
Lecture 2: Fourier Spectral Method

This part is based on Chapter 2 of ShenTangWang’s book. We will first introduce the basic ingredient
of Fourier methods in section 1, then we will do some analysis on the Fourier approximation, in the last
section, we will apply the Fourier method to solve some PDEs.

1 Introduction to Fourier Transforms and FFT

1.1 Fourier Transform of a function on R

The Fourier transform of a function u(x), x∈R, is the function û(k) defined by

û(k) =
1

2π

∫

−∞

∞

u(x) e−ikx dx, k ∈R. (1)

we can construct u from û by the inverse Fourier transform

u(x) =

∫

−∞

∞

û(k) eikxdk, x∈R. (2)

x: physical variable, k: Fourier variable or wavenumber.
Now we consider x ranging over hZ rather than R. Since the spatial domain is discrete, the wavenumber

k will no longer range over all of R, since e−ik1x and e−ik2x will be equal on hZ if k1 − k2 = 2π/h. So, we
consider let k ∈ [−π/h, π/h].

Physical space : discrete, unbounded : x∈ hZ

l l
Fourier space : bounded, continuous : k ∈ [−π/h, π/h]

For a function v defined on hZ with value vj at xj, the semidiscrete Fourier transform is defined by

v̂ (k)=
h

2π

∑

j=−∞

∞

vj e
−ikxj, k ∈ [−π/h, π/h], (3)

and the inverse semidiscrete Fourier transform is

vj=

∫

−π/h

π/h

v̂(k)eikxj dk, j ∈Z. (4)

1.1.1 Differentiation on infinite grid hZ

For spectral differentiation, we need an interpolant. Give v(xj), xj ∈ hZ, we define the banded-limited

interpolant of v by

p(x)=

∫

−π/h

π/h

v̂ (k)eikx dk, x∈R, (5)

where v̂ (k) are given by equation (3). There are two procedure to spectral differentiation. One is the
description in phsyical space:

1. Given v, determine its band-limited interpolant p by (5), then

2. Set wj= p′(xj).

Another approach is doing the differentiation in Fourier space:

1. Given v, compute its semidiscrete Fourier transform v̂ by (3).

2. Define ŵ(k) = ik v̂(k).

3. Compute w from ŵ by inverse semidiscrete Fourier transform (4).

To make the formulation looks nicer, to let’s first define the differentiation matrix. Denote

δj≡ δ(xj): =

{

1, j=0,
0, otherwise.
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It is very easy to calculate the semidiscrete Fourier transfrom is δ̂ (k)=h/2π, and the banded-limit interpolant
of δ is

h

2π

∫

−π/h

π/h

eikxdk=
sin (πx/h)

πx/h
6 Sh(x),

This is the famous sinc function.
Since a general grid function v can by written as

vj=
∑

m=−∞

∞

vmδj−m.

its interpolant can be written as

p(x)=
∑

m=−∞

∞

vmSh(x− xm).

The derivative is accordingly

wj= p′(xj)=
∑

m=−∞

∞

vmSh
′ (xj − xm)

If we take Sh
′ (xj−xm) as components of a matrix D, then Sh

′ (xj)=Sh
′ (xj−x0) is the components of column

m=0 of D. the other columns are obtained by shitting this column. It is easy to verify that

Sh
′ (xj)=











0, j=0,

(−1)j

jh
, j � 0.

Similarly we can calculate the high order differentiation matrix by

p′′(xj)=
∑

m=−∞

∞

vmSh
′′(xj −xm),

and

Sh
′′(xj)=















−
π2

3h2
, j=0,

2
(−1)j+1

j 2h2
, j � 0.

1.2 Fourier transform on periodic grid

1.2.1 Continuous Fourier series

If the function considered is 2π periodic, then its spectrum must be integer, since eikx is 2π periodic iff k is
an integer. For any complex-valued function u∈L2(0, 2π), its Fourier series is defined by

F(u)(x)6
∑

k=−∞

∞

ûk e
ikx, (6)

where the Fourier coefficients are determined by

ûk=
1

2π

∫

0

2π

u(x) e−ikx dx. (7)

Actually, {Ek=eikx:k∈Z} forms a set of complete orthogonal bases in the complex Hilbert space L2(0,2π),
equipped with the inner product and the norm

(u, v)6
1

2π

∫

0

2π

u(x)v̄ (x) dx, ‖u‖= (u, u)
√

,

where v̄ is the complex conjugate of v. The orthogonality of {Ek= eikx: k ∈Z} reads

(Ek, Em) =
1

2π

∫

0

2π

ei(k−m)xdx= δkm.
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The basic properties of the Fourier series:

1. if u is a real-valued function, then û−k= ûk̄, ∀k ∈Z.

2. For any u ∈ L2(0, 2π), its truncated Fourier series FN(u) 6
∑

|k|6N
ûke

ikx converges to u in the
L2− sense, and there holds the Parseval’s identity:

‖u‖2=
∑

k=−∞

∞

|ûk|2.

3. If u is continuous, periodic and of bounded variation on [0,2π], then FN(u) uniformly converges to u.

4. FN(u)(x)= (DN∗u)(x)=
1

2π

∫

0

2π
DN(x− t)u(t) dt, where DN =

∑

k=−N

N
eikx=

sin ((N +1/2)x)

sin (x/2)
.
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Sometimes, it is convenient to express the Fourier series in terms of the trigonometric polynomials

u(x)∼
a0
2
+
∑

k=1

∞

(ak cos (kx)+ bk sin (kx)), (8)

where

ak=
1

π

∫

0

2π

u(x) cos (k x) dx, bk=
1

π

∫

0

2π

u(x) sin (kx) dx.

The coefficients of the two different representation of (6) and (8) are related by

û0=
a0
2
, ûk=















ak− i bk
2

, if k> 1,

a−k+ i b−k

2
, if k6−1.

(9)

In particular, if u is a real-valued function(in which we call (8) real Fourier series), then

a0=2 û0, ak=2Re(ûk), bk=−2 Im(ûk), k> 1.
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1.2.2 Discrete Fourier Series

Given a positive integer N , let xj= j h= j
2π

N
, 06 j6N − 1 be the N -equispaced grids in [0, 2π), which are

refered to as Fourier collocation points. Since eikxj = ei (k+N)xj, so we will again require k ∈ [−π/h, π/h]. In

this lecture we will assume N is an even number, such that
π

h
=

N

2
is an integer.

Physical space : discrete, bounded (periodic) : u(xj), xj= j
2π

N
, j ∈ZN = { 0, 1,	 , N − 1}

l l
Fourier space : bounded, discrete : Ek, k ∈ {−N/2+ 1,−N/2+ 2,	 , N/2 }

We define the discrete inner product by

〈u, v〉N: =
1

N

∑

j=0

N−1

u(xj)v̄ (xj).

Lemma 1. Let Ek(x) = eikx. For any integer N > 1, we have

〈Ek, Em〉N =

{

1, if k−m= l N , ∀ l∈Z,

0, otherwise.

Proof. If k−m is not divisible by N, then

〈Ek, Em〉N =
1

N

∑

j=0

N−1

ei(k−m)xj =
1

N

∑

j=0

N−1
(

ei(k−m)2π/N
)

j

=
1

N

e2πi(k−m)−1

e2πi(k−m)/N − 1
= 0.

If k−m is divisible by N, we have e2πi(k−m)/N =1, so the summation above equals to 1. �

It is easy to verify that use the rectangular quadrature formular on discrete grids

1

2π

∫

0

2π

v(x) dx≈
1

N

∑

j=0

N−1

v(xj), ∀v ∈C[0, 2π). (10)

is exact for all v ∈ span{eikx: 06 |k |6N − 1}, and v= sin (±Nx), but not for v= cos (±Nx).

Since E−N/2 = EN/2, it will be problematic if we including only EN/2. For example, to approximate

2 cos (N x/2) on {xj , j ∈ ZN}, we get a sawtooth wave on the grid. Using {Ek, − N/2 < k 6 N/2} to

approximate it, we will get eiNx/2, its derivative will be iN/2 eiNx/2 instead of 0 on the grid points. So we
will use the approximation space

TN = {u=
∑

k=−N/2

N/2

ũk e
ikx: ũ−N/2= ũN/2}.

Define the the mapping IN:C[0, 2π)→TN by

(INu)(x) =
∑

k=−N/2

N/2

ũk e
ikx, (11)

where {ũk} are given by the Discrete Fourier Transfrom (DFT)

ũk=
1

ck
×

1

N

∑

j=0

N−1

u(xj) e
−ikxj, k=0,±1,	 ,±N/2. (12)

Here

ck=

{

2, k=±N/2,
1, otherwise.
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The following lemma shows that IN is the interpolation operator from C[0, 2π) to TN, i.e.

(INu)(xj)= u(xj), xj=
2πj

N
, 06 j6N − 1. (13)

Lemma 2. For any u∈C[0, 2π),

(INu)(x)=
∑

j=0

N−1

u(xj)hj(x), (14)

where

hj(x)=
1

N
sin
[

N
x− xj

2

]

cot
[

x−xj

2

]

∈TN

satisfying

hj(xk)= δjk, ∀ j , k=0, 1,	 , N − 1.

Proof. By (11) and (12),

(INu)(x) =
∑

k=−N/2

N/2




1

Nck

∑

j=0

N−1

u(xj) e
−ikxj



eikx

=
∑

j=0

N−1




1

N

∑

k=−N/2

N/2
1

ck
eik(x−xj)



u(xj)

Comparing this with (14), we get

hj(x) =
1

N

∑

k=−N/2

N/2
1

ck
eik(x−xj)

=
1

N

(

DN/2−1(x− xj)+ cos
[

N
x−xj

2

])

=
1

N

(

sin
[

(N − 1)
x−xj

2

]

sin
x− xj

2

+ cos
[

N
x− xj

2

]

)

=
1

N
sin
[

N
x− xj

2

]

cot
[

x−xj

2

]

.

GNUplot] plot [-pi:pi] sin(20*x/2)/tan(x/2)/20

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

-3 -2 -1  0  1  2  3

sin(20*x/2)/tan(x/2)/20

Introduction to Fourier Transforms and FFT 5



GNUplot]

�

Taking x= xj in (11) leads to the inverse Discrete Fourier Transfrom

u(xj) =
∑

k=−N/2

N/2

ũk e
ikxj, j=0, 1,	 , N − 1. (15)

Remark 3. It is obvious that the discrete Fourier transform (12) and its inverse (15) can be carried out
through matrix-vector multiplication with O(N2) operations. However, thanks to the fast Fourier trasnform
duce to Cooley and Tukey (1965), such processes can be accomplished with O(N log2N) operations.

1.2.3 FFT and iFFT in MATLAB

Given the data { v(j) = u(xj−1) }j=1
N sampled at { xj = 2πj/N }j=0

N−1, the command “ṽ = fft(v)” returns the

vector {v̄ (k)}k=1
N , defined by

v̄ (k) =
∑

j=1

N

v(j)e−2πi(j−1)(k−1)/N , 16 k6N,

while the inverse FFT can be computed with the command “v=ifft(v~)” which returns the physical values
{ v(j)}j=1

N via

v(j) =
1

N

∑

k=1

N

v̄ (k)e2πi(j−1)(k−1)/N , 16 j6N.

For u(xj) = v(j+1), xj=
2πj

N
, 06 j6N − 1, let ũk be the FFT defined by (12), then

ũk=



























1

N
v̄ (k+1), 06 k6

N

2
− 1,

1

N
v̄ (k+N +1), −

N

2
+ 16 k6−1,

1

2N
v̄ (N/2+1), k=±

N

2
.

1.2.4 Differentiation in the Physical Space

By using the nodal basis representation (14), we can easily represent the derivatives of u(x) in terms of u(xj):

uN
(m)

(x) = (INu)
(m)(x) =

∑

j=0

N−1

u(xj)hj
(m)

(x).

This precess can be formulated as a matrix-vector multiplication

uN
(m)=D(m)

uN , m> 0, (16)

where

D(m)=
(

dkj
(m)
6 hj

(m)
(xk)

)

k,j=0,	 ,N−1
,

uN =(u(x0), u(x1),	 , u(xN−1))
T ,

uN
(m)

=
(

uN
(m)

(x0), uN
(m)

(x1),	 , uN
(m)

(xN−1)
)

T
.

Lemma 4. The entries of the first-order Fourier differentiation matrix D are given by

dkj
(1)

=hj
′ (xk)=











(−1)k+j

2
cot

[

(k− j)π

N

]

, if k � j ,

0, if k= j.

(17)
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Proof. Let θ=(x− xj)/2, then

hj
′ (x)=

1

2
cos(Nθ)cot(θ)−

1

2N
sin(Nθ) csc2 (θ). (18)

If x= xk � xj, then θ = (k − j)π/N, the second term is 0, the first term can be simplified into the desired
expression in (17). If k= j, then θ=0, it can be showed that hj

′ (xj)= 0 by the Taylor expansion of (18).
�

In general

hj
(m)

(xi)=
1

N

∑

k=−N/2

N/2
(i k)m

ck
e2πik(i−j)/N. (19)

In particular, the entries of the second-order differentiation matrix D(2) are given by

dkj
(2)

=hj
′′(xk)=















−
(−1)k+j

2
sin−2

[

(k− j)π

N

]

, if k � j ,

−
N2

12
−

1

6
, if k= j.

(20)

Remark 5. It is worthwhile to point out that D(2)
� D2. Consider u(x) = cos (Nx/2), then u(xj) = (−1)j,

we have Du=0, but D(2)
u=−N2

u/4.

1.2.5 Differentiation in the Frequency Space.

It is clear that the differentiation procedure using (16) requires O(N2) operations. Now we demonstrate how
to perform the differentiation in Fourier space with O(N log2N) operations.

1. Given u(xj), j ∈ZN using FFT to calculate ũk, k=0, 1,	 ,±N/2. Note that ũN/2= ũ−N/2.

2. Compute the coefficients of the expansion of the derivative:

w̃k=

{

i k uk̃ , k=0, 1,	 ,±N/2− 1,
0, k=±N/2.

3. Compute the derivative wj=(INu)
′(xj) by using IFFT on w̃k, k=0, 1,	 ,±N/2.

2 Approximation Properties in Sobolev Space

2.1 Inverse Inequalities

Since all norms of a finite dimensional space are equivalent, we can bound a strong norm by a weaker one
with bounding constants depending on the dimension of the spce. This type of inequality is called inverse
inequality. Our aim of this section is to find the optimal constants in such inequalities.

Define

XN6 span{ eikx:−N 6 k6N }.

Lemma 6. (Nikolski’s inequality) For any u∈XN and 16 p6 q6∞,

‖u‖Lq6

(

Np0+1

2π

)

1

p
−

1

q‖u‖Lp,

where p0 is the least even integer >p.

Lemma 7. (Bernstein inequality) For any u∈XN and 16 p6∞,

‖∂x
mu‖Lp.Nm‖u‖Lp, m> 1.

In particular, for p=2,

‖∂x
mu‖.Nm‖u‖. (21)
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The proofs of these inverse inequalities can be found in Butzer and Nessel (1971).

2.2 Orthogonal Projection

Let PN:L
2(I)→XN, I6 (0, 2π) be the L2− orthogonal projection, defined by

(PNu−u, v) = 0, ∀v ∈XN.

It is obvious that PNu is the truncated Fourier series, namely,

(PNu)(x)=
∑

k=−N

N

ûk e
ikx,

where {ûk} are given by (7).
The norm and seminorm of Hp

m(I) can be characterized in the frequency space by

‖u‖m=

(

∑

k=−∞

∞

(1+ k2)m|ûk|2

)

1/2

, |u|m=

(

∑

k=−∞

∞

|k |2m|ûk|2

)

1/2

.

It is easy to verify that

∂x
l (PNu)=PN(∂x

lu), 06 l6m.

Theorem 8. For any u∈Hp
m(I) and 06 µ6m,

‖PNu−u‖µ.N µ−m|u|m (22)

Proof.

‖PNu−u‖µ
2 =

∑

|k|>N

(1+ k2)µ|ûk|2

. N2µ−2m
∑

|k|>N

|k |2m−2µ(1+ k2)µ|ûk|2

. N2µ−2m
∑

|k|>N

|k |2m|ûk|2

. N2µ−2m|u|m
2 .

�

Theorem 9. For any u∈Hp
m(I) with m> 1/2, (Sobolev embedding Hp

1/2
(I)⊆L∞(I))

max
x∈[0,2π]

|(PNu− u)(x)|6
1

2m− 1

√

N1/2−m|u|m.

Proof. By the Cauchy–Schwarz inequality,

|(PNu−u)(x)|6
∑

|k|>N

|uk̂ | 6

(

∑

|k|>N

|k |−2m

)

1/2
(

∑

|k|>N

|k |2m|ûk|2
)

1/2

6
1

2m− 1

√

N1/2−m|u|m.

�

2.2.1 Interpolation

We consider the Fourier interpolation on 2N collocation points { xj = πj/N }j=0
2N−1, but still denote the

interpolation operator by IN, that is

(INu)(x)=
∑

k=−N

N

ũk e
ikx,

with ũN = ũ−N and

ũk=
1

2Nck

∑

j=0

2N−1

u(xj) e
−ikxj, −N 6 k6N.
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Theorem 10. For any u∈Hp
m(I) with m> 1/2,

‖∂x
l (INu−u)‖.N l−m|u|m, 06 l6m.

Proof. First, the asliasing formula

ckũk= ûk+
∑

|p|>0

∞

ûk+2pN. (23)

By using this formula, a direct calculation leads to

‖PNu− INu‖2 =
∑

|k|6N

|ûk− ũk|2

=
∑

|k|<N

|ûk− ũk|2+
1

4

∑

k=±N

|2ûk − 2ũk|2

.
∑

|k|<N

|ûk− ũk|2+
1

2

∑

k=±N

|ûk− 2ũk|2+
1

2

∑

k=±N

|ûk|2

.
∑

|k|6N

|ûk− ũk|2+
1

2

∑

k=±N

|ûk|2

The last term is bounded by

|ûN |2+ |û−N |26N−2m
∑

|k|=N

∞

|k |2m|ûk|26N−2m|u|m
2 ,

and the first term can be estimated by using the aliasing formula and the Cauchy–Schwarz inequality:

∑

|k|6N

|ûk − ckũk|2 =
∑

|k|6N

∣

∣

∣

∣

∣

∣

∑

|p|>0

∞

ûk+2pN

∣

∣

∣

∣

∣

∣

2

6
∑

|k|6N













∑

|p|>0

∞

|k+2pN |−2m













∑

|p|>0

∞

|k+2pN |2m|ûk+2pN |2













6 max
|k|6N







∑

|p|>0

∞

|k+2pN |−2m







×







∑

|k|6N

∑

|p|>0

∞

|k+2pN |2m|ûk+2pN |2







It is clear that (m> 1/2)

max
|k|6N







∑

|p|>0

∞

|k+2pN |−2m







6
1

N2m

∑

|p|>0

∞
1

|2p− 1|2m
.N−2m,

and
∑

|k|6N

∑

|p|>0

∞

|k+2pN |2m|ûk+2pN |26 2|u|m
2 .

Hence, a combination of the above estimate leads to

‖PNu− INu‖.N−m|u|m

By the inverse inequality (21),

‖∂x
l (PNu− INu)‖.N l‖PNu− INu‖.N l−m|u|m,

Finally, by the triangular inequality and and Theorem ( 8) yields

‖∂x
l (INu−u)‖6 ‖∂x

l (PNu− INu)‖+ ‖∂x
l (PNu− u)‖.N l−m|u|m.

�
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3 Application

We look at the elliptic equation

αu(x)− u′′(x)= f , x∈ [0, 2π) (24)

with periodic boundary condition

u(x+2π)= u(x).

We use Fourier method on N equispaced grid points { xj :xj= j2π/N, j=0,	 , N − 1 }.

1. Collocation method. Approximating equation (24) on {xj} by using D(2)u(xj) to approximate u′′(xj),
we get

αu(xk)−Dkj
(2)

u(xj)= f(xk), ∀k=0, 1,	 , N − 1.

Denote by U =(u(x0), u(x1),	 , u(xN−1))
T , and F =(f(x0), f(x1),	 , f(xN−1))

T , we have

αU −D(2)U =F , i.e.
(

αI −D(2)
)

U =F (25)

The above linear system is a dense matrix. To solve it, we need use some matrix factorization skill
or Gauss elimination method.

2. Galerkine method. In equation (24), using uN =
∑

k=−N/2
N/2

vk e
ikx to approximate the solution, and

taking inner product the result equation with eijx, we get

α vk δkj+ vkk
2 δkj= fj , fk=(INf , e

ikx)= 〈f , eikx〉N , j=0, 1,	 ,±N/2,

i.e.

α vj+ j2vj= fj , j=0, 1,	 ,±N/2,

so we get

vj=
fj

α+ j2
, j=0, 1,	 ,±N/2. (26)

Thus the numerical solution is

uN =
∑

k=−N/2

N/2

vj e
ikx=

∑

k=−N/2

N/2
fj

α+ j2
eikx.

We can done this by three steps.

a. calculate fk, k=0, 1,	 ,±N/2, by FFT

b. calulate vj using (26).

c. calculate uN by the inverse FFT.

3.1 Error estimate

Suppose that u∈Hp
m(I), then by first Strang lemma (Theorem 1.3 in ShenTangWang’s book)

‖u− uN ‖1. ‖u−PNu‖1+ sup
vN∈XN

|(f − INf , vN)|
‖vN‖1

.N1−m|u|m+ ‖f − INf ‖−1 (27)

Since this equation is so simple, we know that the regularity of u is 2-order higher than f , i.e. if f ∈Hp
s(I),

then u∈Hp
s+2(I).

3.2 Numerical results

We use several f with different regularity to verify the convergence rate. For α=1, the right hand side

fk(x) =

{

10 sin3 |x−π | − 6 sin |x− π |, k=1,

esin(x) (sin2 (x)+ sin (x)), k=2
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corresponds to solution

uk(x)=

{

sin3 |x− π |, k=1,

esin(x), k=2.

We use following octave code (octave is a free clone of Matlab, http://www.gnu.org/software/octave/) to
verify the convergence rate (27) of the numerical solution.

% lec2.m - convergence of the Fourier method for linear elliptic equations

a=1;

% algebraic convergence for f1

Nvec = 2.^(3:12);

clf, subplot(1,2,1);

for N=Nvec

h=2*pi/N; x=0:h:2*pi-h;

ii=1:N; kk=N/2-abs(ii-N/2-1);

ue=sin(abs(x-pi)).^3; f=10*sin(abs(x-pi)).^3 - 6*sin(abs(x-pi));

% three steps to solve the linear system

v=fft(f, N);

v=v./(a+kk.^2);

u=ifft(v,N);

% plot the L2 and H1 norm error

uerr=fft(u-ue,N)/N;

err0 = norm(abs(uerr), 2); % L^2 norm

err1 = norm(abs(uerr).*sqrt(a+kk.^2), 2); % H^1 norm

loglog(N, err0, ’r+’, ’markersize’, 14), hold on

loglog(N, err1, ’go’, ’markersize’, 14), hold on

end

grid on, xlabel N, ylabel error

title(’The L^2(+) and H^1(o) convergence for f^1’);

loglog(Nvec, Nvec.^(-2), ’--’);

% spectral convergence for f2

Nvec = 4:2:28; subplot(1,2,2);

for N=Nvec

h=2*pi/N; x=0:h:2*pi-h;

ii=1:N; kk=N/2-abs(ii-N/2-1);

ue=exp(sin(x)); f=exp(sin(x)).*(sin(x).^2+sin(x));

% three steps to solve the linear system

v=fft(f, N);

v=v./(a+kk.^2);

u=ifft(v,N);

% plot the L2 and H1 norm error

uerr=fft(u-ue,N)/N;

err0 = norm(abs(uerr), 2); % L^2 norm

err1 = norm(abs(uerr).*sqrt(a+kk.^2), 2); % H^1 norm

semilogy(N, err0, ’r+’, ’markersize’, 14), hold on

semilogy(N, err1, ’go’, ’markersize’, 14), hold on

end

grid on, xlabel N, ylabel error

title(’The L^2(+) and H^1(o) convergence for f^2’);

semilogy(Nvec, exp(-Nvec*1.5), ’--’);

The numerical results show that for the first right hand side f1, the convergence rate is N−2, for the
right hand side f2, the convergence rate is exp (−1.5N), this is consistent to the regularity of f , u and the
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error estimate (27).
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Figure 1. The convergence rate of the Fourier spectral method for equation (24) for f = f1 (Left) and f = f2 (right).

4 Homework

1. Let

s(x)=

{

1/2, |x|6 1,
0, |x|> 1.

calculate the Fourier transform of s, s∗s, s∗s∗s, where ∗ denote convolution operation defined by

(u∗v)(x)=

∫

−∞

∞

u(y)v(x− y) dy=

∫

−∞

∞

v(y)u(x− y) dy.

2. Calculate the Fourier series of the periodic function (period=2π)

δ(x) =







N

2π
, x∈ [−π/N, π/N ], N > 1.

0, otherwise.

3. Prove the aliasing formula (23).
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