
Lecture 3: Applications of Fourier Spectral Method

1 Korteweg-de Vrices (KdV) Equation

The KdV equation

ut+ u uy+ uyyy=0, y ∈ (−∞,∞), t > 0,

u(y, 0)= u0(y), y ∈ (−∞,∞),

has an exact soliton solution

u(y, t)= 12 κ2sech2(κ(y− y0)− 4κ3t), (1)

where y0 is the center of the initial profile u(y, 0), κ is a constant related to the travelling phase speed.

1.1 Discretization

1. Truncate the computational domain

y ∈ (−πL, πL), u(y, t)= u(y+2πL, t).

2. Mapping the interval [−πL, πL] to [0, 2π] by

x=
y

L
+π, y=L(x− π), x∈ [0, 2π], y ∈ [−πL, πL].

Let v(x, t) =u(y, t), v0(x) =u0(y), then transformed KdV equation reads

vt+
1

L
v vx+

1

L3
vxxx=0, x∈ (0, 2π), t > 0,

v(·, t) periodic on [0, 2π], t> 0; v(x, 0)= v0(x), x∈ [0, 2π].
(2)

3. Solving (2) by Fourier method.

Writting v(x, t)=
∑

|k|6N/2
ûk(t)e

ikx, taking the innner product of the first equation in (2) with

eikx, and using the fact v vx=
1

2
(v2)x, we obtain that

dv̂k(t)

dt
−

ik3

L3
v̂k+

i k

2L
(v2)k=0, k=0,±1,	 ,±N/2. (3)

with the initial condition

v̂k(0)= (v0(x), e
ikx) =

1

2π

∫

0

2π

v0(x) e
−ikx dx. (4)

We solve the ODE system (3) and (4) by a 4th order Runge-Kutta method with integrating factor.
Denote A= i k/L, equation (3) has an integrating factor g(t) = eA

3t, and can be transformed to

d

dt

[

eA
3tv̂k

]

=−
A

2
eA

3t(v2)k, k=0,±1,	 ,±N/2. (5)

Let wk= eA
3tv̂k, we get

dwk

dt
=−

A

2
eA

3t(v2)k, v̂k=wk e
−A3t, k=0,±1,	 ,±N/2. (6)

1

RK4 for equation

w ′(t)= f(t, w)

reads

wn+1 = wn+
h1+2h2+2h3+h4

6
,

h1 = δt f(tn, wn)
h2 = δt f(tn+ δt/2, wn+ h1/2),
h3 = δt f(tn+ δt/2, wn+ h2/2),
h4 = δt f(tn+ δt, wn+ h3).

Remark 1. In general, v̂k(0) is usually calculated by FFT, which is not exactly equal to (4), the
error between a discrete Fourier transform and a continuous one is controlled by the aliasing error.
Similar situation happens for the nonlinear term ,

(v2)k=
1

2π

∫

0

2π

v2 e−ikxdx.

Since v ∈ XN: =span{eikx: k = 0, ±1, 	 , ±N/2}, so v2 ∈ X2N, and {v2 e−ikx, k = 0, ±1, 	 ,

±N/2} ∈ X3N. the discrete numerical integration formula with N point is accurate only for X2N,

which means if we use a discrete Fourier transform with N point to calculate (v2)k, then there will be
some aliasling error. To get rid of the aliasing error, we at least need a quadrature with 3N/2 points,
or Fourier transform with 3N/2 grid points. When u is very smooth, the aliasing error will not be
very big, so an algorithm without anti-aliasing is acceptable.

1.2 Implementation

We use Matlab(octave) to implement the algorithm.

1. The initial solution v̂k(0) in (4) is calculated by fft with length N . ṽ =fft(v0, N).

2. For given n, v̂k(t
n), use RK4 to solve equation (5).

function [tdata udata] = KdVsolu(uex, N, tmax, dt, nplot)

x = (2*pi/N)*(-N/2:N/2-1)’;

u = feval(uex, x, 0); v = fft(u);

k = [0:N/2-1 0 -N/2+1:-1]’; ik3 = 1i*k.^3;

nplt = floor((tmax/nplot)/dt); nmax = round(tmax/dt);

udata = u; tdata = 0;

for n = 1:nmax

t = n*dt; g = -.5i*dt*k;

E = exp(dt*ik3/2); E2 = E.^2;

a = g.*fft(real(ifft(v)).^2);

b = g.*fft(real(ifft(E.*(v+a/2))).^2); % 4th-order

c = g.*fft(real(ifft(E.*v + b/2)).^2); % Runge-Kutta

d = g.*fft(real(ifft(E2.*v+E.*c)).^2);

v = E2.*v + (E2.*a + 2*E.*(b+c) + d)/6;

if mod(n,nplt) == 0 u = real(ifft(v));

udata = [udata u]; tdata = [tdata t];

end

end

end

2 Section 1

1.3 Numerical Results

We take κ= 0.3, y0=−20 and L= 15 in the intial solution (1), which corresponds to

v(x, t)= 12κ2sech2(κL(x− π− y0/L)− 4κ3t),

and use tmax=60, dt=0.01 for various N to solve the KdV equation and verify the accuracy of the numerical
solution.

10-8

10-6

10-4

10-2

100

102

30 40 50 60 70 80 90 100

er
ro

r

N

The L2(+) and H1(o) convergence rates

Figure 1. The convergence rate of Fourier method for KdV equation without anti-aliasing.

2 Kuramoto–Sivashinsky (KS) Equation

ut+uxxxx+ uxx+ u ux=0, x∈ (−∞,∞), t > 0,
u(x, t)= u(x+2πL, t), ux(x, t)= ux(x+2πL, t), t> 0,
u(x, 0)=u0(x), x∈ (−∞,∞).

1. Let

u≈
∑

k=−N/2

N/2

ũk(t) e
ikx/L, t > 0

plugging into KS equation, and pairting the result with eikx/L, we get

ũk
′(t)+

(

k4

L4
−

k2

L2

)

ũk(t)=−
1

2L
i k w̃k(t), t > 0, (7)

Kuramoto–Sivashinsky (KS) Equation 3

where

w̃k=
1

2πL

∫

−πL

πL

u2 (x, t)e−ikx/Ldx≈
1

N

∑

j=0

N−1

u2(xj , t)e
−ikxj/L=(IN(u

2), eikx/L).

2. Using RK4 to solve the ODE system (7) with integrating factor g= eλt, λ= k4/L4− k2/L2.

(eλtũk)′=−
i k

2L
eλtw̃k,

or

(

eλ(t−tn)ũk

)′=−
i k

2L
eλ(t−tn)w̃k

% p32.m - Solve Kuramoto-Sivashinsky(KS) eq.

% u_t + uu_x + u_xx + u_xxxx = 0 on [-pi L,pi L]

% by FFT with integrating factor.

clf; clear;

function [x tdata udata] = KSsolu(uex, L, N, tmax, dt, nplot)

x = (2*pi*L/N)*(0:N-1)’;

u = feval(uex, x); v = fft(u);

k = [0:N/2-1 0 -N/2+1:-1]’/L;

nplt = floor((tmax/nplot)/dt); nmax = round(tmax/dt);

udata = u; tdata = 0;

for n = 1:nmax

t = n*dt; g = -.5i*dt*k;

E = exp(-dt*(k.^4-k.^2)/2); E2 = E.^2;

a = g.*fft(real(ifft(v)).^2);

b = g.*fft(real(ifft(E.*(v+a/2))).^2); % 4th-order

c = g.*fft(real(ifft(E.*v + b/2)).^2); % Runge-Kutta

d = g.*fft(real(ifft(E2.*v+E.*c)).^2);

v = E2.*v + (E2.*a + 2*E.*(b+c) + d)/6;

if mod(n, nplt) == 0

u = real(ifft(v));

udata = [udata u]; tdata = [tdata t];

end

end

end

L=16; u =inline(’cos(x/L).*(1+sin(x/L))’, ’x’);

tmax=300; dt=0.05; nplot=300; N=128;

[x, tdata, udata] = KSsolu(u, L, N, tmax, dt, nplot);

[tt, xx]=meshgrid(tdata,x); imagesc(tt, xx, udata);

xlabel t, ylabel x

2.1 Numerical Results

We take L= 16 and impose the initial condition:

u0(x) = cos (x/L)(1+ sin (x/L)). (8)

We also set Tmax= 300, time step δt= 0.05, N = 128. Following figure give the numerical result.

4 Section 2

x

t

0

10

20

30

40

50

60

70

80

90

0 50 100 150 200 250 300

Figure 2. The numerical solution of the KS equation with initial profile (8), andL=16 for t∈ [0,300]. The discretization

parameters are: N = 128, δt= 0.005. This figure is generated by p32.m.

3 Allen–Cahn Equation

We consider the two-dimensional Allen–Cahn equation with periodic boundary conditions:

∂tu− ε2∆u+u3− u=0, (x, y)∈Ω= (−1, 1)2, t > 0,
u(−1, y, t)= u(1, y, t), u(x,−1, t)= u(x, 1, t), t > 0,
u(x, y, 0)= u0(x, y), (x, y)∈Ω.

(9)

3.1 Strang splitting

To get a absolutely stable scheme, we use Strang splitting. Denote by un= u(·, ·, tn), tn= n h with h is the
time step, then each time step of the first order Strang splitting scheme for Allen-Cahn equation consists
three substeps:

∂

∂t
u1− ε2∆u1=0, u1(t=0)= un

� u1
∗= u1(h/2); (10)

∂

∂t
u2+u2

3− u2=0, u2(t=0)= u1
∗; � u2

∗= u2(h); (11)

∂

∂t
u3− ε2∆u3=0, u3(t=0)=u2

∗; � un+1=u3(h/2). (12)

Allen–Cahn Equation 5

The first and third substeps involves solving a diffusion equation, which can be down by FFT in O(N2log2N)
operations. The second step is a ODE equation for the grid values of u. which is equivalent to solve

u′−u=−u3
� u−3u′−u−2=−1 � −

1

2
(u−2)′− u−2=−1

By variable change v=u−2, we get

v ′+2v=2 � v(t)= v0 e
−2t+(1− e−2t)

so we get

u(t)=±1/ u0
−2e−2t+(1− e−2t)

√

=
u0

e−2t+(1− e−2t)u0
2

√ .

We use uN =
∑

k=−N/2
N/2 ∑

j=−N/2
N/2

ũk,je
ikπxeijπy to approximate the solution u in (9). By applying this to

the first substeps (10) of Strang splitting, we get

ũk,j
′ (t)+ ε2π2(k2+ j2)ũk,j=0.

This also applys to the third substep. So the overall algorithm reads

1. Set up the initial values on discrete grid points: { uk,j
0 = u(xk, yj , 0), k, j = 0, 	 , N − 1 }, and

transform it to spectral coefficients { ũk,j
0 : k, j=0,±1,	 ,±N/2 }by 2-dimensional FFT.

2. Let tn=nh, for n=1,	 , nmax, do the Strange splitting

a. calculate

ũk,j= ũk,j
n e−λh, λ= ε2π2(k2+ j2).

b. Solving equation (11) in three steps.

i. Transform {ũk,j} to physical values {uk,j} by 2-dimensional reverse FFT, in matlab
this is

u = real(ifft2(utilde)),

where utilde is the matrix formed by { ũk,j }, and u is the matrix formed by {uk,j};

ii. Solving equation (11). This can be down by

uk,j �
uk,j

e−2h+(1− e−2h)uk,j
2

√ ;

iii. Transform {uk,j} to spectral coefficients { ũk,j } by 2-dimensional FFT in matlab:

utilde=fft2(u);

c. calculate

ũk,j
n+1= ũk,j e

−λh, λ= ε2π2(k2+ j2).

3. Output the numerical solution and do other post-processing.

3.2 Numerical results

We take initial condition

u0(x, y)=

{

1, if x2+ y26 1/4,
−1, otherwise.

The snapshot of the solutions at several time steps are given in following figure. The inner u = 1 region
shrinks, and eventually disappears.

6 Section 3

y

x

t=312.5

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

y

x

t=250

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

y

x

t=187.5

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

y

x

t=125

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

y

x

t=62.5

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

y

x

t=0

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

Figure 3. The solution of the Allen–Cahn equation. The solver parameters are ε= 0.02, δt= 0.05, N = 128.

Allen–Cahn Equation 7

