Lecture 3: Applications of Fourier Spectral Method

1 Korteweg-de Vrices (KdV) Equation
The KdV equation
U+ Uy +Uyyy =0, YyE(—00,00), >0,

u(y,()):uo(y), yE(—O0,00),
has an exact soliton solution

u(y,t) =12 k?sech?(k(y — yo) — 4K3t), (1)

where yg is the center of the initial profile u(y,0), s is a constant related to the travelling phase speed.

1.1 Discretization
1. Truncate the computational domain
ye(—nL,nL), wu(y,t)=u(y+2nL,t).
2. Mapping the interval [—-wL,7L] to [0, 27] by
x:%—i—w, y=L(z—m), x€l0,2n], ye&[-nL,nL].

Let v(x,t) =u(y,t), vo(x) =up(y), then transformed KdV equation reads

1 1
Ut—i-fvvm—i—ﬁvmm—o, x€(0,2m), t>0, (2)

v(+, t) periodicon [0,27], t>0; w(z,0)=wv(z), =z€]0,2n].

3. Solving (2) by Fourier method.
Writting v(z,1) =32, < n /o 1k (t)e’*®, taking the innner product of the first equation in (2) with

e'** and using the fact vv, = %(02)1, we obtain that

Adve(t) k% . ik

q —Fﬁk—i-i(v ),=0, k=0,£1,...,+£N/2. (3)
with the initial condition
R X 1 271' .
05(0) = (vo(x), e'%) = %/O vo(z) e~ du. (4)

We solve the ODE system (3) and (4) by a 4th order Runge-Kutta method with integrating factor.

Denote A=ik/L, equation (3) has an integrating factor g(t) =e4™, and can be transformed to
%[ef‘“‘tﬁk] :—éeAst(UQ)k, k=0,%1,...,£N/2. (5)
Let wy, = e2°t6y, we get
%: —éeAst(v2)k, tp=wre A, k=0,%£1,...,+N/2. (6)
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RK4 for equation
w'(t) = f(t, w)

reads

Wt — hi+2ha+2hs+ha

)

hi = Ot f(t", w")
hy = Ot f(t"+6t/2,w" + hy/2),
hy = 5tf(t”+6t/2 w +h2/2)

Remark 1. In general, 9(0) is usually calculated by FFT, which is not exactly equal to (4), the
error between a discrete Fourier transform and a continuous one is controlled by the aliasing error.
Similar situation happens for the nonlinear term ,

—~ 1 27 X
(02)k=§/0 vZe kT dg.

Since v € Xn: =span{e’**: k = 0, £1, ..., £N/2}, so v2 € Xop, and {v? e7*% k =0, +1,
+N/2} € X3n. the discrete numerical 1ntegration formula with N point is ic\curate only for Xon,
which means if we use a discrete Fourier transform with N point to calculate (v?),,, then there will be
some aliasling error. To get rid of the aliasing error, we at least need a quadrature with 3N /2 points,
or Fourier transform with 3N /2 grid points. When w is very smooth, the aliasing error will not be
very big, so an algorithm without anti-aliasing is acceptable.

1.2 Implementation
We use Matlab(octave) to implement the algorithm.
1. The initial solution 9(0) in (4) is calculated by fft with length N. 0 = fft(vo, N).

2. For given n, 0x(t™), use RK4 to solve equation (5).

function [tdata udata] = KdVsolu(uex, N, tmax, dt, nplot)
x = (2xpi/N)*(-N/2:N/2-1);
u = feval(uex, x, 0); v = fft(u);
k = [0:N/2-1 0 -N/2+1:-1]7; ik3 = 1i*k."3;
nplt = floor((tmax/nplot)/dt); nmax = round(tmax/dt);
udata = u; tdata = 0;
for n = 1l:nmax
nxdt; g = -.5i*dtx*k;
= exp(dt*ik3/2); E2 = E."2;
= g.*xfft(real( ifft( v ) )."2);
g.*xfft(real( ifft(E.x(v+a/2)) )."2); % 4th-order
= g.xfft(real( ifft(E.*v + b/2) ).~2); 7% Runge-Kutta
= g.xfft(real( ifft(E2.*v+E.*c) )."2);
= E2.%v + (E2.%a + 2*E.x(b+c) + d)/6;
if mod(n,nplt) == 0 u = real(ifft(v));
udata = [udata u]; tdata = [tdata t];
end
end

< &0 o e M
I

end
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1.3 Numerical Results

We take kK =0.3, yo=—20 and L =15 in the intial solution (1), which corresponds to

v(z,t) =12 K%sech®(kL(z — 7 — yo/L) — 4K3t),

and use tmax =60, dt =0.01 for various IV to solve the KdV equation and verify the accuracy of the numerical

solution.

The L(+) and H'(0) convergence rates

error

Figure 1. The convergence rate of Fourier method for KdV equation without anti-aliasing.

2 Kuramoto—Sivashinsky (KS) Equation

ut+uzzxz+uzz+uuxzoa IE(—O0,00), t>07
u(z,t)=u(z+2nrL,t), uz(x,t)=ux(x+2rL,t), t=>0,
u(x,0) =up(x), =€ (—00,00).

1. Let
N/2
uR Z ag(t) eF*/E ) 1> 0
k=—N/2
plugging into KS equation, and pairting the result with e***/L we get

_, Kt k2 1.
ap(t) + 717z uk(t):—ﬁzkwk(t), t>0,

100
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where

1 L

N-1
, 1 - ,
_ 2 —ikz/L ~ 2( . —ikx;/L _ 2 ikxz/L .
Wy, ZE.MLU(%ﬂe dx-ﬁéou(%Jk (In(u®),e )
i=

2. Using RK4 to solve the ODE system (7) with integrating factor g =e*, A\=k*/L*—k?/L2

(eAt’lIk)/ — _% €At’u~}]€,
or
At—t") 7 Y LE At -
(e uk) 5T ¢ Wy

% p32.m - Solve Kuramoto-Sivashinsky(KS) eq.

% u_t + uu_x + u_xx + u_xxxx = 0 on [-pi L,pi L]

% by FFT with integrating factor.

clf; clear;

function [x tdata udata] = KSsolu(uex, L, N, tmax, dt, nplot)
x = (2%pi*L/N)*(0:N-1)7;
u = feval(uex, x); v = fft(u);
k = [0:N/2-1 0 -N/2+1:-1]°/L;
nplt = floor((tmax/nplot)/dt); nmax = round(tmax/dt);
udata = u; tdata = 0;

for n = 1:nmax
t = nxdt; g = -.5i*xdtx*k;
E = exp(-dt*(k."4-k."2)/2); E2 = E."2;
a = g.xfft(real( ifft( v ) )."2);
b = g.xfft(real( ifft(E.*(v+a/2)) )."2); % 4th-order
c = g.xfft(real( ifft(E.*xv + b/2) ).~2); ' Runge-Kutta
d = g.xfft(real( ifft(E2.xv+E.*c) )."2);
v = E2.%v + (E2.%a + 2*E.x(b+c) + d)/6;

if mod(n, nplt) ==
u = real (ifft(v));
udata = [udata ul]; tdata = [tdata t];
end
end
end
L=16; u =inline(’cos(x/L) .*(1+sin(x/L))’, ’x’);
tmax=300; dt=0.05; nplot=300; N=128;
[x, tdata, udata] = KSsolu(u, L, N, tmax, dt, nplot);
[tt, xx]=meshgrid(tdata,x); imagesc(tt, xx, udata);
xlabel t, ylabel x

2.1 Numerical Results
We take L =16 and impose the initial condition:
uo(z) =cos (x/L)(1+sin (z/L)). (8)

We also set Tiax = 300, time step 6t =0.05, N =128. Following figure give the numerical result.
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Figure 2. The numerical solution of the KS equation with initial profile (8), and L= 16 for t € [0, 300]. The discretization
parameters are: N = 128, 6t =0.005. This figure is generated by p32.m.

3 Allen—Cahn Equation

We consider the two-dimensional Allen—Cahn equation with periodic boundary conditions:

Ou—e?Au+ud—u=0, (z,y)eQ=(-1,1)% t>0,
u(_lay)t):u(lyyat)v u(x,—l,t):u(x,l,t), t>0, (9)
u(xayao)ZUO(x)y)a (x,y)EQ.

3.1 Strang splitting

To get a absolutely stable scheme, we use Strang splitting. Denote by v =u(-, -, t"), t" =n h with h is the
time step, then each time step of the first order Strang splitting scheme for Allen-Cahn equation consists
three substeps:

%ul—eZAulzo, w(t=0)=u" = ui=ui(h/2); (10)

9 3 * *

EU2+U2—U2:O, us(t=0)=uj; = ub=uwua(h); (11)
2ug,—eZAug,:O, us(t=0)=u3; = u"Tl=uz(h/2). (12)

ot
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The first and third substeps involves solving a diffusion equation, which can be down by FFT in O(N?logaN)
operations. The second step is a ODE equation for the grid values of u. which is equivalent to solve

1
v—u=—u? = v -u?=-1 = _i(U_Q)I—u_2:—1

2

By variable change v=u"°, we get

vV +20=2 = v(t)=voe 2+ (1-e"?)

so we get
_9 _ _ uo
u(t)::l:l/\/uoze Hi(1—e2)= .
Ve 24 (1—e 2t)ud
We use uy = ZQZ%N/Q Zé-v:/iN/Q iig, 6™ %et™ to approximate the solution u in (9). By applying this to

the first substeps (10) of Strang splitting, we get
ﬂéd(t) + 527T2(k2 + ]Q)ﬂkd = O
This also applys to the third substep. So the overall algorithm reads

1. Set up the initial values on discrete grid points: { u%j =u(zk, y5,0), k,j=0,..,N—-1}, and
transform it to spectral coefficients { dg)j: k,7=0,%1,...,£N/2 }by 2-dimensional FFT.

2. Let t"=mnh, for n=1,..., nmax, do the Strange splitting
a. calculate
g, j=up e A=er?(k*+ j2).
b. Solving equation (11) in three steps.
i. Transform {4 ;} to physical values {ug, ;j} by 2-dimensional reverse FFT, in matlab
this is
u = real( ifft2( utilde ) ),
where utilde is the matrix formed by { 4, ; }, and u is the matrix formed by { u,;};

ii. Solving equation (11). This can be down by

Uk, j .
)
\/e_zh +(1- e‘zh)u%j

Uk,j <

ili. Transform {uy, ;} to spectral coefficients { Gy, ; } by 2-dimensional FFT in matlab:
utilde=ft2(u);

c. calculate

Al - —Xh _.2.2012 1 2
Uy =y, je ,  A=e*m(k*+ 59).

3. Output the numerical solution and do other post-processing.

3.2 Numerical results

We take initial condition
1, if 22+y%2<1/4,
—1, otherwise.

UO(%Z/)Z{

The snapshot of the solutions at several time steps are given in following figure. The inner v = 1 region
shrinks, and eventually disappears.
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Figure 3. The solution of the Allen—Cahn equation. The solver parameters are € = 0.02, §t = 0.05, N = 128.



