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Hence, using Lemma 4.9 again yields
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This ends the proof. O

Problems

4.1. Show that under the assumption (4.3), the bilinear form Z(-, ) defined by (4.9)
is continuous and coercive in H! (I) x H!(I).

4.2. Let {hj}]jy:o be the Lagrange basis polynomials relative to the Jacobi-Gauss-
Radau points {xj}ljvzo with xg = —1 (see Theorem 3.26). Let D = (dy; :=
h’j(xk))lgh j<n be the differentiation matrix corresponding to the interior collo-

cation point (see (3.163)). Write down the matrix form of the Jacobi-Gauss-Radau
collocation method for

u(x)=f(x), xe(=1,1); u(—1)=c_,

where f € C[—1,1] and c_ is a given value. Use the uniqueness of the approximate
solution to show that the matrix D is nonsingular.

4.3. Prove Lemma 4.8.

4.4. Consider the Burgers’ equation:

u 0%u u

e = 0. (4.120)
ot € o2 "ox €=
(i) Verify that it has the soliton solution
K(x— xt —xc)
u(x,t) = K[l —tanh(T)}, (4.121)

where the parameter K > 0 and the center x. € R.

(ii) Take € =0.1,k =0.5,x, = —3,x € [-5,5], and impose the initial value u(x,0)
and the boundary conditions u(=+5,7) by using the exact solution. Use the Crank-
Nicolson leap-frog scheme to in time (see (1.2)—(1.3)), and the Chebyshev col-
location method in space to solve the equation. Output the discrete maximum
errors for T = 107 (time step size) with k =2,3,4 and N = 32,64, 128 at t = 12.
Refer to Table 1 in Wu et al. (2003) for the behavior of the errors (obtained by
other means).

(iii) Replace the Chebyshev-collocation method in (ii) by the Chebyshev-Galerkin
method. Do the same test and compare two methods. Refer to Sect. 3.4.3 for the
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Chebyshev differentiation process using FFT and to Trefethen (2000) for a handy
MATLAB code for this process.
(iv) Consider the Burgers’ equation (4.120) in (—1, 1) with the given data

u(£1,t) =0, u(x,0) = —sin(nx), x€[-1,1]. (4.122)
Solve this problem by the methods in (ii) and (iii) by taking € = 0.02,7 = 10~*
and N = 128 and plot the numerical solution at = 1. Refer to Shen and Wang

(2007b) for some profiles of the numerical solution (obtained by other means).

4.5. Consider the Fisher equation

ou  d%u
E_W—'_u(l_u)' (4.123)
(i) Verify that it has the traveling solution
x  5\12
u(x,) = [1 n exp<% _ gt)] . (4.124)

(ii) Since u(x,7) — 0 (resp. 1) as x — oo (resp. —eo), we can approximate (4.123)
in (—L,L), where L is large enough so that the wave front does not reach the
boundary x = L, by imposing the boundary conditions

u(—=L,tr) =1, u(L,t) =0,

and taking the initial value as u(x,0). Use the second-order splitting scheme
(D.30) with Au = d?u and Bu = u(1 — u) in time, and the Legendre-Galerkin
method in space to solve this problem with 7 = 1073, N = 128,L = 100 up to
t = 6. Output the discrete maximum errors between the exact and approximate
solutions at# = 1,2,...,6. An advantage of the splitting scheme is that the sub-
problem (a Bernoulli’s equation for #):

du
> =u(l—u)

can be solved exactly, so it suffices to solve a linear equation in each step. Refer
to Wang and Shen (2005) for this numerical study by a mapping technique.



