be the Legendre or Chebyshev polynomial of degree k, XN be defined in

(4.14), and
�

φk = pk + akpk+1 + bkpk+2
�N−2
k=0

be the basis functions of XN con-

structed in Sect. 4.1. Let IN be the interpolation operator based on the Legendre or

Chebyshev Gauss-Lobatto points {x j}Nj=0, and �·, ·�N,ω (with ω = 1,(1− x2)−1/2)
be the associated discrete inner product.We consider the followingGalerkin method

with numerical integration for (4.53):











Find uN =
N−2
∑
k=0

ûkφk ∈ XN such that

BN,ω (uN ,φ j) = �g,φ j�N,ω , j = 0,1, . . . ,N− 2,
(4.54)

where

BN,ω (uN ,vN) :=−
�

[IN(au
�
N)]

�,vN
�

N,ω
+
�

buN ,vN
�

N,ω
. (4.55)
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Let us denote

b jk = BN,ω (φk,φ j), B=
�

b jk

�

j,k=0,1,...,N−2;

g j = �g,φ j�N,ω , g=
�

g0,g1, . . . ,gN−2
�T
;

u=
�

û0, û1, . . . , ûN−2
�T

.

Then, (4.54) is equivalent to the following linear system:

Bu= g. (4.56)

We observe that for uN = ∑N−2
k=0 ûkφk ∈ XN and vN = ∑N−2

k=0 v̂kφk ∈ XN , we have

�Bu,v�l2 = BN,ω (uN ,vN), (4.57)

where �a,b�l2 = ∑N−2
j=0 a jb j for any vectors a,b ∈ R

N−1 with components {a j,b j}.
It is easy to see that in general B is a full matrix, so we shall resort to an itera-

tive method for which an efficient evaluation of the matrix–vector product Bu is

essential.

We now describe how to evaluate

(Bu) j =−
�

[IN(au
�
N)]

�,φ j

�

N,ω
+
�

buN ,φ j

�

N,ω
, j = 0,1, . . . ,N− 2

without explicitly forming the matrix B. Given uN = ∑N−2
k=0 ûkφk, we compute

“−
�

[IN(au
�
N)]

�,φ j

�

N,ω
” as follows:

1. Using (3.206) or (3.234) to determine {ũ(1)k } from

u�N(x) =
N−2
∑
k=0

ûkφ
�
k(x) =

N

∑
k=0

ũ
(1)
k pk(x);

2. (Forward discrete transform) Compute

u�N(x j) =
N

∑
k=0

ũ
(1)
k pk(x j), j = 0,1, . . . ,N;

3. (Backward discrete transform) Determine {w̃k} from

IN(au
�
N)(x j) =

N

∑
k=0

w̃k pk(x j), j = 0,1, . . . ,N;

4. Using (3.206) or (3.234) to determine {w̃(1)
k } from

�

IN(au
�
N)
��
(x) =

N

∑
k=0

w̃k p
�
k(x) =

N

∑
k=0

w̃
(1)
k pk(x);
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5. For j = 0,1, . . . ,N− 2, compute

−
�

[IN(au
�
N)]

�,φ j

�

N,ω
=−

N

∑
k=0

w̃
(1)
k

�

pk,φ j

�

N,ω
.

Note that the main cost in the above procedure is the two discrete transforms in Steps

2 and 3. The cost for each of Steps 1, 4 and 5 is O(N) flops. The term
�

buN ,φ j

�

N,ω

can also be computed similarly as follows:

1. Compute

uN(x j) =
N

∑
k=0

ûkφk(x j), j = 0,1, . . . ,N;

2. Determine {w̃k} from

IN(buN)(x j) =
N

∑
k=0

w̃k pk(x j), j = 0,1, . . . ,N;

3. Compute

−
�

buN ,φ j

�

N,ω
, j = 0,1, . . . ,N− 2.

Hence, if b is not a constant, two additional discrete transforms are needed. In sum-

mary, the total cost for evaluate Bu is dominated by four (only two if b is a constant)

discrete transforms, and is O(N2) (resp. O(N log2N)) flops in the Legendre (resp.
Chebyshev) case.

4.4.1.1 Legendre Case

Thanks to (3.59), we have for any uN ,vN ∈ XN ,

−
�

[IN(au
�
N)]

�,vN
�

N
=�au�N ,v �N�N + a(1)h+uN(1)vN(1)

− a(−1)h−uN(−1)vN(−1),
(4.58)

where h± are defined in (4.7). Hence,

BN(uN ,vN) = BN(vN ,uN), ∀uN ,vN ∈ XN .

Consequently, B is symmetric.

To simplify the presentation, we shall assume that b+b− = 0 so that the Poincaré
inequality is applicable to uN .

Under the conditions (4.3) and (4.51), we have

BN(uN ,uN) =
�

au�N ,u
�
N

�

N
+ a(1)h+u

2
N(1)− a(−1)h−u2N(−1)

+ �buN,uN�N ≥ c1
�

u�N ,u
�
N

�

N
= c1

�

u�N ,u
�
N

�

.
(4.59)
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On the other hand, using the Poincaré inequality (B.21) and the Sobolev inequality

(B.33), it is easy to show that there exists c4 > 0 such that

BN(uN ,uN)≤ c4(u
�
N ,u

�
N).

Hence, let si j = (φ �
j,φ

�
i ) and S = (si j)i, j=0,1,...,N−2. We have

0< c1 ≤
�Bu,u�l2
�Su,u�l2

=
BN(uN ,uN)

(u�N ,u
�
N)

≤ c4. (4.60)

Since S−1B is symmetric with respect to the inner product �u,v�S := �Su,v�l2 , (4.60)
implies immediately

cond(S−1B)≤ c4

c1
. (4.61)

In other words, S−1 is an optimal preconditioner for B in the sense that the conver-
gence rate of the conjugate gradient method applied to the preconditioned system

S−1Bu= S−1g (4.62)

will be independent of N. We recall from Sect. 4.1 that S is a diagonal matrix so

the cost of applying S−1 is negligible. Hence, the main cost in each iteration is the
evaluation of Bu for given u.

Remark 4.10. In the case of Dirichlet boundary conditions, we have φk = Lk−Lk+2

which, together with (3.176a), implies that φ �
k = −(2k+ 3)Lk+1. Therefore, from

u = ∑N−2
k=0 ûkφk, we can obtain the derivative u� = −∑N−2

k=0 (2k+ 3)ûkLk+1 in the

modal basis without using (3.206).

Remark 4.11. If we use the normalized basis functions

φ̃k :=
�

−bk(4k+6)
�−1/2

φk with (φ̃ �
j, φ̃

�
i ) = δi j,

the condition number of the corresponding matrix B with bi j = BN(φ̃ j, φ̃i) is uni-

formly bounded. Hence, we can apply the conjugate gradient method directly to this

system without preconditioning.

Remark 4.12. If c3 in (4.51) is large, the condition number in (4.61) will be large

even though independent of N. In this case, one may improve the situation by re-

placing the bilinear form (u�N ,v
�
N) with â(u�N ,v

�
N)+ b̂(uN ,vN) where

â=
1

2

�

max
|x|≤1

a(x)+min
|x|≤1

a(x)
�

, b̂=
1

2

�

max
|x|≤1

b(x)+min
|x|≤1

b(x)
�

.

The matrix corresponding to this new bilinear form is âS+ b̂M which is positive

definite and penta-diagonal (cf. Sect. 4.1).
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4.4.1.2 Chebyshev Case

In the Chebyshev case, an appropriate preconditioner for the inner product

BN,ω (uN ,vN) in XN × XN is
�

u�N ,ω
−1(vNω)�

�

ω
for which the associated linear

system can be solved in O(N) flops as shown in Sect. 4.1. Ample numerical re-
sults indicate that the convergence rate of a conjugate gradient type method for

non-symmetric systems such as Conjugate Gradient Square (CGS) or BICGStab

methods (see Appendix C) is similar to that in the Legendre case.

The advantage of using the Chebyshev polynomials is of course that the evalua-

tion of Bu can be accelerated by FFT in O(N log2N) operations, instead of O(N
2)

in the Legendre case.

A few remarks on the use of modal basis functions are in order.

• For problems with constant coefficients, using appropriate modal basis functions

leads to sparse matrices.

• For problems with variable coefficients, one can use a suitable problem with

constant coefficients as an effective preconditioner.

• With the modal basis, the choice of collocation points (as long as they are Gauss-

type quadrature points) is not important, as it is merely used to define an approx-

imation IN f to f . Therefore, we can use the same set of Gauss-Lobatto points

for almost any problem. On the other hand, with the nodal basis, the choice of

quadrature rules/collocation points plays an important role and should be made

in accordancewith the underlying differential equations and boundary conditions

(see Sect. 6.4), particularly for high-order equations and mixed type boundary

conditions.

We emphasize that the preconditioning in the modal basis will be less effective if

the coefficients a(x) and b(x) have large variations, since the variation of the coeffi-
cients is not taken into account in the construction of the preconditioner. However,

preconditioners which are robust to the variation in coefficients can be constructed

in the nodal basis as shown below.

4.4.2 Preconditioning in the Nodal Basis

For problems with large variations in coefficients a(x) and b(x), it is preferable to
construct preconditioners in the physical space, i.e., in the nodal basis. We shall

consider two approaches: (a) a finite difference preconditioner (cf. Orszag (1980))

for the collocation method for (4.50) with general boundary conditions (4.5); and

(b) a finite element preconditioner (cf. Canuto and Quarteroni (1985), Deville and

Mund (1985)) for the Galerkin method with numerical integration for (4.53).
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4.4.2.1 Finite Difference Preconditioning

The collocation method in the strong form for (4.50) with (4.5) is











Find uN ∈ PN such that

− (au�N)
�(x j)+ b(x j)uN(x j) = g(x j), 1≤ j ≤ N− 1,

a−uN(−1)+ b−u�N(−1) = 0, a+uN(1)+ b+u
�
N(1) = 0.

(4.63)

As in Sect. 4.3, (4.63) can be rewritten as an (N+1)× (N+1) linear system

Aw= b, (4.64)

where the unknowns are {wj := uN(x j)}Nj=0, and

w=
�

w0,w1, . . . ,wN

�T
, b=

�

0,g(x1),g(x2), . . . ,g(xN−1),0
�T

. (4.65)

As suggested by Orszag (1980), we can build a preconditioner for A by using a

finite difference approximation to (4.50) with (4.5). Let us denote

hk = xk− xk−1, h̃k = (xk+1− xk−1)/2, ak+1/2 = a
�

(xk+1+ xk)/2
�

. (4.66)

Then, the second-order finite difference scheme for (4.50) with (4.5) with first-order

one-sided difference at the boundaries reads:


























−
ai−1/2
h̃ihi

wi−1+

�

ai−1/2
h̃ihi

+
ai+1/2

h̃ihi+1

�

wi−
ai+1/2

h̃ihi+1
wi+1

+ b(xi)wi = g(xi), 1≤ i≤ N−1,

a−w0+ b−
w1−w0

h1
= 0, a+wN + b+

wN −wN−1
hN

= 0.

(4.67)

We can rewrite (4.67) in the linear system:

Afdw= b, (4.68)

where Afd is a non-symmetric tridiagonal matrix.

It has been shown (cf. Orszag (1980), Canuto et al. (1987), Kim and Parter

(1997)) that in the Dirichlet case, A−1
f d is an optimal preconditioner for A, but

cond(A−1
f d A) deteriorates with other types of boundary conditions.

Remark 4.13. The above discussion is valid for both the Legendre and Chebyshev

collocation methods.
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4.4.2.2 Finite Element Preconditioning

A more robust preconditioner can be constructed by using a finite element approxi-

mation to (4.53).

Let us denote

Xh =
�

u ∈ H1
� (I) : u|[xi+1,xi ] ∈ P1, i= 0,1, . . . ,N−1

�

. (4.69)

Then, the piecewise linear finite element approximation to (4.53) is

�

Find uh ∈ Xh such that

Bh(uh,vh) = �g,vh�h, ∀vh ∈ Xh,
(4.70)

where

Bh(uh,vh) :=
�

au�h,v
�
h

�

h
+ a(1)h+uh(1)vh(1)

− a(−1)h−uh(−1)vh(−1)+
�

buh,vh
�

h
,

and �·, ·�h is an appropriate discrete inner product associated with the piecewise
linear finite element approximation.

To fix the idea, we assume b± �= 0. Let us denote for k= 1,2, . . . ,N−1,

ĥk(x) =



















x− xk+1

xk− xk+1
, x ∈ [xk,xk+1],

xk−1− x

xk−1− xk
, x ∈ [xk−1,xk],

0, otherwise,

(4.71)

and

ĥ0(x) =







x− x1

x0− x1
, x ∈ [x0,x1],

0, otherwise,

ĥN(x) =







xN−1− x

xN−1− xN
, x ∈ [xN−1,xN ],

0, otherwise.

(4.72)

Then

Xh = span
�

ĥ0, ĥ1, . . . , ĥN
�

. (4.73)
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Setting

uh(x) =
N

∑
j=0

uh(x j)ĥ j(x), w= (uh(x0),uh(x1), . . . ,uh(xN))
T ;

bk j = Bh(ĥ j, ĥk), Bfe = (bk j)k, j=0,1,...,N ;

mk j = �ĥ j, ĥk�h, Mfe = (mk j)k, j=0,1,...,N ;

g= (g(x0),g(x1), . . . ,g(xN))
T ,

(4.74)

we can reduce (4.70) to the following linear system

Bfew=Mfeg or M−1
f e B f ew= g. (4.75)

Since both (4.37) and (4.75) provide approximate solutions to (4.53), it is expected

that (M−1
f e B f e)

−1 (resp. B−1
f e ) is a good preconditioner forW

−1B (resp. B). The op-

timality of (M−1
f e B f e)

−1 as a preconditioner forW−1B has been shown in Franken

et al. (1990), while the optimality of B−1
f e as a preconditioner for B has been shown

in Parter and Rothman (1995).

4.5 Error Estimates

In this section, we perform error analysis for several typical spectral approximation

schemes proposed in the previous sections and a spectral-Galerkin method for the

1-D Helmholtz equation.

4.5.1 Legendre-Galerkin Method

We first consider the Legendre-Galerkin method (4.18) (with fN = IN f and ω ≡ 1)
for (4.10) with homogeneous Dirichlet boundary conditions, i.e., b± = 0. In this
case, the error analysis is standard. Indeed, applying Theorem 1.3 with X = H1

0 (I),
we find immediately

�u− uN�1 � inf
vN∈XN

�u− vN�1+ � f − IN f�.

Applying Theorem 3.38 with α = β = 0 and Theorem 3.44 to the above leads to the
following estimate.

Theorem 4.1. Let u and uN be the solutions of (4.10) with b± = 0 and (4.18), re-

spectively. If u ∈ H1
0 (I),∂xu ∈ Bm−1

0,0 (I) and f ∈ Bk
−1,−1(I) with 1 ≤ m ≤ N+1 and

1≤ k ≤ N+ 1, we have
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�u− uN�1 ≤ c

�

(N−m+1)!

N!
(N+m)(1−m)/2�∂m

x u�ωm−1,m−1

+ c

�

(N− k+1)!

N!
(N+ k)−(k+1)/2�∂ k

x f�ωk−1,k−1 ,

(4.76)

where c is a positive constant independent of m,k,N, f and u.

Remark 4.14. Recall from Remark 3.7 that the factor

N(1−m)/2 ≤
�

(N−m+ 1)!

N!
≤ (N−m+ 2)(1−m)/2, (4.77)

and it is of order O(N(1−m)/2) for fixed m.

We now consider the Legendre-Galerkin method (4.18) (with fN = IN f and

ω = 1) with the general boundary conditions (4.5). To handle the boundary condi-
tions involving derivatives, we need to make use of the H2

0 -orthogonal projection:

Π
2,0
N :H2

0 (I)→ PN ∩H2
0 (I), defined by

�

∂ 2x (Π
2,0
N u− u),∂ 2x vN

�

= 0, ∀vN ∈ PN ∩H2
0 (I), (4.78)

whose approximation property is stated in the following lemma.

Lemma 4.7. If u ∈H2
0 (I) and ∂ 2x u ∈ Bm−2

0,0 (I) with 2≤ m≤ N+1, then we have

�Π
2,0
N u− u�µ ≤ c

�

(N−m+1)!

N!
(N+m)µ−(1+m)/2�∂m

x u�ωm−2,m−2 , (4.79)

for 0≤ µ ≤ 2, where c is a positive constant independent of m,N and u.

Proof. We first prove the case: µ = 2. Let Π
1,0
N be the H1

0 -orthogonal projection

operator defined by (3.290) with α = β = 0, and set

φ(x) =

� x

−1

�

Π
1,0
N−1∂yu(y)−

3

4
(1− y2)φ∗

�

dy,

where the constant

φ∗ =
� 1

−1
Π
1,0
N−1∂xu(x)dx.

One verifies readily that φ ∈ PN and φ(±1) = φ �(±1) = 0.Moreover, thanks to the
fact u(±1) = 0, we derive from Theorem 3.39 with α = β = 0 that

|φ∗| ≤
� 1

−1
|Π1,0

N−1∂xu(x)− ∂xu(x)|dx≤
√
2�Π

1,0
N−1∂xu− ∂xu�

≤ c

�

(N−m+ 1)!

N!
(N+m)(1−m)/2�∂m

x u�ωm−2,m−2,
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and

�∂ 2x (Π
2,0
N u− u)�

(4.78)
≤ �∂ 2x (φ − u)� ≤ �∂x(Π

1,0
N−1∂xu− ∂xu)�+ c|φ∗|

≤ c

�

(N−m+ 1)!

N!
(N+m)(3−m)/2�∂m

x u�ωm−2,m−2,

which, together with the Poincaré inequality (B.21), yields the desired result with
µ = 2.
We now use a duality argument to prove (4.79) with µ = 0. Given f ∈ L2(I), we

consider the following auxiliary problem:
�

Find w ∈ H2
0 (I) such that

B(w,z) := (∂ 2x w,∂
2
x z) = ( f ,z), ∀z ∈H2

0 (I),
(4.80)

which admits a unique solution in H2
0 (I) satisfying

�w�4 ≤ c� f�.

Hence, taking z = Π
2,0
N u− u in (4.80), we have from the shown case (i.e., (4.79)

with µ = 2) that

|( f ,Π 2,0
N u− u)|= |B(Π 2,0

N u− u,Π2,0
N w−w)|

≤ �∂ 2x (Π
2,0
N u− u)��∂ 2x (Π

2,0
N w−w)�

≤ c

�

(N−m+1)!

N!
(N+m)−(1+m)/2�∂m

x u�ωm−2,m−2�∂ 4x w�ω2,2

≤ c

�

(N−m+1)!

N!
(N+m)−(1+m)/2�∂m

x u�ωm−2,m−2� f�.

Consequently,

�Π
2,0
N u− u�= sup

0 �= f∈L2(I)

|( f ,Π 2,0
N u− u)|
� f�

≤ c

�

(N−m+1)!

N!
(N+m)−(1+m)/2�∂m

x u�ωm−2,m−2 .

Finally, we prove the cases 0 < µ < 2 by using space interpolation. Let

θ = 1−µ/2. SinceHµ(I) = [H2(I),L2(I)]θ ,we have from the Gagliardo-Nirenberg
inequality (see Theorem B.7) and (4.79) with µ = 0,2 that

�Π
2,0
N u− u�µ ≤ �Π

2,0
N u− u�1−θ

2 �Π
2,0
N u− u�θ

≤ c

�

(N−m+ 1)!

N!
(N+m)µ−(1+m)/2�∂m

x u�ωm−2,m−2 .

This ends the proof. ��
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Remark 4.15. We shall provide in Chap. 5 a much simpler proof of the above esti-

mates by using the notion of generalized Jacobi polynomials.

With the aid of the above lemma, we can derive the following result, which will

be useful for the convergence analysis.

Theorem 4.2. There exists a mapping Π2
N :H

2(I)→ PN such that

(Π2
Nu)(±1) = u(±1), (Π2

Nu)
�(±1) = u�(±1). (4.81)

Moreover, if u ∈H2(I) and ∂ 2x u ∈ Bm−2
0,0 (I) with 2≤m≤ N+1, then for 0≤ µ ≤ 2,

we have

�Π2
Nu− u�µ

≤ c

�

(N−m+ 1)!

N!
(N+m)µ−(1+m)/2

�

�u�2+ �∂m
x u�ωm−2,m−2

�

,
(4.82)

where c is a positive constant independent of m,N and u.

Proof. Recall the Hermite interpolation basis polynomials associated with two

points x0 =−1 and x1 = 1:

H0(x) =
(2+ x)(1− x)2

4
, H1(x) = H0(−x),

Ĥ0(x) =
(1+ x)(1− x)2

4
, Ĥ1(x) =−Ĥ0(−x).

Setting

Φ(x) = u(−1)H0(x)+ u(1)H1(x)+ u�(−1)Ĥ0(x)+ u�(1)Ĥ1(x) ∈ P3,

we find that Φ(±1) = u(±1) and Φ �(±1) = u�(±1). For any u ∈ H2(I), we have
u∗ := u−Φ ∈ H2

0 (I). Defining

Π2
Nu= Π

2,0
N u∗+Φ,

we find that Π2
Nu satisfies (4.81), and

u−Π2
Nu= u∗ −Π

2,0
N u∗.

Therefore, by Lemma 4.7,

�u−Π2
Nu�µ = �u∗−Π

2,0
N u∗�µ

≤ c

�

(N−m+ 1)!

N!
(N+m)µ−(1+m)/2�∂m

x u∗�ωm−2,m−2 .
(4.83)
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It is clear that for m ≥ 4, we have ∂m
x u∗ = ∂m

x u. For m = 2,3, we obtain from the
Sobolev inequality (B.33) that

max
|x|≤1

|∂m
x Φ(x)| ≤ c�u�2 ⇒ �∂m

x u∗�ωm−2,m−2 ≤ c
�

�u�2+ �∂m
x u�ωm−2,m−2

�

.

The estimate (4.82) follows. ��

With the above preparations, we are ready to carry out error analysis of the

Legendre-Galerkin approximation of (4.10) with general boundary conditions (4.5).

Theorem 4.3. Let u and uN be the solutions of (4.10) and (4.18), respectively. If

u∈H2(I), ∂ 2x u∈ Bm−2
0,0 (I) and f ∈ Bk

−1,−1(I) with 2≤m≤N+1 and 1≤ k≤N+1,
we have

�u− uN�1 ≤ c

�

(N−m+ 1)!

N!
(N+m)(1−m)/2

�

�u�2+ �∂m
x u�ωm−2,m−2

�

+ c

�

(N− k+1)!

N!
(N+ k)−(k+1)/2�∂ k

x f�ωk−1,k−1 ,

(4.84)

where c is a positive constant independent of m,k,N, f and u.

Proof. We derive from (4.10) and (4.18) that

A(u− uN ,vN) := α(u−uN ,vN)− ((u− uN)
��,vN) = ( f − IN f ,vN), ∀vN ∈ XN .

Under the assumption (4.3), one verifies the continuity and coercivity:

A(v,w)≤ c1�v�1�w�1, ∀v,w ∈H2(I)∩H1
� (I),

A(v,v)≥ c2|v|21, ∀v ∈ H2(I)∩H1
� (I).

(4.85)

Applying Theorem 1.3 with X = H2(I)∩H1
� (I), and using Theorems 3.44 and 4.2,

we find

�u− uN�1 ≤ c
�

�u−Π2
Nu�1+ �IN f − f�)

≤ c

�

(N−m+1)!

N!
(N+m)(1−m)/2

�

�u�2+ �∂m
x u�ωm−2,m−2

�

+ c

�

(N− k+1)!

N!
(N+ k)−(k+1)/2�∂ k

x f�ωk−1,k−1 .

This completes the proof. ��
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4.5.2 Chebyshev-Collocation Method

We consider in this section the Chebyshev-collocation method for the model

equation

γu− uxx = f , in (−1,1), γ > 0; u(±1) = 0. (4.86)

Let {x j}Nj=0 be the Chebyshev-Gauss-Lobatto points. As shown previously, the col-
location approximation is

�

Find uN ∈ P0N such that

γuN(x j)− u��N(x j) = f (x j), 1≤ j ≤ N−1.
(4.87)

Letω = (1−x2)−1/2 be the Chebyshev weight function, and define the bilinear form
as in (3.289):

aω(u,v) :=
�

ux,ω
−1(vω)x

�

ω
=

� 1

−1
ux(vω)x dx. (4.88)

We find from Lemma 3.5 (with α = β =−1/2) that aω(·, ·) is continuous and coer-
cive in H1

0,ω(I)×H1
0,ω (I). As a special case of Lemma 4.5, we can reformulate the

Chebyshev-collocation scheme (4.87) as

�

Find uN ∈ P0N such that

γ�uN ,vN�N,ω + aω(uN ,vN) = � f ,vN�N,ω , ∀vN ∈ P0N .
(4.89)

Then its convergence can be analyzed by using Theorem 1.3 and a standard

argument.

Theorem 4.4. If u ∈ H1
0,ω(I),∂xu ∈ Bm−1

−1/2,−1/2(I) and f ∈ Bk
−1/2,−1/2(I) with 1 ≤

m,k ≤ N+1, then we have

�u− uN�1,ω ≤ c

�

(N−m+1)!

N!
(N+m)(1−m)/2�∂m

x u�ωm−3/2,m−3/2

+ c

�

(N− k+1)!

N!
N−(1+k)/2�∂ k

x f�ωk−1/2,k−1/2 ,

(4.90)

where c is a positive constant independent of m,k,N, f and u.

Proof. Let Π
1,0
N,ω be the orthogonal projection operator defined in (3.290) with α =

β =−1/2. Applying Theorem 1.3 with X = H1
0,ω(I) leads to

�u− uN�1,ω ≤ c

�

�u−Π
1,0
N,ωu�1,ω + sup

0 �=vN∈P0N

|(Π1,0
N,ωu,vN)ω −�Π1,0

N,ωu,vN�N,ω |
�vN�1,ω

+ sup
0 �=vN∈P0N

|( f ,vN)ω −� f ,vN�N,ω |
�vN�1,ω

�

.
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Therefore, it is necessary to estimate the error between the discrete and inner prod-

ucts. For this purpose, let πc
N be the L

2
ω -orthogonal projection as defined in (3.249),

and IcN be the Chebyshev-Gauss-Lobatto interpolation operator. Then we derive

from (3.218) and Theorems 3.35 and 3.43 with α = β =−1/2 that

|( f ,vN)ω −� f ,vN�N,ω | ≤ |( f −πc
N−1 f ,vN)ω −�IcN f −πc

N−1 f ,vN�N,ω |
(3.220)

≤ c
�

� f −πc
N−1 f�ω + � f − IcN f�ω

�

�vN�ω

≤ c

�

(N− k+1)!

N!
N−(1+k)/2�∂ k

x f�ωk−1/2,k−1/2�vN�ω ,

(4.91)

and similarly,

|(Π1,0
N,ωu,vN)ω −�Π1,0

N,ωu,vN�N,ω | ≤ c
�

�Π
1,0
N,ωu− u�ω + �πc

N−1u− u�ω

�

�vN�ω .

Hence, the estimate (4.90) follows from Theorems 3.35 and 3.39. ��

Remark 4.16. As shown in (4.91), we have the following error estimate between

the continuous and discrete inner products relative to the Chebyshev-Gauss-Lobatto

setting: If u ∈ Bm
−1/2,−1/2(I) with 1≤ m≤ N+1, then for any φ ∈ PN , we have

|(u,φ)ω −�u,φ�N,ω |

≤ c

�

(N−m+ 1)!

N!
N−(1+m)/2�∂m

x u�ωm−1/2,m−1/2�φ�ω ,
(4.92)

where c is a positive constant independent of m,N,φ and u. This result is quite

useful for error analysis of Chebyshev spectral methods.

4.5.3 Galerkin Method with Numerical Integration

We considered in previous two sections error analysis of problems with constant

coefficients. We now discuss the general variable coefficient problem (4.50) with

general boundary conditions (4.5), whose variational formulation is given by (4.52)–

(4.53). Correspondingly, the Legendre Galerkin method with numerical integration

is given by (4.54)–(4.55) with ω ≡ 1. For clarity of presentation, we recall the for-
mulation. Let

XN =
�

v ∈ PN : a±v(±1)+ b±v
�(±1) = 0

�

. (4.93)

We look for uN ∈ XN such that

BN(uN ,vN) = �g,vN�N , ∀vN ∈ XN , (4.94)
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where

BN(uN ,vN) =�au�N ,v�N�N + �buN,vN�N + a(1)h+uN(1)vN(1)

− a(−1)h−uN(−1)vN(−1),
(4.95)

with h± being defined in (4.7). Observe from (4.59) that for any uN ,vN ∈ XN ,

BN(uN ,uN)≥ c�u�N�2+ �buN,uN�N , (4.96)

and
�

�BN(uN ,vN)
�

�≤ c�uN�1�vN�1. (4.97)

For simplicity, we assume b(x)≥ b0 > 0, if b± �= 0, so we have the coercivity:

BN(uN ,uN)≥ c�uN�21. (4.98)

As a preparation, we first obtain the following result. As its proof is very similar

to that of (4.92), we leave it as an exercise (see Problem 4.3).

Lemma 4.8. If u ∈ Bm
−1,−1(I) with 1≤ m≤ N+1, then for any φ ∈ PN ,

|(u,φ)−�u,φ�N | ≤ c

�

(N−m+ 1)!

N!
(N+m)−(m+1)/2�∂m

x u�ωm−1,m−1�φ�, (4.99)

where c is a positive constant independent of m,N,φ and u.

The convergence of the scheme (4.94), under the aforementioned assumptions on

a±,b± and the variable coefficients a,b, is presented below.

Theorem 4.5. Let u and uN be the solutions of (4.52)–(4.53) and (4.94), respec-

tively. If

a,b,a�,b� ∈ L∞(I), u ∈H2(I), ∂ 2x u ∈ Bm−2
0,0 (I),

∂x(au
�) ∈ Bm−2

0,0 (I), ∂x(bu) ∈ Bm−1
0,0 (I), g ∈ Bk

−1,−1(I),
(4.100)

with 2≤ m≤ N+1 and 1≤ k ≤ N+1, then

�u− uN�1

≤ c

�

(N−m+ 1)!

N!
(N+m)(1−m)/2

�

�u�2+ �∂m
x u�ωm−2,m−2

+ �∂m−1
x (au�)�ωm−2,m−2+ �∂m

x (bu)�ωm−1,m−1

�

+ c

�

(N− k+1)!

N!
(N+ k)−(k+1)/2�∂ k

x g�ωk−1,k−1,

(4.101)

where c is a positive constant only depending on the L∞-norms of a,b,a� and b�.
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Proof. Let Π2
N be the same as in Theorem 4.2, and set φ = Π2

Nu and eN = uN −φ .
Then by (4.53) and (4.94),

BN(eN ,eN) = BN(uN ,eN)−BN(φ ,eN)

= �g,eN�N − (g,eN)+B(u,eN)−BN(φ ,eN).

Using Lemma 4.8 yields

|�g,eN�N − (g,eN)| ≤ c

�

(N− k+1)!

N!
(N+ k)−(k+1)/2�∂ k

x g�ωk−1,k−1�eN�. (4.102)

By the definitions (4.52) and (4.95),

�

�B(u,eN)−BN(φ ,eN)
�

�≤
�

�

�

au� − IN(aφ �),e�N
��

�+ |(bu,eN)−�bφ ,eN�N |
:= Ta+Tb,

where we used the exactness (3.189) and the property (4.81) to eliminate the bound-

ary values. Using (3.191) and Theorem 3.44, we find that

Ta ≤
�

�

�

au� − IN(au
�),e�N

�
�

�+
�

�

�

IN(au
� − aφ �),e�N

�
�

�

≤
�

�au� − IN(au
�)�+�IN(au� − aφ �)�

�

�e�N�

≤ c
�

�

(N−m+ 1)!

N!
(N+m)(1−m)/2�∂m−1

x (au�)�ωm−2,m−2

+ �IN(au� − aφ �)�
�

�e�N�.

Moreover, by (3.191) and Lemma 4.8,

Tb ≤
�

�

�

bu,eN
�

−�bu,eN�N
�

�+
�

��bu−bφ ,eN�N
�

�

≤ c
�

�

(N−m+ 1)!

N!
(N+m)−(m+1)/2�∂m

x (bu)�ωm−1,m−1�eN�

+ �IN(bu−bφ)�N�eN�N
�

≤ c
�

�

(N−m+ 1)!

N!
(N+m)−(m+1)/2�∂m

x (bu)�ωm−1,m−1

+ �IN(bu−bφ)�
�

�eN�.

Thanks to (4.81), we have

(u−φ)(±1) = 0, (u−φ)�(±1) = 0.
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Thus, we obtain from Lemma 3.11 and Theorem 4.2 that

�IN(au� − aφ �)� ≤ c(�au� − aφ ��+N−1�(au� − aφ �)��ω1,1
�

≤ c

�

�

�a�∞+N−1�a��∞

�

�(u−φ)��+N−1�a�∞�(u−φ)���
�

≤ c

�

(N−m+ 1)!

N!
(N+m)(1−m)/2

�

�u�2+ �∂m
x u�ωm−2,m−2

�

,

and

�IN(bu−bφ)� ≤ c(�bu− bφ�+N−1�(bu−bφ)��ω1,1
�

≤ c

�

(N−m+ 1)!

N!
(N+m)−(1+m)/2

�

�u�2+ �∂m
x u�ωm−2,m−2

�

.

Consequently, we derive from (4.98) and the above estimates that

�eN�1 ≤ c

�

(N−m+ 1)!

N!
(N+m)(1−m)/2

�

�u�2+ �∂m
x u�ωm−2,m−2+

+ �∂m−1
x (au�)�ωm−2,m−2+ �∂m

x (bu)�ωm−1,m−1
�

+ c

�

(N− k+1)!

N!
(N+ k)−(k+1)/2�∂ k

x g�ωk−1,k−1.

We complete the proof by using the triangle inequality and Theorem 4.2. ��

4.5.4 Helmholtz Equation

As the last example of this chapter, we consider the 1-D Helmholtz equation with

complex-valued solution:

− u�� − k2u= f , r ∈ I := (0,1),

u(0) = 0, u�(1)− iku(1) = h,
(4.103)

where k is called the wave number. We refer to Sect. 9.1 for more details on the

background of the Helmholtz equation as well as its spectral approximation in multi-

dimensional settings.

Note that this problem does not fit the general framework that we used for previ-

ous examples, since the problem is indefinite due to the negative sign in front of k2.

The solution of (4.103) is increasingly oscillatory as k increases, so the number

of unknowns in a numerical approximation should increase properly with k and it is

thus important to derive error estimates with explicit dependence on k. The first step

is to derive a priori estimates for the exact solution and characterize the dependence

on k explicitly. To this end, we consider the following weak formulation of (4.103):


