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Hence, using Lemma 4.9 again yields

|u− uN|1 + ku−uN ≤ c

|eN |1 + keN+ |ẽN|1 + kẽN



≤ c

1+ k2N−1 + kN−1/2




(N −m+1)!

N!
(N +m)(1−m)/2(r− r2)(m−1)/2

∂
m
r u.

This ends the proof.

Problems

4.1. Show that under the assumption (4.3), the bilinear form B(·, ·) defined by (4.9)

is continuous and coercive in H1
 (I)×H1

 (I).

4.2. Let {h j}N
j=0 be the Lagrange basis polynomials relative to the Jacobi-Gauss-

Radau points {x j}N
j=0 with x0 = −1 (see Theorem 3.26). Let D = (dk j :=

hj(xk))1≤k, j≤N be the differentiation matrix corresponding to the interior collo-

cation point (see (3.163)). Write down the matrix form of the Jacobi-Gauss-Radau

collocation method for

u(x) = f (x), x ∈ (−1,1); u(−1) = c−,

where f ∈C[−1,1] and c− is a given value. Use the uniqueness of the approximate

solution to show that the matrix D̃ is nonsingular.

4.3. Prove Lemma 4.8.

4.4. Consider the Burgers’ equation:

∂u

∂ t
= ε

∂ 2u

∂x2
− u

∂u

∂x
, ε > 0. (4.120)

(i) Verify that it has the soliton solution

u(x, t) = κ


1− tanh


κ(x−κt− xc)

2ε


, (4.121)

where the parameter κ > 0 and the center xc ∈ R.
(ii) Take ε = 0.1,κ = 0.5,xc =−3,x ∈ [−5,5], and impose the initial value u(x,0)

and the boundary conditions u(±5, t) by using the exact solution. Use the Crank-

Nicolson leap-frog scheme to in time (see (1.2)–(1.3)), and the Chebyshev col-

location method in space to solve the equation. Output the discrete maximum

errors for τ = 10−k (time step size) with k = 2,3,4 and N = 32,64,128 at t = 12.
Refer to Table 1 in Wu et al. (2003) for the behavior of the errors (obtained by

other means).

(iii) Replace the Chebyshev-collocation method in (ii) by the Chebyshev-Galerkin

method. Do the same test and compare two methods. Refer to Sect. 3.4.3 for the
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Chebyshev differentiation process using FFT and to Trefethen (2000) for a handy

MATLAB code for this process.

(iv) Consider the Burgers’ equation (4.120) in (−1,1) with the given data

u(±1, t) = 0, u(x,0) =−sin(πx), x ∈ [−1,1]. (4.122)

Solve this problem by the methods in (ii) and (iii) by taking ε = 0.02,τ = 10−4

and N = 128 and plot the numerical solution at t = 1. Refer to Shen and Wang

(2007b) for some profiles of the numerical solution (obtained by other means).

4.5. Consider the Fisher equation

∂u

∂ t
=

∂ 2u

∂x2
+ u(1− u). (4.123)

(i) Verify that it has the traveling solution

u(x, t) =

1+ exp

 x√
6
− 5

6
t

−2

. (4.124)

(ii) Since u(x, t)→ 0 (resp. 1) as x →+∞ (resp. −∞), we can approximate (4.123)

in (−L,L), where L is large enough so that the wave front does not reach the

boundary x = L, by imposing the boundary conditions

u(−L, t) = 1, u(L, t) = 0,

and taking the initial value as u(x,0). Use the second-order splitting scheme

(D.30) with Au = ∂ 2
x u and Bu = u(1− u) in time, and the Legendre-Galerkin

method in space to solve this problem with τ = 10−3,N = 128,L = 100 up to

t = 6. Output the discrete maximum errors between the exact and approximate

solutions at t = 1,2, . . . ,6. An advantage of the splitting scheme is that the sub-

problem (a Bernoulli’s equation for t):

∂u

∂ t
= u(1−u)

can be solved exactly, so it suffices to solve a linear equation in each step. Refer

to Wang and Shen (2005) for this numerical study by a mapping technique.


