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Preface 

Since the pioneering works of Ampère, Faraday, and Maxwell in the early days, 
electromagnetism has become a fascinating area of physics, engineering, and 
mathematics. Its mathematical description is provided by the Maxwell equations, 
which form a system of partial differential equations expressed in terms of physical 
quantities such as the electric field, the magnetic field, and the current density. 
With the development of technology, certain electromagnetic noises, caused by 
the chaotic thermal motion of charged micro-particles [81, 149], the radiating 
sources [10, 124, 125], and the unpredictability of the environments or incomplete 
knowledge of the systems [3, 4, 13], now can be observed from various electric 
devices. To enhance the correspondence between real-life situations and theoretical 
results, researchers introduce randomness into the Maxwell equations, making 
them stochastic in nature. These equations are known as the stochastic Maxwell 
equations. 

The study of the stochastic Maxwell equations has attracted great attention from 
researchers across many disciplines. There is currently an enormous effort to come 
up with various ways to study problems related to the stochastic Maxwell equations 
in fields like fluctuational electrodynamics, statistical radiophysics, integrated 
circuits, and stochastic inverse problems. The theoretical analysis of the stochastic 
Maxwell equations, including well-posedness, controllability, and homogenization, 
has been established in [148]. Since it is usually too complex to solve the governing 
stochastic Maxwell equations in an analytic form, different numerical algorithms 
are proposed to discretize these equations at grid points. However, no monograph 
treating this field has appeared. Our purpose in this monograph is to take a step 
toward filling this gap by discussing the developments in structure-preserving 
algorithms, which have good performance in long-term computations, for the 
stochastic Maxwell equations. 

This monograph, in particular, brings a self-contained account of the numerical 
analysis of the stochastic Maxwell equations. Precisely, it includes the construction 
and analysis of structure-preserving algorithms with an emphasis on the preserva-
tion of geometric structures, physical properties, and asymptotic behaviors of the 
original equations. The objects considered here are related to several fascinating
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mathematical fields: numerical analysis, stochastic analysis, (multi-)symplectic 
geometry, large deviations principle, ergodic theory, partial differential equation, 
probability theory, etc. 

This monograph consists of six chapters. Chapter 1 starts with a brief review 
of the deterministic Maxwell equations. Then we turn to the stochastic Maxwell 
equations. Here we introduce the origins of stochasticity, mathematical descriptions 
of some commonly used noises, constitutive relations, and the perfectly electrically 
conducting boundary condition. The governing equations for two fundamental 
polarizations, transverse electric and transverse magnetic polarizations, and those 
for the time-harmonic case are derived. At the end of this chapter, applications of 
the stochastic Maxwell equations in inverse random source problems and thermal 
radiation are discussed. 

The solution theory of the stochastic Maxwell equations, which is crucial in the 
numerical analysis of algorithms, is presented in Chap. 2. We begin with formulating 
the stochastic Maxwell equations as the equivalent stochastic evolution equation to 
show the well-posedness in both the globally Lipschitz and non-globally Lipschitz 
continuous cases. Furthermore, regularities in the .D(Mk)-norm and the .Hk-norm, 
as well as the differentiability of the solution on the initial datum, are given provided 
that more assumptions on coefficients, initial fields, and noises are employed. 

A prerequisite for constructing the structure-preserving algorithms is to identify 
the intrinsic properties of the continuous system. This proceeds in Chap. 3 for the 
stochastic Maxwell equations, with the analysis of geometric structures (infinite-
dimensional stochastic symplectic structure and stochastic multi-symplectic struc-
ture), physical properties (stochastic energy and divergence evolution laws), asymp-
totic behaviors (large deviations and ergodicity), etc. 

With the preparatory work in Chap. 3, we turn to consider the construction 
of stochastic algorithms in Chap. 4 which preserve the intrinsic structures of the 
stochastic Maxwell equations. More precisely, we first present several temporal 
semi-discretizations for the stochastic Maxwell equations, including the stochastic 
midpoint method, stochastic symplectic Runge–Kutta methods, and exponential-
type methods. A priori  estimates and intrinsic discrete structures of these temporal 
semi-discretizations are analyzed. Then we further discretize those temporal semi-
discretizations in the spatial direction to construct fully discrete algorithms via the 
finite difference method, the wavelet collocation method, and the discontinuous 
Galerkin method, respectively. Moreover, the splitting technique is introduced to 
reduce computational costs and improve the efficiency of implementing these algo-
rithms. After discussing the well-posedness and regularity of stochastic structure-
preserving algorithms in Chap. 4, we move on to their rigorous convergence 
analyses in Chap. 5. 

The last chapter is dedicated to numerical experiments which verify the theo-
retical results obtained in this monograph. Not only a friendly introduction to the 
simulation of the noise but also a practical route into the simulations of the stochastic 
Maxwell equations with some structure-preserving algorithms are provided using 
MATLAB for the reader’s convenience. In the appendix, we collect some results on 
commonly used identities and inequalities, semigroups, Sobolev spaces, differential



Preface vii

calculus, estimates related to Maxwell operators, and stochastic partial differential 
equations. 

We hope that our monograph could benefit a wide variety of readers compris-
ing researchers, engineers, and graduate students in computational mathematics, 
stochastic analysis, applied physics, electrical engineering, telecommunications, 
etc. It is intended to review recent developments in the numerical analysis of the 
stochastic Maxwell equations. It is also intended to provide those who are interested 
in using and applying results of numerical algorithms and MATLAB codes without 
worrying about mathematical details or proofs. 

Beijing, China Chuchu Chen 
November 2022 Jialin Hong 

Lihai Ji
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Notation and Symbols 

.R
d d-Dimensional Euclidean space 

.x Space variable in . Rd (.d ≥ 1) with .x = (x1, . . . , xd)⏉, 
specially .x = (x, y, z)⏉ when . d = 3

.|x| Euclidean norm in . Rd for . x ∈ R
d

.x · y Inner product in . Rd for . x, y ∈ R
d

.D ⊂ R
d Open, bounded, and Lipschitz domain in . Rd

.∂D Boundary of D 

.min{s, t} (resp. .max{s, t}) Minimum (resp. maximum) of . s, t ∈ R

.N Set of all nonnegative integers 

.N+ Set of all positive integers 

.Z Set of all integers 

.⊗ Kronecker inner product 

.(Ω,F , {Ft },P) Filtered probability space 

.N(0, 1) Standard normal distribution 

.E(u) Expectation of the random variable u 

.E(u|G ) Conditional expectation of u with respect to a .σ -
algebra . G ⊂ F

.B(H) Borel .σ -algebra on . H

.G1 × G2 Product .σ -algebra of two .σ -algebras . G1 and . G2
E Electric field . E = (E1, E2, E3)

⏉
H Magnetic field . H = (H1,H2,H3)

⏉
M Maxwell operator 
.D(M) Domain of the Maxwell operator M 
.ran(B) Range of the operator B 
.Tr(B) Trace of the operator B 
.(H, 〈·, ·〉H, ‖ · ‖H) Hilbert space . H = L2(D)3 × L2(D)3

.(U, 〈·, ·〉U , ‖ · ‖U) Hilbert space . U = L2(D)

.L (U,H) Space of all bounded linear operators from U to . H, 
denoted by .L (H) if .U = H

xv



xvi Notation and Symbols

.HS(U,H) Space of all Hilbert–Schmidt operators from U to . H

.Lp(D)d Lebesgue space of p-integrable vector functions . f :
D → R

d with d components 
.Wk,p(D) Sobolev spaces consisting of all functions . f : D → R

whose derivatives up to order k are functions in . Lp(D)

.Hk(D) Sobolev spaces of all functions .f : D → R whose 
derivatives up to order k are square integrable 

.H(curl,D) Space . {v ∈ L2(D)3 : ∇ × v ∈ L2(D)3}

.H0(curl,D) Space . {v ∈ H(curl,D) : n × v|∂D = 0}

.H(div,D) Space . {v ∈ L2(D)3 : ∇ · v ∈ L2(D)}

.H0(div,D) Space . {v ∈ H(div,D) : n · v|∂D = 0}

.Ck(D) Space of continuous functions with continuous deriva-
tives up to order k 

.C0,α(D) Space of Hölder continuous functions of order . α

.Ck,α(D) Space of functions of .Ck(D) whose derivatives of 
order k belong to . C0,α(D)

.C∞(D) Space of infinitely differentiable functions in D 

.C∞
0 (D) Space of infinitely differentiable functions with com-

pact support in D 
.Ck

b(H) Space of all smooth functionals with bounded deriva-
tives of order up to k on . H

.Lp(Ω,H) Space of all .H-valued functions which are p-integrable 
with respect to . P

.w1 ∧ w2 2-Form generated by the exterior product of two 1-
forms 

df Differential 1-form 
.df ∧ dg Differential 2-form 
.diag Diagonal matrix 
Id Identity operator or identity matrix 
.I Rate function 
.1A(·) Indicator function of the set A 

.J Standard symplectic matrix . J =
[

0 Id

−Id 0

]

.∇2 Hessian matrix operator 

.∇ Gradient operator, i.e., .∇f = (∂xf, ∂yf, ∂zf )⏉ for a 
scalar function f 

.∇× Curl operator, i.e., . ∇ × v = (∂yv3 − ∂zv2, ∂zv1 −
∂xv3, ∂xv2 − ∂yv1)

⏉ for . v = (v1, v2, v3)
⏉ ∈ R

3

.∇· Divergence operator, i.e., . ∇ · v = ∂xv1 + ∂yv2 + ∂zv3
for . v = (v1, v2, v3)

⏉ ∈ R
3

FDTD Finite-difference time-domain 
dG Discontinuous Galerkin 
FE Finite element
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Chapter 1 
Introduction 

In this chapter, we start with a brief introduction to the deterministic Maxwell 
equations including boundary and interface conditions, intrinsic properties, and 
numerical algorithms. With the development of technology, certain electromagnetic 
noises can be observed from various electric devices. Hence, the electromagnetic 
fields may not be deterministic but should be modeled by random fields, namely 
by the solution of the stochastic Maxwell equations. We then present the origin of 
stochasticity in the Maxwell equations and summarize some commonly used noises 
which drive the stochastic system. Two polarizations of the electromagnetic fields 
and the time-harmonic stochastic Maxwell equations are also discussed. Finally, 
we list some applications of the stochastic Maxwell equations in areas such as 
inverse random source problems and thermal radiation. For more details on the 
electromagnetic theory, we refer to [11, 140, 162] for the deterministic case and 
to [148, 149] for the stochastic case. 

1.1 Deterministic Maxwell Equations 

The Maxwell equations form the fundamentals of classical electrodynamics and 
optics. They were completely formulated by James Clerk Maxwell in the period 
from 1861 to 1865. They consist of a set of partial differential equations which 
describe the propagation of electromagnetic waves through media. The Maxwell 
equations in the differential form read as follows 

. Faraday’s law of induction: ∂tB(t, x) + ∇ × E(t, x) = 0, . (1.1) 

Ampère’s circuital law: ∂tD(t, x) − ∇ × H(t, x) = −Je(t, x), . (1.2) 

Gauss’s law: ∇ ·  D(t, x) = ρe, . (1.3) 
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Gauss’s law for magnetism: ∇ ·  B(t, x) = 0, (1.4) 

where . D is the electric displacement, . E is the electric field, . B is the magnetic 
induction, . H is the magnetic field intensity, . Je is the electric current density, and 
. ρe is the electric charge density. After differentiating (1.3) with respect to the time 
variable and using (1.2), we derive the continuity equation 

. ∂tρe + ∇ · Je = 0,

which expresses the conservation of charge. 
Notice that the number of equations in (1.1)–(1.4) is less than the number of 

unknowns. To guarantee the well-posedness of the Maxwell equations (1.1)–(1.4), 
the constitutive relations describing macroscopic properties of the medium need to 
be introduced. Generally, the relations are complicated and depend strongly on the 
material in which the electromagnetic wave propagates. We start with the following 
typical representations of the form 

.D = ε0E + P, B = μ0(H + M), (1.5) 

where . ε0 and . μ0 are the vacuum permittivity and permeability respectively, and . P
and . M are electric polarization and magnetization respectively. Note that . P and . M
are caused by the impinging fields, which can influence the organization of electrical 
charges and magnetic dipoles in a medium and vanish in the free space. 

If one ignores ferroelectric and ferromagnetic media and if the fields are 
relatively small, the constitutive relations can be modeled by the following linear 
form 

.D = εE, B = μH (1.6) 

with . ε and . μ being the electric permittivity and magnetic permeability, respectively. 
In this case, the medium is called linear. For an anisotropic linear medium, 
parameters . ε and . μ are tensors, i.e., .ε, μ : R

3 → R
3×3. While in the isotropic 

case, parameters . ε and . μ are scalar functions, i.e., .ε, μ : R3 → R. 
Moreover, if the medium is conductive, a further constitutive relation should be 

given by the fact that the electromagnetic field induces an electric current. In a linear 
approximation, this is described by Ohm’s law 

.Je = σE, (1.7) 

where . σ is called the electrical conductivity. The parameter . σ is a tensor for the 
anisotropic medium but a scalar for the isotropic medium. Particularly, a medium 
is called lossy if .σ > 0, whereas it is lossless if .σ ≡ 0. A medium is said to be 
temporally dispersive if parameters . ε, μ, and . σ depend also on the time variable. In 
this monograph, we constrict ourselves on the non-dispersive media case, i.e., the 
parameters . ε, μ, and . σ are independent of time.
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1.1.1 Boundary and Interface Conditions 

Electromagnetic fields generally exist in the whole space and are generated by 
charges and currents. In order to determine solutions to boundary value problems, 
we need to introduce some boundary conditions which apply to both the determin-
istic and stochastic Maxwell equations. 

Let S be a surface. The permittivity and permeability parameters . ε and . μ are 
piecewise constants with jumps on S. As displayed in Fig. 1.1, for any subset .Γ ⊂ S, 
we consider the cylindrical domain .Θ = Γ × (−ι, ι) for .ι > 0, which is separated 
by the surface S into two parts . Θ1 and . Θ2. Let . n be the unit outward normal vector 
on . ∂Θ. Denote by . Γ1 and . Γ2 the part of surface . ∂Θ in Material 1 and Material 2, 
respectively. It is clear to note that .∂Θ1 = Γ1 ∪ Γ and .∂Θ2 = Γ2 ∪ Γ . To derive 
the interface conditions, we denote by . nS the unit normal vector on S pointing from 
Material 2 to Material 1, and by .Ej , Dj , Hj , Bj , εj , μj (j = 1, 2) the restrictions 
of the respective functions to Material 1 and Material 2, respectively. 

By (1.3) and the divergence theorem, we obtain 

. 

∫
Θ

ρe dx =
∫

Θ

∇ · D dx =
∮

∂Θ

n · D ds =
∫

Γ1

n · D1 ds +
∫

Γ2

n · D2 ds.

It follows from the divergence theorem again that 

. 

∫
Θ

ρe dx =
∫

Θ

∇ · D dx =
∫

Θ1

∇ · D1 dx +
∫

Θ2

∇ · D2 dx

=
(∫

Γ1

n · D1 ds −
∫

Γ

nS · D1 ds

)
+

(∫
Γ2

n · D2 ds +
∫

Γ

nS · D2 ds

)
.

Fig. 1.1 Interface conditions: neighbourhood of the interface S
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Combining the above two equations yields 

. 

∫
Γ

nS · (D1 − D2) ds = 0 ∀ Γ ⊂ S,

which implies that the normal component .nS · D has to be continuous, i.e., 

.nS · (D1 − D2) |S = 0. (1.8) 

Using (1.4) and the divergence theorem, a similar argument holds for the magnetic 
field, that is, the normal component .nS · B is continuous across the surface 

.nS · (B1 − B2) |S = 0. (1.9) 

For the continuity conditions for the electromagnetic fields, it follows from (1.1), 
(1.4), and the divergence theorem that 

. 

∫
∂Θ

n · ∇ × E ds = −
∫

∂Θ

n · ∂tB ds = −∂t

∫
Θ

∇ · B dx = 0.

Moreover, from (1.1), with the help of the Stokes theorem, one can deduce 

. 

∫
∂Θ

n · ∇ ×E ds =
∫

Γ1

n · ∇ ×E1 ds +
∫

Γ2

n · ∇ ×E2 ds =
∮

∂Γ

n̂ · (E1 − E2) dl,

where . ̂n is the unit tangential vector on the contour . ∂Γ . Combining the above two 
equations yields 

.nS × (E1 − E2) |S = 0 (1.10) 

due to the fact that the curve .∂Γ is arbitrary on S. This demonstrates that the 
tangential trace of the electric field is continuous across the surface. Similarly, from 
(1.2) and (1.3) one can obtain 

.nS × (H1 − H2) |S = 0, (1.11) 

which means that the tangential trace of the magnetic field is continuous across the 
surface. 

For the special case that one side of S is occupied by a perfect conductor, a 
popular boundary condition, named the perfectly electrically conducting (PEC) 
boundary condition, has drawn a lot of attention. Since the perfect conductor 
prevents the electric energy from entering, the interface condition (1.10) implies 

.nS × E|S = 0. (1.12)
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The PEC boundary condition (1.12) is commonly used when the conductivity of a 
conductor is sufficiently large in realistic situations. 

1.1.2 Intrinsic Properties 

The deterministic Maxwell equations possess several intrinsic properties, including 
energy conservation properties, symplectic and multi-symplectic geometric struc-
tures. Let .D ⊂ R

3 be an open, bounded, and Lipschitz domain with boundary . ∂D. 
Recall the source-free Maxwell equations 

.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ε∂tE = ∇ × H, μ∂tH = −∇ × E, in (0, T ] × D,

E(0, x) = E0(x), H(0, x) = H0(x), in D,

n × E = 0, on [0, T ] × ∂D,

(1.13) 

where .E = (E1, E2, E3)
⏉, .H = (H1,H2,H3)

⏉, and . n is the unit outward normal 
vector on . ∂D. 

(i) Physical conservation laws 

We first present the energy conservation properties of (1.13). The electromag-
netic energy is given by 

. E (t) :=
∫

D

(
ε|E(t, x)|2 + μ|H(t, x)|2

)
dx.

Recall that the Poynting vector .F := E × H models the energy flux density. Using 
(1.13) and the Green formula, we obtain the Poynting theorem 

. 
dE

dt
= −2

∫
D

∇ · Fdx = −2
∮

∂D

n · (E × H) ds = −2
∮

∂D

H · (n × E) ds = 0,

i.e., 

.

∫
D

(
ε|E(t, x)|2 + μ|H(t, x)|2

)
dx ≡ Constant, (1.14) 

which represents the conservation of electromagnetic energy in a lossless medium. 
Noting that . E satisfies the PEC boundary condition, then 

.n × ∂tE = 0, on [0, T ] × ∂D.
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Taking the derivative with respect to t on both sides of the first equation of (1.13) 
and using the Green formula again, we derive the second energy conservation law 

.

∫
D

(
ε|∂tE(t, x)|2 + μ|∂tH(t, x)|2

)
dx ≡ Constant. (1.15) 

Similarly, if we assume that . ε and . μ are positive constants, then we can show 
that electromagnetic waves possess the following energy conservation laws 

.

∫
D

(
ε|∂αE(t, x)|2 + μ|∂αH(t, x)|2

)
dx ≡ Constant (1.16) 

and 

.

∫
D

(
ε|∂t∂αE(t, x)|2 + μ|∂t∂αH(t, x)|2

)
dx ≡ Constant, (1.17) 

where .α = x, y or z. 

(ii) Geometric structures 

We now turn to the geometric structures for the deterministic Maxwell equations. 
It is known that (1.13) is an infinite-dimensional Hamiltonian system. Define a 
Hamiltonian .H : L2(D)3 × L2(D)3 → R as 

. H (E,H) = −
∫

D

( 1

2μ
E(x) · ∇ × E(x) + 1

2ε
H(x) · ∇ × H(x)

)
dx.

We recall that the variation of the functional .H (E,H) is defined as 

. δH (E,H) = H (E + δE,H + δH) − H (E,H)

=
∫

D

[ δH

δE(x)
δE(x) + δH

δH(x)
δH(x)

]
dx,

where .
δH
δE(x) (resp. .

δH
δH(x) ) is the functional derivative of the functional .H (E,H)with 

respect to the function . E (resp. . H) at the space point . x. Hence, under the assumption 
that . ε and . μ are positive constants, we derive that 

. 
δH

δE
= −μ−1∇ × E,

δH

δH
= −ε−1∇ × H.

The above equations mean that (1.13) has the following Hamiltonian formulation 

.
d

dt

[
E

H

]
= J

−1

[
δH
δE

δH
δH

]
(1.18)
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with the standard symplectic matrix 

. J =
[

0 Id

−Id 0

]
,

where Id  is the identity operator on .L2(D)3. 
The following theorem shows that the phase flow of (1.13) preserves the 

symplectic structure. 

Theorem 1.1 Suppose that . ε and . μ are two positive constants. Under the homo-
geneous boundary condition, the phase flow of (1.13) preserves the symplectic 
structure 

.�̄� (t) :=
∫

D

dE(t, x) ∧ dH(t, x)dx =
∫

D

dE0(x) ∧ dH0(x)dx = �̄� (0) (1.19) 

for all .t ≥ 0, which means that the spatial integral of the oriented areas of 
projections onto the coordinate plane .(E0,H0) is an invariant. 

Proof We have 

. 

�̄� (t) =
∫

D

( ∂E
∂E0

dE0 + ∂E
∂H0

dH0

)
∧

( ∂H
∂E0

dE0 + ∂H
∂H0

dH0

)
dx

=
∫

D

(
dE0 ∧

( ∂E
∂E0

)⏉ ∂H
∂E0

dE0

)
dx

+
∫

D

(
dH0 ∧

( ∂E
∂H0

)⏉ ∂H
∂H0

dH0

)
dx

+
∫

D

[
dE0 ∧

(( ∂E
∂E0

)⏉ ∂H
∂H0

−
( ∂H
∂E0

)⏉ ∂E
∂H0

)
dH0

]
dx,

which implies 

.

d�̄� (t)

dt
=

∫
D

(
dE0 ∧ d

dt

(( ∂E
∂E0

)⏉ ∂H
∂E0

)
dE0

)
dx

+
∫

D

(
dH0 ∧ d

dt

(( ∂E
∂H0

)⏉ ∂H
∂H0

)
dH0

)
dx

+
∫

D

[
dE0 ∧ d

dt

(( ∂E
∂E0

)⏉ ∂H
∂H0

−
( ∂H
∂E0

)⏉ ∂E
∂H0

)
dH0

]
dx.

(1.20)
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It follows from (1.13) that 

.

d

dt

(
∂E
∂E0

)
= ε−1∇ ×

(
∂H
∂E0

)
,

d

dt

(
∂H
∂E0

)
= −μ−1∇ ×

(
∂E
∂E0

)
,

d

dt

(
∂E
∂H0

)
= ε−1∇ ×

(
∂H
∂H0

)
,

d

dt

(
∂H
∂H0

)
= −μ−1∇ ×

(
∂E
∂H0

)
.

(1.21) 

Plugging (1.21) into (1.20) gives 

. 
d�̄� (t)

dt
=
∫

D

dE0 ∧
[
ε−1

(
∇ ×

( ∂H
∂E0

))⏉ ∂H
∂E0

−μ−1
( ∂E
∂E0

)⏉∇ ×
( ∂E
∂E0

)]
dE0dx

+
∫

D

dH0 ∧
[
ε−1

(
∇ ×

( ∂H
∂H0

))⏉ ∂H
∂H0

− μ−1
( ∂E
∂H0

)⏉∇ ×
( ∂E
∂H0

)]
dH0dx

+
∫

D

dE0 ∧
[
ε−1

(
∇ ×

( ∂H
∂E0

))⏉ ∂H
∂H0

− μ−1
( ∂E
∂E0

)⏉∇ ×
( ∂E
∂H0

)]
dH0dx

+
∫

D

dE0 ∧
[
μ−1

(
∇ ×

( ∂E
∂E0

))⏉ ∂E
∂H0

− ε−1
( ∂H
∂E0

)⏉∇ ×
( ∂H
∂H0

)]
dH0dx.

Therefore, we have 

. 
d�̄� (t)

dt
=

∫
D

[
ε−1d

(∇ × H
) ∧ dH + μ−1d

(∇ × E
) ∧ dE

]
dx

=
∫

D

ε−1
[
∂x(dH2 ∧ dH3) + ∂y(dH3 ∧ dH1) + ∂z(dH1 ∧ dH2)

]
dx

+
∫

D

μ−1
[
∂x(dE2 ∧ dE3) + ∂y(dE3 ∧ dE1) + ∂z(dE1 ∧ dE2)

]
dx

= 0

due to the homogeneous boundary condition. ⨅⨆
Remark 1.1 To avoid ambiguities, we clarify that the notations ‘d’ in (1.18) and 
‘d’ in  (1.19) have different meanings. In (1.18), . E and . H are treated as functions of 
time, and . E0 and . H0 are fixed parameters, while exterior differentiation ‘d’ in  (1.19) 
is made with respect to the initial datum .(E0,H0).
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Note that if we consider the following modified Hamiltonian . H̃ : L2(D)3 ×
L2(D)3 → R, 

. H̃ (E,H) =
∫

D

(1
2
ε|E(x)|2 + 1

2
μ|H(x)|2

)
dx,

then the Maxwell equations (1.13) can be rewritten into the non-canonical Hamilto-
nian formulation 

.
∂

∂t

[
E

H

]
=

[
0 (εμ)−1∇×

−(εμ)−1∇× 0

]⎡
⎣ δH̃

δE

δH̃
δH

⎤
⎦ . (1.22) 

Taking the exterior derivative on both sides of (1.22) yields the preservation of 
the following symplectic structure. 

Theorem 1.2 Suppose that . ε and . μ are two positive constants. The phase flow of 
(1.13) preserves the symplectic conservation law 

. �̃� (t) :=
∫

D

(
dE(t, x) ∧ [(εμ)−1∇×]dH(t, x)

)
dx = �̃� (0) ∀ t ≥ 0.

Remark 1.2 When . ε and . μ depend on the space variable . x, (1.22) is not Hamilto-
nian. However, the modified Hamiltonian . H̃ can still be preserved by introducing 
.X(t) := √

εE(t) and .Y(t) := √
μH(t). In terms of fields .X(t) and .Y(t), the  

corresponding equations form an infinite-dimensional Hamiltonian system. 

Next, we turn to investigate the geometric structure for (1.13) from another point 
of view by regarding (1.13) as a Hamiltonian partial differential equation. 

Definition 1.1 Let . F and .Ki , i = 1, 2, . . . , d be skew-symmetric matrices in 
.R

n×n, and let .S : R
n → R be a smooth function for .n ≥ 3. Then a partial 

differential equation is called a Hamiltonian partial differential equation if it 
possesses the form 

. F∂tu +
d∑

i=1

Ki∂xi
u = ∇uS(u),

where .u : [0, T ] × R
d → R

n.
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Setting .u = (E⏉,H⏉)⏉ and skew-symmetric matrices 

.

F =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
1 0 0
0 1 0
0 0 1

−1 0 0
0 −1 0
0 0 −1

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, K1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0
0 0 − 1

μ

0 1
μ

0
0

0
0 0 0
0 0 − 1

ε

0 1
ε

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

K2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1
μ

0 0 0
− 1

μ
0 0

0

0
0 0 1

ε

0 0 0
− 1

ε
0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, K3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 − 1
μ
0

1
μ

0 0

0 0 0

0

0
0 − 1

ε
0

1
ε

0 0
0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

(1.23) 

we obtain the Hamiltonian partial differential equation form for (1.13): 

.F∂tu + K1∂xu + K2∂yu + K3∂zu = 0. (1.24) 

Theorem 1.3 Suppose that . ε and . μ are two positive constants. The Maxwell 
equations (1.13) preserve the multi-symplectic geometric conservation law 

. ∂t𝜛 + ∂xκ1 + ∂yκ2 + ∂zκ3 = 0,

where .𝜛 = 1
2du∧Fdu and .κp = 1

2du∧Kpdu, p = 1, 2, 3 are differential 2-forms. 
More precisely, 

. 

∂t

(
dE1 ∧ dH1+dE2 ∧ dH2+dE3 ∧ dH3

)
+∂x

(1
ε
dH3 ∧ dH2+ 1

μ
dE3 ∧ dE2

)

+∂y

(1
ε
dH1 ∧ dH3+ 1

μ
dE1 ∧ dE3

)
+∂z

(1
ε
dH2 ∧ dH1+ 1

μ
dE2 ∧ dE1

)
=0.

Proof Taking partial derivative of . 𝜛 with respect to t yields 

. ∂t𝜛 = 1

2
(dut ∧ Fdu + du ∧ Fdut ) = du ∧ Fdut

due to the skew-symmetry of . F. Similarly, we can obtain 

.∂xκ1 = du ∧ K1dux, ∂yκ2 = du ∧ K2duy, ∂zκ3 = du ∧ K3duz.
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Combining the above results gives the desired equality 

. ∂t𝜛 + ∂xκ1 + ∂yκ2 + ∂zκ3 = du ∧ d(Fut + K1ux + K2uy + K3uz) = 0.

The proof is thus completed. ⨅⨆

1.1.3 Numerical Algorithms 

The numerical simulation of an electromagnetic wave is a fundamental and 
important electromagnetic subject. In the past few decades, many researchers have 
developed, analyzed, and tested various numerical algorithms for the Maxwell 
equations. In this section, we will give a brief overview of classical numerical 
algorithms for the Maxwell equations, among which the structure-preserving ones 
will be discussed in some detail. 

(i) Classical algorithms 

The finite-difference time-domain (FDTD) method is an efficient numerical 
algorithm in the field of computational electromagnetism. It was introduced in 
1966 by Yee [178] and was further developed by Taflove [162] in the 1970s. 
The FDTD method uses second-order accurate central differences in time and 
space on a staggered grid. There are many excellent theoretical results on the 
FDTD method for solving the Maxwell equations, such as the energy-preserving 
splitting FDTD method [34, 36, 84], the high order FDTD method [118, 127] 
and the alternating direction implicit FDTD method [75], etc. This method can 
be efficiently implemented on vector computers, which makes it feasible to solve 
complex problems on early supercomputers. As an example, in 1987 SAAB (a 
company in Sweden) performed lightning analysis on the Swedish fighter aircraft 
Gripen on a grid with approximately .60 × 30 × 30 cells. However, the major 
drawback of the FDTD method is the inability to represent curved boundaries and 
small geometrical details. 

Another well-developed method for the Maxwell equations is the finite element 
(FE) method, including the edge element method, the discontinuous Galerkin (dG) 
method, etc. The FE method is based on a variational formulation of the partial 
differential equation in some suitable Hilbert space. Approximations to the solution 
are then sought in a finite-dimensional subspace. There is extensive literature on 
designing such numerical methods to the Maxwell equations. For instance, we refer 
to [32, 96, 113, 139, 140, 168, 172] for the edge element method, and to [50, 52, 
123, 131] for the dG method. 

Even though the FE method provides excellent tools for solving electromagnetic 
problems on geometrically complex domains, marching techniques applied to this 
method produce implicit schemes. In order to obtain an explicit scheme to solve 
the Maxwell equations on geometrically complex domains, the finite volume (FV) 
method is considered. The FV method was introduced to the Maxwell equations
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in [151] by exporting methods from computational fluid dynamics. For a detailed 
description of this method as well as its implementation for the Maxwell equations, 
we refer to [30, 47–49] and references therein. 

(ii) Structure-preserving algorithms 

We list several commonly used structure-preserving algorithms, including sym-
plectic algorithms, multi-symplectic algorithms, and energy-preserving algorithms. 

(a) Splitting multi-symplectic algorithm: we split the Hamiltonian partial 
differential equation (1.24) into three local one-dimensional subsystems 

.
1

3
F∂tu + K1∂xu = 0,

1

3
F∂tu + K2∂yu = 0,

1

3
F∂tu + K3∂zu = 0. (1.25) 

It can be verified that the above three subsystems possess the multi-symplectic 
conservation laws 

. 
1

3
∂t𝜛 + ∂xκ1 = 0,

1

3
∂t𝜛 + ∂yκ2 = 0,

1

3
∂t𝜛 + ∂zκ3 = 0,

respectively. The central box scheme or the Preissman scheme is applied to dis-
cretize subsystems in (1.25) and thereby this gives the multi-symplectic algorithm 
for the deterministic Maxwell equations (1.13). Here, for example, we present the 
splitting multi-symplectic algorithm by utilizing the central box scheme. To avoid 
notational complications, we only discrete the first subsystem of (1.25) and obtain 

. 

1

τ

(
(E2)

∗
i+ 1

2 ,j,k
− (E2)

n

i+ 1
2 ,j,k

)
+ 1

εΔx

(
(H3)

n+ 1
2 ∗

i+1,j,k − (H3)
n+ 1

2 ∗
i,j,k

)
= 0,

1

τ

(
(E3)

∗
i+ 1

2 ,j,k
− (E3)

n

i+ 1
2 ,j,k

)
− 1

εΔx

(
(H2)

n+ 1
2 ∗

i+1,j,k − (H2)
n+ 1

2 ∗
i,j,k

)
= 0,

1

τ

(
(H2)

∗
i+ 1

2 ,j,k
− (H2)

n

i+ 1
2 ,j,k

)
− 1

μΔx

(
(E3)

n+ 1
2 ∗

i+1,j,k − (E3)
n+ 1

2 ∗
i,j,k

)
= 0,

1

τ

(
(H3)

∗
i+ 1

2 ,j,k
− (H3)

n

i+ 1
2 ,j,k

)
+ 1

μΔx

(
(E2)

n+ 1
2 ∗

i+1,j,k − (E2)
n+ 1

2 ∗
i,j,k

)
= 0,

where . τ is the step size in the temporal direction, and .Δx is the mesh size in x-

direction; . u∗ is an intermediate value between . un and .un+1, and . un+ 1
2 ∗ = (un +

u∗)/2. We refer to [26, 117] and references therein for more details. 
(b) Averaged vector field algorithm: we make a spatial semi-discretization for 

the infinite-dimensional Hamiltonian system (1.18) 

.

[
dtE

dtH

]
= −J

−1

[
μ−1c̃url(E)

ε−1c̃url(H)

]
, (1.26)
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where ‘. ̃curl’ is some discretization of the operator ‘. ∇×’, for example, . ̃curlE :=
(δ̄yE3−δ̄zE2, δ̄zE1−δ̄xE3, δ̄xE2−δ̄yE1)

⏉ with . (δ̄xE3)i,j,k = (E3)i+1,j,k−(E3)i−1,j,k
2Δx

and other notations are defined similarly. Applying the second-order averaged vector 
field algorithm to (1.26) yields 

. 
1

τ

[
En+1 − En

Hn+1 − Hn

]
= −J

−1

⎡
⎣μ−1c̃url

( ∫ 1
0 [(1 − ξ)En + ξEn+1]dξ

)

ε−1c̃url
( ∫ 1

0 [(1 − ξ)Hn + ξHn+1]dξ
)
⎤
⎦ .

Based on the variational equation, it can be proved that this algorithm preserves the 
symplecticity and multi-symplecticity; see [27, 28, 158] and references therein for 
more details. 

(c) Wavelet collocation algorithm: based on the autocorrelation function . θ of 
the Daubechies scaling function (see e.g., [16]), we take the component . E1 as an 
example and approximate it by the interpolation operator 

. I E1(t, x, y, z) =
N1∑
i=1

N2∑
j=1

N3∑
k=1

(E1)i,j,kθ
(N1

L1
x − i

)
θ
(N2

L2
y − j

)
θ
(N3

L3
z − k

)
,

where . N1, . N2, and . N3 are the numbers of grid points of spatial domains .[0, L1], 
.[0, L2], and .[0, L3], respectively. Then plugging the interpolation operator into 
(1.24), and integrating the semi-discrete system by the midpoint method in time, 
we obtain the following multi-symplectic algorithm 

. Id ⊗ F
Un+1 − Un

τ
+ A1 ⊗ K1U

n+ 1
2 + A2 ⊗ K2U

n+ 1
2 + A3 ⊗ K3U

n+ 1
2 = 0,

where 

. 

Un =
(
(E1)

n
1,1,1, (E1)

n
2,1,1, . . . , (E1)

n
N1,1,1, (E1)

n
1,2,1, . . . , (E1)

n
N1,2,1, . . . ,

(E1)
n
N1,N2,N3

,

(E2)
n
1,1,1, . . . , (E2)

n
N1,N2,N3

, . . . , (E3)
n
N1,N2,N3

, (H1)
n
1,1,1, . . . ,

(H3)
n
N1,N2,N3

)⏉

with .(Es)
n
i,j,k and .(Hs)

n
i,j,k , .s = 1, 2, 3, .i = 1, . . . , N1, .j = 1, . . . , N2, . k =

1, . . . , N3 being the approximations of .Es(t
n, xi, yj , zk) and .Hs(t

n, xi, yj , zk), 
respectively. Here .F,K1,K2, and . K3 are skew-symmetric matrices given by (1.23); 
.A1, A2, and . A3 are three skew-symmetric first-order differentiation matrices in 
x, y, z-directions, respectively. We refer to [182] and references therein for more 
details of the symplectic and multi-symplectic wavelet collocation algorithms for 
the deterministic Maxwell equations.
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(d) Splitting FDTD algorithm: we rewrite the Maxwell equations (1.13) as 

.
∂

∂t

[
εE

μH

]
=

[
0 ∇×

−∇× 0

][
E

H

]
=: A

[
E

H

]
. (1.27) 

Then we split the operator A into 

. A =
[

0 (∇×)+
(∇×)⏉+ 0

]

︸ ︷︷ ︸
A+

+
[

0 (∇×)−
(∇×)⏉− 0

]

︸ ︷︷ ︸
A−

with 

. (∇×)+ :=
⎡
⎣ 0 0 ∂y

∂z 0 0
0 ∂x 0

⎤
⎦ , (∇×)− :=

⎡
⎣ 0 −∂z 0

0 0 −∂x

−∂y 0 0

⎤
⎦ .

Note that .(∇×)⏉+ = −(∇×)− and .(∇×)⏉− = −(∇×)+. 
Another kind of splitting approach for the operator A is given by 

. A =
[

0 (∇×)x

(∇×)⏉x 0

]

︸ ︷︷ ︸
Ax

+
[

0 (∇×)y

(∇×)⏉y 0

]

︸ ︷︷ ︸
Ay

+
[

0 (∇×)z

(∇×)⏉z 0

]

︸ ︷︷ ︸
Az

,

where 

. (∇×)x :=
⎡
⎣0 0 0
0 0 −∂x

0 ∂x 0

⎤
⎦ , (∇×)y :=

⎡
⎣ 0 0 ∂y

0 0 0
−∂y 0 0

⎤
⎦ , (∇×)z :=

⎡
⎣ 0 −∂z 0

∂z 0 0
0 0 0

⎤
⎦ .

Note that .(∇×)⏉α = −(∇×)α , .α ∈ {x, y, z}. 
These two splitting formulas for the operator A lead to the following approxima-

tions of (1.27): 

. 

[√
εE(tn+1)

√
μH(tn+1)

]
≈ ecA+τ ecA−τ

[√
εE(tn)

√
μH(tn)

]

and 

.

[√
εE(tn+1)

√
μH(tn+1)

]
≈ ecAzτ ecAyτ ecAxτ

[√
εE(tn)

√
μH(tn)

]
,
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where .c = 1/
√

εμ. Using the Crank–Nicolson scheme to solve the one-dimensional 
subsystems which are obtained by the splitting of the operator A, one constructs 
two energy-preserving and unconditionally stable algorithms; for more details see 
[25, 26, 34, 36, 83, 181] and references therein. 

(e) Discontinuous Galerkin algorithm: define a partition with cells denoted by 
.Ii × Jj × Gk = [x

i− 1
2
, x

i+ 1
2
] × [y

j− 1
2
, y

j+ 1
2
] × [z

k− 1
2
, z

k+ 1
2
] of rectangular spatial 

domain D. We define the piecewise polynomial space .Hh,r as follows 

. Hh,r := {v ∈ L2(D) : v|Ii×Jj ×Gk
∈ P r(Ii) ⊗ P r(Jj ) ⊗ P r(Gk),

i = 1, . . . , N1; j = 1, . . . , N2; k = 1, . . . , N3}6

with .P r(I ) being the space of polynomials on I of degree up to .r ≥ 1 and h being 
the maximum diameter of . Ii , . Jj , and . Gk for all .i, j, k. 

The dG algorithm for (1.24) is formulated as: finding a numerical solution . uh ∈
Hh,r such that for any test function .ϕ ∈ Hh,r , 

. 

∫
Gk

∫
Jj

∫
Ii

F(uh)t · ϕdxdydz −
∫

Gk

∫
Jj

[ ∫
Ii

K1uh · ϕxdx −
(
K̂1uh · ϕ−)

i+ 1
2 ,y,z

+
(
K̂1uh · ϕ+)

i− 1
2 ,y,z

]
dydz −

∫
Gk

∫
Ii

[ ∫
Jj

K2uh · ϕydy

−
(
K̂2uh · ϕ−)

x,j+ 1
2 ,z

+
(
K̂2uh · ϕ+)

x,j− 1
2 ,z

]
dxdz −

∫
Jj

∫
Ii

[ ∫
Gk

K3uh · ϕzdz

−
(
K̂3uh · ϕ−)

x,y,k+ 1
2

+
(
K̂3uh · ϕ+)

x,y,k− 1
2

]
dxdy = 0,

where the hatted terms .K̂𝓁uh, .𝓁 = 1, 2, 3, are the numerical fluxes defined on the 
element interfaces, and .ϕ+, ϕ− represent the function limit of . ϕ from right and left, 
respectively. It can be shown that this method can simultaneously preserve the multi-
symplectic structure and the energy conservation law; see [159] for dG algorithms 
of a general class of Hamiltonian partial differential equations. 

(f) Other algorithms: in order to keep the symmetry in the temporal direction 
and improve the convergence order, [35] proposed a symmetric energy-preserving 
algorithm by distinguishing the time steps between even and odd time steps; [75] 
investigated an alternating direction implicit method which can preserve the energy 
of the Maxwell equations with currents, charges, and conductivity; [27] proposed
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two energy-preserving algorithms by discretizing the Maxwell equations with the 
Fourier pseudo-spectral method in the spatial direction and the averaged vector field 
algorithm in the temporal direction. 

1.2 Stochastic Maxwell Equations 

In practical circumstances and many applications, there is uncertainty concerning 
either the externally imposed sources or the nature of the medium under consid-
eration, to quote Varadhan (see [169]), “The world we live in has never been very 
predictable, and randomness has always been part of our lives”. In this regard, 
the stochastic Maxwell equations are proposed to strengthen the correspondence 
between some theoretical results and real-life situations, to better understand the 
role of thermodynamic fluctuations presented in electromagnetic fields, and to gain 
a deeper insight regarding the propagation of electromagnetic waves in complex 
media. 

Taking the thermal fluctuations into account, it is known that there are the 
following three entirely equivalent ways to describe the effects caused by the 
randomness (see [33]): (i) introducing the randomness directly in Newton’s equation 
of motion, (ii) adding a random term to the displacement field . D, and (iii) adding a 
random source term to the original current density . Je, in the Maxwell equations. 

We start with the first way by introducing randomness into Newton’s equation 
of motion. Consider a particle of mass m and charge e immersed in a fluid of 
temperature . T, under the action of an additional external electric field . E. According 
to the classical Newton’s second law of motion, the equation which characterizes 
the dynamics of the particle can be written as 

.
d2x
dt2

+ α
dx
dt

+ ω2
0x = e

E
m

, (1.28) 

where . x is the position of the particle, . α is the frictional coefficient expressing the 
energy loss in the system, and . ω0 is the natural resonant frequency of the system. 
Converting (1.28) to polarization via an electric polarization .P = nex, we have  

.
d2P
dt2

+ α
dP
dt

+ ω2
0P = vE, (1.29) 

where .v = ne2/m with n being the density of the positive charge. 
Following the Langevin approach, we introduce a random term . K : (t, x) I→

K(t, x) representing thermal fluctuations on the electromagnetic field to the right-
hand side of (1.29). The response of the system then reads as 

.
d2P
dt2

+ α
dP
dt

+ ω2
0P = vE + K. (1.30)
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Using a time-harmonic variation of .e−iwt with an excitation angular frequency w, it  
follows from (1.30) that the corresponding expression for the polarization P reads 

. P(w, x) = vE(w, x)

ω2
0 − w2 − iαw

+ K(w, x)

ω2
0 − w2 − iαw

.

It follows from the constitutive relation (1.5) that the electric displacement . D
consists of an external field . ε0E, a deterministic polarization-induced component 
.vE(w, x)/(ω2

0 − w2 − iαw), and a random component . Qe(w, x) = K(w, x)/(ω2
0 −

w2 − iαw). 
Therefore, transforming . P and . Qe into the time domain, Ampère’s circuital law 

(1.2) becomes 

. ∇ × H(t, x) = Je(t, x) + ∂t

(
D(t, x) + Qe(t, x)

)
. (1.31) 

Alternatively, instead of introducing randomness to the electric displacement . D, we  
could add a random term .Jr

e = ∂tQe to the current density . Je, and the end result 
would be completely same. Thus, we have shown that the three ways (i), (ii), and 
(iii) are entirely equivalent. In the following chapters, we adopt the third approach 
to analyze the effect of randomness on electromagnetic fields. 

Mathematical symmetry and beauty have drawn important considerations in 
twentieth-century physics, both in creating new physical theories and in elegantly 
connecting symmetry with conservation laws (see [18]). Taking this symmetry into 
account, we will focus on the following stochastic Maxwell equations 

.∂tD(t, x) − ∇ × H(t, x) = −Je(t, x) − Jr
e(t, x)γ, . (1.32) 

∂tB(t, x) + ∇ ×  E(t, x) = −Jm(t, x) − Jr 
m(t, x)γ, (1.33) 

together with the constitutive relations (1.6). Here, . Jm is the magnetic current 
density, . γ denotes the noise (see Sect. 1.2.1 for details), .Jr

e(t, x)γ corresponds to 
the random term .∂tQe in (1.31), and .Jr

m(t, x)γ is the symmetric part in the magnetic 
term. We say that the stochastic Maxwell equations are driven by additive noise if 
. Jr

e and . Jr
m do not depend on the electromagnetic field, while the equations are driven 

by multiplicative noise if . Jr
e and . Jr

m are some functions of the electromagnetic field 
(linear or nonlinear). 

1.2.1 Formulation of Noises 

This section summarizes and provides the mathematical description of several 
kinds of noises . γ . We classify . γ into colored noise or white noise based on the
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covariance function 

. E[γ (t, x)γ (s, y)] = B(t, s)K(x, y), t, s ≥ 0, x, y ∈ D,

where .D ⊂ R
d

.(d ≥ 1) is connected and bounded with a Lipschitz boundary . ∂D. 
When B is a Hilbert–Schmidt kernel, that is, .

∫ +∞
0

∫ +∞
0 |B(t, s)|2dtds < ∞ and 

has the finite trace, the noise is said to be colored in time. When . B(t, s) = δ(t − s)

with .δ(·) being the Dirac delta function, the noise is said to be white in time. The 
situation is similar for the spatial kernel K . We refer to e.g., [88] for more details 
about noises. 

(i) Spatial and temporal colored noise 

The generalized infinite-dimensional temporal colored noise is given by 

.γ (t, x) =
∑
k∈N

√
ηkek(x)zk(t), t ≥ 0, x ∈ D. (1.34) 

Here .{ek, ηk}k∈N is the orthonormal eigenpairs induced by the covariance operator 
Q, 

.
(
Qek

)
(x) =

∫
D

K(x, y)ek(y)dy = ηkek(x), x ∈ D, k ∈ N (1.35) 

with the decreasing ordered eigenvalues .η1 ≥ η2 ≥ . . . > 0 and .
∑

k∈N ηk < ∞. 
And .{zk}k∈N is a sequence of independent stochastic processes with . E

[
zk(t)

] = 0
and .E[zk(t)zk(s)] = B(t, s), defined by 

. dzk(t) = ak(zk, t)dt + bk(zk, t)dβk(t), t ≥ 0, k ∈ N,

where .{βk}k∈N is a sequence of independent standard Brownian motions, and 
.{ak(·, t)}k∈N and .{bk(·, t)}k∈N are Lipschitz continuous for any .t ≥ 0, which 
guarantees the existence and uniqueness of the solution. 

The colored noise in space is determined by the spatial kernel function .K(·, ·). 
Note that when Q is of finite trace, i.e., .Tr(Q) = ∑

k∈N ηk < ∞, it follows from 
(1.34) that the covariance function of the random field .γ (t, x) reads 

.

E[γ (t, x)γ (s, y)] = E

[(∑
k∈N

√
ηkek(x)zk(t)

)(∑
k∈N

√
ηkek(y)zk(s)

)]

= E

[∑
k∈N

ηkek(x)ek(y)zk(t)zk(s)
]

=
∑
k∈N

ηkek(x)ek(y)E
[
zk(t)zk(s)

]

= B(t, s)
∑
k∈N

ηkek(x)ek(y) = B(t, s)K(x, y)
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due to Mercer’s theorem (see e.g., [138]). In this case, the representation of (1.34) 
is a spatial and temporal colored noise. 

(ii) Spatial white and temporal colored noise 

When .Tr(Q) = ∞, there exists an orthonormal basis .{ek}k∈N such that 
.K(x, y) = ∑

k∈N ηkek(x)ek(y) = δ(x − y), then 

. E[γ (t, x)γ (s, y)] = B(t, s)δ(x − y), t, s ≥ 0, x, y ∈ D.

In this case, the spatial white and temporal colored noise is given by 

.γ (t, x) =
∑
k∈N

ek(x)zk(t), t ≥ 0, x ∈ D. (1.36) 

(iii) Spatial colored and temporal white noise 

If the kernel function .K(·, ·) of . γ is a symmetric Hilbert–Schmidt kernel with 
a finite trace, then the covariance operator Q defined by (1.35) is a compact, semi-
positive, and self-adjoint operator with .Tr(Q) < ∞. Hence the generalized spatial 
colored and temporal white noise can be represented as 

.γ (t, x) = d

dt
W(t, x), t ≥ 0, x ∈ D, (1.37) 

where W has the Karhunen–Loève expansion 

. W(t, x) =
∑
k∈N

√
ηkek(x)βk(t), t ≥ 0, x ∈ D.

In fact, for a.e. . ω, the sample path .t I→ W(t, ω) is nowhere differentiable. Thus . γ
does not really exist and we only make use of the above symbolic expression. We 
would like to stress that the expression of the random source in equations (1.32) and 
(1.33) is purely formal. 

(iv) Spatial and temporal white noise 

Similar to the Hilbert–Schmidt kernel function, for the spatial and temporal white 
noise we can introduce the identity operator Id  by the Dirac delta function which 
has the following fundamental property in the distributional sense 

.
(
Id ek

)
(x) :=

∫
D

δ(x − y)ek(y)dy = ek(x), ek ∈ L2(D), x ∈ D, k ∈ N.
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This kind of noise can be formally given by 

.γ (t, x) = d

dt
W(t, x), t ≥ 0, x ∈ D, (1.38) 

where W is the cylindrical Wiener process 

. W(t, x) =
∑
k∈N

ek(x)βk(t), t ≥ 0, x ∈ D.

1.2.2 Two Polarizations 

The polarization of electromagnetic waves is defined by the orientation of their 
electromagnetic fields relative to the plane of incidence. If we assume that the 
incident waves lie in the .(x, y)-plane, that is the stochastic Maxwell equations are 
homogeneous in z-direction, then all z-derivatives in (1.32) and (1.33) will vanish. 
This gives us two decoupled two-dimensional stochastic Maxwell equations. 

The first one is transverse electric (TE) polarization where the associated 
equations contain components .E1, E2,H3, i.e., 

. E = (E1(t, x, y), E2(t, x, y), 0)⏉, H = (0, 0,H3(t, x, y))⏉.

And we have  .Je = (Je1, Je2, 0)⏉, .Jr
e = (J r

e1, J
r
e2, 0)

⏉, .Jm = (0, 0, Jm3)
⏉, and 

.Jr
m = (0, 0, J r

m3)
⏉. It describes the propagation of the electromagnetic waves where 

the electric field lies in the plane of propagation. Therefore, the stochastic Maxwell 
equations (1.32)–(1.33) with constitutive relations (1.6) become 

.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ε∂tE1 = ∂yH3 − Je1 − J r
e1γ,

ε∂tE2 = −∂xH3 − Je2 − J r
e2γ,

μ∂tH3 = ∂yE1 − ∂xE2 − Jm3 − J r
m3γ.

(1.39) 

In this case, the PEC boundary condition (1.12) on the boundary . ∂D of the rectangle 
domain .D = (a−

1 , a+
1 ) × (a−

2 , a+
2 ) can be recast as 

. E1 = E2 = 0, on ∂D.

The second case is transverse magnetic (TM) polarization. The set of stochastic 
Maxwell equations contains components .H1,H2, E3, i.e., 

.E = (0, 0, E3(t, x, y))⏉, H = (H1(t, x, y),H2(t, x, y), 0)⏉.
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And we have .Je = (0, 0, Je3)
⏉, .Jr

e = (0, 0, J r
e3)

⏉, .Jm = (Jm1, Jm2, 0)⏉, and 
.Jr

m = (J r
m1, J

r
m2, 0)

⏉. It describes the propagation of the electromagnetic waves 
where the electric field is perpendicular to the plane of propagation. Then (1.32)– 
(1.33) with constitutive relations (1.6) become 

.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ε∂tE3 = ∂xH2 − ∂yH1 − Je3 − J r
e3γ,

μ∂tH1 = −∂yE3 − Jm1 − J r
m1γ,

μ∂tH2 = ∂xE3 − Jm2 − J r
m2γ.

(1.40) 

In this case, the PEC boundary condition (1.12) on the boundary . ∂D of the rectangle 
domain .D = (a−

1 , a+
1 ) × (a−

2 , a+
2 ) can be recast as 

. H1 = H2 = 0, on ∂D.

Example 1.1 In [38, 102], the authors studied the following two-dimensional 
stochastic Maxwell equations with additive noise in a lossless medium 

. 

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂tE3 = ∂xH2 − ∂yH1 − λ1γ,

∂tH1 = −∂yE3 + λ2γ,

∂tH2 = ∂xE3 + λ2γ,

where .λ1, λ2 > 0 are real numbers representing the scales of the noise, and . γ is a 
spatial and temporal colored noise. 

1.2.3 Time-Harmonic Stochastic Maxwell Equations 

In the case of a monochromatic wave, assume that all fields are of the form 

.E(t, x) = E(x)e−ikt , H(t, x) = H(x)e−ikt , (1.41) 

where .k > 0 is the wavenumber and . i is the imaginary unit. In addition, we 
assume that .Je(t, x) = Je(x)e−ikt , .(Jr

eγ )(t, x) = Jr
e(x)γ (x)e−ikt , . Jm(t, x) =

Jm(x)e−ikt , and .(Jr
mγ )(t, x) = Jr

m(x)γ (x)e−ikt . Plugging (1.41) into (1.32)–(1.33) 
with constitutive relations (1.6), we have the time-harmonic stochastic Maxwell 
equations 

.

−ikεE(x) − ∇ × H(x) = −Je(x) − Jr
e(x)γ (x),

−ikμH(x) + ∇ × E(x) = −Jm(x) − Jr
m(x)γ (x).

(1.42)
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Eliminating . H yields 

. ∇ ×
(
μ−1∇ × E

)
− k2εE = ik

(
Je + Jr

eγ
) − ∇ ×

(
μ−1Jm + μ−1Jr

mγ
)

,

while eliminating . E gives analogously 

. ∇ ×
(
ε−1∇ × H

)
− k2μH = ik

(
Jm + Jr

mγ
) + ∇ ×

(
ε−1Je + ε−1Jr

eγ
)

.

Example 1.2 In [179, Sect. 3.1], the author investigated the following time-
harmonic stochastic Maxwell equations with colored noise in a simple medium 

. 

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∇ × (∇ × E) − k2E = ik (Je + γ2) , in D,

∇ · E = ρe + γ1, in D,

n × E = 0, on ∂D,

where . γ1 and . γ2 denote spatial colored noises. 

1.3 Applications of Stochastic Maxwell Equations 

Since 1979, there has been a tremendously growing interest in the study of the 
stochastic Maxwell equations and their applications in areas ranging from the 
inverse random source problem, thermal radiation, integrated circuit technology, 
metamaterial, and optical communication. At the end of this chapter, we present 
two related research on the stochastic Maxwell equations. 

1.3.1 Inverse Random Source Problems 

Inverse source problems are to infer the information of the radiating sources by 
using the measured wave fields generated by unknown sources. These problems 
have significant applications in many scientific areas such as antenna synthesis 
and design, biomedical engineering, medical imaging, and optical tomography. In 
particular, the inverse source problem modeled by the Maxwell equations is an 
important research subject. 

In many practical situations, due to the unpredictability of the surrounding 
environment, the source of the system, in general, randomly varies in time and 
space. These random fluctuations are important in a variety of practical appli-
cations. Geophysicists are interested in the use of electromagnetic wave random 
fluctuations that occur due to the propagation through planetary atmospheres in
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order to remotely determine their dynamic characteristics. Physicians use electric 
or magnetic measurements with random fluctuation on the surface of the human 
head to infer the source currents in the brain which produce these measured 
fields. Radar engineers need to concern themselves with clutter echoes that follow 
some probability distribution produced by storms, rain, snow, or hail so that the 
radar target can be detected and identified accurately. In recent years, there has 
been rapid progress in the theoretical understanding and the numerical treatment 
of electromagnetic inverse random source problems; see [12, 82, 124, 125] and 
references therein for relevant studies. 

More precisely, all of these inverse random source problems of determining a 
source are characterized by the microcorrelation strength or the statistical properties 
of the random source based on the stochastic Maxwell equations. For example, in 
geological prospecting, the random source problem can be depicted by the following 
time-harmonic stochastic Maxwell equations 

. ∇ × E = ikH, ∇ × H = −ikE + Jr , in R
d \ D,

where . Jr is a random field and the impenetrable material D is a polyhedral scatterer 
in .R

d (d = 2, 3). In medical imaging, the stochastic Helmholtz equation 

. ΔE + (k2 + ikβ)E = Jr , in D ⊂ R
3

can be used to diagnose the body or the extent of the pathological tissue, where the 
attenuation coefficient .β ≥ 0 describes the electrical conductivity of the intracellular 
current (dendrite). 

The solution theory and the structure-preserving algorithms for the stochastic 
Maxwell equations discussed in this monograph may provide some tools for the 
establishment of the well-posedness theory for inverse random source problems, the 
construction of highly efficient and stable reconstruction algorithms, etc. 

1.3.2 Thermal Radiation 

Thermal radiation, as a ubiquitous physical phenomenon, plays an important role 
in various research fields of science and engineering. The traditional understanding 
of radiation heat transfer inside a semitransparent medium relies on the radiative 
transfer equation, considering emission, absorption, and scattering. However, these 
phenomenological approaches do not fully account for the origin of thermal 
emission and break down when the interference and diffraction roles of waves 
become increasingly important. According to the fluctuation-dissipation theorem, 
thermal emission originates from the fluctuating currents induced by the random 
thermal motion of charges, known as thermally induced dipoles. In order to predict 
and understand thermal radiation, fluctuational electrodynamics needs to be used, 
leading to the stochastic Maxwell equations.
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For example, if an object is at temperature . T which is greater than absolute 
zero, thermal agitation causes a chaotic motion of charged particles inside the 
body. The random thermal motion of the charges generates in turn a fluctuating 
electromagnetic field. On a macroscopic level, the field fluctuations are due to space-
time thermal fluctuations of charges and currents in the physically infinitesimal 
volume elements of bodies. In other words, two random extraneous current and 
charge density terms . Jr

e and . Jr
m, which cause thermal fluctuations of the field, should 

be introduced in Faraday’s law and Ampère’s law: 

. ∇ × H = 1

c
∂tD + 4π

c
Je + 4π

c
Jr

e, ∇ × E = −1

c
∂tB − 4π

c
Jr

m

with the corresponding constitutive relations. Here, c is the speed of propagation 
of the electromagnetic wave. Particularly, as nanotechnology advances rapidly, 
there is an increasing demand for understanding the mechanism of radiation heat 
transfer in the processing and diagnostics of nanomaterials. The stochastic Maxwell 
equations provide a proper model for solving the radiation heat transfer problem. 
By investigating the fluctuation-dissipation theorem of the stochastic Maxwell 
equations, the bridge between the strength of the fluctuation of the current density 
. Jr

e and the local temperature of the emitting body could be built. There is extensive 
literature on this topic. We refer to [81, 144, 149, 155, 173] and references therein. 

By applying some structure-preserving algorithms developed in this monograph 
to the considered model, we can give a better interpretation of some interesting 
physical phenomena and understand the physical mechanisms of thermal fluctuation 
more clearly. 

Summary and Outlook 

This chapter gives a brief introduction to the deterministic Maxwell equations and 
the origin of the stochastic Maxwell equations. In addition, several mathematical 
formulations of noise which provide preliminaries to theoretically and numerically 
analyze the stochastic Maxwell equations are discussed. Finally, some applications 
of the stochastic Maxwell equations are presented. 

As is known, the deterministic Maxwell equations, as an important Hamiltonian 
system, possess certain intrinsic structures and properties. More precisely, the phase 
flow of the deterministic Maxwell equations preserves both the symplectic and 
multi-symplectic structures. In addition, the solution of the deterministic Maxwell 
equations satisfies the charge and divergence conservation laws. Various structure-
preserving algorithms have been developed, analyzed, and tested in order to inherit 
the structures and properties of the original equations. Taking stochasticity into 
account, [112] investigates the theory of stochastic Hamiltonian partial differential 
equations, whose phase flow preserves the stochastic multi-symplectic structure.
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And a stochastic multi-symplectic algorithm is developed in [112]. For the study of 
the stochastic Maxwell equations, some natural and important questions arise: 

(i) What are the intrinsic properties, in the aspects of the geometric structure, evo-
lution laws of physical quantities, and dynamical properties, of the stochastic 
Maxwell equations? 

(ii) How to construct and analyze numerical algorithms which can preserve those 
intrinsic properties of the stochastic Maxwell equations? 

We intend to answer these problems in the following chapters. 
In recent years, the stochastic Maxwell equations have been applied to many 

other areas and there is also a lot of work related to their application and numerical 
analysis. For example, in the integrated circuit area, a technique based on the model 
order reduction to the stochastic Maxwell equations has been proposed for the 
simulation of a coplanar waveguide with dielectric overlay (see e.g., [3, 4, 13]); in 
the metamaterial area, researchers proposed some innovative methodologies based 
on the stochastic Maxwell equations to generate and optimize random metamaterial 
configurations, including the stochastic collocation method (see [126]) and the 
multi-element probabilistic collocation method (see [166]); in the optical soliton 
communication area, [122] investigated the propagation of ultra-short short solitons 
in a cubic nonlinear medium modeled by the nonlinear Maxwell equations with 
stochastic variations of media, and [132] developed an accurate coupled local-mode 
equation for ultra-short optical pulses based on the stochastic Maxwell equations.



Chapter 2 
Solution Theory of Stochastic Maxwell 
Equations 

This chapter is devoted to the solution theory of the stochastic Maxwell equations, 
including the well-posedness, the regularity of the solution, as well as the regular 
dependence of the solution on the initial datum. 

The outline of this chapter is as follows. In Sect. 2.1, we provide a succinct 
introduction to function spaces and the Maxwell operator associated with the 
stochastic Maxwell equations and rewrite the equations in the formulation of the 
stochastic evolution equation for convenience. Then in Sect. 2.2, we show the 
existence and uniqueness of the solution for the stochastic Maxwell equations with 
the drift term being either globally Lipschitz or non-globally Lipschitz continuous. 
After that, we investigate the regularity of the solution in Sect. 2.3. Finally, in 
Sect. 2.4, the differentiability with respect to the initial datum of the solution for 
the stochastic Maxwell equations is discussed. 

2.1 Preliminaries 

In this section, we introduce several function spaces and present the properties of 
the Maxwell operator associated with the stochastic Maxwell equations, and give 
the formulation of the stochastic evolution equation by introducing two Nemytskij 
operators. 

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023 
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We focus on the study of the following stochastic Maxwell equations in the Itô 
sense: 

. 

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

εdE=[∇ × H−Je(t, x,E,H)
]
dt−Jr

e(t, x,E,H)dW, (t, x) ∈ (0, T ] × D,

μdH=[−∇ × E−Jm(t, x,E,H)]dt−Jr
m(t, x,E,H)dW, (t, x) ∈ (0, T ] × D,

E(0, x) = E0(x), H(0, x) = H0(x), x ∈ D,

n × E=0, t ∈ [0, T ], x ∈ ∂D,

(2.1) 

where .D ⊂ R
3 is an open, bounded, and Lipschitz domain with boundary . ∂D, 

and . n is the unit outward normal vector on . ∂D. Suppose that the medium is 
isotropic, which implies that . ε and . μ are real-valued scalar functions, i.e., . ε, μ :
D → R. Here, W is a Q-Wiener process defined on a filtered probability space 
.(Ω,F , {Ft }0≤t≤T ,P), where Q is a symmetric, nonnegative operator with a finite 
trace on .U := L2(D). More precisely, W has the following Karhunen–Loève 
expansion 

. W(t, x) =
∑

j∈N
Q

1
2 ej (x)βj (t), t ∈ [0, T ], x ∈ D,

where .{βj }j∈N is a family of independent standard Brownian motions and . {ej }j∈N
is an orthonormal basis of U . 

Throughout this monograph, we assume that the coefficients . ε and . μ satisfy the 
following assumption. 

Assumption 2.1 Assume that the electric permittivity .ε : D → R and the magnetic 
permeability .μ : D → R satisfy 

.ε, μ ∈ L∞(D), ε, μ ≥ δ > 0 (2.2) 

with . δ being a constant. 

The basic Hilbert space we work with is .H := L2(D)3 × L2(D)3 with the 
weighted inner product defined by 

. 

〈[
E1

H1

]

,

[
E2

H2

]〉

H

:=
∫

D

(εE1 · E2 + μH1 · H2)dx,

which is equivalent to the standard inner product in . H according to Assumption 2.1. 
The norm 

.

∥
∥
∥
∥

[
E
H

]∥
∥
∥
∥
H

=
( ∫

D

(ε|E|2 + μ|H|2)dx
)1/2

,
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induced by the above inner product, corresponds to the electromagnetic energy of 
the physical system. 

In addition, definitions and properties of important function spaces related to 
the divergence and curl operators are briefly introduced below, which play a 
fundamental role in the regularity analysis of the stochastic Maxwell equations. 

The space .H(div,D) is defined by 

. H(div,D) :=
{
v ∈ L2(D)3 : ∇ · v ∈ U

}
,

which is a Hilbert space under the inner product 

. 〈u, v〉H(div,D) := 〈u, v〉L2(D)3 + 〈∇ · u,∇ · v〉U
and the induced norm 

. ‖u‖H(div,D) :=
(
‖u‖2

L2(D)3 + ‖∇ · u‖2
U

)1/2
.

The space .H(div,D) can be characterized as the closure of .C∞(D)3 with respect 
to .‖ · ‖H(div,D). Define the subspace .H0(div,D) of .H(div,D) as the closure of 
.C∞

0 (D)3 with respect to .‖ · ‖H(div,D), which can also be expressed as 

. H0(div,D) =
{
v ∈ H(div,D) : n · v|∂D = 0

}
.

The space .H(curl,D) is defined by 

. H(curl,D) :=
{
v ∈ L2(D)3 : ∇ × v ∈ L2(D)3

}
,

which is a Hilbert space under the inner product 

. 〈u, v〉H(curl,D) := 〈u, v〉L2(D)3 + 〈∇ × u,∇ × v〉L2(D)3

and the norm 

. ‖u‖H(curl,D) :=
(
‖u‖2

L2(D)3 + ‖∇ × u‖2
L2(D)3

)1/2
.

This space can be characterized as the closure of .C∞(D)3 with respect to 
.‖ · ‖H(curl,D). Define the subspace .H0(curl,D) of .H(curl,D) as the closure of 
.C∞

0 (D)3 with respect to .‖ · ‖H(curl,D), which can be expressed as 

.H0(curl,D) =
{
v ∈ H(curl,D) : n × v|∂D = 0

}
.
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Note that we have the following integration by parts formula: 

.

∫

D

(∇ × u) · v dx =
∫

D

u · (∇ × v) dx (2.3) 

for all .u ∈ H(curl,D) and .v ∈ H0(curl,D). 

Remark 2.1 In general, .u ∈ L2(D)3 is not differentiable and does not possess a 
‘classical curl’. We clarify that .∇ × u always denotes the following variational curl 
of u, i.e., there exists .v ∈ L2(D)3 such that 

. 

∫

D

u · ∇ × φdx =
∫

D

v · φdx ∀ φ ∈ C∞
0 (D)3.

In this case, we write .∇ × u = v. Similarly, we denote by .∇ · u the variational 
divergence of u, i.e., there exists .w ∈ U such that 

. 

∫

D

u · ∇ψdx = −
∫

D

wψdx ∀ ψ ∈ C∞
0 (D).

In this case, we write .∇ · u = w. 

Based on the above preliminaries on function spaces, we now introduce the 
Maxwell operator 

.M =
[

0 ε−1∇×
−μ−1∇× 0

]

(2.4) 

with domain 

. 

D(M) : =
{[

E
H

]

∈ H : M

[
E
H

]

=
[

ε−1∇ × H
−μ−1∇ × E

]

∈ H, n × E
∣
∣
∂D

= 0

}

= H0(curl,D) × H(curl,D).

The corresponding norm is defined as 

. ‖u‖D(M) :=
(
‖u‖2

H
+ ‖Mu‖2

H

)1/2
.

Theorem 2.1 If .ε, μ satisfy Assumption 2.1, then the Maxwell operator . M :
D(M) → H is closed and skew-adjoint, and thus generates a unitary .C0-semigroup 
.{S(t) := etM, t ≥ 0} on . H. 

Proof The closedness of M follows from the closedness of the operator . ∇×. To  
prove the skew-adjointness of M , it suffices to show that M is a skew-symmetric 
operator and that .Id ± M have dense ranges.
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Taking .ψ = (u⏉, v⏉)⏉, .ψ̃ = (̃u⏉, ṽ⏉)⏉ ∈ D(M) and using (2.3) give that 

. 

〈
Mψ, ψ̃

〉

H

=
∫

D

(
∇ × v · ũ − ∇ × u · ṽ

)
dx

=
∫

D

(
v · ∇ × ũ − u · ∇ × ṽ

)
dx

= −
〈
ψ,Mψ̃

〉

H

,

i.e., M is skew-symmetric. 
By the standard spectral theory given in Lemma B.1, the Maxwell operator M is 

skew-adjoint if 

.ran(Id ± M) = H. (2.5) 

Skew-adjointness then implies the assertion in view of the Stone theorem (see 
Theorem B.1). Since .C∞(D)6 is dense in . H, the proof of (2.5) is equivalent to 
showing that for every .f = (f⏉1 , f⏉2 )⏉ ∈ C∞(D)6, there exists . g = (E⏉,H⏉)⏉ ∈
D(M) such that 

. (Id ± M)g = f,

or equivalently, 

.E ± ε−1∇ × H = f1, H ∓ μ−1∇ × E = f2. (2.6) 

Plugging the second equation in (2.6) into the first one, we obtain 

.εE + ∇ × (μ−1∇ × E) = εf1 ∓ (∇ × f2) =: h. (2.7) 

Then .h ∈ L2(D)3 due to the denseness of .H(curl,D) in .L2(D)3. For the well-
posedness of these equations, we introduce the following symmetric bilinear form 

. a(u, v) =
∫

D

(
εu · v + μ−1(∇ × u) · (∇ × v)

)
dx

on .H(curl,D). It can be seen that a is continuous and coercive under Assump-
tion 2.1. Using the Lax–Milgram lemma, one obtains the existence of . E ∈
H(curl,D) satisfying 

.

∫

D

(
εE · v + μ−1∇ × E · ∇ × v

)
dx =

∫

D

h · v dx ∀ v ∈ H(curl,D).
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It follows from .h − εE ∈ L2(D)3 that .∇ × (μ−1∇ × E) ∈ L2(D)3 and . E
satisfies (2.7). If we define .H ∈ H(curl,D) by the second equation in (2.6), we  
obtain a solution .g = (E⏉,H⏉)⏉ ∈ D(M) of (2.6), as asserted. ⨅⨆
Remark 2.2 For the two-dimensional case in TE polarization (1.39) with . D =
(a−

1 , a+
1 ) × (a−

2 , a+
2 ) ⊂ R

2, the Maxwell operator is defined as 

. MT E : D(MT E) → L2(D)3,

⎡

⎣
u

v

w

⎤

⎦ I→

⎡

⎢
⎢
⎣

ε−1∂yw

−ε−1∂xw

μ−1∂yu − μ−1∂xv

⎤

⎥
⎥
⎦ ,

where the domain of .MT E is given by 

. D(MT E) :=
⎧
⎨

⎩

⎡

⎣
u

v

w

⎤

⎦ ∈ L2(D)3 : MT E

⎡

⎣
u

v

w

⎤

⎦ ∈ L2(D)3, u|∂D = 0, v|∂D = 0

⎫
⎬

⎭
.

Under the weighted inner product 

. 

〈⎡

⎣
u1

v1

w1

⎤

⎦ ,

⎡

⎣
u2

v2

w2

⎤

⎦

〉

ε,μ

:=
∫

D

(
εu1u2 + εv1v2 + μw1w2

)
dxdy

and Assumption 2.1, it can be verified that .MT E is skew-adjoint on .L2(D)3, and 
thus generates a unitary .C0-semigroup .{ST E(t) := etMT E

, t ≥ 0} on .L2(D)3. 
In a similar manner, we can define the Maxwell operator .MT M for the TM 
polarization (1.40). 

To study the solution theory of (2.1), we always rewrite it in the following 
equivalent form of the infinite-dimensional stochastic evolution equation: 

.

⎧
⎨

⎩

du(t) = [
Mu(t) + F(t, u(t))

]
dt + B(t, u(t))dW(t), t ∈ (0, T ],

u(0) = u0,
(2.8) 

where .u = (E⏉,H⏉)⏉, .u0 = (E⏉
0 ,H⏉

0 )⏉, M is the Maxwell operator defined 
in (2.4), and F , B are defined below.

● The drift term .F : [0, T ] × H → H is a Nemytskij operator associated with . Je

and . Jm, which is defined by 

.F(t, u)(x) :=
[−ε−1Je(t, x,E(t, x),H(t, x))

−μ−1Jm(t, x,E(t, x),H(t, x))

]

, t ∈ [0, T ], x ∈ D
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for .u = (E⏉,H⏉)⏉ ∈ H.

● The diffusion term .B : [0, T ] × H → HS(U0,H) is a Nemytskij operator 
associated with . Jr

e and . Jr
m, which is defined by 

. (B(t, u)v)(x) :=
[−ε−1Jr

e(t, x,E(t, x),H(t, x))v(x)

−μ−1Jr
m(t, x,E(t, x),H(t, x))v(x)

]

, t ∈ [0, T ], x ∈ D

for .u = (E⏉,H⏉)⏉ ∈ H and .v ∈ U0 := Q
1
2 U . See Appendix D.3 for more 

details on the notation . U0. 

2.2 Well-Posedness 

This section presents the well-posedness of (2.8) with either globally Lipschitz or 
non-globally Lipschitz continuous drift term. 

2.2.1 Globally Lipschitz Continuous Case 

Consider the stochastic Maxwell equations (2.8) with globally Lipschitz continuous 
coefficients. More precisely, assumptions on F and B are given as follows. 

Assumption 2.2 Assume that .F : [0, T ] × H → H is measurable from . ([0, T ] ×
H,B([0, T ])×B(H)) into .(H,B(H)), and there is a positive constant C such that 

. ‖F(t, u)‖H ≤ C(1 + ‖u‖H), . (2.9)

‖F(t,  u) − F(s,  v)‖H ≤ C(|t − s| + ‖u − v‖H) (2.10) 

for almost every .t, s ∈ [0, T ] and .u, v ∈ H. 

Assumption 2.3 Assume that .B : [0, T ] × H → HS(U0,H) is measurable from 
.([0, T ] × H,B([0, T ]) × B(H)) into .(HS(U0,H),B(HS(U0,H))), and there is 
a positive constant C such that 

.‖B(t, u)‖HS(U0,H) ≤ C(1 + ‖u‖2
H
)1/2, . (2.11)

‖B(t, u) − B(s, v)‖HS(U0,H) ≤ C(|t − s| + ‖u − v‖H) (2.12) 

for almost every .t, s ∈ [0, T ] and .u, v ∈ H.
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Remark 2.3 Assumptions 2.2 and 2.3 can be guaranteed by certain conditions on 
coefficients in (2.1). More precisely, suppose that there exists a positive constant 
L such that every .J ∈ {Je, Jm, Jr

e, J
r
m} satisfies the globally Lipschitz continuous 

condition: 

.|J(t, x, u1, v1) − J(s, x, u2, v2)| ≤ L(|t − s| + |u1 − u2| + |v1 − v2|), (2.13) 

where .t, s ∈ [0, T ], .x ∈ D, and .u1, v1, u2, v2 ∈ R
d . Let .ε, μ satisfy Assump-

tion 2.1. In addition, suppose that .Q1/2 ∈ HS(U,Hγ (D)) for .γ > 3/2. Then 
conditions (2.9)–(2.12) hold. 

In fact, thanks to (2.13), we derive that 

. 

‖F(t, u)‖H =
( ∫

D

(
ε|ε−1Je|2 + μ|μ−1Jm|2)dx

)1/2

≤ Cδ−1/2
( ∫

D

(1 + |E|2 + |H|2)dx
)1/2

≤ Cδ−1/2
[
|D|1/2 + δ−1/2

( ∫

D

(ε|E|2 + μ|H|2)dx
)1/2]

≤ C(1 + ‖u‖H)

and 

. ‖B(t, u)‖2
HS(U0,H) = ‖B(t, u)Q

1
2 ‖2

HS(U,H) =
∑

j∈N
‖B(t, u)Q

1
2 ej‖2

H

=
∑

j∈N

∫

D

(
ε−1|Jr

eQ
1
2 ej (x)|2 + μ−1|Jr

mQ
1
2 ej (x)|2

)
dx

≤ Cδ−1
∑

j∈N
‖Q 1

2 ej‖2
L∞(D)

∫

D

(
1 + |E|2 + |H|2

)
dx

≤ Cδ−1‖Q 1
2 ‖2

HS(U,Hγ (D))

(
|D| + δ−1

∫

D

(
ε|E|2 + μ|H|2)dx

)

≤ C(1 + ‖u‖2
H
),

where we used the Sobolev embedding .Hγ (D) →ͨ L∞(D) with .γ > 3/2 (see 
Theorem B.2). Thus we obtain (2.9) and (2.11). Proofs of (2.10) and (2.12) can be 
obtained similarly.
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Theorem 2.2 Assume that . u0 is an .F0-measurable .H-valued random variable 
satisfying .‖u0‖Lp(Ω,H) < ∞ for some .p ≥ 2. Let Assumptions 2.1, 2.2, and 2.3 
hold. Then (2.8) has a unique mild solution given by 

.

u(t) = S(t)u0 +
∫ t

0
S(t − s)F (s, u(s))ds

+
∫ t

0
S(t − s)B(s, u(s))dW(s), P-a.s.

(2.14) 

for each .t ∈ [0, T ]. Moreover, there exists a positive constant . C =
C(p, T , F,B,Q) such that 

.E

[
sup

t∈[0,T ]
‖u(t)‖p

H

]
≤ C

(
1 + E

[‖u0‖p

H

])
. (2.15) 

Proof 
Step 1: Existence and uniqueness. We first prove the existence and uniqueness of the 
solution based on the fixed point theorem. For .p ≥ 2 and .β > 0, denote by .Hp,β the 
Banach space of all .H-valued predictable stochastic processes . {Y (t) : t ∈ [0, T ]}
such that 

. ‖|Y |‖p,β := sup
t∈[0,T ]

e−βt
(
E
[‖Y (t)‖p

H

])1/p

< ∞.

Define a mapping . K on .Hp,β by 

. 

K (Y )(t) := S(t)u0 +
∫ t

0
S(t − s)F (s, Y (s))ds

+
∫ t

0
S(t − s)B(s, Y (s))dW(s), P-a.s.

for all .t ∈ [0, T ] and .Y ∈ Hp,β . 
Now we show that the mapping .K : Hp,β → Hp,β is well-defined. In fact, 

taking into account Assumptions 2.2 and 2.3, and using Proposition D.4 (ii), one 
obtains that 

.‖|K (Y )|‖p,β

≤ sup
t∈[0,T ]

e−βt
[(

E
[‖S(t)u0‖p

H

])1/p +
(
E

[∥
∥
∥

∫ t

0
S(t − s)F (s, Y (s))ds

∥
∥
∥

p

H

])1/p

+
(
E

[∥
∥
∥

∫ t

0
S(t − s)B(s, Y (s))dW(s)

∥
∥
∥

p

H

])1/p]
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≤ ‖u0‖Lp(Ω,H) + sup 
t∈[0,T ] 

e−βt

∫ t 

0
‖F(s,  Y (s))‖Lp(Ω,H)ds 

+ C sup 
t∈[0,T ] 

e−βt
( ∫ t 

0

(
E

[
‖B(s, Y (s))‖p 

HS(U0,H)

])2/p 
ds
)1/2 

≤ ‖u0‖Lp(Ω,H) + C
∫ T 

0

[
1 +

(
E
[‖Y (s)‖p 

H

])1/p]
ds 

+ C
( ∫ T 

0

[
1 +

(
E
[‖Y (s)‖p 

H

])2/p]
ds
)1/2 

≤ ‖u0‖Lp(Ω,H) + CT + C
( ∫ T 

0 
eβsds +

( ∫ T 

0 
e2βsds

)1/2)‖|Y |‖p,β < ∞. 

Let . Y1 and . Y2 be two arbitrary processes in .Hp,β . Then 

. 

‖K (Y1)(t) − K (Y2)(t)‖Lp(Ω,H)

≤
∥
∥
∥

∫ t

0
S(t − s)(F (s, Y1(s)) − F(s, Y2(s)))ds

∥
∥
∥

Lp(Ω,H)

+
∥
∥
∥

∫ t

0
S(t − s)(B(s, Y1(s)) − B(s, Y2(s)))dW(s)

∥
∥
∥

Lp(Ω,H)

=: I1 + I2.

For the term . I1, Assumption 2.2 implies that 

. I1 ≤
∫ t

0
‖F(s, Y1(s)) − F(s, Y2(s))‖Lp(Ω,H)ds

≤ C

∫ t

0

(
E
[‖Y1(s) − Y2(s)‖p

H

])1/p

ds

= C

∫ t

0
eβse−βs

(
E
[‖Y1(s) − Y2(s)‖p

H

])1/p

ds

≤ C

∫ t

0
eβsds‖|Y1 − Y2|‖p,β = C(eβt − 1)

β
‖|Y1 − Y2|‖p,β

for all .t ∈ [0, T ]. For the term . I2, it follows from Proposition D.4 (i) and 
Assumption 2.3 that 

.I2 ≤ C
( ∫ t

0

(
E
[‖B(s, Y1(s)) − B(s, Y2(s))‖p

HS(U0,H)

])2/p

ds
)1/2
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≤ C
( ∫ t 

0

(
E
[‖Y1(s) − Y2(s)‖p 

H

])2/p 
ds
)1/2 

= C
( ∫ t 

0 
e2βs e−2βs

(
E
[‖Y1(s) − Y2(s)‖p 

H

])2/p 
ds
)1/2 

≤ C
( ∫ t 

0 
e2βsds

)1/2‖|Y1 − Y2|‖p,β = C

(
e2βt − 1 

2β

)1/2

‖|Y1 − Y2|‖p,β 

for all .t ∈ [0, T ]. Therefore, 

. ‖|K (Y1) − K (Y2)|‖p,β = sup
t∈[0,T ]

e−βt‖K (Y1)(t) − K (Y2)(t)‖Lp(Ω,H)

≤C sup
t∈[0,T ]

[
1 − e−βt

β
+
(

1 − e−2βt

2β

)1/2]

‖|Y1 − Y2|‖p,β

= C

[
1 − e−βT

β
+
(

1 − e−2βT

2β

)1/2]

‖|Y1 − Y2|‖p,β

for all .Y1, Y2 ∈ Hp,β . Moreover, note that 

. lim
β→+∞

[
1 − e−βT

β
+
(

1 − e−2βT

2β

)1/2]

= 0.

Combining the above estimates, we have shown that .K is a contraction mapping 
from .Hp,β to .Hp,β when . β is sufficiently large. Thus, there exists a unique solution 
of (2.8) which fulfills (2.14). 
Step 2: Proof of (2.15). By using Proposition D.5 and the linear growth properties 
of F and B, we have  

.E

[
sup

t∈[0,T ]
‖u(t)‖p

H

]
≤ CE

[
sup

t∈[0,T ]
‖S(t)u0‖p

H

]

+ CE

[ ∫ T

0
‖S(t − s)F (s, u(s))‖p

H
ds
]

+ CE

[
sup

t∈[0,T ]

∥
∥
∥

∫ t

0
S(t − s)B(s, u(s))dW(s)

∥
∥
∥

p

H

]

≤ CE
[‖u0‖p

H

]+ C

∫ T

0

(
1 + E

[‖u(s)‖p

H

])
ds

+ CE

[( ∫ T

0
‖B(s, u(s))‖2

HS(U0,H)ds
)p/2]
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≤ CE
[‖u0‖p 

H

]+ C
∫ T 

0

(
1 + E

[‖u(s)‖p 
H

])
ds 

≤ CE
[‖u0‖p 

H

]+ C
∫ T 

0

(
1 + E

[
sup 

r∈[0,s]
‖u(r)‖p 

H

])
ds. 

By the Grönwall inequality, there exists a positive constant C such that 

. E

[
sup

t∈[0,T ]
‖u(t)‖p

H

]
≤ C

(
1 + E

[‖u0‖p

H

])
.

Thus the proof of Theorem 2.2 is finished. ⨅⨆
Remark 2.4 Consider the stochastic Maxwell equations in the Stratonovich sense 

. 

⎧
⎨

⎩

du(t) =
[
Mu(t) + F(t, u(t))

]
dt + B(t, u(t)) ◦ dW(t), t ∈ (0, T ],

u(0) = u0.

(2.16) 

It is well-known that this system is equivalent to the following system in the Itô 
sense 

. du(t) =
[
Mu(t) + F(t, u(t)) − 1

2
Bu(t, u(t))B(t, u(t))FQ

]
dt + B(t, u(t))dW(t),

where .FQ(x) = ∑
j∈N

(
Q

1
2 ej (x)

)2. If the modified coefficient . F̃ (t, u(t)) :=
F(t, u(t)) − 1

2Bu(t, u(t))B(t, u(t))FQ satisfies Assumption 2.2 and the diffusion 
term B satisfies Assumption 2.3, then by Theorem 2.2, there is a unique mild 
solution of (2.16). 

2.2.2 Non-globally Lipschitz Continuous Case 

In this subsection we restrict our attention to (2.8) with Kerr-type nonlinearity, i.e., 

.F(u(t))(x) = −|u(t, x)|qu(t, x) (2.17) 

for .q > 0. In addition, we assume that .ε = μ ≡ 1. Here and after, we denote by 
.〈·, ·〉 the dualization between a Banach space V and its dual space . V ∗. For example, 

if .V = Lp(D) for some .p ∈ [2,∞), then .V ∗ = L
p

p−1 (D) and 

.〈f, g〉 =
∫

D

f (x)g(x)dx ∀ f ∈ V, g ∈ V ∗.
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We first introduce some properties of the nonlinear term F in (2.17) as a mapping 

from .Lq+2(D)6 to .L
q+2
q+1 (D)6. 

Lemma 2.1 For the term F , it holds 

(i) there exists a constant .γ0 > 0 such that 

.〈F(u) − F(v), u − v〉 ≤ −γ0‖u − v‖q+2
Lq+2(D)6 (2.18) 

for all . u, v ∈ Lq+2(D)6;
(ii) there exists a constant .C > 0 such that 

. ‖F(u) − F(v)‖
L

q+2
q+1 (D)6

≤ C
(
‖u‖q

Lq+2(D)6 + ‖v‖q

Lq+2(D)6

)
‖u − v‖Lq+2(D)6

(2.19) 

for all .u, v ∈ Lq+2(D)6. 

Proof 

(i) Note that .‖F(u)‖
L

q+2
q+1 (D)6

= ‖u‖Lq+2(D)6 , thus F is a mapping from 

.Lq+2(D)6 to .L
q+2
q+1 (D)6. It follows from Proposition A.7 that 

. 〈F(u) − F(v), u − v〉 = −〈|u|qu − |v|qv, u − v〉 ≤ −γ0‖u − v‖q+2
Lq+2(D)6,

where the positive constant . γ0 depends on q. 
(ii) For any .u,w ∈ Lq+2(D)6, F is Fréchet differentiable (see [107, Corollary 

9.3]) and its Fréchet derivative is given by 

. Fu(u)w = −q|w|q−2u⏉w − |u|qw,

which implies .〈Fu(u)w,w〉 ≤ 0 and .|Fu(u)w(x)| ≤ C|u(x)|q |w(x)| for all 
.x ∈ D. Thus the mean value theorem yields the conclusion. 

⨅⨆
Remark 2.5 If .q > 1, then F is twice continuously Fréchet differentiable with 

. Fuu(u)(v, v)(x) ≤ C|u(x)|q−1|v(x)|2

for all .u, v ∈ Lq+2(D)6 and .x ∈ D. We refer to [105, Lemma 2.6] for more details 
of this property. 

We are in a position to give the well-posedness of the stochastic Maxwell 
equations (2.8) with the nonlinear drift term (2.17).
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Theorem 2.3 Let .q > 0. Suppose that .u0 ∈ L2(Ω,H), and B satisfies Assump-
tion 2.3. Then there exists a unique weak solution u of (2.8), namely, there is an 
adapted process .u ∈ L2 (Ω,C([0, T ],H)) ∩ Lq+2 (Ω × [0, T ] × D)6 satisfying 

. 

〈u(t) − u0, φ〉H =
∫ t

0

(
− 〈u(s),Mφ〉H − 〈|u(s)|qu(s), φ〉H

)
ds

+
∫ t

0
〈φ,B(s, u(s))dW(s)〉H, P-a.s.

for all .t ∈ [0, T ] and .φ ∈ D(M) ∩ Lq+2(D)6. 

The proof of Theorem 2.3 is mainly based on the Galerkin approximation. Before 
giving the Galerkin approximation, we first introduce some operators, which will be 
used to obtain a truncation of (2.8). Define operators . A(1) = A(2) := ∇ × ∇ ×
−∇(∇·) with domains 

. 

D(A(1)) :=
{
u ∈ H0(curl,D) ∩ H(div,D) : ∇ × ∇ × u ∈ L2(D)3,

∇ · u ∈ H 1
0 (D)

}
,

D(A(2)) :=
{
u ∈ H(curl,D) ∩ H0(div,D) : ∇ × ∇ × u ∈ L2(D)3,

∇ · u ∈ H 1(D),n × (∇ × u)|∂D = 0
}
,

respectively. One can check that for .i = 1, 2, the operator .Id + A(i) is strictly 
positive and self-adjoint on .L2(D)3, and the embedding .D(A(i)) →ͨ L2(D)3 is 
compact. 

Define the Hodge–Laplacian operator by 

. ΔH u :=
[−A(1)u1

−A(2)u2

]

for all .u = (u⏉
1 , u⏉

2 )⏉ ∈ D(ΔH ) := D(A(1)) × D(A(2)). Hence, .Id − ΔH is a 
densely defined, self-adjoint, and positive definite operator with a compact inverse. 
Then, there exists an orthonormal basis of eigenvectors .{gk}k∈N to the positive 
eigenvalues .{λk}k∈N of .Id − ΔH with .λk → ∞ as .k → ∞. 

Define the orthogonal projection operator .Pn : H → H by 

.Pnu :=
∑

{k: λk≤2n}
〈u, gk〉Hgk, u ∈ H
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for any .n ∈ N. Note that .
⋃

n∈N ran(Pn) is dense in .D(M) and in .Lp(D)6 for . p > 1
(see [105, Corollary 3.6]). Then for each .n ∈ N, we consider the following truncated 
equation in .ran(Pn): 

. 

⎧
⎨

⎩

du(n)(t)=
[
PnMu(n)(t) + PnF(u(n)(t))

]
dt+PnB(t, u(n)(t))dW(t), t ∈ (0, T ],

u(n)(0) = Pnu0.

(2.20) 

It follows from (2.19) that this is a finite-dimensional stochastic differential 
equation with a locally Lipschitz continuous drift term. Using the fact . u⏉F(u) =
−|u|q+2, we obtain by [133, Theorem 3.5] that there exists a unique solution 
.u(n) : Ω × [0, T ] → ran(Pn) with continuous paths that solves (2.20). 

In order to construct the solution of (2.8), we need some a priori  estimates for 
the solution .u(n). 

Proposition 2.1 There exists a positive constant C such that 

.

sup
n∈N

E

[
sup

t∈[0,T ]
‖u(n)(t)‖2

H

]
+ 2 sup

n∈N
E

[ ∫ T

0
‖u(n)(s)‖q+2

Lq+2(D)6ds
]

≤ C
(
T + E

[‖u0‖2
H

])
.

(2.21) 

Proof Applying the Itô formula to .‖u(n)(t)‖2
H

yields 

. 

‖u(n)(t)‖2
H

= ‖u(n)(0)‖2
H

+ 2
∫ t

0
〈u(n)(s),−|u(n)(s)|qu(n)(s)〉Hds

+
∫ t

0

∑

j∈N
‖PnB(s, u(n)(s))Q

1
2 ej‖2

H
ds + 2M(n)(t), P-a.s.

for all .t ∈ [0, T ], where 

. M(n)(t) :=
∫ t

0
〈u(n)(s), PnB(s, u(n)(s))dW(s)〉H.

Hence, for all .t ∈ [0, T ], 

.

‖u(n)(t)‖2
H

≤ ‖u0‖2
H

− 2
∫ t

0
‖u(n)(s)‖q+2

Lq+2(D)6ds

+ C

∫ t

0
‖u(n)(s)‖2

H
ds + CT + 2M(n)(t), P-a.s.

(2.22) 

due to the linear growth of B.
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It follows from Proposition D.4 (ii), (2.11), and the Young inequality that 

.

E

[
sup

t∈[0,T ]
∣
∣M(n)(t)

∣
∣
]

≤ CE

[ ∫ t

0
‖u(n)(s)‖2

H
‖B(s, u(n)(s))‖2

HS(U0,H)ds
]1/2

≤ CE

[(
sup

t∈[0,T ]
‖u(n)(t)‖2

H

)1/2(
∫ t

0

(
1 + ‖u(n)(s)‖2

H

)
ds
)1/2]

≤ 1

4
E

[
sup

t∈[0,T ]
‖u(n)(t)‖2

H

]
+ CE

[ ∫ T

0
sup

r∈[0,s]
‖u(n)(r)‖2

H
ds
]

+ CT .

(2.23) 

Then by (2.22) and (2.23), and the Grönwall inequality, we have that for any .n ∈ N, 

. E

[
sup

t∈[0,T ]
‖u(n)(t)‖2

H

]
+ 2E

[ ∫ T

0
‖u(n)(s)‖q+2

Lq+2(D)6ds
]

≤ C
(
T + E

[‖u0‖2
H

])
,

where C is a positive constant independent of n. ⨅⨆
We will need the following lemma; see e.g., [105, Lemma 4.2] and [129, 

Theorem 4.2.5] for the proof. 

Lemma 2.2 Let .X0 ∈ L2(Ω,H), .Y ∈ L
q+2
q+1 (Ω × [0, T ] × D)6 with .q > 0, and 

.Z ∈ L2(Ω × [0, T ],HS(U0,H)) be .{Ft }0≤t≤T -adapted. Define the process X 
satisfying 

.

〈X(t), φ〉H = 〈X0, φ〉H −
∫ t

0

(
〈X(s),Mφ〉H − 〈Y (s), φ〉H

)
ds

+
∫ t

0
〈φ,Z(s)dW(s)〉H, P-a.s.

(2.24) 

for all .t ∈ [0, T ] and .φ ∈ D(M)∩Lq+2(D)6. If .X ∈ Lq+2(Ω ×[0, T ]×D)6, then 
X is an .H-valued continuous .{Ft }0≤t≤T -adapted process and satisfies 

.

‖X(t2)‖2
H

= ‖X(t1)‖2
H

+
∫ t2

t1

(
2〈X(s), Y (s)〉 + ‖Z(s)‖2

HS(U0,H)

)
ds

+ 2
∫ t2

t1

〈X(s), Z(s)dW(s)〉H, P-a.s.

(2.25) 

for all .0 ≤ t1 ≤ t2 ≤ T .
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Taking into account the truncated equation (2.20) and the estimate of .u(n) in 
Proposition 2.1, we are now in the position to give the proof of the existence and 
uniqueness of the weak solution for (2.8) with the nonlinear drift term (2.17). 

Proof of Theorem 2.3. 
Step 1. Existence. Recall that for each .n ∈ N, the process .{u(n)(t), t ∈ [0, T ]} is the 
solution of (2.20). By Proposition 2.1, it follows that 

.

∥
∥
∥F(u(n))

∥
∥
∥

q+2
q+1

L
q+2
q+1 (Ω×[0,T ]×D)6

= E

[ ∫ T

0
‖u(n)(s)‖q+2

Lq+2(D)6ds
]

≤ C
(
T + E

[‖u0‖2
H

])
.

(2.26) 

Analogously, by the linear growth of B and Proposition 2.1, we have  

.

∥
∥
∥B(·, u(n))

∥
∥
∥

2

L2(Ω×[0,T ],HS(U0,H))
≤ CT

(
1 + E

[‖u0‖2
H

])
. (2.27) 

Therefore, by the reflexivity of .Lq+2(Ω × [0, T ] × D)6 and . L2(Ω ×
[0, T ],HS(U0,H)), (2.26), (2.27), and Proposition 2.1, one obtains that there 

exist .u ∈ Lq+2(Ω × [0, T ] × D)6, .Y ∈ L
q+2
q+1 (Ω × [0, T ] × D)6, . Z ∈

L2(Ω × [0, T ],HS(U0,H)), and a subsequence .{nk} such that for .nk → ∞, 

(i) .u(nk) → u weakly in .Lq+2(Ω × [0, T ] × D)6; 

(ii) .u(nk) → u weakly. ∗ in .L2(Ω,L∞([0, T ],H)); 

(iii) .F(u(nk)) → Y weakly in .L
q+2
q+1 (Ω × [0, T ] × D)6; 

(iv) .B(·, u(nk)) → Z weakly in .L2(Ω × [0, T ],HS(U0,H)) and 

. 

∫ t

0
Pnk

B(s, u(nk)(s))dW(s) →
∫ t

0
Z(s)dW(s) ∀ t ∈ [0, T ]

weakly. ∗ in .L∞([0, T ], L2(Ω,H)). 

For any .ρ ∈ Lq+2(Ω × [0, T ]) and .φ ∈ ⋃n∈N ran(Pn), by the symmetry of . Pn

and the skew-adjointness of M , we obtain from (2.20) that 

.E

[ ∫ T

0
〈u(nk)(t) − u

(nk)
0 , φ〉Hρ(t)dt

]

= E

[ ∫ T

0
ρ(t)

∫ t

0

(
− 〈u(nk)(s),MPnk

φ〉H + 〈F(u(nk)(s)), Pnk
φ〉H

)
dsdt

]

+ E

[ ∫ T

0
ρ(t)

∫ t

0
〈Pnk

φ, B(s, u(nk)(s))dW(s)〉Hdt
]
.
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By the weak convergence results (i)–(iv) and the stochastic Fubini theorem, we 
obtain 

. 

E

[ ∫ T

0
〈u(t) − u0, φ〉Hρ(t)dt

]

= E

[ ∫ T

0
ρ(t)

∫ t

0

(
− 〈u(s),Mφ〉H + 〈Y (s), φ〉H

)
dsdt

]

+ E

[ ∫ T

0
ρ(t)

∫ t

0
〈φ,Z(s)dW(s)〉Hdt

]
.

Therefore, by the arbitrariness of . ρ, we have  

.

〈u(t) − u0, φ〉H =
∫ t

0

(
− 〈u(s),Mφ〉H + 〈Y (s), φ〉H

)
ds

+
∫ t

0
〈φ,Z(s)dW(s)〉H, dt ⊗ P-a.e.

(2.28) 

Using the fact that .
⋃

n∈N ran(Pn) is dense in .D(M)
⋂

Lp(D)6 for any .p > 1, one 
obtains .φ ∈ D(M) ∩ Lq+2(D)6. 

Thus, it remains to verify 

. B(·, u) = Z, F(u) = Y, dt ⊗ P-a.e.

To this end, we first note that for any nonnegative function .ψ ∈ L∞([0, T ],R), it  
follows from (i) that 

. 

E

[ ∫ T

0
ψ(s)‖u(s)‖2

H
ds
]

= lim
k→∞E

[ ∫ T

0
〈ψ(s)u(s), u(nk)(s)〉Hds

]

≤
(
E

[ ∫ T

0
ψ(s)‖u(s)‖2

H
ds
])1/2

lim inf
k→∞

(
E

[ ∫ T

0
ψ(s)‖u(nk)(s)‖2

H
ds
])1/2

,

which implies 

.E

[ ∫ T

0
ψ(s)‖u(s)‖2

H
ds
]

≤ lim inf
k→∞ E

[ ∫ T

0
ψ(s)‖u(nk)(s)‖2

H
ds
]
. (2.29) 

By using (2.28), Lemma 2.2, and the product rule, we obtain that 

.

E
[
e−ct‖u(t)‖2

H

]− E
[‖u0‖2

H

]

= E

[ ∫ t

0
e−cs

(
2〈u(s), Y (s)〉H + ‖Z(s)‖2

HS(U0,H) − c‖u(s)‖2
H

)
ds
]
,

(2.30)
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where c is a positive constant. Furthermore, for any . φ ∈ Lq+2(Ω × [0, T ] × D)6

we have 

. E
[
e−ct‖u(nk)(t)‖2

H

]− E
[‖u(nk)

0 ‖2
H

]

= E

[ ∫ t

0
e−cs

(
2〈u(nk)(s), F (u(nk)(s))〉H

+
∑

j∈N
‖Pnk

B(s, u(nk)(s))Q
1
2 ej‖2

H
− c‖u(nk)(s)‖2

H

)
ds
]

≤ E

[ ∫ t

0
e−cs

(
2〈u(nk)(s), F (u(nk)(s))〉H

+ ‖B(s, u(nk)(s))‖2
HS(U0,H) − c‖u(nk)(s)‖2

H

)
ds
]

= E

[ ∫ t

0
e−cs

(
2〈u(nk)(s) − φ(s), F (u(nk)(s)) − F(φ(s))〉H

+ ‖B(s, u(nk)(s)) − B(s, φ(s))‖2
HS(U0,H) − c‖u(nk)(s) − φ(s)‖2

H

)
ds
]

+ E

[ ∫ t

0
e−cs

(
2〈φ(s), F (u(nk)(s)) − F(φ(s))〉H

+ 2〈u(nk)(s), F (φ(s))〉H + 2〈B(s, u(nk)(s)), B(s, φ(s))〉HS(U0,H)

− ‖B(s, φ(s))‖2
HS(U0,H) − 2c〈u(nk)(s), φ(s)〉H + c‖φ(s)‖2

H

)
ds
]
.

Note that if we choose c large enough, by the Lipschitz continuity of B and (2.18), 
we have 

. 

E

[ ∫ t

0
e−cs

(
2〈u(nk)(s) − φ(s), F (u(nk)(s)) − F(φ(s))〉H

+ ‖B(s, u(nk)(s)) − B(s, φ(s))‖2
HS(U0,H) − c‖u(nk)(s) − φ(s)‖2

H

)
ds
]

< 0.

Hence, by letting .k → ∞ we conclude from (i)–(iv) and (2.29) that for every 
nonnegative function .ψ ∈ L∞([0, T ],R), 

. E

[ ∫ T

0
ψ(t)

(
e−ct‖u(t)‖2

H
− ‖u0‖2

H

)
dt
]

≤ E

[ ∫ T

0
ψ(t)

( ∫ t

0
e−cs

(
2〈φ(s), Y (s) − F(φ(s))〉H (2.31)
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+ 2〈u(s), F(φ(s))〉H + 2〈Z(s), B(s, φ(s))〉HS(U0,H) 

− ‖B(s, φ(s))‖2 
HS(U0,H) − 2c〈u(s), φ(s)〉H + c‖φ(s)‖2 

H

)
ds
)

dt
]
. 

Inserting (2.30) into the left-hand side of (2.31) yields 

.

E

[ ∫ T

0
ψ(t)

( ∫ t

0
e−cs

(
2〈φ(s) − u(s), Y (s) − F(φ(s))〉H

+ ‖Z(s) − B(s, φ(s))‖2
HS(U0,H) − c‖u(s) − φ(s)‖2

H

)
ds
)

dt
]

≤ 0.

(2.32) 

Then by taking .φ = u in (2.32), we obtain that .B(·, u) = Z. 
Again by taking .φ = u−γ φ̃ϑ for .γ > 0, .ϑ ∈ H, and .φ̃ ∈ Lq+2([0, T ]) in (2.32), 

dividing both sides by . γ and letting .γ → 0, it follows from the Lipschitz continuity 
of B and the dominated convergence theorem that 

. E

[ ∫ T

0
ψ(t)

( ∫ t

0
e−cs φ̃(s)〈ϑ, Y (s) − F(u(s))〉Hds

)
dt
]

≤ 0.

By the arbitrariness of . ψ , . φ̃, and . ϑ , we conclude that .F(u) = Y . 
Step 2. Uniqueness. Suppose that u and v are solutions of (2.8) with initial data . u0
and . v0, respectively, i.e., for any .t ∈ [0, T ] and .φ ∈ D(M) ∩ Lq+2(D)6, we have  

. 

〈u(t) − u0, φ〉H =
∫ t

0

(
− 〈u(s),Mφ〉H + 〈F(u(s)), φ〉H

)
ds

+
∫ t

0
〈φ,B(s, u(s))dW(s)〉H, P-a.s.

and 

. 

〈v(t) − v0, φ〉H =
∫ t

0

(
− 〈v(s),Mφ〉H + 〈F(v(s)), φ〉H

)
ds

+
∫ t

0
〈φ,B(s, v(s))dW(s)〉H, P-a.s.

Then by Lemma 2.2, for all .t ∈ [0, T ], we have  

.E
[‖u(t) − v(t)‖2

H

] = E
[‖u0 − v0‖2

H

]

+ E

[ ∫ t

0

(
2〈F(u(s)) − F(v(s)), u(s) − v(s)〉H

+ ‖B(s, u(s)) − B(s, v(s))‖2
HS(U0,H)

)
ds
]
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≤ E
[‖u0 − v0‖2 

H

]+ C
∫ t 

0 
E
[‖u(s) − v(s)‖2 

H

]
ds, 

where the last estimate follows from (2.18) and the Lipschitz continuity of B. Using  
the Grönwall inequality, we obtain 

. E
[‖u(t) − v(t)‖2

H

] ≤ eCt
E
[‖u0 − v0‖2

H

]

for all .t ∈ [0, T ]. Consequently, it follows from .u0 = v0 that for every .t ∈ [0, T ], 

. u(t) = v(t), P-a.s.

The proof of Theorem 2.3 is thus finished. ⨅⨆

2.3 Regularity of the Solution 

This section is devoted to the study of the regularity of the solution for the stochastic 
Maxwell equations (2.8), which plays an important role in the analyses of stochastic 
structure-preserving algorithms in Chaps. 4 and 5. In Sect. 2.3.1, we present the 
uniform boundedness of the solution in .Lp(Ω,D(Mk)) (.D(Mk)-regularity for 
short) and the Hölder continuity of the solution in .L2(Ω,D(Mk−1)) for a fixed 
integer .k ≥ 1. Sect. 2.3.2 gives the uniform boundedness of the solution in 
.L2(Ω,Hk(D)6) (.Hk-regularity for short) with . k = 1, 2.

2.3.1 D(Mk )-Regularity 

For .k ≥ 1, define recursively the domain . D(Mk) := {u ∈ D(Mk−1) : Mk−1u ∈
D(M)} for the k-th power of the Maxwell operator M and .D(M0) = H. If . D(Mk)

is endowed with the norm 

. ‖v‖D(Mk) =
(
‖v‖2

H
+ ‖Mkv‖2

H

)1/2 ∀ v ∈ D(Mk), k ≥ 1,

then .D(Mk) is a Hilbert space. Furthermore, it can be shown that . ‖u‖D(Mk1 ) ≤
C‖u‖D(Mk2 ) for all .u ∈ D(Mk2), .k1 ≤ k2. 

We fix the integer .k ∈ N and impose the following assumptions on coefficients 
F and B of the equations. 

Assumption 2.4 There exists a positive constant C such that, for all .0 ≤ 𝓁 ≤ k, we  
have 

.‖F(t, u)‖D(M𝓁) ≤ C
(
1 + ‖u‖D(M𝓁)

)
, . (2.33)
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‖F(t,  u) − F(s,  v)‖D(M𝓁) ≤ C
(|t − s| + ‖u − v‖D(M𝓁)

)
(2.34) 

for .u, v ∈ D(M𝓁) and .t, s ∈ [0, T ]. 
Assumption 2.5 There exists a positive constant C such that, for all .0 ≤ 𝓁 ≤ k, we  
have 

.‖B(t, u)‖HS(U0,D(M𝓁)) ≤ C
(

1 + ‖u‖2
D(M𝓁)

)1/2
, . (2.35)

‖B(t, u) − B(s, v)‖HS(U0,D(M𝓁)) ≤ C
(
|t − s| + ‖u − v‖D(M𝓁)

)
(2.36) 

for .u, v ∈ D(M𝓁) and .t, s ∈ [0, T ]. 
We are now ready to establish the .D(Mk)-regularity of the solution of (2.8). 

Theorem 2.4 Suppose that .ε, μ satisfy Assumption 2.1 and that .F,B satisfy 
Assumptions 2.4 and 2.5. Assume in addition that . u0 is an .F0-measurable .H-valued 
random variable satisfying .‖u0‖Lp(Ω,D(Mk)) < ∞ for some .p ≥ 2. Then there 
exists a positive constant .C = C(p, T ) such that the mild solution of (2.8) satisfies 

.E

[
sup

t∈[0,T ]
‖u(t)‖Lp(Ω,D(Mk))

]
≤ C

(
1 + E

[‖u0‖D(Mk)

])
, k ∈ N. (2.37) 

Proof Using Proposition D.5, (2.33), and (2.35), it holds for the mild solution (2.14) 
that 

. 

E

[
sup

t∈[0,T ]
‖u(t)‖p

D(Mk)

]

≤ C E

[
sup

t∈[0,T ]
‖S(t)u0‖p

D(Mk)

]
+ C E

[ ∫ T

0
‖S(t − s)F (s, u(s))‖p

D(Mk)
ds
]

+ C E

[
sup

t∈[0,T ]

∥
∥
∥

∫ t

0
S(t − s)B(s, u(s))dW(s)

∥
∥
∥

p

D(Mk)

]

≤ C E
[‖u0‖p

D(Mk)

]+ C

∫ T

0

(
1 + E

[‖u(s)‖p

D(Mk)

])
ds

+ C E

[( ∫ T

0
‖B(s, u(s))‖2

HS(U0,D(Mk))
ds
)p/2]

≤ C E
[‖u0‖p

D(Mk)

]+ C

∫ T

0

(
1 + E

[
sup

r∈[0,s]
‖u(r)‖p

D(Mk)

])
ds,

which together with the Grönwall inequality leads to the assertion. ⨅⨆
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Now, we turn to the Hölder continuity of the solution of (2.8). 

Theorem 2.5 Let conditions in Theorem 2.4 hold. For any .p ≥ 2, there exists a 
positive constant .C = C(p, T , u0) such that 

.E

[
‖u(t) − u(s)‖p

D(Mk−1)

]
≤ C(t − s)p/2, . (2.38)

∥
∥E
[
u(t) − u(s)

]∥
∥

D(Mk−1) ≤ C(t − s) (2.39) 

for all .0 ≤ s ≤ t ≤ T and .k ≥ 1. 

Proof From the mild solution (2.14), we have that for all .0 ≤ s ≤ t ≤ T , 

.

u(t) − u(s) =(S(t − s) − Id
)
u(s) +

∫ t

s

S(t − r)F (r, u(r))dr

+
∫ t

s

S(t − r)B(r, u(r))dW(r), P-a.s.

(2.40) 

Therefore, 

. E

[∥
∥u(t) − u(s)

∥
∥p

D(Mk−1)

]

≤ CE

[
‖(S(t − s) − Id)u(s)‖p

D(Mk−1)

]

+ CE

[∥
∥
∥

∫ t

s

S(t − r)F (r, u(r))dr

∥
∥
∥

p

D(Mk−1)

]

+ CE

[∥
∥
∥

∫ t

s

S(t − r)B(r, u(r))dW(r)

∥
∥
∥

p

D(Mk−1)

]

=: I1 + I2 + I3.

For the first term . I1, we have  

.

I1 ≤
∥
∥
∥S(t − s) − Id

∥
∥
∥

p

L (D(Mk),D(Mk−1))
E
[‖u(s)‖p

D(Mk)

]

≤ C(t − s)pE
[‖u(s)‖p

D(Mk)

]

≤ C
(

1 + E
[‖u0‖p

D(Mk)

])
(t − s)p,

(2.41)
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where Lemma C.1 and Theorem 2.4 are used. For the second term . I2, Assump-
tion 2.4 and Theorem 2.4 imply that 

.

I2 = E

[∥
∥
∥

∫ t

s

S(t − r)F (r, u(r))dr

∥
∥
∥

p

D(Mk−1)

]

≤ C(t − s)p−1
∫ t

s

E

[∥
∥
∥S(t − r)F (r, u(r))

∥
∥
∥

p

D(Mk−1)

]
dr

≤ C(t − s)p−1
∫ t

s

E

[
‖F(r, u(r))‖p

D(Mk−1)

]
dr

≤ C(t − s)p−1
∫ t

s

E

[
1 + ‖u(r)‖p

D(Mk−1)

]
dr

≤ C
(

1 + E
[‖u0‖p

D(Mk−1)

])
(t − s)p.

(2.42) 

It follows from Proposition D.4 (ii) that 

. 

I3 ≤ CE

[( ∫ t

s

∥
∥
∥S(t − r)B(r, u(r))

∥
∥
∥

2

HS(U0,D(Mk−1))
dr
)p/2]

≤ CE

[( ∫ t

s

‖S(t − r)‖2
L (D(Mk−1))

‖B(r, u(r))‖2
HS(U0,D(Mk−1))

dr
)p/2]

≤ CE

[( ∫ t

s

(
1 + ‖u(r)‖2

D(Mk−1)

)
dr
)p/2]

≤ C
(

1 + E
[‖u0‖p

D(Mk−1)

])
(t − s)p/2.

(2.43) 

Combining (2.41)–(2.43) and the assumption .u0 ∈ Lp(Ω,D(Mk)), we  
obtain (2.38). 

To derive (2.39), we take the expectation on both sides of (2.40) and obtain 

. E
[
u(t) − u(s)

] = E
[(

S(t − s) − Id
)
u(s)

]+ E

[ ∫ t

s

S(t − r)F (r, u(r))dr
]

for all .0 ≤ s ≤ t ≤ T . By similar arguments as those in (2.41) and (2.42), it can be 
shown that 

.

∥
∥E
[
u(t) − u(s)

]∥
∥

D(Mk−1)

≤ E

[∥
∥(S(t − s) − Id)u(s)

∥
∥

D(Mk−1)

]
+ E

[ ∫ t

s

∥
∥S(t − r)F (r, u(r))

∥
∥
D(Mk−1)

dr
]

≤ C(t − s).
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The proof of Theorem 2.5 is finished. ⨅⨆

2.3.2 Hk-Regularity 

In this subsection, we focus on the .Hk-regularity .(k = 1, 2) of the solution for the 
stochastic Maxwell equations with additive noise 

.

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dE(t) = ∇ × H(t)dt + λ1dW(t), t ∈ (0, T ],
dH(t) = −∇ × E(t)dt + λ2dW(t), t ∈ (0, T ],
E(0) = E0, H(t) = H0

(2.44) 

on a cuboid .D = (a−
1 , a+

1 ) × (a−
2 , a+

2 ) × (a−
3 , a+

3 ) ⊂ R
3 with a Lipschitz boundary 

.Γ := ∂D. Here .λi ∈ R
3, .i = 1, 2, describe the scale of the noise, and W is a 

U -valued Q-Wiener process. To simplify the presentation, we restrict ourselves to 
the constant parameters case with .ε = μ ≡ 1. Moreover, it is not difficult to prove 
that the conclusions in this part still hold if we assume . ε, μ ∈ W 1,∞(D)∩W 2,3(D)

with .ε, μ ≥ δ > 0 for a constant . δ. 
To derive the .Hk-regularity of the solution of (2.44), we impose the following 

PEC boundary conditions 

.n × E = 0, n · H = 0, on [0, T ] × Γ. (2.45) 

By defining .u = (E⏉,H⏉)⏉, .u0 = (E⏉
0 ,H⏉

0 )⏉, and .λ = (λ⏉
1 ,λ⏉

2 )⏉, (2.44) can be 
rewritten as a stochastic evolution equation 

.

⎧
⎨

⎩

du(t) = Mu(t)dt + λdW(t), t ∈ (0, T ],
u(0) = u0,

(2.46) 

and the mild solution is given by 

. u(t) = S(t)u0 +
∫ t

0
S(t − s)λdW(s), P-a.s. (2.47) 

for each .t ∈ [0, T ]. 
We first investigate the .H 1-regularity of the mild solution (2.47). 

Theorem 2.6 Let conditions with .k = 1 in Theorem 2.4 hold. Assume that 
.Q

1
2 ∈ HS(U,H 1(D)) and .u0 ∈ L2(Ω,H 1(D)6). Then the mild solution . u ∈

L2(Ω,H 1(D)6) satisfies 

. sup
t∈[0,T ]

E
[‖u(t)‖2

H 1(D)6

] ≤ C
(

1 + E
[‖u0‖2

H 1(D)6

])
,
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where the positive constant C depends on T , . |λ|, and .‖Q 1
2 ‖HS(U,H 1(D)). 

Proof Taking . ∇· on both sides of (2.44) yields 

. ∇ · E(t) = ∇ · E0 + λ1 · (∇W(t)
)
, ∇ · H(t) = ∇ · H0 + λ2 · (∇W(t)

)

(2.48) 

for all .t ∈ [0, T ]. Hence, there exists a positive constant C such that 

. 

E

[
‖∇ · (E(t))‖2

U

]
= E

[
‖∇ · (E0)‖2

U

]
+ E

[
‖λ1 · (∇W(t)

)‖2
U

]

≤ C
(

1 + E
[‖E0‖2

H 1(D)3

]) ∀ t ∈ [0, T ].

Similarly, we have 

. E

[
‖∇ · H(t)‖2

U

]
≤ C

(
1 + E

[‖H0‖2
H 1(D)3

]) ∀ t ∈ [0, T ].

Combining these two estimates, Lemma B.2, and Theorem 2.4, we obtain 

. E
[‖u(t)‖2

H 1(D)6

] ≤ C
(
E
[‖E(t)‖2

L2(D)3

]+ E
[‖H(t)‖2

L2(D)3

]

+E
[‖∇ × E(t)‖2

L2(D)3

]

+E
[‖∇ × H(t)‖2

L2(D)3

]+E
[‖∇ · E(t)‖2

U

]+E
[‖∇ · H(t)‖2

U

])

≤ C
(
E
[‖u(t)‖2

D(M)

]+ E
[‖∇ · E(t)‖2

U

]+ E
[‖∇ · H(t)‖2

U

])

≤ C
(

1 + E
[‖u0‖2

H 1(D)6

])

for all .t ∈ [0, T ]. ⨅⨆
We now pass to a higher regularity estimation. For simplicity, denote 

. Γ ±
1 = {x ∈ D : x = a±

1 }, Γ ±
2 = {x ∈ D : y = a±

2 }, Γ ±
3 = {x ∈ D : z = a±

3 },

and .Γj := Γ −
j ∪ Γ +

j for .j = 1, 2, 3. For a union .Γ ∗ ⊆ Γ of some faces of D, we  
set 

.H 1
Γ ∗(D) = {

u ∈ H 1(D) : u = 0 on Γ ∗}.
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By introducing a subspace .H 1
00(D) of .H 1(D): 

. H 1
00(D) := {

f ∈ H 1(D) : f |Γ ' ∈ H
1/2
0 (Γ ') for all faces Γ ' of D

}
,

we can obtain the .H 2-regularity of the mild solution u as stated below. 

Theorem 2.7 Let conditions with .k = 2 in Theorem 2.4 hold. In addition, assume 
that .Q

1
2 ∈ HS

(
U,H 2(D)

)
, .∇Q

1
2 : U → H 1

00(D)3, .u0 ∈ L2
(
Ω,H 2(D)6

)
, and 

.∇ · E0 ∈ L2(Ω,H 1
00(D)). Then the mild solution .u ∈ L2(Ω,H 2(D)6) satisfies 

. sup
t∈[0,T ]

E
[‖u(t)‖2

H 2(D)6

] ≤ C
(

1 + E
[‖u0‖2

H 2(D)6

])
,

where the positive constant C depends on T , . |λ|, and .‖Q 1
2 ‖HS(U,H 2(D)). Moreover, 

the field .(E(t)⏉,H(t)⏉)⏉ has traces 

. 

E2 = E3 = 0, ∂yE2 = ∂zE2 = ∂yE3 = ∂zE3 = 0, on Γ1,

E1 = E3 = 0, ∂xE1 = ∂zE1 = ∂xE3 = ∂zE3 = 0, on Γ2,

E1 = E2 = 0, ∂xE1 = ∂yE1 = ∂xE2 = ∂yE2 = 0, on Γ3,

H1 = 0, ∂yH1 = ∂zH1 = 0, on Γ1,

H2 = 0, ∂xH2 = ∂zH2 = 0, on Γ2,

H3 = 0, ∂xH3 = ∂yH3 = 0, on Γ3.

Proof The PEC boundary conditions (2.45) imply the asserted zero-order traces for 
. E and . H. Then, using Lemma B.6 and the .H 2-regularity of the solution u, we obtain 
the first-order traces result. 

The proof of the .H 2-regularity of the solution of (2.46) consists of three steps. 
In the first step we prove the mild solution .u ∈ L2(Ω,H 2

loc(D)6). In the second and 
third steps, we show the .H 2-regularity for . E and . H, respectively. 

Step 1. It follows from the divergence evolution laws (2.48) that 

. E

[
‖∇ · E(t)‖2

H 1(D)
+ ‖∇ · H(t)‖2

H 1(D)

]
≤ C

(
1 + E

[‖u0‖2
H 2(D)6

])
,

where the positive constant C depends on T , . |λ|, and .‖Q 1
2 ‖HS(U,H 2(D)). Moreover, 

from assumptions of the initial datum and the noise, we have that . ∇ · E(t) ∈
L2(Ω,H 1

00(D)) for all .t ∈ [0, T ].
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Note that 

. M2u =
[

−∇ × (∇ × E)

−∇ × (∇ × H)

]

and .ΔE = ∇(∇ ·E) − ∇ × (∇ ×E). Thus, it follows from Theorem 2.4 with . k = 2
that .ΔE ∈ L2(Ω,L2(D)3) and 

. E
[‖ΔE(t)‖2

L2(D)3

] ≤ C
(
E
[‖∇ · E(t)‖2

H 1(D)

]+ E
[‖u(t)‖2

D(M2)

]) ∀ t ∈ [0, T ].

The field .H(t) can be estimated similarly. Standard interior elliptic regularity result 
then leads to .E(t), H(t) ∈ L2(Ω,H 2

loc(D)3) for all .t ∈ [0, T ]. 
Step 2. To obtain the .H 2-regularity of the electric field . E, we first consider the .H 2-
regularity of the first component . E1 of . E. Set .Γ ∗ := Γ2 ∪ Γ3. The result in Step 1 
implies that .f := (Id − Δ)E1 ∈ U . For a given .ϕ ∈ H 1

Γ ∗(D), by employing the 
cut-off and the mollification in .y, z-directions, one can approximate it by a smooth 
function . ψ with support in .[a−

1 , a+
1 ]×[a−

2 +η, a+
2 −η]×[a−

3 +η, a+
3 −η] for some 

small constant .η := η(ψ) > 0. For each .κ ∈ (0, η), define . Dκ := (a−
1 + κ, a+

1 −
κ)× (a−

2 +κ, a+
2 −κ)× (a−

3 +κ, a+
3 −κ) and denote by .Γ ±

1 (κ) those open faces of 
.Dκ that contain points of the form .(a∓

1 ± κ, y, z). The integration by parts formula 
and the support of . ψ yield that 

. 

∫

D

E1ψdx +
∫

D

∇E1 · ∇ψdx = lim
κ→0

∫

Dκ

E1ψdx +
∫

Dκ

∇E1 · ∇ψdx

= lim
κ→0

[ ∫

Dκ

ψ(Id − Δ)E1dx +
∫

∂Dκ

ψ∇E1 · ndσ
]

=
∫

D

ψf dx + lim
κ→0

∫

Γ +
1 (κ)

ψ∂xE1dσ − lim
κ→0

∫

Γ −
1 (κ)

ψ∂xE1dσ

=
∫

D

ψf dx + lim
κ→0

∫

Γ +
1 (κ)

ψ
(∇ · E − ∂yE2 − ∂zE3

)
dσ

− lim
κ→0

∫

Γ −
1 (κ)

ψ
(∇ · E − ∂yE2 − ∂zE3

)
dσ

=
∫

D

ψf dx +
∫

Γ +
1

ψ∇ · Edσ −
∫

Γ −
1

ψ∇ · Edσ,

where we used the facts that . ψ vanishes on the boundary of . Γ ∗, and that . E2 and . E3
vanish on . Γ1. Lemma B.5 and .∇ · E ∈ L2(Ω,H 1

00(D)) (see Step 1) lead to .E1 ∈
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L2(Ω, H 2(D)). In the same manner, one observes that .E2, E3 ∈ L2(Ω,H 2(D)). 
Furthermore, 

. 

E
[‖Ej‖2

H 2(D)

] ≤ C
(
E
[‖Ej‖2

U

]+ E
[‖ΔEj‖2

U

]+ E

[
‖∇ · E‖2

H
1/2
0 (Γj )

])

≤ C
(
E
[‖∇ · E‖2

H 1(D)

]+ E
[‖u‖2

D(M2)

])

for all .j = 1, 2, 3. 
Step 3. Now we consider the first component .H1 of . H, and set .Γ ∗ := Γ1 and 
.f̃ := (Id − Δ)H1 ∈ U . As in  Step 2, we take a smooth function . ψ with support in 
.[a−

1 + η, a+
1 − η] × [a−

2 , a+
2 ] × [a−

3 , a+
3 ] for some small constant .η := η(ψ) > 0. 

Choose .κ ∈ (0, η) so that . ψ vanishes on .Γ ±
1 (κ), then 

. 

∫

D

H1ψdx +
∫

D

∇H1 · ∇ψdx = lim
κ→0

[ ∫

Dκ

H1ψdx +
∫

Dκ

∇H1 · ∇ψdx
]

= lim
κ→0

[ ∫

Dκ

ψ(Id − Δ)H1dx +
∫

∂Dκ

ψ∇H1 · ndσ
]

=
∫

D

ψf̃ dx + lim
κ→0

∫

∂Dκ

[
ψ∇H1 · n − (

(∇ × H) × n
) · (ψ, 0, 0)⏉

]
dσ

=
∫

D

ψf̃ dx + lim
κ→0

∫

∂Dκ

ψ∂xH · ndσ

=
∫

D

ψf̃ dx + lim
κ→0

[ ∫

Γ +
2 (κ)

ψ∂xH2dσ +
∫

Γ +
3 (κ)

ψ∂xH3dσ
]

− lim
κ→0

[ ∫

Γ −
2 (κ)

ψ∂xH2dσ +
∫

Γ −
3 (κ)

ψ∂xH3dσ
]

=
∫

D

ψf̃ dx

(2.49) 

due to the integration by parts formula and the fact that . H2 and . H3 vanish on . Γ2 and 
. Γ3, respectively. Hence, Lemma B.4 leads to 

. 

E
[‖H1‖2

H 2(D)

] ≤ C
(
E
[‖H1‖2

U

]+ E
[‖ΔH1‖2

U

])

≤ C
(
E
[‖∇ · H‖2

H 1(D)

]+ E
[‖u‖2

D(M2)

])
.

Components . H2 and . H3 can be treated similarly.
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Combining Steps 1–3 and Theorem 2.4, we have  

. 

E
[‖u(t)‖2

H 2(D)6

] ≤ C
(
E
[‖u(t)‖2

D(M2)

]+ E
[‖∇ · E(t)‖2

H 1(D)

]

+ E
[‖∇ · H(t)‖2

H 1(D)

])

≤ C
(

1 + E
[‖u0‖2

H 2(D)6

])
.

The proof of Theorem 2.7 is finished. ⨅⨆
Remark 2.6 Set .FQ(x) := ∑

j∈N
(
Q

1
2 ej (x)

)2. Assume . ε, μ ∈ W 1,∞(D) ∩
W 2,3(D) with .ε, μ ≥ δ > 0, .FQ ∈ W 1,∞(D), .Q

1
2 ∈ HS

(
U,H 2(D) ∩ H 1

0 (D)
)
. 

Then conclusions in Theorems 2.6 and 2.7 still hold for the following stochastic 
Maxwell equations with multiplicative noise in the Stratonovich sense 

.

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

εdE(t) = ∇ × H(t)dt − λ1H(t) ◦ dW(t), t ∈ (0, T ],
μdH(t) = −∇ × E(t)dt + λ2E(t) ◦ dW(t), t ∈ (0, T ],
E(0) = E0, H(t) = H0

(2.50) 

with .λ1, λ2 ∈ R. In fact, by using the equivalent Itô form of the above equations 

. 

εdE(t) =
[
∇ × H(t) − 1

2
μ−1λ1λ2FQE(t)

]
dt − λ1H(t)dW(t),

μdH(t) =
[

− ∇ × E(t) − 1

2
ε−1λ1λ2FQH(t)

]
dt + λ2E(t)dW(t),

and the divergence evolution laws given in Proposition 3.2, similar to proofs of the 
additive noise case, we can obtain the .Hk-regularity of the solution of (2.50) for 
.k = 1, 2. 

2.4 Differentiability with Respect to the Initial Datum 

Let .u(t; u0) be the exact solution of (2.8) with the initial datum . u0. First, we show 
that the solution mapping .u0 I→ u(t; u0) is Lipschitz continuous. 

Proposition 2.2 Suppose that Assumptions 2.1, 2.2, and 2.3 hold. For .p ≥ 2, there 
exists a constant .C = C(p, T , F,B) > 0 such that 

.E

[
‖u(t; u0) − u(t; ũ0)‖p

H

]
≤ C‖u0 − ũ0‖p

H
, t ∈ [0, T ], u0, ũ0 ∈ H. (2.51)
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In addition, 

.E

[
sup

t∈[0,T ]
‖u(t; u0) − u(t; ũ0)‖p

H

]
≤ C‖u0 − ũ0‖p

H
, u0, ũ0 ∈ H. (2.52) 

Proof It follows from the mild solution (2.14) that 

. E

[
‖u(t; u0) − u(t; ũ0)‖p

H

]

≤ C‖S(t)(u0 − ũ0)‖p

H

+ C E

[∥
∥
∥

∫ t

0
S(t − r)

(
F(r, u(r; u0)) − F(r, u(r; ũ0))

)
dr

∥
∥
∥

p

H

]

+ C E

[∥
∥
∥

∫ t

0
S(t − r)

(
B(r, u(r; u0)) − B(r, u(r; ũ0))

)
dW(r)

∥
∥
∥

p

H

]

≤ C‖u0 − ũ0‖p

H
+ C E

[ ∫ t

0
‖F(r, u(r; u0)) − F(r, u(r; ũ0))‖p

H
dr
]

+ C E

[( ∫ t

0
‖B(r, u(r; u0)) − B(r, u(r; ũ0))‖2

HS(U0,H)dr
) p

2
]

≤ C‖u0 − ũ0‖p

H
+ C

∫ t

0
E

[
‖u(r; u0) − u(r; ũ0)‖p

H

]
dr,

where we used Proposition D.4 (ii) and the Lipschitz continuious properties of F 
and B. Then, the Grönwall inequality leads to (2.51). 

For the derivation of (2.52), it suffices to estimate the term 

. E

[
sup

t∈[0,T ]

∥
∥
∥

∫ t

0
S(t − r)

(
B(r, u(r; u0)) − B(r, u(r; ũ0))

)
dW(r)

∥
∥
∥

p

H

]
.

In fact, by Proposition D.5, we have  

. E

[
sup

t∈[0,T ]

∥
∥
∥

∫ t

0
S(t − r)

(
B(r, u(r; u0)) − B(r, u(r; ũ0))

)
dW(r)

∥
∥
∥

p

H

]

≤ CE

[( ∫ T

0

∥
∥B(r, u(r; u0)) − B(r, u(r; ũ0))

∥
∥2

HS(U0,H)
dr
) p

2
]

≤ CE

[ ∫ T

0

∥
∥u(r; u0) − u(r; ũ0)

∥
∥p

H
dr
]

≤ C‖u0 − ũ0‖p

H
,

where in the last step we used (2.51). ⨅⨆
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For any .p ≥ 2, denote by .Hp,0 the Banach space of all .H-valued predictable 
stochastic processes Y defined on the time interval .[0, T ] such that 

. ‖|Y |‖p,0 := sup
t∈[0,T ]

(
E
[‖Y (t)‖p

H

]) 1
p

< ∞.

It is known from [62, Theorem 9.8] that for any .t ∈ [0, T ], the solution mapping 
.u0 I→ u(t; u0) is Gâteaux differentiable provided that coefficients F and B are 
Gâteaux differentiable. 

Proposition 2.3 Let conditions in Proposition 2.2 hold. In addition assume that 
for .t ∈ [0, T ], .F(t, ·) and .B(t, ·) are Gâteaux differentiable on . H with derivatives 
.DuF(t, u)(v) and .DuB(t, u)(v) being continuous in .u, v ∈ H and satisfying 

. ‖DuF(t, u)(v)‖H + ‖DuB(t, u)(v)‖HS(U0,H) ≤ C‖v‖H
with a positive constant C. Then the solution u is Gâteaux differentiable from . H into 
.Hp,0 for any .p ≥ 2. Moreover, for any . u0, .ũ0 ∈ H, the stochastic process 

. ζ ũ0(t) := Duu(t; u0)(ũ0), t ∈ [0, T ]

is the mild solution of the following equation: 

.

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dζ ũ0(t) = [
Mζũ0(t) + DuF(t, u(t; u0))(ζ

ũ0(t))
]
dt

+ DuB(t, u(t; u0))(ζ
ũ0(t))dW(t), t ∈ (0, T ],

ζ ũ0(0) = ũ0.

(2.53) 

Note that (2.53) is a linear stochastic evolution equation. Thus its mild solution 
reads as 

.

ζ ũ0(t) = S(t)ũ0 +
∫ t

0
S(t − r)DuF(r, u(r; u0))(ζ

ũ0(r))dr

+
∫ t

0
S(t − r)DuB(r, u(r; u0))(ζ

ũ0(r))dW(r), P-a.s.

(2.54) 

for all .t ∈ [0, T ]. It can be shown that for any .p ≥ 2, there exists a positive constant 
C such that 

.E

[
sup

t∈[0,T ]
‖ζ ũ0(t)‖p

H

]
≤ C‖ũ0‖p

H
. (2.55) 

Below we present the Fréchet differentiability of the solution of (2.8).
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Theorem 2.8 Let conditions in Proposition 2.2 hold. Assume that .F(t, ·) and 
.B(t, ·) are Fréchet differentiable on . H with bounded derivatives, i.e., 

. ‖Fu(t, u)‖L (H) + ‖Bu(t, u)‖L (H,HS(U0,H)) ≤ C

for all .t ∈ [0, T ] and .u ∈ H. Then the solution u of (2.8) is Fréchet differentiable 
from . H into .Hp,0 for any .p ≥ 2. 

Proof Below we only give the proof for .p = 2, since the case of .p > 2 can be 
proved by the same procedure. 

Based on Lemma B.7, it suffices to show that 

. lim
ρ→0

u(t; u0 + ρũ0) − u(t; u0) − ρζ ũ0(t)

ρ
= 0 in H2,0 (2.56) 

uniformly with respect to . ̃u0 in an arbitrary bounded set of . H. 
Set .uρ(t) := u(t; u0 + ρũ0). According to the mild solutions (2.14) and (2.54), 

one has 

.E

[∥
∥
∥
uρ(t) − u(t) − ρζ ũ0(t)

ρ

∥
∥
∥

2

H

]
(2.57) 

≤ 2E
[∥
∥
∥

∫ t 

0 
S(t − r) 

1 

ρ

(
F(r,  uρ (r)) − F(r,  u(r)) − ρFu(r, u(r))(ζ ̃u0(r))

)
dr

∥
∥
∥

2 

H

]

+ 2E
[∥
∥
∥

∫ t 

0 
S(t − r) 

1 

ρ

(
B(r, uρ (r)) − B(r, u(r)) 

− ρBu(r, u(r))(ζ ̃u0(r))
)

dW(r)

∥
∥
∥

2 

H

]

≤ C
∫ t 

0 
E

[∥
∥
∥

1 

ρ

(
F(r,  uρ (r)) − F(r,  u(r)) − ρFu(r, u(r))(ζ ̃u0(r))

)∥
∥
∥

2 

H

]
dr 

+C

∫ t 

0 
E

[∥
∥
∥

1 

ρ

(
B(r, uρ (r))−B(r, u(r)) − ρBu(r, u(r))(ζ ̃u0(r))

)∥
∥
∥

2 

HS(U0,H)

]
dr. 

For the first term on the right-hand side of (2.57), we have  

.

∥
∥
∥

1

ρ

(
F(r, uρ(r)) − F(r, u(r)) − ρFu(r, u(r))(ζ ũ0(r))

)∥
∥
∥
H

≤
∥
∥
∥

1

ρ

(
F(r, uρ(r)) − F(r, u(r) + ρζ ũ0(r))

)∥
∥
∥
H

+
∥
∥
∥

1

ρ

(
F(r, u(r) + ρζ ũ0(r)) − F(r, u(r)) − ρFu(r, u(r))(ζ ũ0(r))

)∥
∥
∥
H
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≤ C
∥
∥
∥
uρ (r) − u(r) − ρζ  ̃u0(r) 

ρ

∥
∥
∥
H 

+
∥
∥
∥

1 

ρ

(
F(r,  u(r) + ρζ  ̃u0(r)) − F(r,  u(r)) − ρFu(r, u(r))(ζ ̃u0(r))

)∥
∥
∥
H 
, 

where the Lipschitz continuity of F is utilized. A similar estimate holds for the 
second term on the right-hand side of (2.57). 

Using the Grönwall inequality, we obtain 

. sup
t∈[0,T ]

E

[∥
∥
∥
uρ(t) − u(t) − ρζ ũ0(t)

ρ

∥
∥
∥

2

H

]

≤C

∫ T

0
E

[∥
∥
∥

1

ρ

(
F(r, u(r)+ρζ ũ0(r))−F(r, u(r))−ρFu(r, u(r))(ζ ũ0(r))

)∥
∥
∥

2

H

]
dr

+ C

∫ T

0
E

[∥
∥
∥

1

ρ

(
B(r, u(r) + ρζ ũ0(r)) − B(r, u(r))

− ρBu(r, u(r))(ζ ũ0(r))
)∥
∥
∥

2

HS(U0,H)

]
dr

=: C
(
I

ρ
1 (ζ ũ0) + I

ρ
2 (ζ ũ0)

)
.

It suffices to show that .Iρ
1 (ζ ũ0) and .I

ρ
2 (ζ ũ0) converge to zero uniformly with respect 

to . ̃u0 as .ρ → 0. Namely, we need to show that for any positive constants R and . θ , 
there is .ρ0 = ρ0(R, θ) such that for all . ρ with .|ρ| < ρ0, it holds that . Iρ

j (ζ ũ0) < θ

for all .‖ũ0‖H ≤ R and .j = 1, 2. 
For any measurable set .A ⊂ Ω , one has 

. I1(ζ
ũ0)

=
∫ T

0
E

[∥
∥
∥

1

ρ

(
F(r, u(r) + ρζ ũ0(r)) − F(r, u(r)) − ρFu(r, u(r))(ζ ũ0(r))

)∥
∥
∥

2

H

]
dr

=
∫ T

0
E

[
1A

∥
∥
∥

1

ρ

(
F(r, u(r)+ρζ ũ0(r))−F(r, u(r))−ρFu(r, u(r))(ζ ũ0(r))

)∥
∥
∥

2

H

]
dr

+
∫ T

0
E

[
1Ac

∥
∥
∥

1

ρ

(
F(r, u(r) + ρζ ũ0(r)) − F(r, u(r))

− ρFu(r, u(r))(ζ ũ0(r))
)∥
∥
∥

2

H

]
dr

=: IA
1 (ζ ũ0) + IAc

1 (ζ ũ0),

where .Ac is the complementary set of A. By the Lipschitz continuity of F and 
the boundedness of .Fu(t, u), for any .q > 2, there exists a positive constant .C =
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C(q, T ) such that 

. IA
1 (ζ ũ0) ≤ C

∫ T

0
E

[
1A‖ζ ũ0(r)‖2

H

]
dr ≤ CE

[
1A sup

t∈[0,T ]
‖ζ ũ0(t)‖2

H

]

≤ C
(
P(A)

) q−2
q
(
E

[
sup

t∈[0,T ]
‖ζ ũ0‖q

H

]) 2
q
.

By (2.55), we have  

. IA
1 (ζ ũ0) ≤ CR2

(
P(A)

) q−2
q

provided .‖ũ0‖H ≤ R. 
Below we take 

. An :=
{

sup
t∈[0,T ]

‖ζ ũ0(t)‖H > n
}
, n ∈ N.

The Chebyshev inequality yields 

. P(An) ≤ P

(
sup

t∈[0,T ]
‖ζ ũ0(t)‖H ≥ n

)
≤ E

[
supt∈[0,T ] ‖ζ ũ0(t)‖2

H

]

n2 ≤ CR2

n2 .

Then for arbitrary .θ > 0, there exists a positive constant .n = n(T ,R, θ) such that 
.I

An

1 (ζ ũ0) < 1
2θ for all .‖ũ0‖H ≤ R. 

For the term .I
Ac

n

1 (ζ ũ0), the Fréchet differentiability of F leads to 

. lim
ρ→0

sup
‖v‖H≤n

∥
∥
∥

1

ρ

(
F(t, u(t, ω) + ρv) − F(t, u(t, ω))

)
− Fu(t, u(t, ω))(v)

∥
∥
∥ = 0

for almost every .(t, ω) ∈ [0, T ] × Ac
n, where we used the Lipschitz continuity of F 

. sup
‖v‖H≤n

∥
∥
∥

1

ρ

(
F(t, u(t, ω) + ρv) − F(t, u(t, ω))

)
− Fu(t, u(t, ω))(v)

∥
∥
∥ ≤ 2Cn

for almost every .(t, ω) ∈ [0, T ] × Ac
n. Therefore, by the dominated convergence 

theorem, 

.

lim
ρ→0

∫ T

0
E

[
1Ac

n
sup

‖v‖H≤n

∥
∥
∥

1

ρ

(
F(r, u(r)+ ρv)− F(r, u(r))− ρFu(r, u(r))(v)

)∥∥
∥

2

H

]
dr

= 0.
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Thus for any .θ > 0 there exists a positive constant .ρ1(θ, n) such that 

. 

∫ T

0
E

[
1Ac

n
sup

‖v‖H≤n

∥
∥
∥

1

ρ

(
F(r, u(r) + ρv) − F(r, u(r))

− ρFu(r, u(r))(v)
)∥
∥
∥

2

H

]
dr <

1

2
θ

for all .|ρ| < ρ1(θ, n). We note that 

. 

∥
∥
∥

1

ρ

(
F(r, u(r) + ρζ ũ0(r)) − F(r, u(r)) − ρFu(r, u(r))(ζ ũ0(r))

)∥
∥
∥
H

≤ sup
‖v‖H≤n

∥
∥
∥

1

ρ

(
F(r, u(r) + ρv) − F(r, u(r)) − ρFu(r, u(r))(v)

)∥
∥
∥
H

for almost every .(t, ω) × [0, T ] × Ac
n, which yields that .I

Ac
n

1 (ζ ũ0) < 1
2θ for all 

.|ρ| ≤ ρ1(θ, n). Since n depends on R, we conclude that there exists a positive 
constant .ρ1 = ρ1(θ, R) such that .I1(ζ

ũ0) < θ for all .|ρ| < ρ1. 
The estimate of .I2(ζ

ũ0) is similar to that of .I1(ζ
ũ0), which is omitted here. The 

proof of Theorem 2.8 is finished. ⨅⨆

Summary and Outlook 

In this chapter, we investigate the well-posedness of the stochastic Maxwell equa-
tions with the drift term being either globally Lipschitz or non-globally Lipschitz 
continuous. The analyses of the solution on its regularity and the differentiability 
with respect to the initial datum are given when the drift term is globally Lipschitz 
continuous. These results are vital in the analyses of structure-preserving algorithms 
in Chaps. 4 and 5. There are still some problems associated with these topics that 
are challenging and far from being well understood:

● How to establish the regularities in .Lp(Ω,D(M)k) and .Lp(Ω,Hk(D)6) of the 
solution of the stochastic Maxwell equations, if the drift term is non-globally 
Lipschitz continuous?

● How to investigate the differentiability of the solution of the stochastic Maxwell 
equations with respect to the initial datum, when the drift term is non-globally 
Lipschitz continuous?

● How to analyze the solution theory of the stochastic Maxwell equations, if the 
considered domain D is more complicated, or even with certain randomness?



Chapter 3 
Intrinsic Properties of Stochastic 
Maxwell Equations 

Finding the invariants of a dynamical system is the prerequisite to constructing 
structure-preserving algorithms. In this chapter, we study some intrinsic properties 
of the stochastic Maxwell equations. 

We first discuss the stochastic Hamiltonian structure of the stochastic Maxwell 
equations. In Sect. 3.1, by introducing the integrability lemma, we propose the 
infinite-dimensional stochastic Hamiltonian structure for the stochastic Maxwell 
equations and show that the phase flow of the considered model preserves the 
stochastic symplectic structure. Then we study the stochastic multi-symplectic 
conservation law for the linear stochastic Maxwell equations in Sect. 3.2. In  
Sect. 3.3, we investigate the energy and averaged divergence evolution properties for 
the generalized stochastic Maxwell equations. Sect. 3.4 is devoted to the asymptotic 
property of the solution of the stochastic Maxwell equations with respect to the 
scale of the noise. We show that the law of the solution satisfies the large deviations 
principle with an explicit formulation of a good rate function. Finally, the intrinsic 
properties of the stochastic Maxwell equations with a damped term are studied 
in Sect. 3.5. Particularly, we establish the uniform boundedness of the solution 
with respect to time, which is vital in investigating the ergodicity of the stochastic 
Maxwell equations. 

3.1 Infinite-Dimensional Stochastic Symplectic Structure 

We investigate the infinite-dimensional stochastic symplectic structure of the 
stochastic Maxwell equations in this section. First, we present the general 
formulation of the infinite-dimensional stochastic Hamiltonian system via a 
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generalized variational principle with a stochastic forcing; see [167] for the case of 
nonconservative systems, and [174, Chap. 4.1] for the case of stochastic ordinary 
differential equations. 

Given two functionals L and . H2, we define the generalized action functional by 

.K(p, q) :=
∫ t1

t0

(
L(p, q, ṗ, q̇) − H2(p, q) ◦ γ

)
dt, (3.1) 

where .p, q : [t0, t1] × R
d → R, and .γ = dW(t)

dt is some space-time noise (see 
Sect. 1.2.1). Then, the generalized stochastic Hamilton principle reads as 

.δK(p, q) ≡ 0 (3.2) 

under the condition of fixed endpoints, i.e., .δp(t0, x) = δp(t1, x) ≡ 0, . δq(t0, x) =
δq(t1, x) ≡ 0. Plugging (3.1) into (3.2) yields 

. 

δK(p, q) =
∫
Rd

∫ t1

t0

[(δL

δp
− d

dt

(δL

δṗ

)
− δH2

δp
◦ γ
)
δp

+
(δL

δq
− d

dt

(δL

δq̇

)
− δH2

δq
◦ γ
)
δq
]
dtdx

≡ 0,

from which we have 

. 
d

dt

(δL

δṗ

)
= δL

δp
− δH2

δp
◦ γ,

d

dt

(δL

δq̇

)
= δL

δq
− δH2

δq
◦ γ.

This, combining a variational principle, one can obtain the following infinite-
dimensional stochastic Hamiltonian system 

.

⎧⎨
⎩
dp = − δH1

δq
dt − δH2

δq
◦ dW(t), p(t0) = p0,

dq = δH1
δp

dt + δH2
δp

◦ dW(t), q(t0) = q0.

(3.3) 

We refer to [31] for more details. 
Let .D ⊂ R

3 be an open, bounded, and Lipschitz domain with boundary . ∂D. 
Below we introduce the integrability lemma in order to investigate the geometric 
structure of the stochastic Maxwell equations.
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Lemma 3.1 Let .G : L2(D)6 → L2(D)6 be Lipschitz continuous and Fréchet 
differentiable with the derivative .Gu(u) ∈ L (L2(D)6) being a symmetric operator, 
i.e., 

. 〈Gu(u)φ, ψ〉L2(D)6 = 〈φ, Gu(u)ψ〉L2(D)6 ∀ φ,ψ ∈ L2(D)6.

Then there exists a functional .H̃ : L2(D)6 → R such that .G(u) = δH̃ (u)
δu

. 

Proof The functional .H̃ (u) can be defined as 

.H̃ (u) =
∫ 1

0
〈u, G(ζu)〉L2(D)6dζ + c (3.4) 

with c being a constant. For any .φ ∈ L2(D)6, 

. 

〈δH̃ (u)

δu
, φ
〉
L2(D)6

= lim
ρ→0

1

ρ

[
H̃ (u + ρφ) − H̃ (u)

]

= lim
ρ→0

1

ρ

[ ∫ 1

0

(
〈u + ρφ, G(ζu + ρζφ)〉L2(D)6 − 〈u, G(ζu)〉L2(D)6

)
dζ
]

=
∫ 1

0

〈
u, lim

ρ→0

1

ρ

[
G(ζu + ρζφ) − G(ζu)

]〉
L2(D)6

dζ

+ lim
ρ→0

∫ 1

0

〈
φ, G(ζu + ρζφ)

〉
L2(D)6

dζ,

where in the last step we used the dominated convergence theorem and the Lipschitz 
continuity of G. Therefore, we have 

.

〈δH̃ (u)

δu
, φ
〉
L2(D)6

=
∫ 1

0
ζ 〈u, Gu(ζu)φ〉L2(D)6dζ +

∫ 1

0
〈φ, G(ζu)〉L2(D)6dζ

=
〈 ∫ 1

0

(
ζGu(ζu)u + G(ζu)

)
dζ, φ

〉
L2(D)6
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due to the symmetry of .Gu(u). Thus, 

. 
δH̃ (u)

δu
=
∫ 1

0

(
ζGu(ζu)u + G(ζu)

)
dζ =

∫ 1

0

d

dζ

(
ζG(ζu)

)
dζ = G(u),

which finishes the proof. ⨅⨆
Now let us turn to the infinite-dimensional stochastic symplectic structure for the 

stochastic Maxwell equations in the Stratonovich sense: 

.

εdE =
[
∇ × H − Je(t, x,E,H)

]
dt − Jr

e(t, x,E,H) ◦ dW(t),

μdH = [−∇ × E − Jm(t, x,E,H)]dt − Jr
m(t, x,E,H) ◦ dW(t).

(3.5) 

For arbitrary .t ∈ [0, T ] and .x ∈ D, we set .u = (E⏉,H⏉)⏉ and 

. G1(t, u(t))(x) :=
[−μ−1Jm(t, x,E(t, x),H(t, x))

ε−1Je(t, x,E(t, x),H(t, x))

]
,

. G2(t, u(t))(x) :=
[−μ−1Jr

m(t, x,E(t, x),H(t, x))

ε−1Jr
e(t, x,E(t, x),H(t, x))

]
.

If . G1 and . G2 satisfy conditions in Lemma 3.1, then there exist functionals . H̃1 and 
. H2 such that 

. 
δH̃1

δE
= −μ−1Jm,

δH̃1

δH
= ε−1Je,

δH2

δE
= −μ−1Jr

m,
δH2

δH
= ε−1Jr

e.

One can see that if, in addition, . ε and . μ are positive constants, then (3.5) is 
an infinite-dimensional stochastic Hamiltonian system admitting the following 
formulation: 

. d

[
E

H

]
=
[
0 −Id

Id 0

][−μ−1∇ × E − μ−1Jm

−ε−1∇ × H + ε−1Je

]
dt

+
[
0 −Id

Id 0

][−μ−1Jr
m

ε−1Jr
e

]
◦ dW(t)

=: J−1

[
δH1
δE

δH1
δH

]
dt + J

−1

[
δH2
δE

δH2
δH

]
◦ dW(t), (3.6)
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where . J is the standard symplectic matrix and the Hamiltonian . H1 is given by 

. H1(E,H) = −
∫

D

1

2

(
μ−1E · ∇ × E + ε−1H · ∇ × H

)
dx + H̃1(E,H).

Particularly, if (3.5) is driven by additive noise, i.e., . Jr
e and . Jr

m are independent 
of . E and . H, then we have the explicit expression of . H2: 

. H2(E,H) =
∫

D

(
ε−1Jr

e · H − μ−1Jr
m · E

)
dx.

If (3.5) is driven by linear multiplicative noise, that is .Jr
e = λ1H, .Jr

m = −λ2E with 
constants .λ1, λ2 ∈ R, then 

. H2(E,H) = 1

2

∫
D

(
λ1ε

−1|H|2 + λ2μ
−1|E|2

)
dx.

Theorem 3.1 Suppose that . ε and . μ are two positive constants. Let conditions in 
Theorem 2.8 and Lemma 3.1 hold. Then the phase flow of (3.6) preserves the 
stochastic symplectic structure under the homogeneous boundary condition, i.e., 
for .t ∈ (0, T ], 

. 𝜛(t) :=
∫

D

dE(t, x) ∧ dH(t, x)dx =
∫

D

dE0(x) ∧ dH0(x)dx = 𝜛(0), P-a.s.

Proof For simplicity in notations, we denote . E0 and . H0 by . e and . h, respectively. 
We use notations .Ee = ∂E

∂e , .Eh = ∂E
∂h , .He = ∂H

∂e and .Hh = ∂H
∂h in the sequel. 

The chain rule for differentials leads to 

. 𝜛(t) =
∫

D

[
de ∧ (Ee

)⏉Hede
]
dx +

∫
D

[
dh ∧ (Eh

)⏉Hhdh
]
dx

+
∫

D

[
de ∧

((
Ee
)⏉Hh − (He

)⏉Eh

)
dh
]
dx, t ∈ [0, T ],

from which we obtain 

.

d𝜛(t) =
∫

D

[
de ∧ d

(
E⏉
e He

)
de + dh ∧ d

(
E⏉
h Hh

)
dh
]
dx

+
∫

D

[
de ∧ d

(
E⏉
e Hh − H⏉

e Eh

)
dh
]
dx, t ∈ [0, T ].

(3.7)
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Theorem 2.8 implies the Fréchet differentiability of the solution of (3.5). This yields 
that for .t ∈ [0, T ], 

.

dEe =
(
ε−1∇ × He − δ2H̃1

δEδH
Ee − δ2H̃1

δH2
He

)
dt

−
( δ2H2

δEδH
Ee + δ2H2

δH2
He

)
◦ dW(t),

dHe =
(

− μ−1∇ × Ee + δ2H̃1

δE2
Ee + δ2H̃1

δEδH
He

)
dt

+
(δ2H2

δE2
Ee + δ2H2

δEδH
He

)
◦ dW(t),

dEh =
(
ε−1∇ × Hh − δ2H̃1

δEδH
Eh − δ2H̃1

δH2
Hh

)
dt

−
( δ2H2

δEδH
Eh + δ2H2

δH2
Hh

)
◦ dW(t),

dHh =
(

− μ−1∇ × Eh + δ2H̃1

δE2
Eh + δ2H̃1

δEδH
Hh

)
dt

+
(δ2H2

δE2 Eh + δ2H2

δEδH
Hh

)
◦ dW(t)

(3.8) 

with .Ee(0) = Id, .He(0) = 0, .Eh(0) = 0, and .Hh(0) = Id. 
Plugging (3.8) into (3.7) yields 

.d𝜛(t) =
∫

D

[
de ∧

(
ε−1(∇ × He

)⏉He − μ−1E⏉
e ∇ × Ee

)
de
]
dxdt

+
∫

D

[
dh ∧

(
ε−1(∇ × Hh

)⏉Hh − μ−1E⏉
h ∇ × Eh

)
dh
]
dxdt

+
∫

D

[
de ∧

(
ε−1(∇ × He

)⏉Hh − μ−1E⏉
e ∇ × Eh

)
dh
]
dxdt

+
∫

D

[
de ∧

(
μ−1(∇ × Ee

)⏉Eh − ε−1H⏉
e ∇ × Hh

)
dh
]
dxdt

=
∫

D

ε−1
[
de ∧ (∇ × He

)⏉Hede + dh ∧ (∇ × Hh
)⏉Hhdh

+ de ∧ (∇ × He
)⏉Hhdh − de ∧ H⏉

e ∇ × Hhdh
]
dxdt

+
∫

D

μ−1
[
de ∧ (∇ × Ee

)⏉Eede + dh ∧ (∇ × Eh
)⏉Ehdh

+ de ∧ (∇ × Ee
)⏉Ehdh − de ∧ E⏉

e ∇ × Ehdh
]
dxdt.
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Using the fact that .df ∧ Adg = A⏉df ∧ dg for differential 1-forms df and dg, it  
holds that 

. 

d𝜛 =
∫

D

[
ε−1d

(∇ × H
) ∧ dH + μ−1d

(∇ × E
) ∧ dE

]
dxdt

=
∫

D

ε−1
[
∂x(dH2 ∧ dH3) + ∂y(dH3 ∧ dH1) + ∂z(dH1 ∧ dH2)

]
dxdt

+
∫

D

μ−1
[
∂x(dE2 ∧ dE3) + ∂y(dE3 ∧ dE1) + ∂z(dE1 ∧ dE2)

]
dxdt

= 0,
(3.9) 

where the homogeneous boundary condition is utilized in the last step. This finishes 
the proof of Theorem 3.1. ⨅⨆

3.2 Stochastic Multi-Symplectic Structure 

When (3.5) is regarded as an infinite-dimensional stochastic evolution equation, we 
have shown that the stochastic Maxwell equations possess the stochastic symplectic 
structure under the assumption that . ε and . μ are constant in Sect. 3.1. When the space 
variable is of interest for a stochastic Hamiltonian partial differential equation, the 
stochastic multi-symplectic structure is usually involved, which is first investigated 
in [112] for the stochastic nonlinear Schrödinger equation. 

Definition 3.1 A stochastic partial differential equation is called a stochastic 
Hamiltonian partial differential equation if it can be written in the form 

. Fdu +
d∑

i=1

Ki∂xi
udt = ∇uS0(u)dt + ∇uS1(u) ◦ dW(t),

where .u : [0, T ]×R
d → R

n, .n ≥ 3, . F and .Ki .(i = 1, 2, . . . , d) are skew-symmetric 
matrices in .R

n×n, and . S0 and . S1 are smooth functionals of the state variable u. 

To simplify notations, we let .ε = μ ≡ 1 and consider the following stochastic 
Maxwell equations with multiplicative noise 

.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dE(t) = ∇ × H(t)dt − λ1H ◦ dW(t), t ∈ (0, T ],
dH(t) = −∇ × E(t)dt + λ2E ◦ dW(t), t ∈ (0, T ],
E(0) = E0, H(0) = H0,

(3.10) 

where .λ1, λ2 ∈ R are two constants.
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By denoting .u = (E⏉,H⏉)⏉ and .S(u) = λ2
2 |E|2 + λ1

2 |H|2, (3.10) can be 
reformulated in the form of a stochastic Hamiltonian partial differential equation: 

.Fdu + K1∂xudt + K2∂yudt + K3∂zudt = ∇uS(u) ◦ dW(t), (3.11) 

where the skew-symmetric matrices . F and .Kp .(p = 1, 2, 3) are defined in (1.23), 
i.e., 

.F =
[

0 Id

−Id 0

]
, Kp =

[
Dp 0
0 Dp

]
(3.12) 

and 

. D1 =

⎡
⎢⎢⎣
0 0 0

0 0 −1

0 1 0

⎤
⎥⎥⎦ , D2 =

⎡
⎢⎢⎣

0 0 1

0 0 0

−1 0 0

⎤
⎥⎥⎦ , D3 =

⎡
⎢⎢⎣
0 −1 0

1 0 0

0 0 0

⎤
⎥⎥⎦ .

Theorem 3.2 The equation (3.10) preserves the stochastic multi-symplectic con-
servation law 

.d𝜛 + ∂xκ1dt + ∂yκ2dt + ∂zκ3dt = 0, P-a.s., (3.13) 

which means 

. 

∫ z1

z0

∫ y1

y0

∫ x1

x0

𝜛(t1, x, y, z)dxdydz +
∫ z1

z0

∫ y1

y0

∫ t1

t0

κ1(t, x1, y, z)dtdydz

+
∫ z1

z0

∫ x1

x0

∫ t1

t0

κ2(t, x, y1, z)dtdxdz +
∫ y1

y0

∫ x1

x0

∫ t1

t0

κ3(t, x, y, z1)dtdxdy

=
∫ z1

z0

∫ y1

y0

∫ x1

x0

𝜛(t0, x, y, z)dxdydz +
∫ z1

z0

∫ y1

y0

∫ t1

t0

κ1(t, x0, y, z)dtdydz

+
∫ z1

z0

∫ x1

x0

∫ t1

t0

κ2(t, x, y0, z)dtdxdz

+
∫ y1

y0

∫ x1

x0

∫ t1

t0

κ3(t, x, y, z0)dtdxdy, P-a.s.,

where .𝜛 = 1
2du ∧ Fdu and .κp = 1

2du ∧ Kpdu, p = 1, 2, 3 are differential 
2-forms associated with the skew-symmetric matrices . F and . Kp, respectively, and 
.(t0, t1) × (x0, x1) × (y0, y1) × (z0, z1) ⊂ [0, T ] × D is the local domain of u. 

Proof Denote by .du1,x,y,z,i (resp. .du0,x,y,z,i) the  i-th component of the differential 
1-form .du(t1, x, y, z) (resp. .du(t0, x, y, z), and by .du0,i the i-th component of
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the differential 1-form .du(t0, x0, y0, z0). The same definitions hold for .dut,1,y,z,i , 
.dut,0,y,z,i , .dut,x,1,z,i , .dut,x,0,z,i , .dut,x,y,1,i , and .dut,x,y,0,i . 

Rewriting . F and . Kp by their components, i.e., .F = (Fij )
6
i,j=1, .Kp = (K

p
ij )

6
i,j=1, 

we have 

. 

I1 : =
∫ z1

z0

∫ y1

y0

∫ x1

x0

𝜛(t1, x, y, z)dxdydz −
∫ z1

z0

∫ y1

y0

∫ x1

x0

𝜛(t0, x, y, z)dxdydz

= 1

2

∫ z1

z0

∫ y1

y0

∫ x1

x0

[ 6∑
i=1

(
du1,x,y,z,i ∧

6∑
j=1

Fij du1,x,y,z,j

)

−
6∑

i=1

(
du0,x,y,z,i ∧

6∑
j=1

Fij du0,x,y,z,j

)]
dxdydz

= 1

2

∫ z1

z0

∫ y1

y0

∫ x1

x0

6∑
i,j=1

Fij

(
du1,x,y,z,i ∧ du1,x,y,z,j

− du0,x,y,z,i ∧ du0,x,y,z,j

)
dxdydz.

It follows from 

. du1,x,y,z,i =
6∑

l=1

∂u1,x,y,z,i

∂u0,l
du0,l , du0,x,y,z,i =

6∑
l=1

∂u0,x,y,z,i

∂u0,l
du0,l

that 

. I1 = 1

2

6∑
l,k=1

al,k(t1, x1, y1, z1)du0,l ∧ du0,k,

where 

.

al,k(t1, x1, y1, z1)

=
6∑

i,j=1

Fij

∫ z1

z0

∫ y1

y0

∫ x1

x0

(∂u1,x,y,z,i

∂u0,l

∂u1,x,y,z,j

∂u0,k

− ∂u0,x,y,z,i

∂u0,l

∂u0,x,y,z,j

∂u0,k

)
dxdydz.

(3.14)
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In a similar manner, we have 

. I2 : =
∫ z1

z0

∫ y1

y0

∫ t1

t0

κ1(t, x1, y, z)dtdydz −
∫ z1

z0

∫ y1

y0

∫ t1

t0

κ1(t, x0, y, z)dtdydz

= 1

2

6∑
l,k=1

bl,k(t1, x1, y1, z1)du0,l ∧ du0,k,

I3 : =
∫ z1

z0

∫ x1

x0

∫ t1

t0

κ2(t, x, y1, z)dtdxdz −
∫ z1

z0

∫ x1

x0

∫ t1

t0

κ2(t, x, y0, z)dtdxdz

= 1

2

6∑
l,k=1

cl,k(t1, x1, y1, z1)du0,l ∧ du0,k,

I4 : =
∫ y1

y0

∫ x1

x0

∫ t1

t0

κ3(t, x, y, z1)dtdxdy −
∫ y1

y0

∫ x1

x0

∫ t1

t0

κ3(t, x, y, z0)dtdxdy

= 1

2

6∑
l,k=1

dl,k(t1, x1, y1, z1)du0,l ∧ du0,k,

where 

. 

bl,k(t1, x1, y1, z1)

=
6∑

i,j=1

K
1
ij

∫ z1

z0

∫ y1

y0

∫ t1

t0

(∂ut,1,y,z,i

∂u0,l

∂ut,1,y,z,j

∂u0,k
− ∂ut,0,y,z,i

∂u0,l

∂ut,0,y,z,j

∂u0,k

)
dtdydz,

cl,k(t1, x1, y1, z1)

=
6∑

i,j=1

K
2
ij

∫ z1

z0

∫ x1

x0

∫ t1

t0

(∂ut,x,1,z,i

∂u0,l

∂ut,x,1,z,j

∂u0,k
− ∂ut,x,0,z,i

∂u0,l

∂ut,x,0,z,j

∂u0,k

)
dtdxdz,

dl,k(t1, x1, y1, z1)

=
6∑

i,j=1

K
3
ij

∫ y1

y0

∫ x1

x0

∫ t1

t0

(∂ut,x,y,1,i

∂u0,l

∂ut,x,y,1,j

∂u0,k
− ∂ut,x,y,0,i

∂u0,l

∂ut,x,y,0,j

∂u0,k

)
dtdxdy.

(3.15) 

Combining the above identities for . Ii , .i = 1, 2, 3, 4, we conclude that 

.I1 + I2 + I3 + I4 = 1

2

6∑
l,k=1

[
al,k + bl,k + cl,k + dl,k

]
(t1, x1, y1, z1)du0,l ∧ du0,k.
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Then, (3.13) is fulfilled if and only if 

.

6∑
l,k=1

[
al,k + bl,k + cl,k + dl,k

]
(t1, x1, y1, z1)du0,l ∧ du0,k ≡ 0. (3.16) 

Based on definitions of .al,k, bl,k, cl,k, dl,k in (3.14) and (3.15), we have  

. al,k(t0, x1, y1, z1) = bl,k(t0, x1, y1, z1) = cl,k(t0, x1, y1, z1)

= dl,k(t0, x1, y1, z1) = 0

for all .l, k = 1, 2, . . . , 6. Then it suffices to prove that 

.
d

dt

[
al,k + bl,k + cl,k + dl,k

]
(t, x1, y1, z1) = 0, l, k = 1, 2, . . . , 6. (3.17) 

Consider the i-th component equation of (3.11) 

. 

6∑
j=1

(
Fijdu·,x,y,z,j + K

1
ij ∂xu·,x,y,z,jdt + K

2
ij ∂yu·,x,y,z,jdt + K

3
ij ∂zu·,x,y,z,jdt

)

= ∂S(u)

∂u·,x,y,z,i

◦ dW(t).

Taking partial derivatives with respect to . u0,k , .k = 1, 2, . . . , 6, on both sides of the 
above equation yields 

. 

6∑
j=1

Fijd
(∂u·,x,y,z,j

∂u0,k

)

= −
6∑

j=1

K
1
ij ∂x

(∂u·,x,y,z,j

∂u0,k

)
dt −

6∑
j=1

K
2
ij ∂y

(∂u·,x,y,z,j

∂u0,k

)
dt

−
6∑

j=1

K
3
ij ∂z

(∂u·,x,y,z,j

∂u0,k

)
dt +

6∑
j=1

∂2S(u)

∂u·,x,y,z,i∂u·,x,y,z,j

(∂u·,x,y,z,j

∂u0,k

)
◦ dW(t).

(3.18)
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Similarly, we take the partial derivatives with respect to . u0,l , .l = 1, 2 . . . , 6, use  the  
skew-symmetry of F and permute . i, j to obtain 

. 

6∑
i=1

Fijd
(∂u·,x,y,z,i

∂u0,l

)

=
6∑

i=1

K
1
j i∂x

(∂u·,x,y,z,i

∂u0,l

)
dt +

6∑
i=1

K
2
j i∂y

(∂u·,x,y,z,i

∂u0,l

)
dt

+
6∑

i=1

K
3
j i∂z

(∂u·,x,y,z,i

∂u0,l

)
dt −

6∑
i=1

∂2S(u)

∂u·,x,y,z,j ∂u1,x,y,z,i

(∂u·,x,y,z,i

∂u0,l

)
◦ dW(t).

(3.19) 

Due to (3.14), we have  

.

dal,k =
6∑

i=1

∫ z1

z0

∫ y1

y0

∫ x1

x0

∂u·,x,y,z,i

∂u0,l

d∑
j=1

Fijd
(∂u·,x,y,z,j

∂u0,k

)
dxdydz

+
6∑

j=1

∫ z1

z0

∫ y1

y0

∫ x1

x0

∂u·,x,y,z,j

∂u0,k

d∑
i=1

Fijd
(∂u·,x,y,z,i

∂u0,l

)
dxdydz.

(3.20) 

Plugging (3.18) and (3.19) into (3.20), and using 

. 
∂2S(u)

∂u·,x,y,z,j ∂u·,x,y,z,i

= ∂2S(u)

∂u·,x,y,z,i∂u·,x,y,z,j

,

one obtains 

.

dal,k

dt
= −

6∑
i,j=1

∫ y1

y0

∫ z1

z0

K
1
ij

[∂u·,1,y,z,i

∂u0,l

∂u·,1,y,z,j

∂u0,k
− ∂u·,0,y,z,i

∂u0,l

∂u·,0,y,z,j

∂u0,k

]
dzdy

−
6∑

i,j=1

∫ x1

x0

∫ z1

z0

K
2
ij

[∂u·,x,1,z,i

∂u0,l

∂u·,x,1,z,j

∂u0,k
− ∂u·,x,0,z,i

∂u0,l

∂u·,x,0,z,j

∂u0,k

]
dzdx

−
6∑

i,j=1

∫ y1

y0

∫ x1

x0

K
3
ij

[∂u·,x,y,1,i

∂u0,l

∂u·,x,y,1,j

∂u0,k
− ∂u·,x,y,0,i

∂u0,l

∂u·,x,y,0,j

∂u0,k

]
dxdy.
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Similarly, according to (3.15), we derive 

. 

dbl,k

dt
=

6∑
i,j=1

∫ y1

y0

∫ z1

z0

K
1
ij

[∂u·,1,y,z,i

∂u0,l

∂u·,1,y,z,j

∂u0,k
− ∂u·,0,y,z,i

∂u0,l

∂u·,0,y,z,j

∂u0,k

]
dzdy,

dcl,k

dt
=

6∑
i,j=1

∫ x1

x0

∫ z1

z0

K
2
ij

[∂u·,x,1,z,i

∂u0,l

∂u·,x,1,z,j

∂u0,k
− ∂u·,x,0,z,i

∂u0,l

∂u·,x,0,z,j

∂u0,k

]
dzdx,

ddl,k

dt
=

6∑
i,j=1

∫ y1

y0

∫ x1

x0

K
3
ij

[∂u·,x,y,1,i

∂u0,l

∂u·,x,y,1,j

∂u0,k
− ∂u·,x,y,0,i

∂u0,l

∂u·,x,y,0,j

∂u0,k

]
dxdy.

Then, the identity (3.17) results from adding up the above equations. Thus, the proof 
of Theorem 3.2 is finished. ⨅⨆
Remark 3.1 When the stochastic Maxwell equations are driven by additive noise, 
e.g., 

.

⎧⎨
⎩
dE(t) = ∇ × H(t)dt + λ1dW(t), t ∈ (0, T ],
dH(t) = −∇ × E(t)dt + λ2dW(t), t ∈ (0, T ]

(3.21) 

with .λ1,λ2 ∈ R
3, the functional .S(u) in the form (3.11) of the stochastic 

Hamiltonian partial differential equation is given by .S(u) = λ2 · E − λ1 · H. For  
more details of the stochastic multi-symplectic structure of the stochastic Maxwell 
equations with additive noise, we refer readers to [38, 102]. 

3.3 Physical Properties 

Recall that the deterministic Maxwell equations (1.13) in the lossless medium have 
both the energy conservation law and the divergence conservation law. In this 
section, we aim to investigate the corresponding physical properties of the stochastic 
Maxwell equations (2.8), i.e., 

. 

⎧⎨
⎩
du(t) =

[
Mu(t) + F(t, u(t))

]
dt + B(t, u(t))dW(t), t ∈ (0, T ],

u(0) = u0.

(3.22)
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The energy of the solution for (3.22) is defined as 

. E (u(t)) := ‖u(t)‖2
H

=
∫

D

(
ε|E(t, x)|2 + μ|H(t, x)|2

)
dx, t ∈ [0, T ].

Proposition 3.1 Under conditions in Theorem 2.2, the energy of the solution 
of (3.22) satisfies that for .t ∈ [0, T ], 

. 

E (u(t)) = E (u0) +
∫ t

0

(
2〈u(s), F (s, u(s))〉H + ‖B(s, u(s))‖2HS(U0,H)

)
ds

+ 2
∫ t

0

〈
u(s), B(s, u(s))dW(s)

〉
H

, P-a.s.

(3.23) 

Proof Since .E (u) is Fréchet differentiable, the first and second order derivatives of 
.E (u) are 

.Eu(u)(φ) = 2〈u, φ〉H, Euu(u)(φ, ϕ) = 2〈ϕ, φ〉H ∀ φ, ϕ ∈ H, (3.24) 

respectively. By the Itô formula given in Theorem D.2, we obtain that for all . t ∈
[0, T ], 

. 

E (u(t)) = E (u0) +
∫ t

0
Eu(u(s))

(
B(s, u(s))dW(s)

)

+
∫ t

0
Eu(u(s))

(
Mu(s) + F(s, u(s))

)
ds

+ 1

2

∫ t

0
Tr
[
Euu(u(s))(B(s, u(s))Q

1
2 )(B(s, u(s))Q

1
2 )∗
]
ds, P-a.s.

(3.25) 

Plugging (3.24) into (3.25) leads to 

. E (u(t)) = E (u0) + 2
∫ t

0
〈u(s),Mu(s) + F(s, u(s))〉Hds

+ 2
∫ t

0
〈u(s), B(s, u(s))dW(s)〉H +

∫ t

0
‖B(s, u(s))‖2HS(U0,H)ds, P-a.s.

for all .t ∈ [0, T ]. Then, the assertion follows immediately from the skew-
adjointness of the Maxwell operator M . ⨅⨆
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Remark 3.2 Two special cases of (3.23) are given as follows. 

(a) If 

. ε = μ ≡ 1, F (t, u(t)) ≡ 0, B(t, u(t)) ≡ (λ⏉
1 ,λ⏉

2 )⏉,

then the averaged energy .E
[
E (u(t))

]
satisfies the following linear growth law 

. E
[
E (u(t))

] = E
[
E (u0)

]+ 𝜘t, t ∈ [0, T ],

where .𝜘 =
(
|λ1|2 + |λ2|2

)
Tr(Q) represents the growth rate. 

(b) If 

. ε = μ ≡ 1, F (t, u(t)) = −1

2
λ2uFQ, B(t, u(t)) = λ(−H(t)⏉,E(t)⏉)⏉,

then the energy is conserved, i.e., for .t ∈ [0, T ], 

. E (u(t)) = E (u0), P-a.s.,

where .FQ(x) :=∑j∈N
(
Q

1
2 ej (x)

)2. 
The following proposition states the divergence evolution law for (3.22). 

Proposition 3.2 Suppose that .Je, Jm ∈ H(div,D), and . Jr
e, . Jr

m ∈ HS(U0,

H(div,D)). Then averaged divergences of the solution .u = (E⏉,H⏉)⏉ of (3.22) 
satisfy 

.

E

[
∇ · (εE(t))

]
= E

[
∇ · (εE0)

]
− E

[ ∫ t

0
∇ · Je(s)ds

]
,

E

[
∇ · (μH(t))

]
= E

[
∇ · (μH0)

]
− E

[ ∫ t

0
∇ · Jm(s)ds

] (3.26) 

for all .t ∈ [0, T ]. 
Proof Let .Ψ (E) := ∇ · (εE). Since . Ψ is Fréchet differentiable, the first and second 
order derivatives of . Ψ are 

.ΨE(E)(φ) = ∇ · (εφ), ΨEE(E)(φ, ϕ) = 0 ∀ φ, ϕ ∈ L2(D)3. (3.27)
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By applying the Itô formula to .Ψ (E), we obtain 

. 

Ψ (E(t)) = Ψ (E0) +
∫ t

0
ΨE(E(s))

[
ε−1∇ × H(s) − ε−1Je

]
ds

+
∫ t

0
ΨE(E(s))

(
− ε−1Jr

edW(s)
)

= Ψ (E0) +
∫ t

0

[
∇ · (∇ × H(s)

)− ∇ · Je

]
ds −

∫ t

0
∇ ·
(
Jr
edW(s)

)

= Ψ (E0) −
∫ t

0
∇ · Jeds −

∫ t

0
∇ ·
(
Jr
edW(s)

)
, P-a.s.

(3.28) 

for all .t ∈ [0, T ], where in the last step, we used the fact .∇ · (∇ ×ψ) = 0 for vector 
function .ψ = (ψ1, ψ2, ψ3)

⏉. In a similar manner, applying the Itô formula to the 
functional .Ψ (H(t)) = ∇ · (μH(t)) gives that for all .t ∈ [0, T ], 

. Ψ (H(t)) = Ψ (H0) −
∫ t

0
∇ · Jmds −

∫ t

0
∇ ·
(
Jr
mdW(s)

)
, P-a.s. (3.29) 

Then, the assertions follow from taking the expectation on both sides of (3.28) 
and (3.29). ⨅⨆
Remark 3.3 If functions . Je and . Jm are divergence-free, i.e., .∇·Je = 0 and . ∇·Jm =
0, then 

. E

[
∇ · (εE(t))

]
= E

[
∇ · (εE0)

]
, E

[
∇ · (μH(t))

]
= E

[
∇ · (μH0)

]

for all .t ∈ [0, T ]. 

3.4 Small Noise Asymptotics 

In this part, we are devoted to studying the asymptotic property of the solution of 
the stochastic Maxwell equations with small noise: 

.

⎧⎨
⎩
du(t) = Mu(t)dt − √

λdW(t), t ∈ (0, T ],
u(0) = u0,

(3.30)
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where .λ ∈ R
+, and .W(t) = (ε−1W1(t)

⏉, μ−1W2(t)
⏉)⏉ is an .H-valued Q-Wiener 

process with 

. Q =
[
ε−1Q1 0

0 μ−1Q2

]

and .ε, μ satisfying Assumption 2.1. Here, .Wi are .L2(D)3-valued .Qi-Wiener 
processes with . Qi , .i = 1, 2 being nonnegative and symmetric operators with finite 
traces. Assume that . W1 and . W2 are independent. 

Remark 3.4 Note that for any .u = (u⏉
1 , u⏉

2 )⏉, .v = (v⏉
1 , v⏉

2 )⏉ ∈ H, we have  

. E
[〈W(t), u〉H〈W(t), v〉H

]

= E
[(〈W1(t), u1〉L2(D)3

+〈W2(t), u2〉L2(D)3
) (〈W1(t), v1〉L2(D)3 + 〈W2(t), v2〉L2(D)3

)]

= t〈Q1u1, v1〉L2(D)3 + t〈Q2u2, v2〉L2(D)3 = t〈Qu, v〉H.

Using Assumption 2.1 and the fact 

. E
[‖W(t)‖2

H

] = t
(
‖ε− 1

2 Q
1
2
1 ‖2

HS(L2(D)3,L2(D)3)
+ ‖μ− 1

2 Q
1
2
2 ‖2

HS(L2(D)3,L2(D)3)

)
,

we know that the operator Q is still symmetric and nonnegative on . H with the finite 
trace 

. Tr(Q) =
(
‖ε− 1

2 Q
1
2
1 ‖2

HS(L2(D)3,L2(D)3)
+ ‖μ− 1

2 Q
1
2
2 ‖2

HS(L2(D)3,L2(D)3)

)

≤ δ−1
(
Tr(Q1) + Tr(Q2)

)
< ∞.

To emphasize the dependence of the solution u of (3.30) on parameters . λ and 
. u0, below we write it as .uu0,λ. It is observed that .uu0,λ converges in a certain sense 
to its deterministic counterpart .uu0,0 which is the solution of (3.30) with .λ = 0. 
In many circumstances, one may be interested in the asymptotics of the probability 
.P
(‖uu0,λ(T ) − uu0,0(T )‖H > ι

)
for some .ι > 0, which is usually characterized by 

the large deviations principle of .{uu0,λ(T )}λ>0. 
The large deviations principle is concerned with the exponential decay of 

probabilities of rare events, which can be regarded as an extension or refinement of 
the law of large numbers and the central limit theorem. It is usually used to describe 
the asymptotic behavior of stochastic processes (see e.g., [69]).
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We first introduce some concepts on the theory of large deviations (see e.g., [69, 
116]). 

Definition 3.2 Let . X be a Polish space. .I : X → [0,∞] is called a rate function 
if it is lower semi-continuous. Particularly, . I is called a good rate function if all level 
sets .I

−1([0, a]), .a ∈ [0,∞) are compact. 

Definition 3.3 Let . I be a rate function and .{μλ}λ>0 be a family of probability 
measures on . X . .{μλ}λ>0 is said to satisfy a large deviations principle with the 
rate function . I if 

. 

(LDP1) lim inf
λ→0

λ log(μλ(U)) ≥ − inf I(U) for every open U ⊂ X ,

(LDP2) lim sup
λ→0

λ log(μλ(G)) ≤ − inf I(G) for every closed G ⊂ X .

For a family .{Xλ}λ>0 of random variables from .(Ω,F ,P) to .(X ,B(X )), we  
say that .{Xλ}λ>0 satisfies a large deviations principle with the rate function . I if 
its distribution .{P ◦ X−1

λ }λ>0 satisfies conditions in Definition 3.3. The following 
lemma plays an important role in dealing with the large deviations principle for a 
family of Gaussian random variables (see [62, Proposition 12.10]). 

Lemma 3.2 Assume that X is a Gaussian random variable with distribution 
.N(0, Q̃) on some arbitrary Hilbert space H . Then the family .{Xλ := √

λX}λ>0 of 
random variables satisfies a large deviations principle with the good rate function 

.I(x) =
⎧⎨
⎩

1
2‖Q̃− 1

2 x‖2H , if x ∈ Q̃
1
2 (H),

+∞, otherwise,
(3.31) 

where .Q̃− 1
2 is the pseudo-inverse of . Q̃

1
2 . 

Denote the stochastic convolution by .WM(t) := ∫ t

0 S(t − r)dW(r), t ≥ 0. 
Then for arbitrary .T > 0, .WM(T ) is Gaussian on . H with mean zero and covariance 
operator 

. QT := Cov
(
WM(T )

) =
∫ T

0
S(r)QS∗(r)dr.

Note that if Q commutes with M , then .Q
1
2
T (H) = Q

1
2 (H). In fact, .QT = T Q in 

this case. 
Based on Lemma  3.2, we obtain the following asymptotic behavior of the 

solution of (3.30), which states that the law of the solution satisfies a large deviations 
principle.
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Theorem 3.3 For any .T > 0 and .u0 ∈ H, the family .{uu0,λ(T )}λ>0 of random 
variables satisfies a large deviations principle with the good rate function 

.I
u0
T (v) =

⎧⎨
⎩

1
2‖Q

− 1
2

T

(
v − S(T )u0

)‖2
H
, if v − S(T )u0 ∈ Q

1
2
T (H),

+∞, otherwise,
(3.32) 

where .Q
− 1

2
T is the pseudo-inverse of . Q

1
2
T , and .uu0,λ(t) is the mild solution of (3.30) 

given by 

. uu0,λ(t) = S(t)u0 − √
λWM(t), t ≥ 0.

Proof We define a process .Yλ(t) := uu0,λ(t) − S(t)u0, t ∈ [0, T ], which 
satisfies (3.30) with the initial datum .Yλ(0) = 0. This means that . Yλ(t) =
−√

λWM(t). Then it follows from Lemma 3.2 that the good rate function of the 
large deviations principle of .{Yλ(T )}λ>0 is 

.I
0
T (v) =

⎧⎨
⎩

1
2‖Q

− 1
2

T v‖2
H
, if v ∈ Q

1
2
T (H),

+∞, otherwise.
(3.33) 

Now, we want to find the rate function of .{uu0,λ(T )}λ>0. It suffices to show that 
(LDP1) and (LDP2) in Definition 3.3 hold with the rate function .I

u0
T (v). 

Let .A ∈ B(H) be closed. Then .A − S(T )u0 := {v − S(T )u0, v ∈ A} is still 
closed in .B(H) and hence 

. lim sup
λ→0

[
λ logP

(
uu0,λ(T ) ∈ A

)]

= lim sup
λ→0

[
λ logP

(
Yλ(T ) ∈ A − S(T )u0

)]

≤ − inf
v∈A−S(T )u0

I
0
T (v)

= − inf
v∈A

I
0
T (v − S(T )u0) = − inf

v∈A
I
u0
T (v).

Similarly, we can check that for any open set .B ∈ B(H), 

. lim inf
λ→0

[
λ logP

(
uu0,λ(T ) ∈ B

)] ≥ − inf
v∈B

I
0
T (v − S(T )u0) = − inf

v∈B
I
u0
T (v).

Thus, . Iu0T is the required good rate function of the large deviations principle of 
.{uu0,λ(T )}λ>0. ⨅⨆
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3.5 Intrinsic Properties for the Damped Case 

In recent years, the deterministic Maxwell equations with damping have aroused 
much attention in the literature (see e.g., [19, 76, 177]). Some subjects such as the 
asymptotic behavior and global existence of the solution of the damped Maxwell 
equations have been investigated in the aforementioned works. Here we consider 
a stochastic version and study the corresponding intrinsic properties. Consider the 
following stochastic Maxwell equations with damping 

. 

⎧⎨
⎩
du(t) = [Mu(t) − σu(t)]dt + λJ−1u(t) ◦ dW1(t) + θdW2(t), t > 0,

u(0) = u0,

(3.34) 
where .u = (E⏉,H⏉)⏉, .u0 = (E⏉

0 ,H⏉
0 )⏉ and 

. M =
[

0 ∇×
−∇× 0

]
, θ =

[
θ1

θ2

]
∈ R

6, λ ∈ R.

We impose the PEC boundary conditions 

.n × E = 0, n · H = 0, on [0, T ] × ∂D, (3.35) 

and assume that the damped coefficient . σ satisfies 

. σ ∈ W 1,∞(D), σ ≥ σ0 > 0

with . σ0 being a constant. Here, . Wi (.i = 1, 2) are two independent U -valued .Qi-
Wiener processes which have the following Karhunen–Loève expansions 

. Wi(t) =
∑
k∈N

(Qi)
1
2 ekβ

i
k(t) =

∑
k∈N

√
ηi

kekβ
i
k(t), ηi

k ≥ 0 and
∑
k∈N

ηi
k < ∞

with .{ek}k∈N being an orthonormal basis of U , and .{βi
k}i=1,2

k∈N being a family of 
independent standard Brownian motions. 

Set .FQ1(x) :=∑k∈N(Q
1
2
1 ek(x))2. We rewrite (3.34) as its equivalent form in the 

Itô sense and obtain 

.du(t) =
[
Mu(t)−σu(t)− 1

2
λ2FQ1u(t)

]
dt+λJ−1u(t)dW1(t)+θdW2(t) (3.36) 

for all .t ≥ 0.
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Let .u0 ∈ L2(Ω,H) and assume that .Q
1
2
i ∈ HS(U,Hγi (D)) with some .γi ≥ 0, 

.i = 1, 2. Similar to the one performed in Sect. 2.2.1, (3.34) have a unique mild 
solution given by 

. u(t) = Ŝ(t)u0 − 1

2
λ2
∫ t

0
Ŝ(t − r)FQ1u(r)dr + λ

∫ t

0
Ŝ(t − r)J−1u(r)dW1(r)

+
∫ t

0
Ŝ(t − r)θdW2(r), P-a.s.

for each .t ≥ 0, where .{Ŝ(t) = et(M−σId), t ≥ 0} is a .C0-semigroup generated by 
.M − σId. 

3.5.1 Energy Evolution Law 

Now, we give the energy evolution law of the solution u of (3.36). 

Theorem 3.4 Assume .σ ≥ σ0 > 0 with a constant . σ0. Then for all .t ≥ 0, 

. 

‖u(t)‖2
H

= ‖u0‖2H − 2
∫ t

0
〈u(s), σu(s)〉Hds + |θ |2Tr(Q2)t

+ 2
∫ t

0
〈u(s), θdW2(s)〉H, P-a.s.

Moreover, there exists a positive constant .C = C(σ0, θ , u0,Q2) such that 

. E
[‖u(t)‖2

H

] ≤ e−2σ0tE
[‖u0‖2H]+ |θ |2Tr(Q2)

1 − e−2σ0t

2σ0
≤ C

for all .t ≥ 0. 

Proof Applying the Itô formula to .‖u(t)‖2
H
, we have  

.d‖u(t)‖2
H

= 2
〈
u(t),Mu(t) − σu(t) − 1

2
λ2FQ1u(t)

〉
H

dt

+ 2λ
〈
u(t), J−1u(t)dW1(t)

〉
H

+ 2〈u(t), θdW2(t)〉H

+ λ2〈|u(t)|2, FQ1〉Udt + |θ |2Tr(Q2)dt

= −2〈u(t), σu(t)〉Hdt + 2〈u(t), θdW2(t)〉H + |θ |2Tr(Q2)dt, P-a.s.
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By taking the expectation and using the Grönwall inequality in the differential form 
given in Proposition A.5, we have  

. 

E
[‖u(t)‖2

H

] ≤ e−2σ0tE
[‖u0‖2H]+ |θ |2Tr(Q2)

1 − e−2σ0t

2σ0

≤ E
[‖u0‖2H]+ |θ |2Tr(Q2)

2σ0
,

which leads to the uniform boundedness of the solution u with respect to time. ⨅⨆
From Theorem 3.4, we can observe that if .σ ≡ σ0 > 0 and .θ ≡ 0, then for .t ≥ 0, 

. ‖u(t)‖H = e−σ0t‖u0‖H, P-a.s.

3.5.2 Stochastic Conformal Multi-Symplectic Conservation 
Law 

Due to the existence of the damped term in (3.36), the properties of stochastic 
Maxwell equations have a huge difference. For instance, the multi-symplectic con-
servation law is not preserved anymore. Instead, the stochastic Maxwell equations 
possess the stochastic conformal multi-symplectic conservation law. 

Denoting 

. S1(u) := λ

2

(
|E|2 + |H|2

)
, S2(u) := θ2 · E − θ1 · H,

we reformate (3.34) as a damped stochastic Hamiltonian partial differential equation 

.Fdu+K1∂xudt+K2∂yudt+K3∂zudt = −σFudt+
2∑

i=1

∇uSi(u)◦dWi(t), (3.37) 

where . F, . K1, . K2, and . K3 are defined in (3.12). One can show that the damped 
stochastic Maxwell equations (3.34) possess the following stochastic conformal 
multi-symplectic conservation law. The proof is analogous to that of Theorem 3.2 
and thus is omitted. 

Theorem 3.5 Equation (3.34) preserves the stochastic conformal multi-symplectic 
conservation law 

.d𝜛 + ∂xκ1dt + ∂yκ2dt + ∂zκ3dt = −2σ𝜛dt, P-a.s.,
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which means 

. 

∫ z1

z0

∫ y1

y0

∫ x1

x0

𝜛(t1, x, y, z)dxdydz +
∫ z1

z0

∫ y1

y0

∫ t1

t0

κ1(t, x1, y, z)dtdydz

+
∫ z1

z0

∫ x1

x0

∫ t1

t0

κ2(t, x, y1, z)dtdxdz +
∫ y1

y0

∫ x1

x0

∫ t1

t0

κ3(t, x, y, z1)dtdxdy

−
∫ z1

z0

∫ y1

y0

∫ x1

x0

𝜛(t0, x, y, z)dxdydz −
∫ z1

z0

∫ y1

y0

∫ t1

t0

κ1(t, x0, y, z)dtdydz

−
∫ z1

z0

∫ x1

x0

∫ t1

t0

κ2(t, x, y0, z)dtdxdz −
∫ y1

y0

∫ x1

x0

∫ t1

t0

κ3(t, x, y, z0)dtdxdy

= −2
∫ t1

t0

∫ z1

z0

∫ y1

y0

∫ x1

x0

σ𝜛(t, x, y, z)dxdydzdt,

where .𝜛 = 1
2du ∧ Fdu and .κp = 1

2du ∧ Kpdu, .p = 1, 2, 3 are differential 
2-forms associated with the skew-symmetric matrices . F and . Kp, respectively, and 
.(t0, t1) × (x0, x1) × (y0, y1) × (z0, z1) ⊂ [0, T ] × D is the local domain of u. 

Remark 3.5 The conclusion of Theorem 3.5 can be generalized to the following 
damped stochastic Hamiltonian partial differential equation 

.̃Fdv +
d∑

i=1

K̃i∂xi
vdt = G̃vdt + ∇vS1(v)dt + ∇vS2(v) ◦ dW(t), (3.38) 

where .v : [0,∞) × R
d → R

n, . ̃F and . ̃Ki are skew-symmetric matrices, and . ̃G =
− a

2 F̃ −∑d
i=1

bi

2 K̃i with .a, bi ∈ R
+

.(i = 1, 2, . . . , d) being constants. It can be 
shown that (3.38) possesses the following stochastic conformal multi-symplectic 
conservation law 

. d𝜛(t, x) +
d∑

i=1

∂xi
κ̃i (t, x)dt =

(
− aω̃(t, x) −

d∑
i=1

bi κ̃i(t, x)
)
dt, P-a.s.

with .𝜛 = 1
2dv ∧ F̃dv and .̃κi = 1

2dv ∧ K̃idv, .i = 1, 2, . . . , d . 
In fact, a large class of stochastic partial differential equations can be represented 

in the form (3.38), e.g., the damped stochastic nonlinear Schrödinger equation (see 
e.g., [39, 101]) and the damped stochastic wave equation (see e.g., [150, 154]).
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3.5.3 Ergodicity 

To have a better understanding of the long-time behavior for the solution of (3.36), 
we investigate the ergodicity of the solution in this part. 

We first give a brief introduction to the invariant measure and ergodicity. 

Definition 3.4 (see e.g., [61]) A probability measure .π ∈ P(H) is said to be 
invariant for a Markov semigroup .{Pt , t ≥ 0}, if  

. 

∫
H

Ptϕdπ =
∫
H

ϕdπ =: π(ϕ) ∀ ϕ ∈ Bb(H), t ≥ 0,

where .P(H) and .Bb(H) denote the space of all probability measures on . H and the 
space of all measurable and bounded functions defined on . H, respectively. 

Definition 3.5 (see e.g., [101]) Let . π be an invariant measure of a stochastic 
process .u : Ω × [0, T ] → H. 

(i) u is said to be ergodic on . H if 

. lim
T →∞

1

T

∫ T

0
E
[
ϕ(u(t))

]
dt = π(ϕ) in L2(H, π)

for all .ϕ ∈ L2(H, π), where .L2(H, π) denotes the space of all functions defined 
on . H which are square integrable with respect to measure . π . 

(ii) u is said to be exponentially mixing on . H if there exists a positive constant 
. ρ and a positive function .K(·) such that for any bounded Lipschitz continuous 
function . ϕ on . H, .t > 0, and .u0 ∈ H, 

. 
∣∣Ptϕ(u0) − π(ϕ)

∣∣ ≤ K(u0)Lϕe−ρt ,

where . Lϕ denotes the Lipschitz constant of . ϕ. 

Before we proceed, we need to obtain the following uniform boundedness of the 
solution u of (3.36) in the .H 1(D)6-norm with respect to time. 

Lemma 3.3 Let .u0 ∈ L2(Ω,H 1(D)6) and .FQ1 ∈ W 1,∞(D). In addition, let . Q
1
2
i ∈

HS(U,Hγi (D)), .i = 1, 2 for any .γ1 > 5/2 and .γ2 ≥ 1, and let .σ ∈ W 1,∞(D), 
.σ ≥ σ0 > 0 with a constant . σ0. Then the solution of (3.36) is uniformly bounded in 
the .H 1(D)6-norm and satisfies 

.E

[
‖u(t)‖2

H 1(D)6

]
≤ C

(
1 + e−σ0tE

[
‖u0‖2H 1(D)6

])
∀ t ≥ 0,
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where the positive constant C depends on . σ0, . λ, . |θ |, .Tr(Q2), .‖σ‖W 1,∞(D), 

.‖FQ1‖W 1,∞(D), .E
[‖u0‖2H

]
, and .‖Q

1
2
i ‖HS(U,Hγi (D)), .i = 1, 2. 

Proof Step 1. Estimate of .E
[‖Mu(t)‖2

H

]
. Applying the Itô formula to .‖Mu‖2

H
and 

taking the expectation, we have 

.

dE
[‖Mu(t)‖2

H

] = − 2E
[〈

Mu(t),M
(
(σ + 1

2
λ21FQ1)u(t)

)〉
H

]
dt

+ λ2E
[∑

k∈N

∥∥M(J−1u(t)Q
1
2
1 ek)

∥∥2
H

]
dt

+
∑
k∈N

∥∥∥M(θQ
1
2
2 ek)

∥∥∥2
H

dt.

(3.39) 

For the first term on the right-hand side of (3.39), we note that 

. 

− 2
〈
Mu,M

(
(σ + 1

2
λ2FQ1)u

)〉
H

= −2
〈
Mu, (σ + 1

2
λ2FQ1)Mu

〉
H

− 2

〈
Mu,

[ ∇(σ + 1
2λ

2FQ1) × H

−∇(σ + 1
2λ

2FQ1) × E

]〉

H

,

(3.40) 

where we used the fact that .∇ × (f v) = f ∇ × v + (∇f ) × v for scalar function f 
and vector function v. It follows from the Young inequality that 

.

− 2E

[〈
Mu,

[ ∇(σ + 1
2λ

2FQ1) × H

−∇(σ + 1
2λ

2FQ1) × E

]〉

H

]

≤ 4E
[
‖Mu‖H‖u‖H‖∇(σ + 1

2
λ2FQ1)‖L∞(D)3

]

≤ 1

2
σ0E
[‖Mu‖2

H

]+ CE
[‖u‖2

H

]
,

(3.41)
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where the positive constant C depends on . σ0, . λ, .‖σ‖W 1,∞(D), and .‖FQ1‖W 1,∞(D). 
Plugging (3.41) into (3.40), we have  

.

− 2E
[〈

Mu,M
(
(σ + 1

2
λ2FQ1)u

)〉
H

]

≤ −2E
[〈

Mu, (σ + 1

2
λ2FQ1)Mu

〉
H

]
+ 1

2
σ0E
[‖Mu‖2

H

]+ CE
[‖u‖2

H

]

≤ −3

2
σ0E
[‖Mu‖2

H

]− λ2E
[〈

Mu,FQ1Mu
〉
H

]
+ CE

[‖u‖2
H

]

≤ −3

2
σ0E
[‖Mu‖2

H

]− λ2E
[〈

Mu,FQ1Mu
〉
H

]
+ C

(3.42) 

due to the assumption .σ ≥ σ0 > 0 and Theorem 3.4. Similarly, by using the Sobolev 
embedding .Hγ (D) →ͨ L∞(D) with .γ > 3/2, the Hölder inequality and the Young 
inequality, it holds that 

.

λ2E
[∑

k∈N

∥∥∥M(J−1uQ
1
2
1 ek)

∥∥∥2
H

]
+
∑
k∈N

∥∥∥M(θQ
1
2
2 ek)

∥∥∥2
H

≤ λ2E
[〈

Mu,FQ1Mu
〉
H

]
+ 4λ2E

[‖u‖2
H

]∑
k∈N

∥∥∥∇(Q
1
2
1 ek)

∥∥∥2
L∞(D)3

+ 4λ2E
[‖Mu‖H‖u‖H

]∑
k∈N

[∥∥∥Q 1
2
1 ek

∥∥∥
L∞(D)

∥∥∥∇(Q
1
2
1 ek)

∥∥∥
L∞(D)3

]

+ 2|θ |2
∑
k∈N

∥∥∥∇(Q
1
2
2 ek)

∥∥∥2
L2(D)3

≤ λ2E
[〈

Mu,FQ1Mu
〉
H

]
+ 1

2
σ0E
[‖Mu‖2

H

]+ C.

(3.43) 

Plugging (3.42) and (3.43) into (3.39), we obtain 

. dE
[‖Mu(t)‖2

H

] ≤ − σ0E
[‖Mu(t)‖2

H

]
dt + Cdt, (3.44) 

where the positive constant C depends on . σ0, . λ, . |θ |, .Tr(Q2), .‖σ‖W 1,∞(D), 

.‖FQ1‖W 1,∞(D), .E
[‖u0‖2H

]
, and .‖Q

1
2
i ‖HS(U,Hγi (D)), .i = 1, 2. Thus, the Grönwall 

inequality in differential form yields 

.E
[‖Mu(t)‖2

H

] ≤ C + e−σ0tE
[‖Mu0‖2H

]
.
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Step 2. Estimate of .E
[
‖∇ ·E(t)‖2U + ‖∇ ·H(t)‖2U

]
. Applying the Itô formula to 

.‖∇ · E‖2U and then taking the expectation, we arrive at 

.

dE
[‖∇ · E(t)‖2U

] = − 2E
[〈

∇ · E(t),∇ · ((σ + 1

2
λ2FQ1)E(t)

)〉
U

]
dt

+ λ2E
[∑

k∈N

∥∥∇ · (H(t)Q
1
2
1 ek)

∥∥2
U

]
dt

+
∑
k∈N

∥∥∇ · (θ1Q
1
2
2 ek)

∥∥2
U
dt.

(3.45) 

Notice that .∇·(f v) = f (∇·v)+(∇f )·v for scalar function f and vector function v. 
By using the Hölder inequality and the Young inequality, the assumptions . σ, FQ1 ∈
W 1,∞(D) and .σ ≥ σ0 > 0, and Theorem 3.4, we have  

.

− 2E
[〈

∇ · E,∇ · ((σ + 1

2
λ2FQ1)E

)〉
U

]

≤ 2E
[
‖∇ · E‖U‖E‖L2(D)3

∥∥∇(σ + 1

2
λ2FQ1

)∥∥
L∞(D)3

]

− 2σ0E
[‖∇ · E‖2U

]− λ2E
[〈∇ · E, FQ1∇ · E〉

U

]

≤ −3

2
σ0E
[‖∇ · E‖2U

]− λ2E
[〈∇ · E, FQ1∇ · E〉

U

]
+ C,

(3.46) 

where the positive constant C depends on . σ0, . |θ |, .Tr(Q2), .‖σ‖W 1,∞(D), and 
.‖FQ1‖W 1,∞(D). 

On the other hand, it follows from the Sobolev embedding . Hγ (D) →ͨ L∞(D)

with .γ > 3/2, the Hölder inequality, the Young inequality, and Theorem 3.4 that 

.λ2E
[∑

k∈N

∥∥∇ · (HQ
1
2
1 ek)

∥∥2
U

]

= λ2E
[〈∇ · H, FQ1∇ · H〉

U

]
+ λ2E

[∑
k∈N

∥∥H · ∇(Q
1
2
1 ek)

∥∥2
U

]

+ 2λ2E
[∑

k∈N

〈
Q

1
2
1 ek∇ · H,H · ∇(Q

1
2
1 ek)

〉
U

]

≤ λ2E
[〈∇ · H, FQ1∇ · H〉

U

]
+ λ2E

[‖H‖2
L2(D)3

]∑
k∈N

∥∥∇(Q
1
2
1 ek)

∥∥2
L∞(D)3
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+ 2λ2E
[‖H‖L2(D)3‖∇ · H||U

]∑
k∈N

[∥∥∇(Q 
1 
2 
1 ek)

∥∥
L∞(D)3

∥∥Q 
1 
2 
1 ek

∥∥
L∞(D)

]

≤ λ2E
[〈∇ ·  H, FQ1∇ ·  H

〉
U

]
+ 

1 

2 
σ0E
[‖∇ · H‖2 U

]+ C, (3.47) 

where the positive constant C depends on . σ0, . λ, . |θ |, .Tr(Q2), and .‖Q
1
2
1 ‖HS(U,Hγ1 (D)). 

Note that 

.

∑
k∈N

∥∥∇ · (θ1Q
1
2
2 ek)

∥∥2
U

≤ C(|θ1|, ‖Q
1
2
2 ‖HS(U,Hγ2 (D))). (3.48) 

Plugging (3.46)–(3.48) into (3.45) yields 

. dE
[‖∇ · E(t)‖2U

] ≤ − 3

2
σ0E
[‖∇ · E(t)‖2U

]
dt + 1

2
σ0E
[‖∇ · H(t)‖2U

]
dt

− λ2E
[〈

∇ · E(t), FQ1∇ · E(t)
〉
U

]
dt

+ λ2E
[〈

∇ · H(t), FQ1∇ · H(t)
〉
U

]
dt + Cdt.

By similar arguments, it can be shown that 

. dE
[‖∇ · H(t)‖2U

] ≤ − 3

2
σ0E
[‖∇ · H(t)‖2U

]
dt + 1

2
σ0E
[‖∇ · E(t)‖2U

]
dt

− λ2E
[〈

∇ · H(t), FQ1∇ · H(t)
〉
U

]
dt

+ λ2E
[〈

∇ · E(t), FQ1∇ · E(t)
〉
U

]
dt + Cdt.

Combining these two estimates, we obtain 

. d
(
E

[
‖∇ · E(t)‖2U + ‖∇ · H(t)‖2U

])
≤ − σ0E

[
‖∇ · E(t)‖2U + ‖∇ · H(t)‖2U

]
dt

+ Cdt.

Hence, the Grönwall inequality in the differential form implies 

. E

[
‖∇ · E(t)‖2U + ‖∇ · H(t)‖2U

]
≤ C + e−σ0tE

[
‖∇ · E0‖2U + ‖∇ · H0‖2U

]
,

where the positive constant C is independent of time.
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Step 3. By using Lemma B.2 and combining Step 1, Step 2, and Theorem 3.4, we  
conclude that 

. E
[‖u(t)‖2

H 1(D)6

] ≤ C
(
E
[‖u(t)‖2

H

]+ E
[‖∇ × E(t)‖2

L2(D)3

]+ E
[‖∇ · E(t)‖2U

]

+ E
[‖∇ × H(t)‖2

L2(D)3

]+ E
[‖∇ · H(t)‖2U

])

≤ C
(
1 + e−σ0tE

[
‖u0‖2H 1(D)6

])

for any .t ≥ 0. The proof of Lemma 3.3 is thus finished. ⨅⨆
Based on the  above .H 1(D)6-regularity of the solution u, we can obtain the ergod-

icity of the stochastic Maxwell equations. Moreover, the probability distribution 
.P ∗

t π of .u(t) is shown to converge towards the invariant measure . π∗ of the solution 
.u(t) in the .L2-Wasserstein distance as .t → ∞. Here . P ∗

t is the transpose operator of 
. Pt . To this end, we denote 

. P2(H) =
{
μ ∈ P(H) :

∫
H

‖w‖2
H
μ(dw) < ∞

}
,

then the .L2-Wasserstein distance of two measures .μ, ν ∈ P2(H) is defined by 

.W2(μ, ν) = inf
Θ∈Γ (μ,ν)

(∫
H×H

‖u − w‖2
H
Θ(du, dw)

) 1
2

, (3.49) 

where .Γ (μ, ν) is the set of coupling of the measure .(μ, ν) satisfying . Θ(A × H) =
μ(A) and .Θ(H × A) = ν(A) for any .Θ ∈ Γ (μ, ν) and .A ∈ B(H). We refer to 
[171] for more details. 

The main result of the present subsection is given below. 

Theorem 3.6 Under conditions in Lemma 3.3, the following statements hold. 

(i) Let u and . ̃u be solutions of (3.36) with initial data . u0 and . ̃u0, respectively. 
Then 

.E
[‖u(t) − ũ(t)‖2

H

] ≤ e−2σ0tE
[‖u0 − ũ0‖2H

] ∀ t ≥ 0. (3.50) 

(ii) The solution u of (3.36) possesses a unique invariant measure .π∗ ∈ P2(H). 
Thus u is ergodic. Moreover, u is exponentially mixing. 

(iii) For arbitrary distributions .π1, π2 ∈ P2(H), and .t ≥ 0, 

.W2(P
∗
t π1, P

∗
t π2) ≤ e−σ0tW2(π1, π2), (3.51)
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which implies for any distribution .π ∈ P2(H), 

. W2(P
∗
t π, π∗) ≤ e−σ0tW2(π, π∗) ∀ t ≥ 0.

Proof 

(i) It follows from (3.36) that for .t ≥ 0, 

. d(u − ũ)(t) =
[
M(u − ũ)(t) − σ(u − ũ)(t) − 1

2
λ2FQ1(u − ũ)(t)

]
dt

+ λJ−1(u − ũ)(t)dW1(t)

with .(u − ũ)(0) = u0 − ũ0. Applying the Itô formula to .‖u − ũ‖2
H
and taking 

the expectation, we have 

. dE
[‖u(t) − ũ(t)‖2

H

] = − 2E
[〈

u(t) − ũ(t), σ (u(t) − ũ(t))
〉
H

]
dt

− λ2E
[〈

u(t) − ũ(t), FQ1(u(t) − ũ(t))
〉
H

]
dt

+ λ2E
[∑

k∈N

∥∥∥J−1
(
u(t) − ũ(t)

)
Q

1
2
1 ek

∥∥∥2
H

]
dt.

Since .
∑

k∈N ‖J−1
(
u − ũ

)
Q

1
2
1 ek‖2H = 〈u − ũ, FQ1(u − ũ)〉H, we obtain that 

. dE
[‖u(t) − ũ(t)‖2

H

] = − 2E
[〈u(t) − ũ(t), σ (u(t) − ũ(t))〉H

]
dt

≤ − 2σ0E
[‖u(t) − ũ(t)‖2

H

]
dt,

which yields the assertion via the Grönwall inequality. 
(ii) The existence and the uniqueness of the invariant measure follow from the 

Krylov–Bogoliubov theorem (see [61, Proposition 7.10]) and the general Harris 
theorem (see [91, Theorem 4.8]). 

The key ingredient lies in showing that .‖·‖H 1(D)6 is a proper Lyapunov functional 
whose level sets are compact. We note that .H 1(D)6 is compactly embedded in . H. 
Therefore, the level sets .Kα := {v ∈ H : ‖v‖H 1(D)6 ≤ α} are compact for any 
constant .α > 0, then the Krylov–Bogoliubov theorem implies the existence of the 
invariant measure . π∗ for u. Combining the contraction property derived in (i) and 
the general Harris theorem, we obtain the uniqueness of the invariant measure . π∗
for u. Thus, u is ergodic.
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Moreover, it follows from the uniform boundedness of the solution u in the .H-
norm given in Theorem 3.4 that 

. 

∫
H

‖w‖2
H
π∗(dw) =

∫
H

Pt(‖w‖2
H
)π∗(dw)

=
∫
H

E
[‖u(t;w)‖2

H

]
π∗(dw)

≤
∫
H

(
e−2σ0t‖w‖2

H
+ |θ |2Tr(Q2)

1 − e−2σ0t

2σ0

)
π∗(dw)

= e−2σ0t
∫
H

‖w‖2
H
π∗(dw) + |θ |2Tr(Q2)

1 − e−2σ0t

2σ0
,

from which we have 

. 

∫
H

‖w‖2
H
π∗(dw) ≤ |θ |2Tr(Q2)

2σ0
< ∞.

Thus, .π∗ ∈ P2(H). 
In addition, for any bounded Lipschitz continuous function . ϕ on . H, .t > 0, and 

the deterministic initial datum .u0 ∈ H, it yields 

. |Ptϕ(u0) − π∗(ϕ)| =
∣∣∣E[ϕ(u(t; u0))

]−
∫
H

E
[
ϕ(u(t;w))

]
π∗(dw)

∣∣∣

=
∣∣∣
∫
H

E
[
ϕ(u(t; u0)) − ϕ(u(t;w))

]
π∗(dw)

∣∣∣

≤ Lϕ

∫
H

E
[‖u(t; u0) − u(t;w)‖]π∗(dw)

≤ Lϕ

∫
H

(
E
[‖u(t; u0) − u(t;w)‖2

H

]) 1
2 π∗(dw)

≤ Lϕe−σ0t

∫
H

‖u0 − w‖Hπ∗(dw)

≤ (C + ‖u0‖H)Lϕe−σ0t =: C(u0)Lϕe−σ0t .

Hence the exponentially mixing property is proved. 
(iii) We fix the deterministic initial datum .(u0, ũ0) ∈ H×H and prove (3.51) for 

Dirac measures . δu0 and . δũ0 . Let .u(·, u0) and .u(·, ũ0) be solutions of (3.36) with ini-
tial data . u0 and . ̃u0, respectively. Denote the joint distribution of . (u(t; u0), u(t; ũ0))

by .Π(P ∗
t δu0 , P

∗
t δũ0) which belongs to .Γ (P ∗

t δu0 , P
∗
t δũ0). By the definition of .L

2-
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Wasserstein distance and (3.50), we have  

.

W2(P
∗
t δu0 , P

∗
t δũ0) = inf

Θ∈Γ (P ∗
t δu0 ,P ∗

t δũ0
)

( ∫
H×H

‖v − w‖2
H
Θ(dv, dw)

) 1
2

≤
( ∫

H×H

‖v − w‖2
H
Π(P ∗

t δu0 , P
∗
t δũ0)(dv, dw)

) 1
2

=
( ∫

Ω

‖u(t; u0) − u(t; ũ0)‖2HdP
) 1

2

≤ e−σ0t‖u0 − ũ0‖H = e−σ0tW2(δu0 , δũ0).

(3.52) 

By the convexity of the .L2-Wasserstein distance (see e.g., [171, Theorem 
4.8]), (3.52), and the Hölder inequality, we obtain that for any coupling . γ of 
.(π1, π2), 

. W2(P
∗
t π1, P

∗
t π2) ≤

∫
H×H

W2(P
∗
t δu0 , P

∗
t δũ0)γ (du0, dũ0)

≤ e−σ0t

∫
H×H

W2(δu0 , δũ0)γ (du0, dũ0)

= e−σ0t

∫
H×H

‖u0 − ũ0‖Hγ (du0, dũ0)

≤ e−σ0t

(∫
H×H

‖u0 − ũ0‖2Hγ (du0, dũ0)

) 1
2

.

Thus, by the arbitrariness of . γ , we finish the proof of Theorem 3.6. ⨅⨆

Summary and Outlook 

In this chapter, the geometric structures, physical properties, and asymptotic 
properties of the stochastic Maxwell equations are presented. The phase flow of the 
stochastic Maxwell equations preserves the stochastic symplectic structure when the 
equations are regarded as an infinite-dimensional stochastic Hamiltonian system, 
while the stochastic Maxwell equations possess the multi-symplectic conservation 
law when the equations are interpreted as stochastic Hamiltonian partial differential 
equations. There are lots of works on studying the geometric structure for other 
kinds of stochastic partial differential equations. We refer to [31, 40, 58, 59, 112] 
and references therein for the case of the stochastic nonlinear Schrödinger equation, 
and to [111] for the case of the stochastic Korteweg-de Vries equation.
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In the deterministic case, it has been shown that symplectic methods have 
remarkable superiority compared to non-symplectic ones when applied to Hamil-
tonian systems, such as long-time behavior, geometric structure-preserving, and 
physical properties-preserving (see e.g. [80, 90]). For the stochastic case, large 
quantities of numerical experiments suggest that stochastic symplectic methods 
possess excellent long-time stability. To theoretically explain the superiority of the 
stochastic symplectic method, the backward error analysis technique is exploited 
in [8, 66, 103, 153] and references therein. Recently, several researchers applied the 
large deviations principle to investigate the probabilistic superiority of the stochastic 
symplectic method (see e.g., [44, 46]). In Sect. 3.4, we preliminarily studied the 
asymptotic property of the solution of the linear stochastic Maxwell equations with 
small noise by investigating the large deviations principle of the solution. Whereas 
in certain circumstances, the coefficients of the stochastic Maxwell equations may 
be nonlinear. Hence it is of interest to study the large deviations principle for the 
general stochastic Maxwell equations and their numerical approximations. 

As we all know, ergodicity is an important long-time property of stochastic 
partial differential equations. There have been fruitful works on studying the 
ergodicity of the original system and constructing numerical algorithms which 
can inherit the ergodicity of the considered system. For instance, we refer to 
[1, 103, 135, 136, 163, 164] for stochastic ordinary differential equations, to [20, 21] 
for parabolic stochastic partial differential equations, to [24, 71] for stochastic 
Navier–Stokes equations, and to [39, 58, 67, 101] for stochastic Schrödinger 
equations. In the last section of this chapter, we showed that the damped stochastic 
Maxwell equations also possess ergodicity, as well as the stochastic conformal 
multi-symplectic structure (see also [45] for more details). However, there are still 
some unsolved problems, such as 

• Does the general (damped) stochastic Hamiltonian partial differential equation 
possess a unique invariant measure? 

• What is the large deviations principle related to the invariant measures of the 
stochastic Maxwell equations?



Chapter 4 
Structure-Preserving Algorithms for 
Stochastic Maxwell Equations 

In this chapter, we focus on several structure-preserving algorithms which can 
inherit the intrinsic properties studied in Chap. 3 for the stochastic Maxwell 
equations. 

In Sect. 4.1, we mainly present some temporally semi-discrete algorithms, 
including stochastic symplectic Runge–Kutta methods and the exponential-type 
methods, for the stochastic Maxwell equations with Stratonovich noise. We further 
give a priori  estimates of the numerical solutions associated with the temporal semi-
discretizations. These results will be used in Chap. 5 to obtain the mean-square 
convergence order for the proposed structure-preserving algorithms. 

In Sect. 4.2, we turn to the construction and analysis of fully discrete structure-
preserving algorithms for the stochastic Maxwell equations by exploiting the FDTD 
method, the wavelet interpolation method, and the dG method. More precisely, 
we present three types of stochastic multi-symplectic algorithms for the stochastic 
Maxwell equations driven by additive noise via the FDTD method. After intro-
ducing the basic theory of wavelets, we design an energy-conserving stochastic 
multi-symplectic wavelet algorithm for the stochastic Maxwell equations driven 
by multiplicative noise. We then study dG algorithms for the stochastic Maxwell 
equations driven by additive noise. 

In Sect. 4.3, we focus on developing the splitting technique for solving the 
stochastic Maxwell equations efficiently. The three-dimensional stochastic Maxwell 
equations can be split into three local one-dimensional Hamiltonian systems. If we 
apply the previous algorithms to these three subsystems, plenty of highly efficient 
and structure-preserving algorithms for the stochastic Maxwell equations can be 
obtained. 
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4.1 Temporally Semi-Discrete Algorithms 

This section concentrates on temporal semi-discretizations for the stochastic 
Maxwell equations studied in Sect. 3.1: 

. 

⎧
⎨

⎩

du(t) = [Mu(t)+ F(t, u(t))
]
dt + B(t, u(t)) ◦ dW(t), t ∈ (0, T ],

u(0) = u0.

(4.1) 
Assume that there exist Hamiltonians .H̃1 and .H̃2 such that 

.F(t, u(t)) = J
−1 δH̃1

δu
, B(t, u(t)) = J

−1 δH̃2

δu
, (4.2) 

where . J is the standard symplectic matrix. It has been shown in Theorem 3.1 
that the phase flow of (4.1) preserves the stochastic symplectic structure under the 
homogeneous boundary condition. 

For the semi-discretization of (4.1) in the temporal direction, we introduce the 
partition .0 = t0 < t1 < · · · < tN = T with the uniform time step size .τ = T/N . 
Let .D ⊂ R3 be an open, bounded, and Lipschitz domain with boundary . ∂D. The  
definition of the infinite-dimensional stochastic symplectic algorithm is given below. 
We refer to [100] for the systematic study of stochastic symplectic algorithms of 
stochastic Hamiltonian systems. 

Definition 4.1 The discrete stochastic flow . φτ : H → H, ((En)⏉, (Hn)⏉)⏉ I→
((En+1)⏉, (Hn+1)⏉)⏉ of (4.1) is said to be an infinite-dimensional stochastic 
symplectic algorithm if it preserves the infinite-dimensional stochastic symplectic 
structure, i.e., for all .n = 0, 1, . . . , N − 1, 

. 

∫

D

dEn+1(x) ∧ dHn+1(x)dx =
∫

D

dEn(x) ∧ dHn(x)dx, P-a.s.

4.1.1 Stochastic Symplectic Runge–Kutta Methods 

Applying the s-stage stochastic Runge–Kutta method, which depends only on the 
increments of the Wiener process, to (4.1) in the temporal direction, we obtain that 
for .i = 1, 2, . . . , s and .n = 0, 1, . . . , N − 1, 

.Un
i = un + τ

s∑

j=1

aij
(
MUn

j + Fn,j (Un
j )
)+

s∑

j=1

ãijB
n,j (Un

j )ΔW
n+1, . (4.3) 

un+1 = un + τ 
s∑

i=1 

bi
(
MUn 

i + Fn,i (Un 
i )
)+ 

s∑

i=1

b̃iB
n,i (Un 

i )ΔW
n+1, (4.4)
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where .Fn,i(Un
i ) := F(tn+ciτ, U

n
i ), .B

n,i(Un
i ) := B(tn+ c̃iτ, U

n
i ), .i = 1, 2, . . . , s, 

and .ΔWn+1 := W(tn+1) − W(tn) is the increment of the Wiener process with 
.tn = nτ and .n = 0, 1, . . . , N − 1. 

Denote 

. A = (aij
)s
i,j=1, b = (b1, . . . , bs)

⏉, ci =
s∑

j=1

aij ,

Ã = (ãij
)s
i,j=1, b̃ = (̃b1, . . . , b̃s)

⏉, c̃i =
s∑

j=1

ãij ,

and set .Un := ((Un
1 )

⏉, . . . , (Un
s )

⏉)⏉, .Fn(Un) := (Fn1(Un
1 )

⏉, . . . , F ns(Un
s )

⏉)⏉, 

and .Bn(Un) := (
Bn1(Un

1 )
⏉, . . . , Bns(Un

s )
⏉)⏉. Utilizing the Kronecker product, 

we can rewrite (4.3)–(4.4) in a compact form, 

.Un = 1s ⊗ un + τ
(
A⊗M

)
Un + τ

(
A⊗ Id

)
Fn(Un)+ (Ã⊗ Id

)
Bn(Un)ΔW

n+1, . 

(4.5) 

un+1 = un + τ
(
b⏉ ⊗M

)
Un + τ

(
b⏉ ⊗ Id

)
Fn (Un)+ (b̃⏉ ⊗ Id

)
Bn (Un)ΔW

n+1, 
(4.6) 

where .1s = (1, . . . , 1)⏉ ∈ Rs . 
The following proposition gives conditions on coefficients .A, Ã, b, and . ̃b to 

ensure that the stochastic Runge–Kutta semi-discretization (4.3)–(4.4) inherits the 
symplectic structure of the original equations. 

Proposition 4.1 Suppose that conditions in Theorem 3.1 hold. In addition, assume 
that the coefficients of the stochastic Runge–Kutta method (4.3)–(4.4) satisfy 

. mij := biaij + bjaji − bibj = 0,

m̃ij := b̃iaij + bj ãji − b̃ibj = 0, (4.7)

˜̃mij := b̃i ãij + b̃j ãj i  − b̃i b̃j = 0 

for all .i, j = 1, 2, . . . , s. Then the stochastic Runge–Kutta method (4.3)–(4.4) is 
stochastic symplectic under the homogeneous boundary condition, that is, for all 
.n = 0, 1, . . . , N − 1, 

.𝜛n+1 :=
∫

D

dEn+1(x) ∧ dHn+1(x)dx =
∫

D

dEn(x) ∧ dHn(x)dx = 𝜛n, P-a.s.
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Proof For the stochastic Runge–Kutta method (4.3)–(4.4), it follows from  (4.2) that 

.

dUn
i = dun +τ

s∑

j=1

aijMdUn
j +τ

s∑

j=1

aijJ
−1δ

2H̃1

δu2 dUn
j

+
s∑

j=1

ãijJ
−1δ

2H̃2

δu2 dUn
j ΔW

n+1

(4.8) 

and 

.

dun+1 = dun + τ

s∑

i=1

biMdUn
i + τ

s∑

i=1

biJ
−1 δ

2H̃1

δu2
dUn

i

+
s∑

i=1

b̃iJ
−1 δ

2H̃2

δu2
dUn

i ΔW
n+1.

(4.9) 

It follows from (4.9) that 

. 

dun+1 ∧ Jdun+1 − dun ∧ Jdun

= τ

s∑

i=1

bi

(
dun ∧ JMdUn

i +MdUn
i ∧ Jdun

)

+ τ

s∑

i=1

bi

(
dun ∧ δ2H̃1

δu2
dUn

i − δ2H̃1

δu2
dUn

i ∧ dun
)

+
s∑

i=1

b̃i

(
dun ∧ δ2H̃2

δu2 dUn
i ΔW

n+1 − δ2H̃2

δu2 dUn
i ΔW

n+1 ∧ dun
)

+ τ 2
s∑

i,j=1

bibj

[(
MdUn

i + J
−1 δ

2H̃1

δu2 dUn
i

)
∧
(
JMdUn

j + δ2H̃1

δu2 dUn
j

)]

+ 2τ
s∑

i,j=1

bi b̃j

[(
MdUn

i + J
−1 δ

2H̃1

δu2 dUn
i

)
∧ δ2H̃2

δu2 dUn
j ΔW

n+1
]

+
s∑

i,j=1

b̃i b̃j

(
J
−1 δ

2H̃2

δu2 dUn
i ΔW

n+1 ∧ δ2H̃2

δu2 dUn
j ΔW

n+1
)
.

(4.10)
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From (4.8), one has 

. dun = dUn
i − τ

s∑

j=1

aijMdUn
j − τ

s∑

j=1

aijJ
−1 δ

2H̃1

δu2
dUn

j

−
s∑

j=1

ãijJ
−1 δ

2H̃2

δu2
dUn

j ΔW
n+1.

Plugging the above equation into the first three terms on the right-hand side 
of (4.10), it yields  

. dun+1 ∧ Jdun+1 − dun ∧ Jdun

= τ

s∑

i=1

bi

(
dUn

i ∧ JMdUn
i +MdUn

i ∧ JdUn
i

)

+ τ

s∑

i=1

bi

(
dUn

i ∧ δ2H̃1

δu2 dUn
i − δ2H̃1

δu2 dUn
i ∧ dUn

i

)

+
s∑

i=1

b̃i

(
dUn

i ∧ δ2H̃2

δu2
dUn

i ΔW
n+1 − δ2H̃2

δu2
dUn

i ΔW
n+1 ∧ dUn

i

)

− τ 2
s∑

i,j=1

mij

[(
MdUn

i + J
−1 δ

2H̃1

δu2 dUn
i

)
∧
(
JMdUn

j + δ2H̃1

δu2 dUn
j

)]

− 2τ
s∑

i,j=1

m̃ij

[(
MdUn

i + J
−1 δ

2H̃1

δu2 dUn
i

)
∧ δ2H̃2

δu2 dUn
j ΔW

n+1
]

−
s∑

i,j=1

˜̃mij

[
J
−1 δ

2H̃2

δu2
dUn

i ΔW
n+1 ∧ δ2H̃2

δu2
dUn

j ΔW
n+1
]

= 2τ
s∑

i=1

bi

(
dUn

i ∧ JMdUn
i

)
,

where the last equality follows from the symmetry of . δ
2H̃p

δu2 , .p = 1, 2, and the 

condition (4.7). Recalling .u = (E⏉,H⏉)⏉ and the definition of the Maxwell 
operator M , it holds that 

.dEn+1 ∧ dHn+1 − dEn ∧ dHn

= 1

2

(
dun+1 ∧ Jdun+1 − dun ∧ Jdun

)
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= τ 
s∑

i=1 

bi

(
dUn 

i ∧ JMdUn 
i

)

= −τ 
s∑

i=1 

bi

[
μ−1dEni ∧ (∇ × dEni) + ε−1dHni ∧ (∇ ×  dHni)

]
. 

Therefore, using the similar approach in the last two steps of (3.9) leads to 

. 

∫

D

dEn+1(x) ∧ dHn+1(x)dx −
∫

D

dEn(x) ∧ dHn(x)dx = 0

for all .n = 0, 1, . . . , N − 1. The proof of Proposition 4.1 is finished. ⨅⨆
Remark 4.1 A stochastic Runge–Kutta method (4.3)–(4.4) satisfying the symplec-
tic condition (4.7) is called a stochastic symplectic Runge–Kutta method. 

Specially, if (4.1) is driven by additive noise (i.e., .B(t, u(t)) = B(t)), then the 
symplectic condition (4.7) becomes 

.mij := biaij + bjaji − bibj = 0 (4.11) 

for all .i, j = 1, 2, . . . , s. We refer to [42] for further discussion. 

As a typical example of the stochastic symplectic Runge–Kutta method, the 
stochastic midpoint method for (4.1) 

. 

Un
1 = un + τ

2

(
MUn

1 + F(t
n+ 1

2
, Un

1 )
)

+ 1

2
B(t

n+ 1
2
, Un

1 )ΔW
n+1,

un+1 = un + τ
(
MUn

1 + F(t
n+ 1

2
, Un

1 )
)

+ B(t
n+ 1

2
, Un

1 )ΔW
n+1

will be studied in the following subsection, where .t
n+ 1

2
:= tn + τ

2 . The above 
method can be rewritten into a compact form by eliminating intermediate variable 
. Un

1 , namely, 

.un+1 = un + τMun+
1
2 + τFn+ 1

2 (un+
1
2 )+ Bn+ 1

2 (un+
1
2 )ΔWn+1, (4.12) 

where .un+ 1
2 = (un+1 +un)/2, .Fn+ 1

2 (un+ 1
2 ) = F(t

n+ 1
2
, un+ 1

2 ) and . Bn+ 1
2 (un+ 1

2 ) =
B(t

n+ 1
2
, un+ 1

2 ). By introducing two discrete operators 

.Sτ =
(
Id − τ

2
M
)−1(

Id + τ

2
M
)
, Tτ =

(
Id − τ

2
M
)−1

,
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the stochastic midpoint method (4.12) can be further rewritten as 

.un+1 = Sτu
n + τTτF

n+ 1
2 (un+

1
2 )+ TτB

n+ 1
2 (un+

1
2 )ΔWn+1 (4.13) 

for .n = 0, 1, . . . , N − 1. 

4.1.1.1 Analysis of the Stochastic Midpoint Method 

This subsection presents the analysis of the stochastic midpoint method. Both 
the additive and multiplicative noise cases are studied. Below we give the well-
posedness of the stochastic midpoint method (4.12), and analyze the regularity of 
the numerical solution. 

(a) The additive noise case 

We restrict ourselves to (4.1) in the additive noise case, and the corresponding 
stochastic midpoint method reads as 

.un+1 = un + τMun+
1
2 + τFn+ 1

2 (un+
1
2 )+ Bn+ 1

2ΔWn+1, (4.14) 

where .Bn+ 1
2 := B(t

n+ 1
2
). It follows from  (4.13) that 

.un+1 = Sτu
n + τTτF

n+ 1
2 (un+

1
2 )+ TτB

n+ 1
2ΔWn+1. (4.15) 

Proposition 4.2 Let F satisfy Assumption 2.2, .B(t) ∈ HS(U0,H) for .t ∈ [0, T ], 
and .u0 ∈ L2p(Ω,H) for .p ≥ 1. For sufficiently small .τ > 0, there exists a unique 
.H-valued .{Ftn}0≤n≤N -adapted solution .{un; n = 0, 1, . . . , N} of the stochastic 
midpoint method (4.14). Moreover, there exists a positive constant . C = C(p, T )

such that 

. max
1≤n≤N ‖un‖L2p(Ω,H) ≤ C

(
1 + ‖u0‖L2p(Ω,H)

)
. (4.16) 

Proof 

Step 1: Existence and uniqueness. Fix a set .Ω ' ⊂ Ω with .P(Ω ') = 1 such that 
.W(t, ω) ∈ U = L2(D) for all .t ∈ [0, T ] and .ω ∈ Ω '. Below let us assume that 
.ω ∈ Ω '. Combining with (4.16), the existence of .{un; n = 0, 1, . . . , N} follows 
from the standard Galerkin method and the Brouwer fixed point theorem. 

In fact, define a mapping 

.Λ : H × U → T (H), (un,ΔWn+1) I→ Λ(un,ΔWn+1),
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where .T (H) is the set of all subsets of . H, and .Λ(un,ΔWn+1) is the set of solutions 
.un+1 of (4.14). The inequality (4.16) implies that . Λ is bounded and its graph is 
closed by the closed graph theorem. Hence, there exists a Borel measurable mapping 
.λn : H×U → H such that .λn(s1, s2) ∈ Λ(s1, s2) for all .(s1, s2) ∈ H×U . Therefore, 
the .Ftn+1 -measurability of .un+1 follows from the Doob–Dynkin lemma (see e.g., 
[146, Proposition 3]). 

To show the uniqueness of the numerical solution, we assume that there are two 
different solutions .un+1 and .vn+1 satisfying (4.15) with .un = vn. Then it follows 
that 

. un+1 − vn+1 = τTτ

(
Fn+ 1

2 (un+
1
2 )− Fn+ 1

2 (vn+
1
2 )
)
,

which combining the Lipschitz continuity of F and Lemma C.3 (i) leads to 

. ‖un+1 − vn+1‖H ≤ Cτ‖un+1 − vn+1‖H
with C independent of . τ . Consequently, for sufficiently small . τ , the uniqueness of 
the solution for (4.14) is obtained. 

Step 2: Proof of (4.16). We only present the proof for the case .p = 1. The proof 
for .p > 1 follows the same procedure. From (4.15), we utilize Lemma C.3 (i)– 
(ii) to derive that 

. E
[‖un+1‖2

H

] = E
[‖Sτun‖2

H

]

+ 2E
[〈
Sτu

n, τTτF
n+ 1

2 (un+
1
2 )+ TτB

n+ 1
2ΔWn+1〉

H

]

+ E

[
‖τTτF n+ 1

2 (un+
1
2 )+ TτB

n+ 1
2ΔWn+1‖2

H

]

= E
[‖Sτun‖2

H

]+ 2E
[〈
Sτu

n, τTτF
n+ 1

2 (un+
1
2 )
〉

H

]

+ E

[
‖τTτF n+ 1

2 (un+
1
2 )+ TτB

n+ 1
2ΔWn+1‖2

H

]

≤ CτE
[‖un+1‖2

H

]+ (1 + Cτ)E
[‖un‖2

H

]+ Cτ

due to the independence between . un and .ΔWn+1, the linear growth of F , and 
the assumption .B(t) ∈ HS(U0,H). Therefore, for sufficiently small . τ , by the  
Grönwall inequality, one arrives at the assertion (4.16) when .p = 1. ⨅⨆

Similarly, one can obtain the following .D(Mk)-regularity (. k ∈ N+) of the  
numerical solution .{un; n = 0, 1, . . . , N} for the stochastic midpoint method (4.14).
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Proposition 4.3 Let F satisfy Assumption 2.4, .B(t) ∈ HS(U0,D(Mk)) for any 
.t ∈ [0, T ], and .u0 ∈ L2p(Ω,D(Mk)) for .p ≥ 1. Then there exists a positive 
constant .C = C(p, T , F,B) such that 

(i) . max
1≤n≤N ‖un‖L2p(Ω,D(Mk)) ≤ C

(
1 + ‖u0‖L2p(Ω,D(Mk))

)
;

(ii) . max
0≤n≤N−1

E

[
‖un+1 − un‖2p

D(Mk−1)

]
≤ Cτp;

(iii) . max
0≤n≤N−1

∥
∥
∥E
[
un+1 − un

]∥∥
∥

D(Mk−1)
≤ Cτ . 

(b) The multiplicative noise case 

When (4.1) is driven by multiplicative noise, the analysis of the regularity of the 
numerical solution will be more complicated than that of the additive noise case. 
Below we focus on the analysis of the stochastic midpoint method for (4.1) driven 
by linear multiplicative noise, i.e., 

. 

⎧
⎨

⎩

du(t) =
[
Mu(t)+ F(t, u(t))

]
dt + λJ−1u(t) ◦ dW(t), t ∈ (0, T ],

u(0) = u0

(4.17) 

with . λ being a nonzero constant. Then, the stochastic midpoint method (4.12) 
becomes 

.un+1 = un + τMun+
1
2 + τFn+ 1

2 (un+
1
2 )+ λJ−1un+

1
2ΔWn+1. (4.18) 

In this case, the well-posedness of . un in the .H-norm is stated in the following 
proposition. 

Proposition 4.4 Let F satisfy Assumption 2.2 and .u0 ∈ H. For sufficiently small 
.τ > 0, there exists a unique .H-valued and .{Ftn}0≤n≤N -adapted solution . {un; n =
0, 1, . . . , N} of the stochastic midpoint method (4.18). Moreover, 

. max
1≤n≤N ‖un‖2

H
≤ C
(
1 + ‖u0‖2

H

)
, P-a.s., (4.19) 

where .C = C(T , λ) is a positive constant. 

Proof The proof of the existence and uniqueness of the solution of (4.18) is similar 
to that of Proposition 4.2, and hence is omitted here. 

Applying .〈·, un + un+1〉H to both sides of (4.18) leads to 

.‖un+1‖2
H

= ‖un‖2
H

+ τ 〈Fn+ 1
2 (un+

1
2 ), un + un+1〉H

≤ (1 + Cτ)‖un‖2
H

+ Cτ‖un+1‖2
H

+ Cτ,
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which implies that .‖un‖2
H

≤ C(1 + ‖u0‖2
H
) for sufficiently small . τ , based on the 

Grönwall inequality. ⨅⨆
In particular, if F satisfies .〈F(t, v), v〉H = 0 for .t ∈ [0, T ] and .v ∈ H, then we 

have 

. ‖un‖2
H

= ‖u0‖2
H
, P-a.s.

In addition, the .D(M)-regularity of the numerical solution of (4.18) can also be 
obtained, which is stated in the following proposition. Note that (4.18) is fully 
implicit, and then the increments .ΔWn+1, .n ∈ N of the Wiener process are generally 
substituted by some truncated random variables (see [137]). Let 

.ΔW
n+1 := √

τ
∑

i∈N
ξn+1
i Q

1
2 ei, (4.20) 

where 

. ξn+1
i =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Abτ , ϑn+1
i > Abτ ,

ϑn+1
i , |ϑn+1

i | ≤ Abτ ,

−Abτ , ϑn+1
i < −Abτ

with .Abτ = (2b| ln τ |)1/2 for some .b ≥ 2, and .{ϑn+1
i }i∈N, .n = 0, 1, . . . , N−1 being 

a family of independent standard normal random variables. One can check that 

. E
[
(ξn+1
i − ϑn+1

i )2
] ≤ τb, E

[
(ξn+1
i )2 − (ϑn+1

i )2
] ≤ (1 + 2Abτ )τ

b.

Therefore for any .Q
1
2 ∈ HS(U,Hγ ) with .γ ≥ 0, it holds that 

.

E
[‖ΔWn+1 −ΔWn+1‖2

Hγ

] ≤ Cτb+1,

E
[‖(ΔWn+1

)2 − (ΔWn+1)2‖2
Hγ

] ≤ Cτb+1.

(4.21) 

In the following proposition, we only give the proof of the case .F ≡ 0. The proof 
is also suitable for the case that .F /≡ 0 under certain conditions on F . For the sake 

of simplicity, we denote .ζ n+1 := ΔW
n+1

. 

Proposition 4.5 Assume that .ε = μ ≡ 1, . E
[‖Mu0‖2

H
+‖∇ ·E0‖2

U +‖∇ ·H0‖2
U

]
<

∞, .Q
1
2 ∈ HS(U,H 2+γ (D)) and .

∑
i∈N ‖Q 1

2 ei‖H 1+γ (D) < ∞ with .γ > 3/2. Then 
for sufficiently small . τ , there exists a positive constant .C = C(λ, T , u0,Q) such
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that 

. sup
1≤n≤N

E

[
‖Mun‖2

H
+ ‖∇ · En‖2

U + ‖∇ · Hn‖2
U

]
≤ C. (4.22) 

Proof 

Step 1. Estimates of the divergence of the numerical solution. From (4.18), we  
have 

.En+1 − En = τ∇ × Hn+ 1
2 − λHn+ 1

2 ζ n+1, . (4.23) 

Hn+1 − Hn = −τ∇ ×  En+
1 
2 + λEn+

1 
2 ζ n+1. (4.24) 

Applying . ∇· to both sides of (4.23)–(4.24) and using the equality . ∇ · (∇ × ν) ≡ 0
for vector function . ν lead to 

.∇ · En+1 − ∇ · En = −λ∇ · (Hn+ 1
2 ζ n+1), . (4.25) 

∇ ·  Hn+1 − ∇ ·  Hn = λ∇ ·  (En+
1 
2 ζ n+1). (4.26) 

Applying .〈·, ∇ · En+ 1
2 〉U and .〈·, ∇ · Hn+ 1

2 〉U to both sides of (4.25) and (4.26), 
respectively, and adding up the two derived equations, we obtain 

. 

‖∇ · En+1‖2
U + ‖∇ · Hn+1‖2

U − ‖∇ · En‖2
U − ‖∇ · Hn‖2

U

= −2λ〈∇ · (Hn+ 1
2 ζ n+1),∇ · En+ 1

2 〉U + 2λ〈∇ · (En+ 1
2 ζ n+1),∇ · Hn+ 1

2 〉U

= −2λ
〈
ζ n+1∇ · Hn+ 1

2 + Hn+ 1
2 · ∇ζ n+1,∇ · En+ 1

2

〉

U

+ 2λ
〈
ζ n+1∇ · En+ 1

2 + En+
1
2 · ∇ζ n+1,∇ · Hn+ 1

2

〉

U

= −2λ
〈
Hn+ 1

2 · ∇ζ n+1,∇ · En+ 1
2

〉

U
+ 2λ

〈
En+

1
2 · ∇ζ n+1,∇ · Hn+ 1

2

〉

U
.

(4.27) 

By the fact that .ζ n+1 is independent of .Ftn , one has 

.E

[
‖∇ · En+1‖2

U + ‖∇ · Hn+1‖2
U

]
− E

[
‖∇ · En‖2

U + ‖∇ · Hn‖2
U

]

= −λE
[〈
Hn+1 · ∇ζ n+1,∇ · En+ 1

2

〉

U

]
− λ

2
E

[〈
Hn · ∇ζ n+1,∇ · En+1

〉

U

]
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+ λE
[〈
En+1 · ∇ζ n+1, ∇ ·  Hn+ 1 

2

〉

U

]
+ 
λ 
2 
E

[〈
En · ∇ζ n+1,∇ ·  Hn+1

〉

U

]

=: In 
1 + In 

2 + In 
3 + In 

4 . 

For the term . In1 , 

. In1 = −λ

2
E

[〈
Hn+1 · ∇ζ n+1,∇ · En+1 − ∇ · En

〉

U

]

− λE
[〈
(Hn+1 − Hn) · ∇ζ n+1,∇ · En

〉

U

]

=: In11 + In12.

Plugging (4.25) into the term .In11 and using the Sobolev embedding . Hγ (D) →ͨ
L∞(D) with .γ > 3/2, we derive 

. In11 = −λ

2
E

[〈
Hn+1 · ∇ζ n+1,−λ∇ · (Hn+ 1

2 ζ n+1)
〉

U

]

= λ2

4
E

[〈
Hn+1 · (∇ζ n+1), ζ n+1∇ · Hn+1

〉

U
+ ‖Hn+1 · ∇ζ n+1‖2

U

]

+ λ2

4
E

[〈
Hn+1 · ∇ζ n+1, ζ n+1∇ · Hn + Hn · ∇ζ n+1

〉

U

]

≤ C E

[
‖ζ n+1‖2

H 1+γ (D)‖Hn+1‖L2(D)3

(
‖Hn+1‖L2(D)3 + ‖∇ · Hn+1‖U

)]

+ C E

[
‖ζ n+1‖2

H 1+γ (D)‖Hn+1‖L2(D)3

(
‖Hn‖L2(D)3 + ‖∇ · Hn‖U

)]
.

This, combining the Young inequality and Proposition 4.4, yields 

. In11 ≤ τ

10
E

[
‖∇ · Hn+1‖2

U

]
+ τ

15
E

[
‖∇ · Hn‖2

U

]
+ Cτ.

Similarly, we plug (4.24) into the term . In12 and obtain 

. In12 ≤ τ

5
E

[
‖∇ × En+1‖2

L2(D)3

]
+ τ

15
E

[
‖∇ · En‖2

U

]
+ Cτ.

Therefore, 

.In1 ≤ τ

5
E

[
‖∇ × En+1‖2

L2(D)3

]
+ τ

10
E

[
‖∇ · Hn+1‖2

U

]

+ τ

15
E

[
‖∇ · En‖2

U + ‖∇ · Hn‖2
U

]
+ Cτ.
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For the term . In2 , similar to the estimate of . In11, one has 

. In2 = −λ

2
E

[〈
Hn · ∇ζ n+1,∇ · En+1 − ∇ · En

〉

U

]

= λ2

4
E

[〈
Hn · ∇ζ n+1, ζ n+1∇ · Hn+1 + Hn+1 · ∇ζ n+1

〉

U

]

+ λ2

4
E

[〈
Hn · ∇ζ n+1, ζ n∇ · Hn + Hn · ∇ζ n

〉

U

]

≤ τ

10
E

[
‖∇ · Hn+1||2U

]
+ τ

15
E

[
‖∇ · Hn‖2

U

]
+ Cτ.

The estimates of . In3 and . In4 are similar to those of . In1 and . In2 , respectively, which 
satisfy 

. In3 ≤ τ

5
E

[
‖∇ × Hn+1‖2

L2(D)3

]
+ τ

10
E

[
‖∇ · En+1‖2

U

]

+ τ

5
E

[
‖∇ · Hn‖2

U + ‖∇ · En‖2
U

]
+ Cτ,

In4 ≤ τ

10
E

[
‖∇ · En+1||2U

]
+ τ

15
E

[
‖∇ · En‖2

U

]
+ Cτ.

Combining the estimates of . In1 , . In2 , . In3 , and . In4 together, we derive 

.

(1 − τ

5
)E
[
‖∇ · En+1‖2

U + ‖∇ · Hn+1‖2
U

]

≤ (1 + τ

5
)E
[
‖∇ · En‖2

U + ‖∇ · Hn‖2
U

]
+ τ

5
E
[‖Mun+1‖2

H

]+ Cτ.

(4.28) 

Step 2. Estimates of the curl of the numerical solution. Applying . 〈·, M(un+1 −
un)〉H to both sides of (4.18), we obtain 

. ‖Mun+1‖2
H

= ‖Mun‖2
H

− 2λ

τ

〈
J
−1un+

1
2 ζ n+1,M(un+1 − un)

〉

H

. (4.29) 

Using the skew-adjointness of the Maxwell operator M and substituting (4.18) into 
the right-hand side of (4.29) yield 

. E

[
‖Mun+1‖2

H

]
= E

[
‖Mun‖2

H

]
+ 2λE

[〈
M(J−1un+

1
2 ζ n+1),Mun+

1
2

〉

H

]
.

(4.30)
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Denote 

. Rτn :=
[
(∇ζ n+1)× 0

0 (∇ζ n+1)×
]

.

Then 

. 2λE
[〈
M(J−1un+

1
2 ζ n+1),Mun+

1
2

〉

H

]

= 2λE
[〈
ζ n+1

J
−1Mun+

1
2 ,Mun+

1
2

〉

H

]
+ 2λE

[〈
Rτnu

n+ 1
2 ,Mun+

1
2

〉

H

]

= λ

2
E

[〈
Rτn(u

n+1 − un),M(un+1 + un)
〉

H

]
+ λE

[〈
Rτnu

n,M(un+1 − un)
〉

H

]

=: IIn1 + IIn2 .

We substitute (4.18) into the term .IIn1 and obtain 

. IIn1 = λτ

4
E

[〈
RτnM(un+1 + un),M(un+1 + un)

〉

H

]

+ λ2

4
E

[〈
RτnJ

−1(un+1 + un)ζ n+1,M(un+1 + un)
〉

H

]

=: IIn11 + IIn12.

It follows from the Sobolev embedding .Hγ (D) →ͨ L∞(D) with .γ > 3/2 and the 
Young inequality that 

. IIn11 = λτ

4
E

[〈
RτnMun+1,Mun+1

〉

H

]
+ λτ

4
E

[〈
RτnMun+1,Mun

〉

H

]

+ λτ

4
E

[〈
RτnMun,Mun+1

〉

H

]

≤ Cτ E
[
‖ζ n+1‖H 1+γ (D)‖Mun+1‖2

H

]

+ CτE
[
‖ζ n+1‖H 1+γ (D)‖Mun+1‖H‖Mun‖H

]

≤ Cτ E
[
‖ζ n+1‖H 1+γ (D)‖Mun+1‖2

H

]
+ τ

5
E
[‖Mun+1‖2

H

]+ Cτ 2
E
[‖Mun‖2

H

]
.

The assumption .
∑

i∈N ‖Q 1
2 ei‖H 1+γ (D) < ∞ implies .‖ζ n+1‖H 1+γ (D) ≤ Cτ

1
2Abτ , 

which yields 

.IIn11 ≤ Cτ
3
2AτE

[‖Mun+1‖2
H

]+ τ

5
E
[‖Mun+1‖2

H

]+ Cτ 2
E
[‖Mun‖2

H

]
.
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For the term .IIn12, we utilize Proposition 4.4 to obtain 

. IIn12 ≤ τ

5
E

[
‖Mun+1‖2

H
+ ‖Mun‖2

H

]
+ Cτ.

Combining the estimates of .IIn11 and .IIn12 gives 

. IIn1 ≤
(
C

√
τAbτ + 2

5

)
τE
[‖Mun+1‖2

H

]+
(
Cτ + 1

5

)
τE
[‖Mun‖2

H

]+ Cτ.

For the term .IIn2 , the skew-adjointness of the Maxwell operator M leads to 

. IIn2 = −λE
[〈
M(Rτnu

n), un+1 − un
〉

H

]

= −λτ

2
E

[〈
M(Rτnu

n),Mun+1
〉

H

]
− λ2

E

[〈
M(Rτnu

n), J−1un+
1
2 ζ n+1

〉

H

]

=: IIn21 + IIn22,

where we substituted the expression of .un+1 −un by (4.18) in the second step. Note 
that 

. M(Rτnu
n) =

[
(∇ · Hn)∇ζ n+1

−(∇ · En)∇ζ n+1

]

+
[
(Hn · ∇)∇ζ n+1

−(En · ∇)∇ζ n+1

]

− (∇ · (∇ζ n+1))Jun +
[−(∇ζ n+1 · ∇)Hn

(∇ζ n+1 · ∇)En
]

,

which implies that 

. ‖M(Rτnu
n)‖H ≤ C‖ζ n+1‖H 2+γ (D)

(
‖∇ ·Hn‖U + ‖∇ ·En‖U + ‖un‖H + ‖Mun‖H

)

due to the Sobolev embedding .Hγ (D) →ͨ L∞(D) with .γ > 3/2 and the Young 
inequality. Thus, for the term .IIn21, it follows from the independence of .ζ n+1 and 
.Ftn that 

.IIn21 ≤ τ

5
E
[‖Mun+1‖H

]+ CτE
[‖M(Rτnu

n)‖2
H

]

≤ τ

5
E
[‖Mun+1‖H

]+ Cτ 2
E
[‖Mun‖H

]

+ Cτ 2
E
[‖∇ · Hn‖2

U + ‖∇ · En‖2
U

]+ Cτ 2.



112 4 Structure-Preserving Algorithms for Stochastic Maxwell Equations

For the term .IIn22, by the Sobolev embedding .Hγ (D) →ͨ L∞(D) with .γ > 3/2, it  
holds 

. IIn22 ≤ CE
[
‖M(Rτnu

n)‖H‖ζ n+1‖Hγ (D)

(
‖un+1‖H + ‖un‖H

)]

≤ τ

5
E

[
‖∇ · Hn‖2

U + ‖∇ · En‖2
U + ‖un‖2

H
+ ‖Mun‖2

H

]

+ CτE
[
‖un+1‖2

H
+ ‖un‖2

H

]
+ C

1

τ 3E

[
‖ζ n+1‖4

H 2+γ (D)‖ζ n+1‖4
Hγ (D)

]

≤ τ

5
E

[
‖∇ · En‖2

U + ‖∇ · Hn‖2
U

]
+ τ

5
E

[
‖Mun‖2

H

]
+ Cτ.

Hence, 

. IIn2 ≤
(
Cτ + 1

5

)
τE
[
‖∇ · En‖2

U + ‖∇ · Hn‖2
U

]
+ τ

5
E

[
‖Mun+1‖2

H

]

+
(
Cτ + 1

5

)
τE
[
‖Mun‖2

H

]
+ Cτ.

Combining the estimates of .IIn1 and . IIn2 , we have  

. 2λE
[〈
M(J−1un+

1
2 ζ n+1),Mun+

1
2

〉

H

]

≤
(
C

√
τAbτ + 3

5

)
τE
[‖Mun+1‖2

H

]+
(
Cτ + 2

5

)
τE
[‖Mun‖2

H

]
(4.31) 

+
(
Cτ + 

1 

5

)
τE
[
‖∇ · En‖2 

U + ‖∇ ·  Hn‖2 
U

]
+ Cτ. 

Plugging (4.31) into (4.30) yields 

. E
[‖Mun+1‖2

H

] ≤ E
[‖Mun‖2

H

]+
(
C

√
τAbτ + 3

5

)
τE
[‖Mun+1‖2

H

]

+
(
Cτ + 2

5

)
τE
[‖Mun‖2

H

]

+
(
Cτ + 1

5

)
τE
[
‖∇ · En‖2

U + ‖∇ · Hn‖2
U

]
+ Cτ.

Combining (4.28), we conclude that 

.E

[
‖Mun+1‖2

H
+ ‖∇ · En+1‖2

U + ‖∇ · Hn+1‖2
U

]

≤ E

[
‖Mun‖2

H
+ ‖∇ · En‖2

U + ‖∇ · Hn‖2
U

]
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+
(
Cτ + 

2 

5

)
τ E
[
‖Mun‖2 

H + ‖∇ · En‖2 
U + ‖∇ ·  Hn‖2 

U

]

+
(
C

√
τAτ + 

4 

5

)
τ E
[
‖Mun+1‖2 

H + ‖∇ ·  En+1‖2 
U + ‖∇ · Hn+1‖2 

U

]
+ Cτ. 

For sufficiently small . τ , the Grönwall inequality gives the desired result. Thus we 
finish the proof of Proposition 4.5. ⨅⨆
Remark 4.2 By multiplying .‖∇ ·En+1‖2

U + ‖∇ ·Hn+1‖2
U and .‖Mun+1‖2

H
on both 

sides of (4.27) and (4.29), respectively, one can further derive that 

. sup
1≤n≤N

E

[
‖Mun‖4

H
+ ‖∇ · En‖4

U + ‖∇ · Hn‖4
U

]
≤ C. (4.32) 

If we impose the following PEC boundary conditions 

.n × E = 0, n · H = 0, on [0, T ] × ∂D, (4.33) 

the .H 1-regularity of the solution of (4.18) is implied by Lemma B.2 and Proposi-
tion 4.5, that is, there exists a positive constant C such that 

. sup
1≤n≤N

E
[‖un‖2

H 1(D)6

] ≤ C.

Moreover, if we turn our attention to the damped stochastic Maxwell equa-
tions (3.34), then we consider the following modified stochastic midpoint method 

.

un+1 = e−στ un + τ

2
M
(
un+1 + e−στ un

)+ θΔWn+1
2

+ λ

2
J
−1(un+1 + e−στ un

)
ΔW

n+1
1 , n ∈ N.

(4.34) 

Using similar arguments as in the proof of Proposition 4.5, we can obtain that the 
solution of (4.34) is bounded uniformly in the .L2(Ω,H 1(D)6)-norm, i.e., 

. sup
n∈N

E

[
‖un‖2

H 1(D)6

]
≤ C.

We refer to [45] for details. It can be shown that this result ensures the existence 
of the invariant measure for (4.34) while the uniqueness of the invariant measure is 
obtained by using the general Harris Theorem (see [91, Theorem 4.8]). 

Theorem 4.1 Let conditions in Proposition 4.5 and the PEC boundary condi-
tions (4.33) hold. Suppose that .u0 ∈ L2(Ω,H 1(D)6) and .FQ1 ∈ W 1,∞(D). In  

addition, let .Q
1
2
i ∈ HS(U,Hγi (D)), .i = 1, 2, .

∑
i∈N ‖Q

1
2
1 ei‖Hγ1−1(D) < ∞, for  

any .γ1 > 7/2, .γ2 ≥ 2, and let .σ ∈ W 1,∞(D), .σ ≥ σ0 > 0 with a constant . σ0.
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(i) Let .{un; n ∈ N} and .{̃un; n ∈ N} be solutions of (4.34) with initial data . u0 and 
. ̃u0, respectively. Then 

. E
[‖un − ũn‖2

H

] ≤ e−2σ0tnE
[‖u0 − ũ0‖2

H

]
.

(ii) For sufficiently small . τ , the numerical solution .{un; n ∈ N} of (4.34) has 
a unique invariant measure .πτ ∈ P2(H). Thus, .{un; n ∈ N} is ergodic. 
Moreover, .{un; n ∈ N} is exponentially mixing. 

(iii) For arbitrary two distributions .π1, π2 ∈ P2(H) and .n ∈ N, 

. W2((P
τ
n )

∗π1, (P
τ
n )

∗π2) ≤ e−σ0tnW2(π1, π2),

where .(P τ
n )

∗π, n ∈ N denotes the probability distribution of . un with initial 
probability distribution . π . Moreover, for any distribution .π ∈ P2(H), .n ∈ N, 
we have 

. W2((P
τ
n )

∗π, πτ ) ≤ e−σ0tnW2(π, π
τ ).

Proof It follows from (4.34) that 

. (un − ũn)− e−στ (un−1 − ũn−1) = τM
(un − ũn)+ e−στ (un−1 − ũn−1)

2

+ λJ−1 (u
n − ũn)+ e−στ (un−1 − ũn−1)

2
ΔW

n

1 .

Applying .〈·, (un − ũn)+ e−στ (un−1 − ũn−1)〉H to both sides of the above equation 
and taking the expectation, we obtain 

. E
[‖un − ũn‖2

H

] ≤ e−2σ0τE
[‖un−1 − ũn−1‖2

H

] ≤ · · · ≤ e−2σ0tnE
[‖u0 − ũ0‖2

H

]

for all .n ∈ N. Thus we have proved assertion (i). The proofs of assertions (ii) and 
(iii) of this theorem are analogous to those of Theorem 3.6. ⨅⨆

4.1.1.2 Analysis of Stochastic Symplectic Runge–Kutta Methods 

This part is devoted to studying the well-posedness and regularity of the numerical 
solution for the stochastic symplectic Runge–Kutta method (4.3)–(4.4) to the 
stochastic Maxwell equations driven by additive noise. More precisely, consider



4.1 Temporally Semi-Discrete Algorithms 115

the following temporal semi-discretization 

.Un
i = un + τ

s∑

j=1

aij
(
MUn

j + Fnj (Un
j )
)+

s∑

j=1

ãijB
njΔWn+1, . (4.35) 

un+1 = un + τ 
s∑

i=1 

bi
(
MUn 

i + Fni (Un 
i )
)+ 

s∑

i=1

b̃iB
ni ΔWn+1, (4.36) 

where .Bni = B(tn + c̃iτ ) and coefficients .aij , bi satisfy the symplectic condi-
tion (4.11). 

To prove the existence of a numerical solution given by the stochastic symplectic 
Runge–Kutta method (4.35)–(4.36), we need the following coercivity condition: the 
matrix .A = (aij )

s
i,j=1 is invertible, and there exists a diagonal positive definite 

matrix .K = diag(k1, k2, . . . , ks) and a constant .α > 0 such that 

.u⏉K A−1u ≥ αu⏉K u ∀ u ∈ R
s . (4.37) 

It is obvious that the stochastic midpoint method (4.14) satisfies the coercivity 
condition. For (4.35)–(4.36), we have the following well-posedness result. 

Theorem 4.2 Assume that the coefficients of the stochastic Runge–Kutta method 
(4.35)–(4.36) satisfy the symplectic condition (4.11) and the coercivity condi-
tion (4.37). If in addition F satisfies Assumption 2.2, and . B(t) ∈ HS(U0,D(M))

for any .t ∈ [0, T ], then for sufficiently small . τ , there exists a unique .H-valued 
.{Ftn}0≤n≤N -adapted numerical solution .{un; n = 0, 1, . . . , N} of the stochastic 
symplectic Runge–Kutta method. Moreover, for any .p ≥ 1, there is a positive 
constant .C = C(s, p, T ) such that 

. max
1≤i≤s E

[‖Un
i ‖2p

H

] ≤ C
(
E
[‖un‖2p

H

]+ τ
)
, n = 0, 1, . . . , N, . (4.38) 

max 
1≤n≤N ‖un‖L2p(Ω,H) ≤ C

(
1 + ‖u0‖L2p(Ω,H)

)
. (4.39) 

Proof 

Step 1. Existence and uniqueness. The existence of the numerical solution is 
similar to that in Step 1 of Proposition 4.2, which is omitted here. 

The uniqueness of the numerical solution follows from the uniqueness of . Un
i , 

.i = 1, 2, . . . , s. Assume that (4.35) has two different numerical solutions . Un =
(
(Un

1 )
⏉, . . . , (Un

s )
⏉)⏉ and .Vn = ((V n

1 )
⏉, . . . , (V n

s )
⏉)⏉ with .Un−1 = Vn−1, then it 

follows that the compact form .Un − Vn is given by 

.Un − Vn = τ
[
Id − τ(A⊗M)

]−1
(A⊗ Id)

(
Fn(Un)− Fn(Vn)

)
.
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Lemma C.2 (i) and the linear growth of F imply 

. ‖Un − Vn‖H⊗s ≤ Cτ‖Un − Vn‖H⊗s ,

where .H⊗s = H × H × · · · × H. Consequently, if . τ is sufficiently small, the 
uniqueness of . Un holds. 

Step 2. Proof of (4.38). We only present the proof for .p = 1. The proof for . p > 1
follows a similar procedure and is omitted. From the compact formula of (4.35), 
we have 

. 

Un =[Id − τ
(
A⊗M

)]−1
[
1s ⊗ un + τ

(
A⊗ Id

)
Fn(Un)

+ (Ã⊗ Id
)
BnΔWn+1

]
,

which, along with Lemma C.2 (i) and the linear growth of F , implies 

. ‖Un‖2
H⊗s ≤ C‖1s ⊗ un + τ

(
A⊗ Id

)
Fn(Un)+ (Ã⊗ Id

)
BnΔWn+1‖2

H⊗s

≤ C‖un‖2
H

+ Cτ 2
s∑

i=1

‖Fni(Un
i )‖2

H
+ C

s∑

i=1

‖BniΔWn+1‖2
H

≤ C‖un‖2
H

+ Cτ 2
s∑

i=1

(
1 + ‖Un

i ‖2
H

)+ C

s∑

i=1

‖BniΔWn+1‖2
H

≤ C‖un‖2
H

+ Cτ 2 + Cτ 2‖Un‖2
H⊗s + C

s∑

i=1

‖BniΔWn+1‖2
H
.

By the assumption .B(t) ∈ HS(U0,D(M)), it holds that 

.E
[‖Un‖2

H⊗s
] ≤ C E

[‖un‖2
H

]+ Cτ (4.40) 

for sufficiently small . τ . The proof of (4.38) is completed by . ‖Un‖2
H⊗s =

∑s
i=1 ‖Un

i ‖2
H

.
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Step 3. Proof of (4.39). We start from (4.36) to obtain 

. 

‖un+1‖2
H

= ‖un‖2
H
+τ 2
∥
∥
∥

s∑

i=1

bi
(
MUn

i +Fni(Un
i )
)∥∥
∥

2

H

+
∥
∥
∥

s∑

i=1

b̃iB
niΔWn+1

∥
∥
∥

2

H

+ 2τ
s∑

i=1

bi
〈
un,MUn

i + Fni(Un
i )
〉

H
+ 2

s∑

i=1

b̃i
〈
un, BniΔWn+1〉

H

+ 2τ
s∑

i,j=1

bi b̃j
〈
MUn

i + Fni(Un
i ), B

njΔWn+1〉

H
.

For the fourth term of the right-hand side of the above equality, we note that 
by (4.35) and the skew-adjointness of M , 

. 

2τ
s∑

i=1

bi
〈
un,MUn

i + Fni(Un
i )
〉

H

= 2τ
s∑

i=1

bi〈Un
i , F

ni(Un
i )〉H − 2τ

s∑

i,j=1

bi ãij 〈BnjΔWn+1,MUn
i + Fni(Un

i )〉H

− τ 2
s∑

i,j=1

(
biaij + bjaji

)〈MUn
j + Fnj (Un

j ),MUn
i + Fni(Un

i )〉H.

It is now clear that 

. ‖un+1‖2
H

= ‖un‖2
H

+
∥
∥
∥

s∑

i=1

b̃iB
niΔWn+1

∥
∥
∥

2

H

+ 2τ
s∑

i=1

bi〈Un
i , F

ni(Un
i )〉H

− τ 2
s∑

i,j=1

mij 〈MUn
j + Fnj (Un

j ),MUn
i + Fni(Un

i )〉H (4.41) 

+ 2τ 
s∑

i,j=1

(
bi b̃j − bi ãij

)〈Bnj ΔWn+1,MUn 
i + Fni (Un 

i )〉H 

+ 2 
s∑

i=1

b̃i
〈
un , Bni ΔWn+1〉

H .
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Due to the symplectic condition (4.11), we arrive at 

. ‖un+1‖2
H

≤ ‖un‖2
H

+ C(1 + τ)

s∑

i=1

‖BniΔWn+1‖2
H

+ Cτ

s∑

i=1

‖M(BniΔWn+1)‖2
H

+ Cτ

s∑

i=1

‖Un
i ‖2

H
+ Cτ

s∑

i=1

‖Fni(Un
i )‖2

H
+ 2

s∑

i=1

b̃i〈un, BniΔWn+1〉H.

Taking the expectation, together with the linear growth of F and the assumption 
.B(t) ∈ HS(U0,D(M)), we have  

. E
[‖un+1‖2

H

] ≤ E
[‖un‖2

H

]+ Cτ + CτE
[‖Un‖2

H⊗s
]
.

Plugging (4.40) into the above inequality yields 

. E
[‖un+1‖2

H

] ≤ (1 + Cτ)E
[‖un‖2

H

]+ Cτ,

which implies the assertion (4.39) by the Grönwall inequality. The proof of 
Theorem 4.2 is thus finished. ⨅⨆
Remark 4.3 

(i) Theorem 4.2 still holds if we replace the symplectic condition (4.11) by the one 
that 

.M = (mij

)s
i,j=1 with mij := biaij + bjaji − bibj (4.42) 

is semi-positive definite, which can ensure that the fourth term of the right-
hand side of (4.41) is non-positive. It is obvious that the stochastic symplectic 
Runge–Kutta method satisfies (4.42) naturally. 

(ii) Note that for the well-posedness of the stochastic symplectic Runge–Kutta 
method, a technical assumption .supt∈[0,T ] ‖B(t)‖HS(U0,D(M)) < ∞ is required 
to bound the term .‖M(BniΔWn+1)‖H. One may eliminate this assumption for 
certain concrete numerical methods, for instance, see Proposition 4.2 for the 
stochastic midpoint method. 

Remark 4.4 

(i) If we plug (4.35) again into the sixth term on the right-hand side of (4.41), then 
we have 

.‖un+1‖2
H

= ‖un‖2
H

+ 2τ
s∑

i=1

〈Un
i , F

ni(Un
i )〉H + 2

s∑

i=1

b̃i〈Un
i , B

niΔWn+1〉H

− τ 2
s∑

i,j=1

mij 〈MUn
j + Fnj (Un

j ),MUn
i + Fni(Un

i )〉H
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− 2τ 
s∑

i,j=1

m̃ij 〈Bni ΔWn+1,MUn 
j + Fnj (Un 

j )〉H 

− 
s∑

i,j=1

˜̃mij 〈Bnj ΔWn+1, Bni ΔWn+1〉H. 

Under the condition (4.7), we can obtain the following discrete energy evolution 
law 

. ‖un+1‖2
H

= ‖un‖2
H

+ 2τ
s∑

i=1

bi〈Un
i , F

ni(Un
i )〉H

+ 2
s∑

i=1

b̃i〈Un
i , B

niΔWn+1〉H, P-a.s.

for all .n = 0, 1, . . . , N − 1, which can be considered as the discrete version 
of (3.23). 

(ii) Denote .Fni(Un
i ) =: (F ni

e (U
n
i )

⏉, F ni
m (U

n
i )

⏉)⏉. From  (4.36), after straightfor-
ward calculations we end up with the discrete averaged divergence evolution 
laws 

. E
[∇ · En+1] = E

[∇ · En]+ τE
[ s∑

i=1

bi∇ · Fni
e (U

n
i )
]
,

E
[∇ · Hn+1] = E

[∇ · Hn
]+ τE

[ s∑

i=1

bi∇ · Fni
m (U

n
i )
]
,

which can be considered as the discrete version of (3.26). 

Similar to Theorem 4.2, we can obtain the .D(Mk)-regularity (. k ∈ N+) for  
the numerical solution .{un; n = 0, 1, . . . , N} of the stochastic symplectic Runge– 
Kutta method (4.35)–(4.36). As a consequence, the discrete versions of the Hölder 
continuity in .D(Mk−1) of the numerical solution are also obtained. 

Proposition 4.6 Suppose that conditions in Theorem 4.2 hold, . u0 ∈ L2p(Ω,

D(Mk)) for .p ≥ 1, .B(t) ∈ HS(U0,D(Mk+1)) for any .t ∈ [0, T ], and that F 
satisfies Assumption 2.4. Then there exists a constant . C = C(s, p, T , F, B) > 0
such that 

(i) . max
1≤i≤s E

[‖Un
i ‖2p

D(Mk)

] ≤ C
(
τ + E

[‖un‖2p
D(Mk)

])
, for .n = 0, 1, . . . , N; 

(ii) . max
1≤n≤N ‖un‖L2p(Ω,D(Mk)) ≤ C

(
1 + ‖u0‖L2p(Ω,D(Mk))

)
;
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(iii) . max
0≤n≤N−1

E

[
‖un+1 − un‖2p

D(Mk−1)

]
≤ Cτp;

(iv) . max
0≤n≤N−1

‖E[un+1 − un
]‖D(Mk−1) ≤ Cτ . 

4.1.2 Exponential-Type Methods 

As we know, the Itô form of (4.1) reads as follows 

. 

⎧
⎨

⎩

du(t) =
[
Mu(t)+ F̃ (t, u(t))

]
dt + B(t, u(t))dW(t), t ∈ (0, T ],

u(0) = u0,

(4.43) 

where 

. ̃F(t, u(t)) := F(t, u(t))+ 1

2
Bu(t, u(t))B(t, u(t))FQ, FQ(x) =

∑

k∈N

(
Q

1
2 ej (x)

)2
.

Under conditions in Remark 2.4 of Sect. 2.2, the mild solution of (4.43) exists 
globally and satisfies 

. u(tn) = S(τ)u(tn−1)+
∫ tn

tn−1

S(tn − s)F̃ (s, u(s))ds

+
∫ tn

tn−1

S(t − s)B(s, u(s))dW(s), P-a.s.

for .0 ≤ tn−1 < tn ≤ T . 
We now turn our attention to the exponential-type methods. One is the exponen-

tial Euler method for (4.43), which is defined recurrently by 

. un = S(τ)un−1 + τS(τ)F̃ (tn−1, u
n−1)

+ S(τ)B(tn−1, u
n−1)ΔWn, n = 1, 2, . . . , N (4.44) 

with .u0 = u0. We refer to [53] for more details on the analysis of the exponential 
Euler method for the stochastic Maxwell equations. Another one is the accelerated 
exponential Euler method of (4.43), 

. un = S(τ)un−1 +
∫ tn

tn−1

S(tn − s)F̃ (tn−1, u
n−1)ds

+
∫ tn

tn−1

S(tn − s)B(tn−1, u
n−1)dW(s) (4.45)
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for .n = 1, 2, . . . , N, where .u0 = u0. For the above two exponential-type methods, 
we have the following a priori  estimates of the numerical solutions. 

Proposition 4.7 Let .u0 ∈ L2p(Ω,D(M)), .p ≥ 1. Assume that the drift term 
.F̃ (t, ·) satisfies Assumption 2.4 with .k = 1 and the diffusion term .B(t, ·) satisfies 
Assumption 2.5 with .k = 1 for any .t ∈ [0, T ]. Then solutions of (4.44) and (4.45) 
satisfy 

. max
0≤n≤N E

[
‖un‖2p

D(M)

]
≤ C,

where .C = C(u0, T , p) is a positive constant. 

Proof We only present the proof of the exponential Euler method, and the assertion 
for the accelerated exponential Euler method follows a similar procedure. 

It follows from (4.44) that 

. un = S(tn)u0 + τ

n−1∑

k=0

S(tn − tk)F̃ (tk, u
k)+

n−1∑

k=0

S(tn − tk)B(tk, u
k)ΔWk+1

for all .n = 1, 2, . . . , N . Taking the .D(M)-norm yields that for .p ≥ 1, 

. max
1≤n≤N E

[
‖un‖2p

D(M)

]
≤ C max

1≤n≤N E

[
‖S(tn)u0‖2p

D(M)

]

+ C max
1≤n≤N E

[∥
∥
∥τ

n−1∑

k=0

S(tn − tk)F̃ (tk, u
k)

∥
∥
∥

2p

D(M)

]

+ C max
1≤n≤N E

[∥
∥
∥

n−1∑

k=0

S(tn − tk)B(tk, u
k)ΔWk+1

∥
∥
∥

2p

D(M)

]

=: I1 + I2 + I3.

For the first term . I1, using the unitarity of the operator S, we have  

. I1 = CE
[
‖u0‖2p

D(M)

]
.

For the second term . I2, the linear growth of . ̃F and the Hölder inequality lead to 

.I2 ≤ C + Cτ

N−1∑

k=0

E

[
‖uk‖2p

D(M)

]
.
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For the third term . I3, Proposition D.4 (ii) and the linear growth of B yield 

. 

I3 = C max
0≤tn≤T

E

[∥
∥
∥

∫ tn

0

(
S
(
tn − ⎿ s

τ
⏌τ
)
B(t⎿ s

τ
⏌τ , u⎿ s

τ
⏌τ )
)

dW(s)

∥
∥
∥

2p

D(M)

]

≤ C E

[( ∫ T

0
‖B(t⎿ s

τ
⏌τ , u⎿ s

τ
⏌τ )‖2

HS(U0,D(M))ds
)p]

≤ C + C E

[( ∫ T

0
‖u⎿ s

τ
⏌τ‖2

D(M)ds
)p]

= C + C E

[(
τ

N−1∑

k=0

‖uk‖2
D(M)

)p]

≤ C + Cτ

N−1∑

k=0

E

[
‖uk‖2p

D(M)

]
,

where .⎿ s
τ
⏌ is the integer part of . s

τ
. Combining the above estimates, we have 

. max
1≤n≤N E

[
‖un‖2p

D(M)

]
≤ C + C E

[
‖u0‖2p

D(M)

]
+ Cτ

N−1∑

k=0

E

[
‖uk‖2p

D(M)

]
.

Then the Grönwall inequality finishes the proof of Proposition 4.7. ⨅⨆
Particularly, if .ε = μ ≡ 1, .F ≡ 0 and .B = (λ⏉

1 ,λ
⏉
2 )

⏉, the exponential Euler 
method (4.44) and the accelerated exponential Euler method (4.45) become 

.un = S(τ)un−1 + S(τ)BΔWn, n = 1, 2, . . . , N (4.46) 

and 

.un = S(τ)un−1 +
∫ tn

tn−1

S(tn − s)BdW(s), n = 1, 2, . . . , N, (4.47) 

respectively. 
The following propositions state that these two methods preserve the stochastic 

symplectic structure, and fulfill both the averaged energy evolution law and the 
averaged divergence conservation laws. In the sequel, we sketch only the proof 
for (4.46), and the proof for (4.47) is similar.
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Proposition 4.8 The methods (4.46) and (4.47) preserve the discrete stochastic 
symplectic structure 

. 𝜛n+1 :=
∫

D

dEn+1(x) ∧ dHn+1(x)dx =
∫

D

dEn(x) ∧ dHn(x)dx = 𝜛n, P-a.s.

for all .n = 0, 1, . . . , N − 1. 

Proof Taking the exterior derivative of (4.46) leads to 

. dun+1 = d
(
S(τ)un

)
.

Therefore the stochastic symplecticity follows from properties of the deterministic 
linear Maxwell equations (see Theorem 1.1 in Sect. 1.1.2). ⨅⨆
Proposition 4.9 The methods (4.46) and (4.47) fulfill the averaged energy evolu-
tion law 

. E
[‖un‖2

H

] = E
[‖un−1‖2

H

]+ 𝜘τ, n = 1, 2, . . . , N

with .𝜘 = (λ2
1 + λ2

2)Tr(Q). 

Proof Applying .E
[‖ · ‖2

H

]
to both sides of (4.46) leads to 

. E
[‖un‖2

H

] = E

[
‖S(τ)un−1‖2

H

]
+ E

[
‖S(τ)BΔWn‖2

H

]

+ 2E
[〈
S(τ)un−1, S(τ )BΔWn

〉

H

]

= E
[‖un−1‖2

H

]+ E
[‖BΔWn‖2

H

]
.

We note that 

. E
[‖BΔWn‖2

H

] = (λ2
1 + λ2

2)

∫

D

E

[∥
∥
∥

∫ tn

tn−1

dW(s)

∥
∥
∥

2

H

]
dx

= (λ2
1 + λ2

2)τ

∫

D

[∑

i∈N

(
Q

1
2 ei(x)

)2]
dx

= (λ2
1 + λ2

2)Tr(Q)τ

due to the Itô isometry. ⨅⨆
Proposition 4.10 The methods (4.46) and (4.47) fulfill the discrete averaged 
divergence conservation laws 

.E
[∇ · En] = E

[∇ · En−1], E
[∇ · Hn

] = E
[∇ · Hn−1], n = 1, 2, . . . , N.
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Proof Denote .(div, div)(E⏉,H⏉)⏉ := (∇ ·E⏉,∇ ·H⏉)⏉. Performing the operator 
.(div, div) and taking the expectation on both sides of (4.46) yield 

. E
[
(div, div)un

] = E
[
(div, div)S(τ )un−1].

Notice that .S(τ)un−1 is the exact solution of the following deterministic linear 
Maxwell equations 

. 

⎧
⎨

⎩

d
dt u(t) = Mu(t), t ∈ (tn−1, tn],
u(tn−1) = un−1.

These equations possess the divergence conservation laws, that is, 

. (div, div)S(τ )un−1 = (div, div)un−1

for all .n = 1, 2, . . . , N + 1. ⨅⨆

4.2 Fully Discrete Algorithms 

Section 4.1 proposes and analyzes the temporal semi-discretizations for the stochas-
tic Maxwell equations. This section discretizes these temporal semi-discretizations 
further in the spatial direction to obtain several fully discrete algorithms, including 
the stochastic multi-symplectic algorithms, the stochastic multi-symplectic wavelet 
algorithm, the stochastic symplectic and multi-symplectic dG algorithms. The 
geometric structures and physical properties of these algorithms are also analyzed. 

For the considered spatial domain .D := [a−
1 , a

+
1 ] × [a−

2 , a
+
2 ] × [a−

3 , a
+
3 ], we  

introduce a uniform partition with .Δx = (a+
1 − a−

1 )/I , .Δy = (a+
2 − a−

2 )/J , and 
.Δz = (a+

3 − a−
3 )/K being the mesh sizes along x, y, and z-directions, respectively. 

Here .I, J, and K are positive integers. Recall that .τ = T/N is the uniform time step 
size of .[0, T ] with N being a positive integer. For .n = 1, . . . , N, .i = 1, . . . , I, . j =
1, . . . , J, and .k = 1, . . . , K, denote grid points by . tn = nτ, xi = a−

1 + iΔx, yj =
a−

2 + jΔy, zk = a−
3 + kΔz. Let .uni,j,k be an approximation of .u(tn, xi, yj , zk). The  

difference operators in t-direction and x-direction are defined by 

.δtu
n
i,j,k = un+1

i,j,k − uni,j,k

τ
, δ̄tu

n
i,j,k = un+1

i,j,k − un−1
i,j,k

2τ
,

δxu
n
i,j,k = uni+1,j,k − uni,j,k

Δx
, δ̄xu

n
i,j,k = uni+1,j,k − uni−1,j,k

2Δx
.
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And the average operators in t-direction and x-direction are defined by 

. Atu
n
i,j,k = un+1

i,j,k + uni,j,k

2
, Axu

n
i,j,k = uni+1,j,k + uni,j,k

2
.

For the simplicity of notations, we may also use .u
n+ 1

2
i,j,k and .un

i+ 1
2 ,j,k

to replace 

.Atu
n
i,j,k and .Axu

n
i,j,k , respectively. Similar to . δx , . ̄δx , and . Ax , we can define operators 

. δy , . ̄δy , and . Ay in y-direction and operators . δz, . ̄δz, and . Az in z-direction. 

4.2.1 Stochastic Multi-Symplectic Algorithms 

As shown in Sect. 3.2, the stochastic Maxwell equations, including the multiplica-
tive noise case (3.10) and the additive noise case (3.21), can be rewritten in the 
formulation of the stochastic Hamiltonian partial differential equation, i.e., 

.Fdu+ K1∂xudt + K2∂yudt + K3∂zudt = ∇uS(u) ◦ dW(t), (4.48) 

where .S(u) = λ2
2 |E|2 + λ1

2 |H|2 for (3.10) and .S(u) = λ2 · E − λ1 · H for (3.21). 
Matrices . F and .Kp (.p = 1, 2, 3) are defined in (3.12). And in the previous chapter, 
we have shown that (4.48) possesses the stochastic multi-symplectic conservation 
law 

. dt𝜛 + ∂xκ1dt + ∂yκ2dt + ∂zκ3dt = 0, P-a.s.

with . 𝜛 and .κp .(p = 1, 2, 3) being the differential 2-forms associated with the 
skew-symmetric matrices . F and .Kp .(p = 1, 2, 3), respectively. 

We first give the definition of the stochastic multi-symplectic algorithm. 

Definition 4.2 A stochastic algorithm 

. F∂
n,i,j,k
t uni,j,k + K1∂

n,i,j,k
x uni,j,k

+ K2∂
n,i,j,k
y uni,j,k + K3∂

n,i,j,k
z uni,j,k = (∇uS(u))

n
i,j,kγ

n
i,j,k

of (4.48) is said to be a stochastic multi-symplectic algorithm if the discrete 
stochastic multi-symplectic conservation law 

.∂
n,i,j,k
t 𝜛n

i,j,k + ∂
n,i,j,k
x (κ1)

n
i,j,k + ∂

n,i,j,k
y (κ2)

n
i,j,k + ∂

n,i,j,k
z (κ3)

n
i,j,k = 0, P-a.s.
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is fulfilled. Here, .∂n,i,j,kt , .∂n,i,j,kx , .∂n,i,j,ky , and .∂n,i,j,kz are certain discretizations of 
the derivatives . ∂t , . ∂x , . ∂y , and . ∂z, respectively. And .γ ni,j,k is an approximation of the 
noise. 

We are going to propose several structure-preserving algorithms which are 
stochastic multi-symplectic. 

MS Method-I The first algorithm is constructed by applying the midpoint method 
in both spatial and temporal directions of (4.48). Namely, for . n = 0, 1, . . . , N, i =
0, 1, . . . , I, j = 0, 1, . . . , J, and k = 0, 1, . . . , K , 

.

Fδtu
n

i+ 1
2 ,j+ 1

2 ,k+ 1
2

+ K1δxAtu
n

i,j+ 1
2 ,k+ 1

2
+ K2δyAtu

n

i+ 1
2 ,j,k+ 1

2

+ K3δzAtu
n

i+ 1
2 ,j+ 1

2 ,k
= ∇uS(Atu

n

i+ 1
2 ,j+ 1

2 ,k+ 1
2
)γ ni,j,k, P-a.s.,

(4.49) 

where 

. γ ni,j,k := 1

τ
(ΔW)n+1

i,j,k and (ΔW)n+1
i,j,k := W(tn+1, xi, yj , zk)−W(tn, xi, yj , zk).

MS Method-II The second algorithm is constructed based on the central finite 
difference method in both spatial and temporal directions of (4.48). Namely, for 
.n = 1, 2, . . . , N, i = 0, 1, . . . , I, j = 0, 1, . . . , J, and k = 0, 1, . . . , K , 

. Fδ̄t u
n
i,j,k +

(
K1δ̄x + K2δ̄y + K3δ̄z

)
uni,j,k = ∇uS(u

n
i,j,k)γ̃

n+1
i,j,k , P-a.s.,

(4.50) 

where 

. ̃γ n+1
i,j,k := 1

2τ

(
W(tn+1, xi, yj , zk)−W(tn−1, xi, yj , zk)

)
.

MS Method-III The third algorithm is constructed by applying the central finite 
difference method in spatial direction and the midpoint method in temporal direction 
of (4.48). Namely, for . n = 0, 1, . . . , N, i = 0, 1, . . . , I, j = 0, 1, . . . , J, and k =
0, 1, . . . , K , 

. Fδtu
n
i,j,k +

(
K1δ̄xAt + K2δ̄y + K3δ̄zAt

)
uni,j,k = ∇uS(Atu

n
i,j,k)γ

n
i,j,k, P-a.s.

(4.51) 

4.2.1.1 Stochastic Multi-Symplectic Conservation Law 

This part is devoted to studying the stochastic multi-symplectic conservation laws 
for the above three structure-preserving algorithms.
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Proposition 4.11 The MS Method-I (4.49) possesses the discrete stochastic multi-
symplectic conservation law 

. δtAxAyAz𝜛
n
i,j,k + δxAtAyAz(κ1)

n
i,j,k

+ δyAtAzAx(κ2)
n
i,j,k + δzAtAxAy(κ3)

n
i,j,k = 0, P-a.s.,

where .𝜛n
i,j,k = 1

2du
n
i,j,k∧Fduni,j,k and .(κp)

n
i,j,k = 1

2du
n
i,j,k∧Kpdu

n
i,j,k , .p = 1, 2, 3. 

Proof Taking the exterior derivative on both sides of (4.49) yields 

. 

Fδtdu
n

i+ 1
2 ,j+ 1

2 ,k+ 1
2

+ K1δxAtdu
n

i,j+ 1
2 ,k+ 1

2
+ K2δyAtdu

n

i+ 1
2 ,j,k+ 1

2

+ K3δzAtdu
n

i+ 1
2 ,j+ 1

2 ,k
= ∇2S(Atu

n

i+ 1
2 ,j+ 1

2 ,k+ 1
2
)Atdu

n

i+ 1
2 ,j+ 1

2 ,k+ 1
2
γ ni,j,k.

(4.52) 

Next, we take the wedge product between .Atdun
i+ 1

2 ,j+ 1
2 ,k+ 1

2
and (4.52). The term  

.Atdu
n

i+ 1
2 ,j+ 1

2 ,k+ 1
2

∧ ∇2S(Atu
n

i+ 1
2 ,j+ 1

2 ,k+ 1
2
)Atdu

n

i+ 1
2 ,j+ 1

2 ,k+ 1
2
γ ni,j,k vanishes due to 

the symmetry of .∇2S(·). For the first term on the left-hand side of (4.52), we have  

. Atdu
n

i+ 1
2 ,j+ 1

2 ,k+ 1
2

∧ Fδtdu
n

i+ 1
2 ,j+ 1

2 ,k+ 1
2

= 1

2τ
dun+1

i+ 1
2 ,j+ 1

2 ,k+ 1
2

∧ Fdun+1
i+ 1

2 ,j+ 1
2 ,k+ 1

2
− 1

2τ
dun

i+ 1
2 ,j+ 1

2 ,k+ 1
2

∧ Fdun
i+ 1

2 ,j+ 1
2 ,k+ 1

2

= δt𝜛
n

i+ 1
2 ,j+ 1

2 ,k+ 1
2
.

Similarly, for the rest terms on the left-hand side of (4.52), we have  

. Atdu
n

i+ 1
2 ,j+ 1

2 ,k+ 1
2

∧ K1δxAtdu
n

i,j+ 1
2 ,k+ 1

2
= δxAt (κ1)

n

i,j+ 1
2 ,k+ 1

2
,

Atdu
n

i+ 1
2 ,j+ 1

2 ,k+ 1
2

∧ K2δyAtdu
n

i+ 1
2 ,j,k+ 1

2
= δyAt (κ2)

n

i+ 1
2 ,j,k+ 1

2
,

Atdu
n

i+ 1
2 ,j+ 1

2 ,k+ 1
2

∧ K3δzAtdu
n

i+ 1
2 ,j+ 1

2 ,k
= δzAt (κ3)

n

i+ 1
2 ,j+ 1

2 ,k
.

Combining the above results completes the proof. ⨅⨆
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Proposition 4.12 The MS Method-II (4.50) possesses the discrete stochastic multi-
symplectic conservation law 

. 

𝜛
n+ 1

2
i,j,k −𝜛

n− 1
2

i,j,k

τ
+
(̂κ1)

n

i+ 1
2 ,j,k

− (̂κ1)
n

i− 1
2 ,j,k

Δx
+
(̂κ2)

n

i,j+ 1
2 ,k

− (̂κ2)
n

i,j− 1
2 ,k

Δy

+
(̂κ3)

n

i,j,k+ 1
2

− (̂κ3)
n

i,j,k− 1
2

Δz
= 0, P-a.s.,

where 

. ̂𝜛
n+ 1

2
i,j,k = 1

2
duni,j,k ∧ Fdun+1

i,j,k, (̂κ1)
n

i+ 1
2 ,j,k

= 1

2
duni,j,k ∧ K1du

n
i+1,j,k,

(̂κ2)
n

i,j+ 1
2 ,k

= 1

2
duni,j,k ∧ K2du

n
i,j+1,k, (̂κ3)

n

i,j,k+ 1
2

= 1

2
duni,j,k ∧ K3du

n
i,j,k+1.

Proof Similar to the proof of Proposition 4.11, we take the exterior derivative on 
both sides of (4.50) to obtain 

. ΔxΔyΔz
(
Fdun+1

i,j,k − Fdun−1
i,j,k

)+ τΔyΔz
(
K1du

n
i+1,j,k − K1du

n
i−1,j,k

)

+ τΔxΔz
(
K2du

n
i,j+1,k − K2du

n
i,j−1,k

)+ τΔxΔy
(
K3du

n+1
i,j,k+1 − K3du

n+1
i,j,k−1

)

= ΔxΔyΔz∇2S(uni,j,k)du
n
i,j,k(W

n+1
i,j,k −Wn−1

i,j,k).

Then taking the wedge product between .duni,j,k and the above equation, one obtains 

the conclusion via the symmetry of .∇2S(·). ⨅⨆
Proposition 4.13 The MS Method-III (4.51) possesses the discrete stochastic 
multi-symplectic conservation law 

. 
𝜛n+1
i,j,k −𝜛n

i,j,k

τ
+
(̃κ1)

n+ 1
2

i+ 1
2 ,j,k

− (̃κ1)
n+ 1

2

i− 1
2 ,j,k

Δx
+
(̃κ2)

n+ 1
2

i,j+ 1
2 ,k

− (̃κ2)
n+ 1

2

i,j− 1
2 ,k

Δy

+
(̃κ3)

n+ 1
2

i,j,k+ 1
2

− (̃κ3)
n+ 1

2

i,j,k− 1
2

Δz
= 0, P-a.s.,

where 

. ̃𝜛n+1
i,j,k = 1

2
dun+1

i,j,k ∧ Fdun+1
i,j,k, (̃κ1)

n+ 1
2

i+ 1
2 ,j,k

= 1

2
du

n+ 1
2

i,j,k ∧ K1du
n+ 1

2
i+1,j,k,

(̃κ2)
n+ 1

2

i,j+ 1
2 ,k

= 1

2
du

n+ 1
2

i,j,k ∧ K2du
n+ 1

2
i,j+1,k, (̃κ3)

n+ 1
2

i,j,k+ 1
2

= 1

2
du

n+ 1
2

i,j,k ∧ K3du
n+ 1

2
i,j,k+1.

Proof The proof is similar to that of Proposition 4.12 and thus is omitted here. ⨅⨆
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4.2.1.2 Energy Evolution Law 

In Sect. 3.3, we have shown that for the stochastic Maxwell equations, the energy is 
conserved for the multiplicative noise case (i.e., .S(u) = λ2

2 |E|2 + λ1
2 |H|2 in (4.48) 

with .λ1 = λ2), whereas the averaged energy evolutes linearly with the rate . ̃𝜘 =
(|λ1|2 +|λ2|2)Tr(Q) for the additive noise case (i.e., .S(u) = λ2 ·E−λ1 ·H in (4.48); 
see Remark 3.2). In this part, we investigate the evolution of the discrete energies 
for the three stochastic multi-symplectic algorithms (4.49)–(4.51). 

Proposition 4.14 Denote by .uni,j,k = ((Eni,j,k)
⏉, (Hn

i,j,k)
⏉)⏉ the solution of the MS 

Method-I (4.49) with .S(u) = λ2
2 |E|2 + λ1

2 |H|2. Assume that .λ1 = λ2 = λ. Then 
under the periodic boundary condition, the discrete energy satisfies 

. Φ[I](tn+1) = Φ[I](tn), P-a.s.

for all .n = 0, 1, . . . , N − 1. Here, the discrete energy .Φ[I] is defined as 

. Φ[I](tn) := ΔxΔyΔz

I−1∑

i=0

J−1∑

j=0

K−1∑

k=0

∣
∣
∣
∣u
n

i+ 1
2 ,j+ 1

2 ,k+ 1
2

∣
∣
∣
∣

2

.

Proof Recall .S(u) = λ
2 |E|2 + λ

2 |H|2 in (4.49), and the MS Method-I reads as 

.

Fδtu
n

i+ 1
2 ,j+ 1

2 ,k+ 1
2

+ K1δxAtu
n

i,j+ 1
2 ,k+ 1

2
+ K2δyAtu

n

i+ 1
2 ,j,k+ 1

2

+ K3δzAtu
n

i+ 1
2 ,j+ 1

2 ,k
= λAtu

n

i+ 1
2 ,j+ 1

2 ,k+ 1
2
γ ni,j,k, P-a.s.

(4.53) 

Next, we multiply (4.53) by .2τΔxΔyΔzFAtun
i+ 1

2 ,j+ 1
2 ,k+ 1

2
and then sum up over 

all spatial indices .i, j, k. For the first term on the left-hand side of (4.53), we have  

. 2τΔxΔyΔz
I−1∑

i=0

J−1∑

j=0

K−1∑

k=0

(
Fδtu

n

i+ 1
2 ,j+ 1

2 ,k+ 1
2

)
·
(
FAtu

n

i+ 1
2 ,j+ 1

2 ,k+ 1
2

)

= Φ[I](tn+1)−Φ[I](tn).

Using the periodic boundary condition, the other corresponding terms on the left-
hand side of (4.53) vanish. For the term on the right-hand side of (4.53), the skew-
symmetry of . F implies 

. λ
(
Atu

n

i+ 1
2 ,j+ 1

2 ,k+ 1
2
γ ni,j,k

)
·
(
FAtu

n

i+ 1
2 ,j+ 1

2 ,k+ 1
2

)
= 0.

Hence, combining the above results gives the conclusion. ⨅⨆
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Similarly, we can prove the following result for the additive noise case. 

Proposition 4.15 Denote by .uni,j,k = ((Eni,j,k)
⏉, (Hn

i,j,k)
⏉)⏉ the solution of the MS 

Method-I (4.49) with .S(u) = λ2 · E − λ1 · H. Then under the periodic boundary 
condition, the discrete energy satisfies 

. Φ[I](tn+1) = Φ[I](tn)

+ 2ΔxΔyΔz
I−1∑

i=0

J−1∑

j=0

K−1∑

k=0

(
Υ
n+ 1

2

i+ 1
2 ,j+ 1

2 ,k+ 1
2
(ΔW)n+1

i,j,k

)
, P-a.s.

for .n = 0, 1, . . . , N − 1, where 

. Υ
n+ 1

2

i+ 1
2 ,j+ 1

2 ,k+ 1
2

:= λ1 · En+
1
2

i+ 1
2 ,j+ 1

2 ,k+ 1
2

+ λ2 · Hn+ 1
2

i+ 1
2 ,j+ 1

2 ,k+ 1
2
.

Proof When .S(u) = λ2 · E − λ1 · H, (4.49) reads as 

.

Fδtu
n

i+ 1
2 ,j+ 1

2 ,k+ 1
2

+ K1δxAtu
n

i,j+ 1
2 ,k+ 1

2
+ K2δyAtu

n

i+ 1
2 ,j,k+ 1

2

+ K3δzAtu
n

i+ 1
2 ,j+ 1

2 ,k
= λγ ni,j,k, P-a.s.,

(4.54) 

where .λ := (λ⏉
2 ,−λ⏉

1 )
⏉ ∈ R6. The rest of the proof is similar to that of 

Proposition 4.14, and the only difference lies in the treatment of the term on the 
right-hand side of (4.54). Note that 

. 2τΔxΔyΔz
I−1∑

i=0

J−1∑

j=0

K−1∑

k=0

(
λ · FAtun

i+ 1
2 ,j+ 1

2 ,k+ 1
2

)
γ ni,j,k

= 2ΔxΔyΔz
I−1∑

i=0

J−1∑

j=0

K−1∑

k=0

×
[
λ1 · AtEn

i+ 1
2 ,j+ 1

2 ,k+ 1
2

+ λ2 · AtHn

i+ 1
2 ,j+ 1

2 ,k+ 1
2

]
(ΔW)n+1

i,j,k.

Thus, the proof is finished. ⨅⨆
Specially, we can obtain the estimate of the discrete averaged energy in the case 

that W depends only on the time variable.
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Corollary 4.1 Let conditions in Proposition 4.15 hold. If .W : [0, T ] ×Ω → R is 
a Brownian motion, then there exists a constant .̃𝜘 = (|λ1|2 + |λ2|2)|D| such that 

. E
[
Φ[I](tn+1)

] = E
[
Φ[I](tn)

]+ �̃�τ, n = 0, 1, . . . , N − 1.

Here and hereafter .|D| denotes the volume of the spatial domain . D. 

Proof The proof is similar to that of Proposition 4.15. The main difference concerns 
the treatment of the random term. We observe that 

.Υ
n+ 1

2

i+ 1
2 ,j+ 1

2 ,k+ 1
2
ΔWn+1 (4.55) 

=
[(

λ1 · En 
i+ 1 

2 ,j+ 1 
2 ,k+ 1 

2 
+ 

1 

2 
λ1 ·
(
En+1 
i+ 1 

2 ,j+ 1 
2 ,k+ 1 

2 
− En 

i+ 1 
2 ,j+ 1 

2 ,k+ 1 
2

))
ΔWn+1

]

+
[(

λ2 · Hn 
i+ 1 

2 ,j+ 1 
2 ,k+ 1 

2 
+ 

1 

2 
λ2 ·
(
Hn+1 
i+ 1 

2 ,j+ 1 
2 ,k+ 1 

2 
− Hn 

i+ 1 
2 ,j+ 1 

2 ,k+ 1 
2

))
ΔWn+1

]
. 

Since the increments of the Wiener process W are independent, we have 

. E

[
λ1 · En

i+ 1
2 ,j+ 1

2 ,k+ 1
2
ΔWn+1

]
= E

[
λ2 · Hn

i+ 1
2 ,j+ 1

2 ,k+ 1
2
ΔWn+1

]
= 0.

Thus, taking the expectation on both sides of (4.55), we arrive at  

. 

E

[
Υ
n+ 1

2

i+ 1
2 ,j+ 1

2 ,k+ 1
2
ΔWn+1

]
= 1

2
E

[
λ1 · (En+1

i+ 1
2 ,j+ 1

2 ,k+ 1
2

− En
i+ 1

2 ,j+ 1
2 ,k+ 1

2

)
ΔWn+1

]

+ 1

2
E

[
λ2 · (Hn+1

i+ 1
2 ,j+ 1

2 ,k+ 1
2

− Hn

i+ 1
2 ,j+ 1

2 ,k+ 1
2

)
ΔWn+1

]

= τ

2
E

[
ΔWn+1λ1 · δtEn

i+ 1
2 ,j+ 1

2 ,k+ 1
2

]
+ τ

2
E

[
ΔWn+1λ2 · δtHn

i+ 1
2 ,j+ 1

2 ,k+ 1
2

]

= τ

2

3∑

p=1

E

[
ΔWn+1

(
λ
(p)

2 δt (Hp)
n

i+ 1
2 ,j+ 1

2 ,k+ 1
2

+ λ
(p)

1 δt (Ep)
n

i+ 1
2 ,j+ 1

2 ,k+ 1
2

)]
,

(4.56)
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where .λ1 = (λ
(1)
1 , λ

(2)
1 , λ

(3)
1 )⏉ and .λ2 = (λ

(1)
2 , λ

(2)
2 , λ

(3)
2 )⏉. To estimate (4.56), let  

us consider the componentwise form of (4.54), 

. 

δt (E1)
n

i+ 1
2 ,j+ 1

2 ,k+ 1
2

= δyAt (H3)
n

i+ 1
2 ,j,k+ 1

2
− δzAt (H2)

n

i+ 1
2 ,j+ 1

2 ,k
+ λ

(1)
1 γ ni,j,k,

δt (E2)
n

i+ 1
2 ,j+ 1

2 ,k+ 1
2

= δzAt (H1)
n

i+ 1
2 ,j+ 1

2 ,k
− δxAt (H3)

n

i,j+ 1
2 ,k+ 1

2
+ λ

(2)
1 γ ni,j,k,

δt (E3)
n

i+ 1
2 ,j+ 1

2 ,k+ 1
2

= δxAt (H2)
n

i,j+ 1
2 ,k+ 1

2
− δyAt (H1)

n

i+ 1
2 ,j,k+ 1

2
+ λ

(3)
1 γ ni,j,k,

δt (H1)
n

i+ 1
2 ,j+ 1

2 ,k+ 1
2

= δzAt (E2)
n

i+ 1
2 ,j+ 1

2 ,k
− δyAt (E3)

n

i+ 1
2 ,j,k+ 1

2
+ λ

(1)
2 γ ni,j,k,

δt (H2)
n

i+ 1
2 ,j+ 1

2 ,k+ 1
2

= δxAt (E3)
n

i,j+ 1
2 ,k+ 1

2
− δzAt (E1)

n

i+ 1
2 ,j+ 1

2 ,k
+ λ

(2)
2 γ ni,j,k,

δt (H3)
n

i+ 1
2 ,j+ 1

2 ,k+ 1
2

= δyAt (E1)
n

i+ 1
2 ,j,k+ 1

2
− δxAt (E2)

n

i,j+ 1
2 ,k+ 1

2
+ λ

(3)
2 γ ni,j,k.

(4.57) 

When W is a Brownian motion, .γ ni,j,k in (4.57) is defined by . γ ni,j,k = W(tn+1) −
W(tn). Plugging (4.57) into the term on the right-hand side of (4.56) and using the 
periodic boundary condition, we obtain 

. 2ΔxΔyΔz
I−1∑

i=0

J−1∑

j=0

K−1∑

k=0

E

[
Υ
n+ 1

2

i+ 1
2 ,j+ 1

2 ,k+ 1
2
ΔWn+1

]
= �̃�τ.

Therefore, 

. E
[
Φ[I](tn+1)

] = E
[
Φ[I](tn)

]+ �̃�τ, n = 0, 1, . . . , N − 1,

which finishes the proof. ⨅⨆
For the MS Method-II, we have the following two discrete energy evolution 

properties. Proofs are similar to those of Propositions 4.14 and 4.15. 

Proposition 4.16 Denote by .uni,j,k = ((Eni,j,k)
⏉, (Hn

i,j,k)
⏉)⏉ the solution of the MS 

Method-II (4.50) with .S(u) = λ2
2 |E|2 + λ1

2 |H|2. Assume that . λ1 = λ2 = λ. Then 
under the periodic boundary condition, the discrete energy satisfies 

. Φ[II](tn+1) = Φ[II](tn), P-a.s.

for all .n = 1, 2, . . . , N − 1. Here, the discrete energy .Φ[II] is defined as 

.Φ[II](tn+1) := ΔxΔyΔz

I∑

i=1

J∑

j=1

K∑

k=1

un+1
i,j,k · uni,j,k.
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Proposition 4.17 Denote by .uni,j,k = ((Eni,j,k)
⏉, (Hn

i,j,k)
⏉)⏉ the solution of the MS 

Method-II (4.50) with .S(u) = λ2 · E − λ1 · H. Then under the periodic boundary 
condition, the discrete energy satisfies 

. Φ[II](tn+1) = Φ[II](tn)+ΔxΔyΔz

I∑

i=1

J∑

j=1

K∑

k=1

Υ n
i,j,k(W

n+1
i,j,k −Wn−1

i,j,k), P-a.s.

for .n = 1, 2, . . . , N − 1, where 

. Υ
n
i,j,k := λ1 · Eni,j,k + λ2 · Hn

i,j,k.

Moreover, we have the following discrete averaged energy linear growth of the 
MS Method-II. 

Corollary 4.2 Under conditions in Proposition 4.17, there exists a constant . ̂𝜘 =
(|λ1|2 + |λ2|2)V̄ Q(D) such that 

. E

[
Φ[II](tn+1)

]
= E

[
Φ[II](tn)

]
+ �̂�τ, n = 0, 1, . . . , N − 1,

where .V̄ Q(D) := ΔxΔyΔz
∑

i,j,k

∑
m∈N
(
Q

1
2 em(xi, yj , zk)

)2
. 

Proof Similar to Corollary 4.1, using the independence of the increments of Wiener 
process, we have the following result 

. 

E

[
Υ n
i,j,k(W

n+1
i,j,k −Wn−1

i,j,k)
]

= E

[
λ1 ·
(
Eni,j,k − En−2

i,j,k

)
(ΔW)ni,j,k + λ2 ·

(
Hn
i,j,k − Hn−2

i,j,k

)
(ΔW)ni,j,k

]

= τE
[
(ΔW)ni,j,kλ1 · δ̄tEn−1

i,j,k

]
+ τE

[
(ΔW)ni,j,kλ2 · δ̄tHn−1

i,j,k

]

= τ

3∑

p=1

E

[
(ΔW)ni,j,k

(
λ
(p)

1 δ̄t (Ep)
n−1
i,j,k + λ

(p)

2 δ̄t (Hp)
n−1
i,j,k

)]
.

(4.58) 

In the same way, plugging the following componentwise form of (4.50) 

.δ̄t (E1)
n
i,j,k = δ̄y(H3)

n
i,j,k − δ̄z(H2)

n
i,j,k + λ

(1)
1 γ̃ n+1

i,j,k ,

δ̄t (E2)
n
i,j,k = δ̄z(H1)

n
i,j,k − δ̄x(H3)

n
i,j,k + λ

(2)
1 γ̃ n+1

i,j,k ,

δ̄t (E3)
n
i,j,k = δ̄x(H2)

n
i,j,k − δ̄y(H1)

n
i,j,k + λ

(3)
1 γ̃ n+1

i,j,k ,
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δ̄t (H1)
n 
i,j,k = δ̄z(E2)

n 
i,j,k − δ̄y(E3)

n 
i,j,k + λ (1) 2 γ̃ n+1 

i,j,k , 

δ̄t (H2)
n 
i,j,k = δ̄x(E3)

n 
i,j,k − δ̄z(E1)

n 
i,j,k + λ (2) 2 γ̃ n+1 

i,j,k , 

δ̄t (H3)
n 
i,j,k = δ̄y(E1)

n 
i,j,k − δ̄x(E2)

n 
i,j,k + λ (3) 2 γ̃ n+1 

i,j,k 

into (4.58) leads to 

. ΔxΔyΔz

I∑

i=1

J∑

j=1

K∑

k=1

E

[
Υ n
i,j,k(W

n+1
i,j,k −Wn−1

i,j,k)
]

= ΔxΔyΔz

I∑

i=1

J∑

j=1

K∑

k=1

E

[(|λ1|2 + |λ2|2
)
(Wn

i,j,k −Wn−2
i,j,k)(ΔW)ni,j,k

]

= (|λ1|2 + |λ2|2
)
ΔxΔyΔz

I∑

i=1

J∑

j=1

K∑

k=1

E

[
((ΔW)ni,j,k)

2
]

= �̂�τ,

which completes the proof. ⨅⨆
Remark 4.5 Notice that 

. V̄ Q(D) ≈
∑

m∈N
ηm

∫

D

e2
m(x)dx =

∑

m∈N
ηm = Tr(Q).

Thus .V̄ Q(D) can be regarded as an approximation of . Tr(Q). 

Proposition 4.18 Denote by .uni,j,k = ((Eni,j,k)
⏉, (Hn

i,j,k)
⏉)⏉ the solution of the MS 

Method-III (4.51) with .S(u) = λ2
2 |E|2 + λ1

2 |H|2. Assume that .λ1 = λ2 = λ. Then 
under the periodic boundary condition, the discrete energy satisfies 

. Φ[III](tn+1) = Φ[III](tn), P-a.s.

for all .n = 0, 1, . . . , N − 1. Here, the discrete energy .Φ[III] is defined as 

. Φ[III](tn) := ΔxΔyΔz

I∑

i=1

J∑

j=1

K∑

k=1

∣
∣uni,j,k

∣
∣2.

Proof The proof is similar to that of Proposition 4.14. ⨅⨆
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Proposition 4.19 Denote by .uni,j,k = ((Eni,j,k)
⏉, (Hn

i,j,k)
⏉)⏉ the solution of the MS 

method-III (4.51) with .S(u) = λ2 · E − λ1 · H. Then under the periodic boundary 
condition, the discrete energy satisfies 

. Φ[III](tn+1) = Φ[III](tn)+ 2ΔxΔyΔz
I∑

i=1

J∑

j=1

K∑

k=1

Υ
n+ 1

2
i,j,k (ΔW)n+1

i,j,k, P-a.s.

(4.59) 

for all .n = 0, 1, . . . , N − 1, where 

. Υ
n+ 1

2
i,j,k := λ1 · En+

1
2

i,j,k + λ2 · Hn+ 1
2

i,j,k .

Proof The proof is similar to that of Proposition 4.15. ⨅⨆
Corollary 4.3 Let conditions in Proposition 4.18 hold. If .W : [0, T ] ×Ω → R is 
a Brownian motion, then there exists a constant .̃𝜘 = (|λ1|2 + |λ2|2)|D| such that 

. E

[
Φ[III](tn+1)

]
= E

[
Φ[III](tn)

]
+ �̃�τ, n = 0, 1, . . . , N − 1.

Proof The proof is similar to that of Corollary 4.1 and thus is omitted here. ⨅⨆

4.2.1.3 Averaged Divergence Conservation Laws 

It follows from Proposition 3.2 that, for .S(u) = λ2 · E − λ1 · H, (4.48) possesses 
the averaged divergence conservation laws. In order to show that the divergence 
conservation laws also hold in the discrete sense, we first define two discrete 
divergence operators .∇̄[I]

i,j,k and .∇̄[II]
i,j,k as 

. 

∇̄[I]
i,j,k · V := δx

(
(V1)i− 1

2 ,j
∗,k∗
)+ δy

(
(V2)i∗,j− 1

2 ,k
∗
)+ δz

(
(V3)i∗,j∗,k− 1

2

)
,

∇̄[II]
i,j,k · V := δ̄x(V1)i,j,k + δ̄y(V2)i,j,k + δ̄z(V3)i,j,k

(4.60) 
with 

.(V1)i− 1
2 ,j

∗,k∗ := (V1)i− 1
2 ,j+ 1

2 ,k+ 1
2

+ (V1)i− 1
2 ,j+ 1

2 ,k− 1
2

+ (V1)i− 1
2 ,j− 1

2 ,k− 1
2

+ (V1)i− 1
2 ,j− 1

2 ,k+ 1
2
,

(V2)i∗,j− 1
2 ,k

∗ := (V2)i+ 1
2 ,j− 1

2 ,k+ 1
2

+ (V2)i+ 1
2 ,j− 1

2 ,k− 1
2

+ (V2)i− 1
2 ,j− 1

2 ,k+ 1
2

+ (V2)i− 1
2 ,j− 1

2 ,k− 1
2
,
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(V3)i∗,j∗,k− 1 
2 

:= (V3)i+ 1 
2 ,j+ 1 

2 ,k− 1 
2 

+ (V3)i+ 1 
2 ,j− 1 

2 ,k− 1 
2 

+ (V3)i− 1 
2 ,j+ 1 

2 ,k− 1 
2 

+ (V3)i− 1 
2 ,j− 1 

2 ,k− 1 
2 
, 

for .V = (V1, V2, V3)
⏉ ∈ R3, .i = 1, 2, . . . , I, .j = 1, 2, . . . , J, and . k =

1, 2, . . . , K . 

Proposition 4.20 The MS Method-I (4.49) with .S(u) = λ2 · E − λ1 · H preserves 
the following discrete averaged divergence conservation laws 

. E

[
∇̄[I]
i,j,k · En+1

]
= E

[
∇̄[I]
i,j,k · En

]
, E

[
∇̄[I]
i,j,k · Hn+1

]
= E

[
∇̄[I]
i,j,k · Hn

]

for all .n = 0, 1, . . . , N − 1, .i = 1, 2, . . . , I, .j = 1, 2, . . . , J, and .k = 1, 2, . . . , K . 

Proof We sketch only the proof for the discrete divergence of . E. The proof for . H is 
similar and is omitted. It follows from the definition (4.60) that 

. 

∇̄[I]
i,j,k · En+1 − ∇̄[I]

i,j,k · En

= τ
[
δxδt (E1)

n

i− 1
2 ,j

∗,k∗ + δyδt (E2)
n

i∗,j− 1
2 ,k

∗ + δzδt (E3)
n

i∗,j∗,k− 1
2

]
.

Plugging (4.57) into the above equation leads to 

.∇̄[I]
i,j,k · En+1 − ∇̄[I]

i,j,k · En

= τδx

[
δyAt (H3)

n

i− 1
2 ,(j− 1

2 )
∗,k∗ − δzAt (H2)

n

i− 1
2 ,j

∗,(k− 1
2 )

∗
]

+ τδy

[
δzAt (H1)

n

i∗,j− 1
2 ,(k− 1

2 )
∗ − δxAt (H3)

n

(i− 1
2 )

∗,j− 1
2 ,k

∗
]

+ τδz

[
δxAt (H2)

n

(i− 1
2 )

∗,j∗,k− 1
2

− δyAt (H1)
n

i∗,(j− 1
2 )

∗,k− 1
2

]

+ λ
(1)
1 δx(ΔW)n+1

i−1,(j− 1
2 )

∗,(k− 1
2 )

∗ + λ
(2)
1 δy(ΔW)n+1

(i− 1
2 )

∗,j−1,(k− 1
2 )

∗

+ λ
(3)
1 δz(ΔW)n+1

(i− 1
2 )

∗,(j− 1
2 )

∗,k−1

= λ
(1)
1 δx(ΔW)n+1

i−1,(j− 1
2 )

∗,(k− 1
2 )

∗ + λ
(2)
1 δy(ΔW)n+1

(i− 1
2 )

∗,j−1,(k− 1
2 )

∗

+ λ
(3)
1 δz(ΔW)n+1

(i− 1
2 )

∗,(j− 1
2 )

∗,k−1
,
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which implies that 

. E

[
∇̄[I]
i,j,k · En+1 − ∇̄[I]

i,j,k · En
]

= 0.

Thus the proof is finished. ⨅⨆
In a similar way, we can obtain the discrete averaged divergence conservation 

laws for the MS Method-II (4.50) and the MS Method-III (4.51), which are stated 
in the following two propositions. 

Proposition 4.21 The MS method-II (4.50) with .S(u) = λ2 · E − λ1 · H preserves 
the following discrete averaged divergence conservation laws 

. E

[
∇̄[II] · En+

1
2

i,j,k

]
= E

[
∇̄[II] · En−

1
2

i,j,k

]
, E

[
∇̄[II] · Hn+ 1

2
i,j,k

]
= E

[
∇̄[II] · Hn− 1

2
i,j,k

]

for all .n = 1, 2, . . . , N − 1, .i = 1, 2, . . . , I, .j = 1, 2, . . . , J, and .k = 1, 2, . . . , K . 

Proposition 4.22 The MS method-III (4.51) with .S(u) = λ2 · E− λ1 ·H preserves 
the following discrete averaged divergence conservation laws 

. E

[
∇̄[II] · En+1

i,j,k

]
= E

[
∇̄[II] · Eni,j,k

]
, E

[
∇̄[II] · Hn+1

i,j,k

]
= E

[
∇̄[II] · Hn

i,j,k

]

for all .n = 0, 1, . . . , N − 1, .i = 1, 2, . . . , I, .j = 1, 2, . . . , J, and .k = 1, 2, . . . , K . 

4.2.2 Stochastic Multi-Symplectic Wavelet Algorithm 

In this section, we study the stochastic multi-symplectic wavelet algorithm for 

.

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dE(t) = ∇ × H(t)dt − λH ◦ dW(t), t ∈ (0, T ],
dH(t) = −∇ × E(t)dt + λE ◦ dW(t), t ∈ (0, T ],
E(0) = E0, H(0) = H0

(4.61) 

with the nonzero constant .λ ∈ R, aiming to inherit the stochastic multi-symplectic 
conservation law and the energy conservation law of the original equations simul-
taneously. The algorithm combines the midpoint method in the temporal direction 
and the wavelet interpolation method in the spatial direction. Moreover, the system 
of algebraic equations obtained under discretization has some nice features, such 
as skew-symmetry and sparsity. These features can lead to a large reduction in the 
computational cost. 

We first give a brief introduction to the autocorrelation function and the interpo-
lation operator. See [15, 16, 170] for more details. For the simplicity of notations, we
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restrict ourselves to the one-dimensional case. The approach can also be generalized 
to the multi-dimensional case. Define the Daubechies scaling function . φ : R → R

of order r as 

.φ(x) :=
r−1∑

k=0

hkφ(2x − k), x ∈ R, (4.62) 

where r is a positive even integer and .{hk}r−1
k=0 is a sequence of non-vanishing “filter 

coefficients". The autocorrelation function .θ(x) of .φ(x) is given by 

. θ(x) =
∫ ∞

−∞
φ(r)φ(r − x)dr, x ∈ R,

which has the following nice properties. 

(i) Compact support: 

. supp(θ(x)) = [−r + 1, r − 1].

(ii) Orthonormal property: 

. θ(0) = 1, θ(l) = 0 ∀ l ∈ Z.

(iii) Derivative property: 

. θ(2k)(−x) = θ(2k)(x), θ(2k+1)(−x) = −θ(2k+1)(x), k ∈ N,

where .θ(p)(x) denotes the p-th derivative of the function . θ . 

Let 

. Vj := span
{
θj,k(x) = 2j/2θ(2j x − k), k ∈ Z

}
, j ∈ Z.

Then .{Vj }j∈Z forms a multiresolution analysis, which, roughly speaking, describes 
the increment in the information needed from a coarser approximation to a higher 
resolution approximation. For .j ∈ Z, define the interpolation operator . I :
H 1(R) → Vj , with the mesh size .Δx = 2−j as 

. I f (x) :=
∑

l∈Z
f (xl)θ(2

j x − l),

where the collocation points .xl = 2−j l, .l ∈ Z.
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For the general d-dimensional case, we can define the interpolation operator . I
on .Vj1 ⊗ · · · ⊗ Vjd similarly as 

. I f (x) :=
∑

l1,...,ld∈Z
f ((x1)l1, · · · , (xd)ld )θ(2j1x1 − l1) . . . θ(2

jd xd − ld ),

(4.63) 

where .jp ∈ Z and the collocation points .(xp)lp = 2−jp lp for .lp ∈ Z with the mesh 
sizes .Δxp = 2−jp , .p = 1, 2, . . . , d. 

We apply the stochastic midpoint method to (4.61) in the temporal direction and 
obtain the following temporal semi-discretization: 

.

En+1
1 = En

1 − τ
(
∂zH

n+ 1
2

2 − ∂yH
n+ 1

2
3

)
− λH

n+ 1
2

1 ΔWn+1,

En+1
2 = En

2 − τ
(
∂xH

n+ 1
2

3 − ∂zH
n+ 1

2
1

)
− λH

n+ 1
2

2 ΔWn+1,

En+1
3 = En

3 − τ
(
∂yH

n+ 1
2

1 − ∂xH
n+ 1

2
2

)
− λH

n+ 1
2

3 ΔWn+1,

Hn+1
1 = Hn

1 + τ
(
∂zE

n+ 1
2

2 − ∂yE
n+ 1

2
3

)
+ λE

n+ 1
2

1 ΔWn+1,

Hn+1
2 = Hn

2 + τ
(
∂xE

n+ 1
2

3 − ∂zE
n+ 1

2
1

)
+ λE

n+ 1
2

2 ΔWn+1,

Hn+1
3 = Hn

3 + τ
(
∂yE

n+ 1
2

1 − ∂xE
n+ 1

2
2

)
+ λE

n+ 1
2

3 ΔWn+1,

(4.64) 

where .ΔWn+1 = W(tn+1)−W(tn), .n = 0, 1, . . . , N − 1. 
Further, the wavelet interpolation technique is applied to (4.64) in the spatial 

direction to obtain the stochastic multi-symplectic wavelet algorithm. We choose 
the autocorrelation function . θ as the test function. By properties of . θ , we know that 
the obtained first-order differentiation matrix is skew-symmetric and sparse. 

For the numerical implementation, we consider (4.61) in . D = [a−
1 , a

+
1 ] ×

[a−
2 , a

+
2 ] × [a−

3 , a
+
3 ] with .Lp := a+

p − a−
p (.p = 1, 2, 3) being integers. Assume 

that the periodic boundary condition holds. Fix integers .J1, J2, J3, and set . N1 =
L1 · 2J1 , .N2 = L2 · 2J2 , .N3 = L3 · 2J3 . The collocation points are . (xi, yj , zk) =
(i/2J1 , j/2J2 , k/2J3), .i = 1, 2, . . . , N1, .j = 1, 2, . . . , N2, .k = 1, 2, . . . , N3. For  
.s = 1, 2, . . . , 6, it follows from (4.63) that the interpolation of the s-th component 
. us of .u = (E⏉,H⏉)⏉ at these collocation points is 

.I us(t, x, y, z) =
N1∑

i=1

N2∑

j=1

N3∑

k=1

(us)i,j,kθ(2
J1x − i)θ(2J2y − j)θ(2J3z− k)
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with the mesh sizes .Δx = 2−J1 , .Δy = 2−J2 , and .Δz = 2−J3 . Taking the partial 
derivative with respect to the variable x and evaluating the resulting expression at 
collocation points .(xi, yj , zk), we obtain 

. 

∂x[I us(t, xi, yj , zk)]

=
N1∑

i'=1

N2∑

j '=1

N3∑

k'=1

(us)i',j ',k'θ(2J2yj − j ')θ(2J3zk − k')dθ(2J1x − i')
dx

∣
∣
∣
x=xi

= 2J1

N1∑

i'=1

(us)i',j,kθ
'(i − i') =

i+(r−1)∑

i'=i−(r−1)

(us)i',j,k(B
x)i,i'

= ((Bx ⊗ IN2 ⊗ IN3)us)i,j,k,

where . us = ((us)1,1,1, . . . , (us)N1,1,1, (us)1,2,1, . . . , (us)N1,2,1, . . . , (us)N1,N2,N3

)⏉
and . Bx is an .N1 ×N1 sparse skew-symmetric circulant matrix with entries 

. (Bx)m,M =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

2J1θ '(m−M), m− (r − 1) ≤ M ≤ m+ (r − 1),

2J1θ '(−l), m−M = N1 − l, 1 ≤ l ≤ r − 1,

2J1θ '(l), M −m = N1 − l, 1 ≤ l ≤ r − 1,

0, otherwise.

Obviously, . Bx has .(2r − 1) nonzero elements in each row, and it can be rewritten as 

. Bx = 2J1 · Circ
(
θ '(0), θ '(−1), . . . , θ '(−(r − 1)), 0, . . . , 0, θ '(r − 1), . . . , θ '(1)

)
.

Similarly, for .s = 1, 2, . . . , 6, we have 

. 

∂y[I us(t, xi, yj , zk)] = ((IN1 ⊗ By ⊗ IN3)us)i,j,k,

∂z[I us(t, xi, yj , zk)] = ((IN1 ⊗ IN2 ⊗ Bz)us)i,j,k

with . By and . Bz being .N2 ×N2 and .N3 ×N3 circulant matrices, respectively. 
Applying the wavelet interpolation technique to (4.64), we derive the fully 

discrete algorithm for (4.61), which is called the stochastic multi-symplectic wavelet 
algorithm: 

.En+1
1 − En1 = τ

(
A2H

n+ 1
2

3 − A3H
n+ 1

2
2

)
− λH

n+ 1
2

1 ΔWn+1,

En+1
2 − En2 = τ

(
A3H

n+ 1
2

1 − A1H
n+ 1

2
3

)
− λH

n+ 1
2

2 ΔWn+1,
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En+1 
3 − En 

3 = τ
(
A1H 

n+ 1 
2 

2 − A2H 
n+ 1 

2 
1

)
− λH 

n+ 1 
2 

3 ΔWn+1, 

Hn+1 
1 − Hn 

1 = τ
(
A3E 

n+ 1 
2 

2 − A2E 
n+ 1 

2 
3

)
+ λE n+

1 
2 

1 ΔWn+1, (4.65) 

Hn+1 
2 − Hn 

2 = τ
(
A1E 

n+ 1 
2 

3 − A3E 
n+ 1 

2 
1

)
+ λE n+

1 
2 

2 ΔWn+1, 

Hn+1 
3 − Hn 

3 = τ
(
A2E 

n+ 1 
2 

1 − A1E 
n+ 1 

2 
2

)
+ λE n+

1 
2 

3 ΔWn+1, 

where .A1 = Bx ⊗ IN2 ⊗ IN3 , .A2 = IN1 ⊗By ⊗ IN3 , and .A3 = IN1 ⊗ IN2 ⊗Bz are 
skew-symmetric matrices corresponding to differential matrices . Bx , . By , and . Bz, 
respectively. Here, 

. ΔWn+1 = (ΔWn+1
1,1,1, . . . , ΔW

n+1
N1,1,1

,ΔWn+1
1,2,1, . . . , ΔW

n+1
N1,2,1

, . . . , ΔWn+1
N1,N2,N3

)⏉

(4.66) 

with .ΔWn+1
i,j,k = W(tn+1, xi, yj , zk) − W(tn, xi, yj , zk), and .u

n+ 1
2

s ΔWn+1 denotes 

the components multiplication between .u
n+ 1

2
s and .ΔWn+1 for .s = 1, 2, . . . , 6. 

4.2.2.1 Stochastic Multi-Symplectic Conservation Law 

The following proposition presents the stochastic multi-symplectic conservation law 
for the full discretization (4.65). 

Proposition 4.23 The fully discrete algorithm (4.65) preserves the following dis-
crete stochastic multi-symplectic conservation law 

. 

𝜛n+1
i,j,k −𝜛n

i,j,k

τ
+

i+(r−1)∑

i'=i−(r−1)

(Bx)i,i'(κ1)
n+ 1

2
i',j,k

+
j+(r−1)∑

j '=j−(r−1)

(By)j,j '(κ2)
n+ 1

2
i,j ',k +

k+(r−1)∑

k'=k−(r−1)

(Bz)k,k'(κ3)
n+ 1

2
i,j,k' = 0, P-a.s.

(4.67) 

for all .n = 0, 1, . . . , N − 1, .i = 1, 2, . . . , N1, .j = 1, 2, . . . , N2, and . k =
1, 2, . . . , N3. Here,  r is the order of the Daubechies scaling function . φ, and 

.𝜛n
i,j,k = 1

2
duni,j,k ∧ Fduni,j,k, (κ1)

n+ 1
2

i',j,k = 1

2
du

n+ 1
2

i,j,k ∧ K1du
n+ 1

2
i',j,k,

(κ2)
n+ 1

2
i,j ',k = 1

2
du

n+ 1
2

i,j,k ∧ K2du
n+ 1

2
i,j ',k, (κ3)

n+ 1
2

i,j,k' = 1

2
du

n+ 1
2

i,j,k ∧ K3du
n+ 1

2
i,j,k' .
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Proof Note that (4.65) can be rewritten as 

. F
un+1
i,j,k − uni,j,k

τ
+

i+(r−1)∑

i'=i−(r−1)

(Bx)i,i'
(
K1u

n+ 1
2

i',j,k

)
+

j+(r−1)∑

j '=j−(r−1)

(By)j,j '
(
K2u

n+ 1
2

i,j ',k

)

+
k+(r−1)∑

k'=k−(r−1)

(Bz)k,k'
(
K3u

n+ 1
2

i,j,k'
)

= ∇uS(u
n+ 1

2
i,j,k )

ΔWn+1
i,j,k

τ
,

where .S(u) = λ
2 |u|2. Taking the exterior derivative on both sides of the above 

equation, we have 

. F
dun+1

i,j,k − duni,j,k

τ
+

i+(r−1)∑

i'=i−(r−1)

(Bx)i,i'
(
K1du

n+ 1
2

i',j,k

)

+
j+(r−1)∑

j '=j−(r−1)

(By)j,j '
(
K2du

n+ 1
2

i,j ',k

)

+
k+(r−1)∑

k'=k−(r−1)

(Bz)k,k'
(
K3du

n+ 1
2

i,j,k'
)

= ∇2S(u
n+ 1

2
i,j,k )du

n+ 1
2

i,j,k

ΔWn+1
i,j,k

τ
.

Then, performing the wedge product against .du
n+ 1

2
i,j,k and utilizing the symmetry of 

.∇2S(·), we finish the proof. ⨅⨆

4.2.2.2 Energy Conservation Law 

The following proposition presents the energy conservation law for the full dis-
cretization (4.65). 

Proposition 4.24 The stochastic multi-symplectic wavelet algorithm (4.65) pos-
sesses the following discrete energy conservation law 

.‖En‖2 + ‖Hn‖2 = ‖E0‖2 + ‖H0‖2, P-a.s. (4.68)
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for all .n = 0, 1, . . . , N . Here,  

. ‖En‖2 = ΔxΔyΔz

N1∑

i=1

N2∑

j=1

N3∑

k=1

(
(En

1i,j,k )
2 + (En

2i,j,k )
2 + (En

3i,j,k )
2
)
,

‖Hn‖2 = ΔxΔyΔz

N1∑

i=1

N2∑

j=1

N3∑

k=1

(
(Hn

1i,j,k )
2 + (Hn

2i,j,k )
2 + (Hn

3i,j,k )
2
)
.

Proof We multiply each equation in (4.65) by .E
n+ 1

2
1 , .E

n+ 1
2

2 , .E
n+ 1

2
3 , .H

n+ 1
2

1 , .H
n+ 1

2
2 , 

and .H
n+ 1

2
3 , respectively, to obtain 

. 
‖En+1

1 ‖2 − ‖En1‖2

2
= τ
(
A2H

n+ 1
2

3 −A3H
n+ 1

2
2

)
· En+

1
2

1 −λ
(
H
n+ 1

2
1 ΔWn+1

)
· En+

1
2

1 ,

‖En+1
2 ‖2 − ‖En2‖2

2
= τ
(
A3H

n+ 1
2

1 −A1H
n+ 1

2
3

)
· En+

1
2

2 −λ
(
H
n+ 1

2
2 ΔWn+1

)
· En+

1
2

2 ,

‖En+1
3 ‖2 − ‖En3‖2

2
= τ
(
A1H

n+ 1
2

2 −A2H
n+ 1

2
1

)
· En+

1
2

3 −λ
(
H
n+ 1

2
3 ΔWn+1

)
· En+

1
2

3 ,

‖Hn+1
1 ‖2 − ‖Hn

1‖2

2
= τ
(
A3E

n+ 1
2

2 −A2E
n+ 1

2
3

)
· Hn+ 1

2
1 +λ

(
E
n+ 1

2
1 ΔWn+1

)
· Hn+ 1

2
1 ,

‖Hn+1
2 ‖2 − ‖Hn

2‖2

2
= τ
(
A1E

n+ 1
2

3 −A3E
n+ 1

2
1

)
· Hn+ 1

2
2 +λ

(
E
n+ 1

2
2 ΔWn+1

)
· Hn+ 1

2
2 ,

‖Hn+1
3 ‖2 − ‖Hn

3‖2

2
= τ
(
A2E

n+ 1
2

1 −A1E
n+ 1

2
2

)
· Hn+ 1

2
3 +λ

(
E
n+ 1

2
3 ΔWn+1

)
· Hn+ 1

2
3 .

By the fact that . A1, . A2, and .A3 are skew-symmetric matrices and adding up all 
terms in the above equations, we have 

. 
1

2

[
(‖En+1‖2 + ‖Hn+1‖2)− (‖En‖2 + ‖Hn‖2)

]
= 0,

which leads to the assertion. ⨅⨆
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4.2.3 Stochastic Multi-Symplectic Discontinuous Galerkin 
Algorithms 

This section investigates the full discretization based on the dG method in space for 
the stochastic Maxwell equations with additive noise on . H: 

.

⎧
⎨

⎩

du(t) = Mu(t)dt + λdW(t), t ∈ (0, T ],
u(0) = u0,

(4.69) 

where .λ = (λ⏉
1 ,λ

⏉
2 )

⏉ ∈ R6 and 

. M =
[

0 ε−1∇×
−μ−1∇× 0

]

with D(M) = H0(curl,D)×H(curl,D).

In this section, we suppose that the domain D is a polyhedron in . R3 in order to cover 
the domain with a mesh consisting of polyhedral elements. 

Let us first present a succinct introduction to the basic concepts of the dG method. 
For more details, we refer to [51, 143]. We consider a simplicial, shape- and contact-
regular mesh . Th that partitions the domain D into disjoint polyhedral elements . {K :
K ∈ Th}, such that .D = ⋃K∈Th

K . The index h refers to the maximum diameter 
of all elements of . Th. We define . nK on .∂K as the unit outward normal to K . Denote 
by .P r(K) the set of polynomials of total degree at most r defined on the element K 
for .r ≥ 1. 

Furthermore, we denote the set of all interior faces by . GI
h, the set of all boundary 

faces by . GB
h , and the set of all faces by .Gh := GI

h ∪ GB
h . For an arbitrary interior 

face .G ∈ GI
h, we choose arbitrarily one of the unit outward normals of the two 

mesh elements composing the face G. We fix this face normal and denote it by . nG. 
We use notations K and .KG for two neighboring elements .∂K ∩ ∂KG = G ∈ GI

h, 
where the face normal .nG points from K to . KG. For a boundary face .G ∈ GB

h , 
. nG is always the unit outward normal. Fig. 4.1 illustrates some notations of the dG 
method for the reader’s convenience. 

Denote by .vK := vh|K the restriction of the discrete function . vh on an element 
K . Furthermore, the jump and average of . vh on an interior face G are denoted by 

. [[vh]]G := (vKG

)∣
∣
G

− (vK
)∣
∣
G

and {{vh}}G := 1

2

[(
vKG

)∣
∣
G

+ (vK
)∣
∣
G

]
,

respectively. 
When .vh : D → Rd , the above jump and average operators act componentwise 

on v.
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K

(a)Interior face (red) and boundary face 
(blue) 

(b) Neighboring element and unit normal 

Fig. 4.1 Some notations of the dG method. (a) Interior face (red) and boundary face (blue). (b) 
Neighboring element and unit normal 

For .m ∈ N, we define the broken Sobolev space as 

. Hm(Th) :=
{
v ∈ L2(D) : v|K ∈ Hm(K) for all K ∈ Th

}6
,

which is a Hilbert space with the semi-norm and norm being 

. |v|2Hm(Th)
:=
∑

K∈Th

|v|2
Hm(K)6

and ‖v‖2
Hm(Th)

:=
m∑

j=0

|v|2
Hj (Th)

∀ v ∈ Hm(Th),

respectively. Clearly, the usual Sobolev spaces are subspaces of their broken 
versions, i.e., .Hm(D) ⊂ Hm(Th) for all .m ∈ N. 

Define a finite element space consisting of piecewise polynomial 

.Hh,r := {vh ∈ L2(D) : vh|K ∈ P r(K) for all K ∈ Th

}6
, r ∈ N. (4.70) 

Denote by .Πh the orthogonal projection on .Hh,r , which satisfies 

. 〈u−Πhu, vh〉H = 0 ∀ u ∈ H, vh ∈ Hh,r .

We make the following assumption on coefficients . ε and . μ. 

Assumption 4.1 Suppose that the coefficients . ε and . μ are piecewise positive 
constants, i.e., .εK := ε|K and .μK := μ|K for each .K ∈ Th. 

Under the above assumption, by the integration by parts formula, the dG method 
to discrete the spatial direction of (4.69) reads as follows: seek .uh = (E⏉

h ,H
⏉
h )

⏉ ∈
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Hh,r such that for every test function .vh = (ψ⏉
h , φ

⏉
h )

⏉ ∈ Hh,r , it holds that 

.

εK

∫

K

dEh · ψhdx −
∫

K

(∇ × Hh) · ψhdxdt

−
∫

∂K

(
̂nK × Hh − nK × HK

)
· ψKdSdt = εK

∫

K

λ1 · ψhdxdW(t)

(4.71) 

and 

.

μK

∫

K

dHh · φhdx +
∫

K

(∇ × Eh) · φhdxdt

+
∫

∂K

(
̂nK × Eh − nK × EK

)
· φKdSdt = μk

∫

K

λ2 · φhdxdW(t).

(4.72) 

Here, . ̂nK × Eh and . ̂nK × Hh are the so-called numerical fluxes. The numerical flux 
can be chosen according to the central, upwind, or hybrid principles. 

(a) Stochastic symplecticity 

To study the stochastic symplecticity of (4.71)–(4.72), we first derive the 
corresponding global formulation of the proposed dG algorithm. We take the central 
flux as an example. Let .G = ∂K ∩ ∂KG. The central flux is defined by 

. ̂nK × Eh
∣
∣
∣
G

:= nK × EK + EKG

2
, ̂nK × Hh

∣
∣
∣
G

:= nK × HK + HKG

2
. (4.73) 

Note that for .u ∈ D(M) ∩H 1(Th), 

.

nG × [[H]]G = nG × [[E]]G = 0 ∀ G ∈ GI
h,

nG × E = 0 ∀ G ∈ GB
h .

(4.74) 

Therefore, plugging (4.73) into (4.71)–(4.72) and adding up over all elements . K ∈
Th, we arrive at 

.

∫

D

εdEh · ψhdx −
∫

D

(∇ × Hh) · ψhdxdt

−
∑

G∈GI
h

∫

G

nG × [[Hh]]G · {{ψh}}GdSdt =
∫

D

ελ1 · ψhdxdW(t)
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and 

. 

∫

D

μdHh · φhdx +
∫

D

(∇ × Eh) · φhdxdt −
∑

G∈GB
h

∫

G

nG × Eh · φhdSdt

+
∑

G∈GI
h

∫

G

nG × [[Eh]]G · {{φh}}GdSdt =
∫

D

μλ2 · φhdxdW(t),

from which one can define the discrete version of the Maxwell operator. 

Definition 4.3 For all .uh = (E⏉
h ,H

⏉
h )

⏉, .vh = (ψ⏉
h , φ

⏉
h )

⏉ ∈ Hh,r , the discrete 
Maxwell operator .Mcf

h : Hh,r → Hh,r with the central flux is defined as 

. 〈Mcf
h uh, vh〉H :=

∑

K∈Th

[〈
∇ × Hh, ψh

〉

L2(K)3
−
〈
∇ × Eh, φh

〉

L2(K)3

]

+
∑

G∈GI
h

[〈
nG × [[Hh]]G, {{ψh}}G

〉

L2(G)3
−
〈
nG × [[Eh]]G, {{φh}}G

〉

L2(G)3

]

+
∑

G∈GB
h

〈
nG × Eh, φh

〉

L2(G)3
.

Proceeding similarly, we can design the numerical flux by the upwind principle 
and obtain another discrete version of the Maxwell operator. See e.g. [97, Sect. 4] 
for more details. 

Definition 4.4 For all .uh = (E⏉
h ,H

⏉
h )

⏉, .vh = (ψ⏉
h , φ

⏉
h )

⏉ ∈ Hh,r , the discrete 
Maxwell operator .Mupw

h : Hh,r → Hh,r with the upwind flux is defined as 

.〈Mupw
h uh, vh〉H :=

∑

K∈Th

[〈
∇ × Hh, ψh

〉

L2(K)3
−
〈
∇ × Eh, φh

〉

L2(K)3

]

+
∑

G∈GI
h

[〈
nG × [[Hh]]G, βKψK + βKG

ψKG

〉

L2(G)3

−
〈
nG × [[Eh]]G, αKφK + αKG

φKG

〉

L2(G)3

− γG

〈
nG × [[Eh]]G,nG × [[ψh]]G

〉

L2(G)3

− δG

〈
nG × [[Hh]]G,nG × [[φh]]G

〉

L2(G)3

]
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+
∑

G∈GB 
h

[〈
nG × Eh, φh

〉

L2(G)3 

− 2γG
〈
nG × Eh,nG × ψh

〉

L2(G)3

]
, 

where 

. αK = CKG
εKG

CKG
εKG

+ CKεK
, βK = CKG

μKG

CKG
μKG

+ CKμK
,

γG = 1

CKG
μKG

+ CKμK
, δG = 1

CKG
εKG

+ CKεK

with .CK = (εKμK)
−1/2. 

Applying a dG method with the central flux or upwind flux to (4.69) in the spatial 
direction, we have the following spatial semi-discretization 

.duh(t) = Mhuh(t)dt +ΠhλdW(t), t ∈ (0, T ] (4.75) 

with .uh(0) = Πhu0 and .Mh ∈ {Mcf
h ,M

upw
h }. Furthermore, applying the stochastic 

midpoint method to (4.75) in the temporal direction leads to the following fully 
discrete algorithm of (4.69): 

. un+1
h = unh + τ

2

(
Mhu

n
h +Mhu

n+1
h

)
+ΠhλΔW

n+1, n = 0, 1, . . . , N − 1,

(4.76) 

where .u0
h = Πhu0 and .ΔWn+1 = W(tn+1)−W(tn). 

Denote 

. Hh,r + (D(M) ∩H 1(Th)
) :=

{
vh + u : vh ∈ Hh,r , u ∈ D(M) ∩H 1(Th)

}
.

Then the discrete Maxwell operators .Mcf
h and .Mupw

h are well-defined from . Hh,r +
(
D(M) ∩ H 1(Th)

)
to .Hh,r . We have the following properties of the discrete 

Maxwell operators .Mcf
h and .Mupw

h . 

Proposition 4.25 For discrete Maxwell operators .Mcf
h and .Mupw

h , the following 
statements hold. 

(i) For all .u ∈ D(M) ∩H 1(Th), 

.Mcf
h u = ΠhMu and M

upw
h u = ΠhMu.
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(ii) For all .uh ∈ Hh,r , 

. 〈Mcf
h uh, uh〉H = 0 and 〈Mupw

h uh, uh〉H ≤ 0.

(iii) For all .u ∈ Hh,r + (D(M) ∩H 1(Th)
)
and .vh = (ψ⏉

h , φ
⏉
h )

⏉ ∈ Hh,r , 

. 〈Mcf
h u, vh〉H =

∑

K∈Th

[〈
H,∇ × ψh

〉

L2(K)3
−
〈
E,∇ × φh

〉

L2(K)3

]

+
∑

G∈GI
h

[〈
{{H}}G,nG × [[ψh]]G

〉

L2(G)3
−
〈
{{E}}G,nG × [[φh]]G

〉

L2(G)3

]

−
∑

G∈GB
h

〈
H,nG × ψh

〉

L2(G)3

and 

. 〈Mupw
h u, vh〉H =

∑

K∈Th

[〈
H,∇ × ψh

〉

L2(K)3
−
〈
E,∇ × φh

〉

L2(K)3

]

+
∑

G∈GI
h

[〈
βKHKG

+ βKG
HK − γGnG × [[E]]G,nG × [[ψh]]G

〉

L2(G)3

−
〈
αKEKG

+ αKG
EK + δGnG × [[H]]G,nG × [[φh]]G

〉

L2(G)3

]

−
∑

G∈GB
h

[〈
H,nG × ψh

〉

L2(G)3
+ 2γG

〈
nG × E,nG × ψh

〉

L2(G)3

]
.

Proof We only give the proof for the operator .Mupw
h . For the case of the operator 

.Mcf
h , it can be proved similarly. 

(i) By (4.74), the sum over the faces vanishes, and for any . vh = (ψ⏉
h , φ

⏉
h )

⏉ ∈
Hh,r , we obtain 

. 〈Mupw
h u, vh〉H =

∑

K∈Th

[
〈∇ × H, ψh〉L2(K)3 − 〈∇ × E, φh〉L2(K)3

]

= 〈∇ × H, ψh〉L2(D)3 − 〈∇ × E, φh〉L2(D)3

= 〈Mu, vh〉H,

which implies the assertion .Mupw
h u = ΠhMu.
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(ii) The integration by parts formula yields 

.

∑

K∈Th

[〈
∇ × Hh,Eh

〉

L2(K)3
−
〈
∇ × Eh,Hh

〉

L2(K)3

]

= −
∑

G∈GI
h

[〈
nG × EK,HK

〉

L2(G)3
+
〈
nKG

× EKG
,HKG

〉

L2(G)3

]

−
∑

G∈GB
h

〈
nG × Eh,Hh

〉

L2(G)3
.

(4.77) 

Plugging (4.77) into the definition of .Mupw
h and using the fact .αK + βK = 1, 

we obtain 

. 

〈Mupw
h uh, uh〉H =

∑

G∈GI
h

[
αKG

〈
nG × EK,HKG

〉

L2(G)3

− αK

〈
nG × EKG

,HK

〉

L2(G)3

+ βK

〈
nG × HKG

,EK
〉

L2(G)3

− βKG

〈
nG × HK,EKG

〉

L2(G)3

− γG
∥
∥nG × [[Eh]]G

∥
∥2
L2(G)3

− δG
∥
∥nG × [[Hh]]G

∥
∥2
L2(G)3

]

− 2
∑

G∈GB
h

γG‖nG × Eh‖2
L2(G)3

.

Due to the fact that .αK + αKG
= 1, .βK + βKG

= 1, and .αK = βKG
, we have  

.

∑

G∈GI
h

[
αKG

〈
nG × EK,HKG

〉

L2(G)3
+ βK

〈
nG × HKG

,EK
〉

L2(G)3

]
= 0,

∑

G∈GI
h

[
αK

〈
nG × EKG

,HK

〉

L2(G)3
+ βKG

〈
nG × HK,EKG

〉

L2(G)3

]
= 0.
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Therefore, 

. 〈Mupw
h uh, uh〉H = −

∑

G∈GI
h

[
γG

∥
∥
∥nG × [[Eh]]G

∥
∥
∥

2

L2(G)3

+ δG

∥
∥
∥nG × [[Hh]]G

∥
∥
∥

2

L2(G)3

]

− 2
∑

G∈GB
h

γG‖nG × Eh‖2
L2(G)3

≤ 0.

(iii) The proof is analogous to the proof of (ii) and is omitted. 
Combining (i)–(iii), we finish the proof. ⨅⨆

Based on Proposition 4.25, it can be shown that the dG algorithm (4.76) with 
central flux preserves the stochastic symplectic structure numerically, which is 
stated as follows. 

Proposition 4.26 Suppose that Assumption 4.1 holds. Under the homogeneous 
boundary condition, the dG algorithm (4.76) with .Mh = Mcf

h preserves the 
following discrete stochastic symplectic structure 

. 

∫

D

dEn+1
h (x) ∧ dHn+1

h (x)dx =
∫

D

dEnh(x) ∧ dHn
h(x)dx, P-a.s.

for all .n = 0, 1, . . . , N − 1. 

Proof By the property of .Mcf
h in Proposition 4.25 (ii), and following a similar 

approach to the proof of Theorem 3.1, we can obtain the result. ⨅⨆
Next we investigate the divergence conservation property of (4.76). Define the 

test space . Xh as 

. Xh :=
{
v ∈ C0(D) : vh|K ∈ P r+1(K) for all K ∈ Th

}
∩H 1

0 (D).

By .〈·, ·〉−1 we denote the duality product between .H−1(D) and .H 1
0 (D), in which 

.〈∇ · E, ψ〉−1 = −〈E,∇ψ〉L2(D)3 for all .ψ ∈ H 1
0 (D). Then (4.76) possesses the 

following discrete averaged divergence conservation laws. 

Proposition 4.27 Under Assumption 4.1, the dG algorithm (4.76) with . Mh ∈
{Mcf

h ,M
upw
h } satisfies the following discrete averaged divergence conservation
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laws: 

. E
[〈∇ · (εEn+1

h ), φ
〉

−1

] = E
[〈∇ · (εEnh), φ

〉

−1

] ∀φ ∈ Xh,

E
[〈∇ · (μHn+1

h ), φ
〉

−1

] = E
[〈∇ · (μHn

h), φ
〉

−1

] ∀φ ∈ Xh

for all .n = 0, 1, . . . , N − 1. 

Proof For .ψ, φ ∈ Xh, using the definition of the duality product .〈·, ·〉−1, we obtain 

. 

〈 [∇ · (εEn+1
h )

∇ · (μHn+1
h )

]

,

[
ψ

φ

] 〉

−1
= 〈∇ · (εEn+1

h ), ψ
〉

−1 + 〈∇ · (εHn+1
h ), φ

〉

−1

= −
〈 [En+1

h

Hn+1
h

]

,

[∇ψ
∇φ
] 〉

H

.

It follows from (4.76) that 

. 

〈 [En+1
h

Hn+1
h

]

,

[∇ψ
∇φ
] 〉

H

=
〈 [Enh

Hn
h

]

,

[∇ψ
∇φ
] 〉

H

+ τ

2

〈
Mh

[
Enh + En+1

h

Hn
h + Hn+1

h

]

,

[∇ψ
∇φ
] 〉

H

+
〈
Πh

[
λ1ΔW

n+1

λ2ΔW
n+1

]

,

[∇ψ
∇φ
] 〉

H

. (4.78) 

From Proposition 4.25 (iii), the second term on the right-hand side of (4.78) 
vanishes, since for any function .ϕ ∈ Xh, we have .∇ × (∇ϕ) = 0, . nG ×[[∇ϕ]]G = 0
for .G ∈ GI

h, and .nG × (∇ϕ) = 0 for .G ∈ GB
h . For the third term on the right-hand 

side of (4.78), it is easy to see that the expectation is zero. Thus, 

. E

[〈 [En+1
h

Hn+1
h

]

,

[∇ψ
∇φ
] 〉

H

]
= E

[〈 [Enh
Hn
h

]

,

[∇ψ
∇φ
] 〉

H

]

= −E

[〈 [∇ · (εEnh)
∇ · (μHn

h)

]

,

[
ψ

φ

] 〉

−1

]
.

The conclusion of this proposition comes from taking the test functions as . (φ⏉, 0)⏉
and .(0, φ⏉)⏉, respectively. ⨅⨆

We have shown in Sect. 3.4 that the law of the exact solution at time T for the 
following small noise system 

.

⎧
⎨

⎩

du(t) = Mu(t)dt − √
λdW(t), t ∈ (0, T ],

u(0) = u0

(4.79)
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satisfies a large deviations principle with a good rate function . I
u0
T . Here, .λ ∈ R+ and 

.W(t) = (ε−1W1(t)
⏉, μ−1W2(t)

⏉)⏉. In the sequel, we consider the large deviations 
principle of the numerical solution of the proposed dG algorithm applied to (4.79), 
that is 

.un+1
h = Sh,τ u

n
h − √

λTh,τΠhΔW
n+1, n = 0, 1, . . . , N − 1, (4.80) 

where .Sh,τ =
(
Id − τ

2Mh

)−1(
Id + τ

2Mh

)
and .Th,τ =

(
Id − τ

2Mh

)−1
. Let  

. WM;N,h :=
N∑

j=1

S
N−j
h,τ Th,τΠhΔW

j .

Then it is Gaussian on .Hh,r with mean zero and covariance operator 

. QT ;N,h := Cov(WM;N,h) = τ

N∑

j=1

(
S
N−j
h,τ Th,τΠh

)
Q(S

N−j
h,τ Th,τΠh

)∗
.

Proposition 4.28 Suppose that Assumption 4.1 holds. For .N ∈ N+ and .u0 ∈ H, 
the family of random variables .{uN; u0,λ

h }λ>0 satisfies the large deviations principle 
with the good rate function 

. I
u0
T ;N,h(v) =

⎧
⎪⎨

⎪⎩

1
2‖(QT ;N,h

)− 1
2
(
v − SNh,τ u

0
h

)‖2
H
, if v − SNh,τ u

0
h ∈ (QT ;N,h

) 1
2 (H),

+∞, otherwise,

where .Q
− 1

2
T ;N,h is the pseudo-inverse of .Q

1
2
T ;N,h and .uN;u0,λ

h is the mild solution 
of (4.80) given by 

. u
N;u0,λ
h = SNh,τ u

0
h − √

λWM;N,h, N ∈ N+.

Proof The proof is similar to that of Proposition 3.3 and thus is omitted. ⨅⨆

(b) Stochastic multi-symplecticity 

Now we turn to the stochastic multi-symplecticity of (4.71)–(4.72). To this end, 
we focus on the hybrid numerical flux, the cubic domain D, and its cubic partition. 

More precisely, the disjoint cubic element on D is defined by 

.Kijk := Ii × Jj ×Gk := [x
i− 1

2
, x

i+ 1
2
] × [y

j− 1
2
, y

j+ 1
2
] × [z

k− 1
2
, z
k+ 1

2
]
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for .i = 1, 2, . . . , N1, .j = 1, 2, . . . , N2, and .k = 1, 2, . . . , N3. In this situation, the 

spatial domain .D =
N3⋃

k=1

N2⋃

j=1

N1⋃

i=1
Kijk . Define the mesh sizes in .x, y, z-directions as 

. hx,i := x
i+ 1

2
− x

i− 1
2
, hy,j := y

j+ 1
2

− y
j− 1

2
, hz,k := z

k+ 1
2

− z
k− 1

2
.

Let .hx := maxi hx,i , .hy := maxj hy,j , .hz := maxk hz,k , and .h := max{hx, hy, hz}. 
For all .vh ∈ Hh,r , let .(v+

h )i+ 1
2 ,y,z

and .(v−
h )i+ 1

2 ,y,z
be the right and left limits of v at 

the interface .{x = x
i+ 1

2
}, respectively. 

In the above framework, the dG algorithm (4.71)–(4.72) for the stochastic 
Maxwell equations can be written into a compact form, that is, for . uh =
(E⏉

h ,H
⏉
h )

⏉ ∈ Hh,r , .vh = (ψ⏉
h , φ

⏉
h )

⏉ ∈ Hh,r , we have 

. 

∫

Gk

∫

Jj

∫

Ii

Fduh · vhdxdydz

−
∫

Gk

∫

Jj

[ ∫

Ii

K1uh · (vh)xdx −
(
K̂1uh · v−

h

)

i+ 1
2 ,y,z

+
(
K̂1uh · v+

h

)

i− 1
2 ,y,z

]
dydzdt

−
∫

Gk

∫

Ii

[ ∫

Jj

K2uh · (vh)ydy −
(
K̂2uh · v−

h

)

x,j+ 1
2 ,z

+
(
K̂2uh · v+

h

)

x,j− 1
2 ,z

]
dxdzdt

−
∫

Jj

∫

Ii

[ ∫

Gk

K3uh · (vh)zdz−
(
K̂3uh · v−

h

)

x,y,k+ 1
2

+
(
K̂3uh · v+

h

)

x,y,k− 1
2

]
dxdydt

=
∫

Gk

∫

Jj

∫

Ii

∇uS(uh) · vhdxdydz ◦ dW(t), (4.81) 

where .S(u) = λ2·E−λ1·H and the skew-symmetric matrices . F and .Kp (.p = 1, 2, 3) 
are defined in (1.23). Here, the hybrid numerical fluxes are given by 

.K̂puh = Kp{{uh}} + Ap[[uh]] (4.82) 

with .Ap (.p = 1, 2, 3) being real symmetric matrix.
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Lemma 4.1 For all .uh, vh ∈ Hh,r and .p = 1, 2, 3, 

. 

Kpu
−
h · v−

h − K̂puh · v−
h + K̂pvh · u−

h = RKp
(uh, vh),

Kpu
+
h · v+

h − K̂puh · v+
h + K̂pvh · u+

h = RKp
(uh, vh),

where 

. RKp
(uh, vh) := {{Kpuh · vh}} − K̂puh · {{vh}} + K̂pvh · {{uh}}.

Proof We only give the proof of the first equality, as the second one can be handled 
similarly. Let 

. K (uh, vh) = Kpu
−
h · v−

h − K̂puh · v−
h + K̂pvh · u−

h − RKp
(uh, vh),

which implies 

. K (uh, vh) = 1

2

(
− [[Kpuh · vh]] + K̂puh · [[vh]] − K̂pvh · [[uh]]

)
.

By the definition of the numerical flux given in (4.82), we have  

. 

K (uh, vh) = 1

2

(
− [[Kpuh · vh]] + Kp{{uh}} · [[vh]] − Kp{{vh}} · [[uh]]

)

+ 1

2

(
Ap[[uh]] · [[vh]] − Ap[[vh]] · [[uh]]

)
= 0

due to the skew-symmetry of .Kp and the symmetry of . Ap. ⨅⨆
Applying the exterior derivative to (4.81) yields 

.

∫

Gk

∫

Jj

∫

Ii

Fd(duh) · vhdxdydz

−
∫

Gk

∫

Jj

[ ∫

Ii

K1duh · (vh)xdxdt −
(
K̂1duh · v−

h

)

i+ 1
2 ,y,z

+
(
K̂1duh · v+

h

)

i− 1
2 ,y,z

]
dydzdt

−
∫

Gk

∫

Ii

[ ∫

Jj

K2duh · (vh)ydydt −
(
K̂2duh · v−

h

)

x,j+ 1
2 ,z

+
(
K̂2duh · v+

h

)

x,j− 1
2 ,z

]
dxdzdt
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−
∫

Jj

∫

Ii

[ ∫

Gk 
K3duh · (vh)zdzdt −

(
K̂3duh · v− 

h

)

x,y,k+ 1 
2 

+
(
K̂3duh · v+ 

h

)

x,y,k− 1 
2

]
dxdydt 

=
∫

Gk

∫

Jj

∫

Ii 
∇2S(uh)duh · vhdxdydz ◦ dW(t). (4.83) 

This gives the following result. 

Theorem 4.3 Suppose that Assumption 4.1 holds and . Yh, . Zh satisfy the variational 
equation (4.83), then the dG semi-discretization (4.81) with the fluxes defined 
in (4.82) possesses the stochastic multi-symplectic conservation law 

. d𝜛h,i,j,k − (κ1)h,i,y,zdt − (κ2)h,x,j,zdt − (κ3)h,x,y,kdt = 0, P-a.s.,

where 

. 

𝜛h,i,j,k =
∫

Gk

∫

Jj

∫

Ii

FYh · Zhdxdydz,

(κ1)h,i,y,z =
∫

Gk

∫

Jj

(
RK1(Yh, Zh)i+ 1

2 ,y,z
− RK1(Yh, Zh)i− 1

2 ,y,z

)
dydz,

(κ2)h,x,j,z =
∫

Gk

∫

Ii

(
RK2(Yh, Zh)x,j+ 1

2 ,z
− RK2(Yh, Zh)x,j− 1

2 ,z

)
dxdz,

(κ3)h,x,y,k =
∫

Jj

∫

Ii

(
RK3(Yh, Zh)x,y,k+ 1

2
− RK3(Yh, Zh)x,y,k− 1

2

)
dxdy.

Proof By the skew-symmetry of . F and (4.83), we split . 
∫

Gk

∫

Jj

∫

Ii
d(FYh ·

Zh)dxdydz into four parts: 

. 

∫

Gk

∫

Jj

∫

Ii

d(FYh · Zh)dxdydz =
∫

Gk

∫

Jj

∫

Ii

(FdYh · Zh − FdZh · Yh)dxdydz

= I + II + III + IV,

(4.84)
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where 

. 

I : =
∫

Gk

∫

Jj

( ∫

Ii

K1Yh · (Zh)xdxdt −
(
K̂1Yh · Z−

h

)

i+ 1
2 ,y,z

+
(
K̂1Yh · Z+

h

)

i− 1
2 ,y,z

)
dydzdt

−
∫

Gk

∫

Jj

( ∫

Ii

K1Zh · (Yh)xdxdt −
(
K̂1Zh · Y−

h

)

i+ 1
2 ,y,z

+
(
K̂1Zh · Y+

h

)

i− 1
2 ,y,z

)
dydzdt,

. 

II : =
∫

Gk

∫

Ii

(∫

Jj

K2Yh · (Zh)ydydt −
(
K̂2Yh · Z−

h

)

x,j+ 1
2 ,z

+
(
K̂2Yh · Z+

h

)

x,j− 1
2 ,z

)
dxdzdt

−
∫

Gk

∫

Ii

( ∫

Jj

K2Zh · (Yh)ydydt −
(
K̂2Zh · Y−

h

)

x,j+ 1
2 ,z

+
(
K̂2Zh · Y+

h

)

x,j− 1
2 ,z

)
dxdzdt,

.

III :=
∫

Jj

∫

Ii

(∫

Gk

K3Yh · (Zh)zdzdt −
(
K̂3Yh · Z−

h

)

x,y,k+ 1
2

+
(
K̂3Yh · Z+

h

)

x,y,k− 1
2

)
dxdydt

−
∫

Jj

∫

Ii

( ∫

Gk

K3Zh · (Yh)zdzdt −
(
K̂3Zh · Y−

h

)

x,y,k+ 1
2

+
(
K̂3Zh · Y+

h

)

x,y,k− 1
2

)
dxdydt,

IV : =
∫

Gk

∫

Jj

∫

Ii

∇2S(uh)Yh · Zh ◦ dW(t)dxdydz

−
∫

Gk

∫

Jj

∫

Ii

∇2S(uh)Zh · Yh ◦ dW(t)dxdydz.
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By the skew-symmetry of .Kp .(p = 1, 2, 3) and Lemma 4.1, it yields that 

. 

I =
∫

Gk

∫

Jj

(
K1Y

−
h · Z−

h − K̂1Yh · Z−
h + K̂1Zh · Y−

h

)

i+ 1
2 ,y,z

dydzdt

−
∫

Gk

∫

Jj

(
K1Y

+
h · Z+

h − K̂1Yh · Z+
h + K̂1Zh · Y+

h

)

i− 1
2 ,y,z

dydzdt

=
∫

Gk

∫

Jj

(
RK1(Yh, Zh)i+ 1

2 ,y,z
− RK1(Yh, Zh)i− 1

2 ,y,z

)
dydzdt.

Similarly, we have 

. 

II =
∫

Gk

∫

Ii

(
RK2(Yh, Zh)x,j+ 1

2 ,z
− RK2(Yh, Zh)x,j− 1

2 ,z

)
dxdzdt,

I II =
∫

Jj

∫

Ii

(
RK3(Yh, Zh)x,y,k+ 1

2
− RK3(Yh, Zh)x,y,k− 1

2

)
dxdydt.

For the term IV  , it follows from the symmetry of the Hessian matrix .∇2S(·) that 
.IV = 0. 

Plugging these equalities into (4.84) yields the desired result. ⨅⨆
Below we give a comment on the choice of the numerical flux .K̂puh, .p = 1, 2, 3. 

Remark 4.6 Since .Kp is skew-symmetric, there exists an orthogonal matrix . Qp

such that 

. Kp = Q
⏉
p

[
0 −Λ⏉

p

Λp 0

]

Qp, p = 1, 2, 3.

Assume that .Qpuh = (y⏉
h , z

⏉
h )

⏉ ∈ Hh,r . If we choose the matrix .Ap as 

. Ap = αpQ
⏉
p

[
0 −Λ⏉

p

Λp 0

]

Qp

with .αp ∈ [−1/2, 1/2], the numerical flux .K̂puh reduces to 

. ̂Kpuh = Q
⏉
p

⎡

⎣
−Λ⏉

p

{
{zh}} − αp[[zh]]

)

Λ⏉
p

(
{{yh}} + αp[[yh]]

)

⎤

⎦ ,

which retrieves alternating fluxes with .αp = ±1/2, and the central flux with .αp = 0.
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We refer to [29, 160, 161] for more investigations on dG methods for the 
stochastic Maxwell equations. 

4.2.4 Stochastic Conformal Multi-Symplectic and Ergodic 
Algorithm 

This section is devoted to constructing a full discretization of the stochastic Maxwell 
equations (3.34) with damping, i.e., 

. 

⎧
⎨

⎩

du(t) = [Mu(t)− σu(t)]dt + λJ−1u(t) ◦ dW1(t)+ θdW2(t), t > 0,

u(0) = u0

(4.85) 

on a cubic domain .D = [a−
1 , a

+
1 ] × [a−

2 , a
+
2 ] × [a−

3 , a
+
3 ], where .λ ∈ R and . θ =

(θ⏉
1 , θ

⏉
2 ) ∈ R6. As shown in Sect. 3.5, (4.85) possesses the ergodicity and the 

stochastic conformal multi-symplectic conservation law. Below we aim to propose 
a fully discrete algorithm to inherit these two properties. 

More precisely, we apply the stochastic midpoint method to (4.34) in the spatial 
direction and obtain 

.

δ
σi,j,k
t un

i+ 1
2 ,j+ 1

2 ,k+ 1
2

= M̃(A
σi,j,k
t uni,j,k)+ θ(γ2)

n

i+ 1
2 ,j+ 1

2 ,k+ 1
2

+ λJ−1(A
σi,j,k
t un

i+ 1
2 ,j+ 1

2 ,k+ 1
2
)(γ 1)

n

i+ 1
2 ,j+ 1

2 ,k+ 1
2
,

(4.86) 

where .σi,j,k := σ(xi, yj , zk), 

.δ
σi,j,k
t un

i+ 1
2 ,j+ 1

2 ,k+ 1
2

=
un+1
i+ 1

2 ,j+ 1
2 ,k+ 1

2
− e−τσi,j,k un

i+ 1
2 ,j+ 1

2 ,k+ 1
2

τ
,

A
σi,j,k
t uni,j,k = un+1

i,j,k + e−τσi,j,k uni,j,k
2

,

(γ 1)
n+1
i,j,k = (ΔW 1)

n+1
i,j,k

τ
= W 1(tn+1, xi, yj , zk)−W 1(tn, xi, yj , zk)

τ
,

(γ2)
n+1
i,j,k = (ΔW2)

n+1
i,j,k

τ
= W2(tn+1, xi, yj , zk)−W2(tn, xi, yj , zk)

τ
,
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.W 1 is the truncation of .W1 (see (4.20)), and the discrete Maxwell operator . M̃ is 
defined by 

. M̃ :=
[

0 ∇̃×
−∇̃× 0

]

with ∇̃× :=
⎡

⎢
⎣

0 −δzAxAy δyAxAz

δzAxAy 0 −δxAyAz
−δyAxAz δxAyAz 0

⎤

⎥
⎦ .

Set .S1(u) := 1
2λ|u|2 and .S2(u) := (

Jθ
) · u. Note that (4.86) can be written 

compactly as 

. 

Fδ
σi,j,k
t un

i+ 1
2 ,j+ 1

2 ,k+ 1
2

+ K1δx(A
σi,j,k
t un

i,j+ 1
2 ,k+ 1

2
)

+ K2δy(A
σi,j,k
t un

i+ 1
2 ,j,k+ 1

2
)+ K3δz(A

σi,j,k
t un

i+ 1
2 ,j+ 1

2 ,k
)

= ∇uS1(A
σi,j,k
t un

i+ 1
2 ,j+ 1

2 ,k+ 1
2
)(γ 1)

n+1
i+ 1

2 ,j+ 1
2 ,k+ 1

2

+ ∇uS2(A
σi,j,k
t un

i+ 1
2 ,j+ 1

2 ,k+ 1
2
)(γ2)

n+1
i+ 1

2 ,j+ 1
2 ,k+ 1

2
,

where . F, . K1, . K2, and . K3 are defined in (3.12). It can be verified that (4.86) possesses 
the following stochastic conformal multi-symplectic conservation law. 

Proposition 4.29 The full discretization (4.86) possesses the discrete stochastic 
conformal multi-symplectic conservation law 

. 

δ
2σi,j,k
t 𝜛n

i+ 1
2 ,j+ 1

2 ,k+ 1
2

+ δx(κ1)
n,σi,j,k

i,j+ 1
2 ,k+ 1

2

+ δy(κ2)
n,σi,j,k

i+ 1
2 ,j,k+ 1

2
+ δz(κ3)

n,σi,j,k

i+ 1
2 ,j+ 1

2 ,k
= 0, P-a.s.,

where .𝜛n
i,j,k = 1

2du
n
i,j,k ∧ Fduni,j,k , and . (κp)

n,σi,j,k
i,j,k = 1

2d(A
σi,j,k
t uni,j,k) ∧

Kpd(A
σi,j,k
t uni,j,k), .p = 1, 2, 3. 

Proof The proof is analogous to that of Proposition 4.11 and is omitted. ⨅⨆
Denote the discrete energy of (4.86) by 

. Φ(tn) := ΔxΔyΔz

I−1∑

i=0

J−1∑

j=0

K−1∑

k=0

∣
∣un
i+ 1

2 ,j+ 1
2 ,k+ 1

2

∣
∣2.

It can be shown that .E
[
Φ(tn)

]
is uniformly bounded, which plays a key role in the 

proof of the ergodicity of (4.86).
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Proposition 4.30 Assume that 

(i) the orthonormal basis .{em}m∈N in .U = L2(D) is smooth and its first order 
derivative is bounded ; 

(ii) the initial datum .u0 ∈ L2(Ω,H), and the damped coefficient .σ ≥ σ0 > 0 with 
a constant . σ0;

(iii) the operators .Q
1
2
i ∈ HS(U,Hγi (D)), .i = 1, 2 with .γ1 > 3/2 and .γ2 > 5/2. 

Then, under the periodic boundary condition, for sufficiently small . τ , it holds 

.E
[
Φ(tn)

] ≤ e−σ0nτE
[
Φ(t0)

]+ C, (4.87) 

where the positive constant .C = C(σ0, λ, θ , |D|,Q1,Q2) is independent of . τ and 
n. 

Proof Similar to the proof of Proposition 4.15, one can check that the discrete 
energy . Φ satisfies the following evolution relation: 

. 

Φ(tn+1) = ΔxΔyΔz

I−1∑

i=0

J−1∑

j=0

K−1∑

k=0

e−2τσi,j,k
∣
∣
∣u
n

i+ 1
2 ,j+ 1

2 ,k+ 1
2

∣
∣
∣
2

+ 2ΔxΔyΔz
I−1∑

i=0

J−1∑

j=0

K−1∑

k=0

(
Υ
n,σi,j,k

i+ 1
2 ,j+ 1

2 ,k+ 1
2
(ΔW2)

n+1
i+ 1

2 ,j+ 1
2 ,k+ 1

2

)

(4.88) 

for all .n ∈ N, where . Υ
n,σi,j,k

i+ 1
2 ,j+ 1

2 ,k+ 1
2

:= θ · Aσi,j,kt un
i+ 1

2 ,j+ 1
2 ,k+ 1

2
.

For the first term on the right-hand side of (4.88), we have  

.ΔxΔyΔz

I−1∑

i=0

J−1∑

j=0

K−1∑

k=0

e−2τσi,j,k
∣
∣
∣u
n

i+ 1
2 ,j+ 1

2 ,k+ 1
2

∣
∣
∣
2 ≤ e−2σ0τΦ(tn) (4.89) 

according to the assumption .σ ≥ σ0 > 0. For the second term on the right-hand 
side of (4.88), the estimate is more complicated. For the simplicity of notations, we 
denote .s̄ := s + 1

2 for .s = i, j, k in the following proof. 

Now let us first consider the sub-term .A
σi,j,k
t (E1)

n

ī,j̄ ,k̄
(ΔW2)

n+1
ī,j̄ ,k̄

. Using the fact 

that .ΔWn+1
2 is independent of . Ftn , we have  

.

E

[
A
σi,j,k
t (E1)

n

ī,j̄ ,k̄
(ΔW2)

n+1
ī,j̄ ,k̄

]

= 1

2
E

[(
(E1)

n+1
ī,j̄ ,k̄

− e−σi,j,kτ (E1)
n

ī,j̄ ,k̄

)
(ΔW2)

n+1
ī,j̄ ,k̄

]

= 1

2
E

[(
τδ

σi,j,k
t (E1)

n

ī,j̄ ,k̄

)
(ΔW2)

n+1
ī,j̄ ,k̄

]
.

(4.90)
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It follows from (4.86) that the first component .(E1)
n
i,j,k of .uni,j,k satisfies 

. 

δ
σi,j,k
t (E1)

n

ī,j̄ ,k̄
= δyA

σi,j,k
t (H3)

n

ī,j,k̄
− δzA

σi,j,k
t (H2)

n

ī,j̄ ,k

− λA
σi,j,k
t (H1)

n

ī,j̄ ,k̄
(γ 1)

n

ī,j̄ ,k̄
+ θ

(1)
1 (γ2)

n

ī,j̄ ,k̄
,

where .θ(𝓁)1 is the .𝓁-th component of . θ1, .𝓁 = 1, 2, 3. Plugging the above identity 
into (4.90) and adding up all indices yield 

. E

[ I−1∑

i=0

J−1∑

j=0

K−1∑

k=0

A
σi,j,k
t (E1)

n

ī,j̄ ,k̄
(ΔW2)

n+1
ī,j̄ ,k̄

]

= 1

2
E

[ I−1∑

i=0

J−1∑

j=0

K−1∑

k=0

(
τδyA

σi,j,k
t (H3)

n

ī,j,k̄
− τδzA

σi,j,k
t (H2)

n

ī,j̄ ,k

− λA
σi,j,k
t (H1)

n

ī,j̄ ,k̄
(ΔW 1)

n+1
ī,j̄ ,k̄

+ θ
(1)
1 (ΔW2)

n+1
ī,j̄ ,k̄

)
(ΔW2)

n+1
ī,j̄ ,k̄

]

= 1

2
E

[ I−1∑

i=0

J−1∑

j=0

K−1∑

k=0

(
− τA

σi,j,k
t (H3)

n

ī,j̄ ,k̄
δy(ΔW2)

n+1
ī,j,k̄

+ τA
σi,j,k
t (H2)

n

ī,j̄ ,k̄
δz(ΔW2)

n+1
ī,j̄ ,k

− λA
σi,j,k
t (H1)

n

ī,j̄ ,k̄
(ΔW 1)

n+1
ī,j̄ ,k̄

(ΔW2)
n+1
ī,j̄ ,k̄

+ θ
(1)
1

[
(ΔW2)

n+1
ī,j̄ ,k̄

]2
)]
, (4.91) 

where we used the fact that 

. 

J−1∑

j=0

δy(A
σi,j,k
t (H3)

n

ī,j,k̄
)(ΔW2)

n+1
ī,j̄ ,k̄

= −
J−1∑

j=0

(A
σi,j,k
t (H3)

n

ī,j̄ ,k̄
)δy(ΔW2)

n+1
ī,j,k̄

,

K−1∑

k=0

δz(A
σi,j,k
t (H2)

n

ī,j̄ ,k
)(ΔW2)

n+1
ī,j̄ ,k̄

= −
K−1∑

k=0

(A
σi,j,k
t (H2)

n

ī,j̄ ,k̄
)δz(ΔW2)

n+1
ī,j̄ ,k

(4.92) 

due to the periodic boundary condition. Hence, the Hölder inequality and the Young 
inequality imply that 

.θ
(1)
1 E

[ I−1∑

i=0

J−1∑

j=0

K−1∑

k=0

A
σi,j,k
t (E1)

n

ī,j̄ ,k̄
(ΔW2)

n+1
ī,j̄ ,k̄

]

≤ σ0

8
τE
[ I−1∑

i=0

J−1∑

j=0

K−1∑

k=0

∣
∣A

σi,j,k
t Hn

ī,j̄ ,k̄

∣
∣2
]
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+ CτE
[ I−1∑

i=0 

J−1∑

j=0 

K−1∑

k=0

(∣
∣δy(ΔW2)

n+1 
ī,j,k̄

∣
∣2 + ∣∣δz(ΔW2)

n+1 
ī,j̄ ,k

∣
∣2
)]

+ C 
1 

τ 

I−1∑

i=0 

J−1∑

j=0 

K−1∑

k=0

(
E

[∣
∣(ΔW 1)

n+1 
ī,j̄ ,k̄

∣
∣2
]
E

[∣
∣(ΔW2)

n+1 
ī,  ̄j,k̄

∣
∣2
]
+τE

[∣
∣(ΔW2)

n+1 
ī,j̄ ,k̄

∣
∣2
])
. 

Notice that 

. ΔxΔyΔz

I−1∑

i=0

J−1∑

j=0

K−1∑

k=0

E

[∣
∣(ΔW2)

n

ī,j̄ ,k̄

∣
∣2
]

= ΔxΔyΔz

I−1∑

i=0

J−1∑

j=0

K−1∑

k=0

E

[∣
∣
∣
∑

m∈N

√

η
(2)
m em(xī , yj̄ , zk̄)(β

(2)
m (tn+1)− β(2)m (tn))

∣
∣
∣
2]

= τΔxΔyΔz

I−1∑

i=0

J−1∑

j=0

K−1∑

k=0

∑

m∈N
η(2)m |em(xī , yj̄ , zk̄)|2

≤ τΔxΔyΔz

I−1∑

i=0

J−1∑

j=0

K−1∑

k=0

∑

m∈N
η(2)m ‖em‖2

L∞(D)

≤ C
(
|D|, ‖Q

1
2
2 ‖HS(U,Hγ1 (D))

)
τ

and 

. ΔxΔyΔz

I−1∑

i=0

J−1∑

j=0

K−1∑

k=0

(
E

[∣
∣(ΔW 1)

n

ī,j̄ ,k̄

∣
∣2
]
E

[∣
∣(ΔW2)

n

ī,j̄ ,k̄

∣
∣2
])

≤ |D|
[(∑

m∈N
ηm|em(xī , yj̄ , zk̄)|2τ

)(∑

m∈N
ηm
∣
∣em(xī , yj̄ , zk̄)

∣
∣2τ
)]

≤ C
(
|D|, ‖Q

1
2
1 ‖HS(U,Hγ1 (D)), ‖Q

1
2
2 ‖HS(U,Hγ1 (D))

)
τ 2,

where in the last steps of the above two inequalities we used the Sobolev embedding 
.Hγ →ͨ L∞(D) with .γ > 3/2. Combining the above three estimates, we obtain 

.ΔxΔyΔzθ
(1)
1 E

[ I−1∑

i=0

J−1∑

j=0

K−1∑

k=0

A
σi,j,k
t (E1)

n

ī,j̄ ,k̄
(ΔW2)

n+1
ī,j̄ ,k̄

]

≤ σ0

16
τE
[ I−1∑

i=0

J−1∑

j=0

K−1∑

k=0

(∣
∣Hn+1

ī,j̄ ,k̄

∣
∣2 + e−2τσi,j,k

∣
∣Hn

ī,j̄ ,k̄

∣
∣2
)]

+ CτE
[ I−1∑

i=0

J−1∑

j=0

K−1∑

k=0

(∣
∣δy(ΔW2)

n+1
ī,j,k̄

∣
∣2 + ∣∣δz(ΔW2)

n+1
ī,j̄ ,k

∣
∣2
)]

+ Cτ.
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The other five sub-terms of the second term on the right-hand side of (4.88) can be 
handled in a similar way. As a consequence, we obtain 

. ΔxΔyΔz

I−1∑

i=0

J−1∑

j=0

K−1∑

k=0

E

[
Υ n

i+ 1
2 ,j+ 1

2 ,k+ 1
2
(ΔW2)

n+1
i+ 1

2 ,j+ 1
2 ,k+ 1

2

]

≤ 3σ0

16
τ E
[
Φ(tn+1)

]+ 3σ0

16
τe−2σ0τE

[
Φ(tn)

]+ Cτ

+ CτΔxΔyΔzE
[ I−1∑

i=0

J−1∑

j=0

K−1∑

k=0

(
|δx(ΔW2)

n+1
i,j̄ ,k̄

|2

+ |δy(ΔW2)
n+1
ī,j,k̄

|2 + |δz(ΔW2)
n+1
ī,j̄ ,k

|2
)]
.

Moreover, by the Sobolev embedding .Hγ →ͨ L∞(D) with .γ > 3/2, it yields that 

. ΔxΔyΔzE
[ I−1∑

i=0

J−1∑

j=0

K−1∑

k=0

∣
∣δx(ΔW2)

n

i,j̄ ,k̄

∣
∣2
]

= τΔxΔyΔz

I−1∑

i=0

J−1∑

j=0

K−1∑

k=0

∑

m∈N
η(2)m

∣
∣∂xem(xi + ξiΔx, yj̄ , zk̄)

∣
∣2

≤ τ

I−1∑

i=0

J−1∑

j=0

K−1∑

k=0

∑

m∈N
η(2)m ‖em‖2

W 1,∞(D)
≤ C
(
|D|, ‖Q

1
2
2 ‖HS(U,Hγ2 (D))

)
τ,

where .ξi ∈ [0, 1], .i = 0, 1, . . . , I − 1. Similarly, we can derive 

. ΔxΔyΔzE
[ I−1∑

i=0

J−1∑

j=0

K−1∑

k=0

∣
∣δy(ΔW2)

n

ī,j,k̄

∣
∣2
]

≤ C
(
|D|, ‖Q

1
2
2 ‖HS(U,Hγ2 (D))

)
τ,

ΔxΔyΔzE
[ I−1∑

i=0

J−1∑

j=0

K−1∑

k=0

∣
∣δz(ΔW2)

n

ī,j̄ ,k

∣
∣2
]

≤ C
(
|D|, ‖Q

1
2
2 ‖HS(U,Hγ2 (D))

)
τ.

Hence, 

.

ΔxΔyΔz

I−1∑

i=0

J−1∑

j=0

K−1∑

k=0

E

[
Υ n

i+ 1
2 ,j+ 1

2 ,k+ 1
2
(ΔW2)

n+1
i+ 1

2 ,j+ 1
2 ,k+ 1

2

]

≤ 3σ0

16
τE
[
Φ(tn+1)

]+ 3σ0

16
τe−2σ0τE

[
Φ(tn)

]+ Cτ,

(4.93)
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which, together with (4.88) and (4.89), yields that 

. E
[
Φ(tn+1)

] ≤ e−2σ0τE
[
Φ(tn)

]+ 3σ0

16
τE
[
Φ(tn+1)

]+ 3σ0

16
τe−2σ0τE

[
Φ(tn)

]+Cτ.

By the Grönwall inequality, it can be shown that for sufficiently small . τ , 

. E
[
Φ(tn)

] ≤ e−σ0nτE
[
Φ(t0)

]+ C.

Thus, the proof is finished. ⨅⨆
Let 

. 
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1
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1
2
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1
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1
2
, . . . , (E1)

n

I− 1
2 ,

1
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1
2
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1
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3
2 ,

1
2
, . . . , (E1)

n
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1
2
,

. . . , (E1)
n

I− 1
2 ,J− 1

2 ,K− 1
2
, (E2)
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1
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1
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1
2
, . . . , (E2)

n
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2 ,J− 1

2 ,K− 1
2
, (E3)
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1
2 ,

1
2 ,

1
2
,

. . . , (E3)
n

I− 1
2 ,J− 1

2 ,K− 1
2
, (H1)

n
1
2 ,

1
2 ,

1
2
, . . . , (H3)

n

I− 1
2 ,J− 1

2 ,K− 1
2

)⏉
.

Then the discrete energy .Φ(tn) can be rewritten as 

.Φ(tn) = ΔxΔyΔz|Un|2, n ∈ N. (4.94) 

By taking (4.94) as a Lyapunov function, the proof of the ergodicity of (4.86) is 
similar to that of Theorem 3.6, and hence is skipped. 

Proposition 4.31 Under conditions in Proposition 4.30 and the periodic boundary 
condition, the following statements hold. 

(i) Let .{Un; n ∈ N} and .{Ũn; n ∈ N} be solutions of (4.86) with initial values . U0

and . ̃U0, respectively. Then 

. E

[
|Un − Ũn|2

]
≤ e−2σ0tnE

[
|U0 − Ũ0|2

]
.

(ii) For sufficiently small . τ , the numerical solution .{Un; n ∈ N} of (4.86) has 
a unique invariant measure .πτ,h ∈ P2(H). Thus, .{Un; n ∈ N} is ergodic. 
Moreover, .{Un; n ∈ N} is exponentially mixing. 

(iii) For arbitrary two distributions .π1, π2 ∈ P2(H), .n ∈ N, it holds that 

. W2((P
τ,h
n )∗π1, (P

τ,h
n )∗π2) ≤ e−σ0tnW2(π1, π2),

where .(P τ,h
n )∗π, n ∈ N denotes the probability distribution of . Un with initial 

probability distribution . π . Moreover, 

.W2((P
τ,h
n )∗π, πτ,h) ≤ e−σ0tnW2(π, π

τ,h) ∀ π ∈ P2(H), n ∈ N.
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4.3 Splitting Techniques for Stochastic Maxwell Equations 

As is well known, the numerical simulation of the stochastic Maxwell equations 
is consuming, which requires the investigation of highly efficient numerical algo-
rithms. In order to reduce the computational cost and improve efficiency, this section 
presents the splitting technique for the stochastic Maxwell equations with additive 
noise 

.

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

εdE(t) = ∇ × H(t)dt + λ1dW(t), t ∈ (0, T ],
μdH(t) = −∇ × E(t)dt + λ2dW(t), t ∈ (0, T ],
E(0) = E0, H(t) = H0

(4.95) 

on a cuboid .D = (a−
1 , a

+
1 ) × (a−

2 , a
+
2 ) × (a−

3 , a
+
3 ) with a Lipschitz boundary . Γ . 

For convenience, we denote 

. Γ +
1 := {x ∈ D : x = a+

1 }, Γ −
1 := {x ∈ D : x = a−

1 }.

And . Γ +
2 , . Γ −

2 , . Γ +
3 , and .Γ −

3 are defined similarly. Let .Γj := Γ −
j ∪ Γ +

j for . j =
1, 2, 3. 

The approach studied here is to split the Maxwell operator 

. M =
[

0 ε−1∇×
−μ−1∇× 0

]

, D(M) = H0(curl,D)×H(curl,D)

with the aim of the feasible implementation and economic memory for the numerical 
algorithms. For this, we classify the splitting technique into two classes: local one-
dimensional splitting and alternating direction implicit splitting. 

(a) The local one-dimensional splitting 

The local one-dimensional technique, which can allow the multi-dimensional 
problems to be solved by treating the spatial variables individually in a cyclic 
fashion, is popular in saving memory and CPU time when applied to discretize 
partial differential equations (see e.g., [25, 36, 72, 157]). For the Maxwell operator 
M , it can be decomposed into 

.Mα :=
[

0 ε−1curlα

−μ−1curlα 0

]

, α = x, y, z (4.96)
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with one-dimensional differential operator-valued matrices 

. curlx =
⎡

⎣
0 0 0
0 0 −∂x
0 ∂x 0

⎤

⎦ , curly =
⎡

⎣
0 0 ∂y
0 0 0

−∂y 0 0

⎤

⎦ , curlz =
⎡

⎣
0 −∂z 0
∂z 0 0
0 0 0

⎤

⎦ .

The domains of . Mx , . My , and .Mz are given by 

. D(Mx) = {u ∈ H : Mxu ∈ H, u2 = u3 = 0 on Γ1
}
,

D(My) = {u ∈ H : Myu ∈ H, u1 = u3 = 0 on Γ2
}
,

D(Mz) = {u ∈ H : Mzu ∈ H, u1 = u2 = 0 on Γ3
}
,

respectively. 
It can be verified that .D(Mx) ∩ D(My) ∩ D(Mz) ⊂ D(M) and . Mxu +

Myu + Mzu = Mu for .u ∈ D(Mx) ∩ D(My) ∩ D(Mz). Furthermore, operators 
.(Mx,D(Mx)), .(My,D(My)), and .(Mz,D(Mz)) generate unitary .C0-semigroups. 
The proof is similar to that of Theorem 2.1 and is omitted. 

Lemma 4.2 If .ε, μ satisfy Assumption 2.1, then the operator . Mα : D(Mα) ⊂ H →
H is skew-adjoint, and generates a unitary .C0-semigroup .{Sα(t) := etMα , t ≥ 0} on 
. H for .α = x, y, z. 

(b) The alternating direction implicit splitting 

The main idea of the alternating direction implicit splitting is, roughly speaking, 
to decompose the operator into two parts and to propagate the associated sub-flows 
in such a way that the implicitness is reduced to one-dimensional problems. This 
invention has attracted a lot of interest, and a large number of follow-up papers can 
be found in the literature, see, e.g., [75, 85, 98, 141] and references therein. In this 
setting, the Maxwell operator is decomposed as .M = M1 +M2 with 

.M1 =
[

0 ε−1curl1

−μ−1curl2 0

]

and M2 =
[

0 ε−1curl2

−μ−1curl1 0

]

. (4.97) 

Here, 

.curl1 =
⎡

⎣
0 0 ∂y

∂z 0 0
0 ∂x 0

⎤

⎦ , curl2 =
⎡

⎣
0 −∂z 0
0 0 −∂x

−∂y 0 0

⎤

⎦ ,
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and the domains of .M1 and .M2 are 

. D(M1) = {u ∈ H : M1u ∈ H, u1 = 0 on Γ2, u2 = 0 on Γ3, u3 = 0 on Γ1},
D(M2) = {u ∈ H : M2u ∈ H, u1 = 0 on Γ3, u2 = 0 on Γ1, u3 = 0 on Γ2},

respectively. 
Similarly, we have .D(M1) ∩ D(M2) ⊂ D(M) and .M1u + M2u = Mu for 

.u ∈ D(M1) ∩ D(M2). Moreover, we can derive the following lemma. 

Lemma 4.3 If .ε, μ satisfy Assumption 2.1, then the operator . Mj : D(Mj ) ⊂ H →
H is skew-adjoint, and generates a unitary .C0-semigroup .{Sj (t) := etMj , t ≥ 0} on 
. H for .j = 1, 2. 

Hence, based on the above claims, the stochastic Maxwell equations (4.95) can 
be split into several lower dimensional subsystems. Without loss of generality, we 
just focus on the local one-dimensional splitting case and the alternating direction 
implicit splitting can be presented in the same procedure. For simplicity, below we 
assume that .ε = μ ≡ 1. 

Denote .λ[1] := (λ
(1)
1 , 0, 0, λ(1)2 , 0, 0)⏉, .λ[2] := (0, λ(2)1 , 0, 0, λ(2)2 , 0)⏉, and 

.λ[3] := (0, 0, λ(3)1 , 0, 0, λ(3)2 )⏉. Then we have the following three one-dimensional 
subsystems when applying the local one-dimensional splitting: 

.

⎧
⎨

⎩

du[j ](t) = Mαu
[j ](t)dt + λ[j ]dW(t), t ∈ (0, T ],

u[j ](0) = u
[j ]
0

(4.98) 

for .(α, j) ∈ {(x, 1), (y, 2), (z, 3)}. 
Remark 4.7 It can be observed from (4.98) that each of them can be implemented 
easily. To show this clearly, we take .α = x, j = 1 as an example, namely, 

.

{ dE[1]
2 (t) = −∂xH [1]

3 (t)dt,

dH [1]
3 (t) = −∂xE[1]

2 (t)dt,

{ dE[1]
3 (t) = ∂xH

[1]
2 (t)dt,

dH [1]
2 (t) = ∂xE

[1]
3 (t)dt,

. (4.99) 

dE[1] 
1 (t) = λ (1) 1 dW(t),  dH [1] 

1 (t) = λ (1) 2 dW(t). (4.100) 

It can be observed that one only needs to solve some small deterministic linear 
systems in each time step. In addition, we can obtain the analytical expression of the 
solution of (4.100). These characteristics of the splitting technique lead to a dramatic 
reduction of computational costs in solving the stochastic Maxwell equations.
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It follows from Theorem 2.2 and Lemma 4.2 that (4.98) has a unique mild 
solution given by 

. u[j ](t) = Sα(t)u
[j ]
0 +

∫ t

0
Sα(t − s)λ[j ]dW(s), P-a.s. (4.101) 

for all .t ∈ [0, T ] and .(α, j) ∈ {(x, 1), (y, 2), (z, 3)}. 
Similar to Remark 3.2 (a), we have the following averaged energy evolution law. 

Proposition 4.32 Let .u[j ]
0 be .F0-measurable .H-valued random variables satisfy-

ing .‖u[j ]
0 ‖L2(Ω,H) < ∞ for .j = 1, 2, 3. Then 

. E
[‖u[j ](t)‖2

H

] = E
[‖u[j ]

0 ‖2
H

]+ t |λ[j ]|2Tr(Q)

for all .t ∈ [0, T ] and .j = 1, 2, 3. 

Below, we focus on investigating the stochastic symplectic and multi-symplectic 
structures of (4.98). To present the formulation of the stochastic Hamiltonian 
system, we define 

. H
[j ]

1 (E[j ],H[j ]) = 1

2

∫

D

(
|E[j ]|2 + |H[j ]|2

)
dx,

H
[j ]

2 (E[j ],H[j ]) =
∫

D

(
λ
(j)

2 E
[j ]
j − λ

(j)

1 H
[j ]
j

)
dx,

from which we can reformulate (4.98) as the following non-canonical stochastic 
Hamiltonian system 

.d

[
E[j ]

H[j ]

]

=
[

0 curlα

−curlα 0

]
⎡

⎢
⎣

δH [j ]
1

δE[j ]

δH [j ]
1

δH[j ]

⎤

⎥
⎦ dt + J

−1

⎡

⎢
⎣

δH [j ]
2

δE[j ]

δH [j ]
2

δH[j ]

⎤

⎥
⎦ ◦ dW(t) (4.102) 

for .(α, j) ∈ {(x, 1), (y, 2), (z, 3)}. Taking the exterior derivative on both sides 
of (4.102) and utilizing the skew-adjointness of .Mα, α = x, y, z, yield the following 
assertion. 

Lemma 4.4 The phase flow of (4.98) preserves the stochastic symplectic struc-
tures, that is, 

. 𝜛 [j ](t) :=
∫

D

dE[j ](t, x) ∧ curlα(dH[j ](t, x))dx = 𝜛 [j ](0), P-a.s.

for all .t ∈ [0, T ] and .(α, j) ∈ {(x, 1), (y, 2), (z, 3)}.
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Using the Hamiltonian 

. H [α]
1 (E[j ],H[j ]) = −1

2

∫

D

(
E[j ] · curlαE[j ] + H[j ] · curlαH[j ])dx,

we can derive the canonical stochastic Hamiltonian system of (4.98): 

.d

[
E[j ]

H[j ]

]

= J
−1

⎡

⎢
⎣

δH [α]
1

δE[j ]

δH [α]
1

δH[j ]

⎤

⎥
⎦ dt + J

−1

⎡

⎢
⎣

δH [j ]
2

δE[j ]

δH [j ]
2

δH[j ]

⎤

⎥
⎦ ◦ dW(t) (4.103) 

for .(α, j) ∈ {(x, 1), (y, 2), (z, 3)}. In this situation, the stochastic symplectic 
structure 

. 𝜛 [j ](t) :=
∫

D

dE[j ](t, x) ∧ dH[j ](t, x)dx

is preserved by the phase flow of (4.98), if the homogeneous boundary condition is 
enforced (cf. Theorem 3.1). 

Now we turn to the stochastic multi-symplecticity of (4.98). Let  

. S(u[j ]) = λ
(j)

2 E
[j ]
j − λ

(j)

1 H
[j ]
j , j = 1, 2, 3.

Then (4.98) can be rewritten as 

.Fdu[j ] + Kj ∂αu
[j ]dt = ∇u[j ]S(u[j ]) ◦ dW(t) (4.104) 

for .(α, j) ∈ {(x, 1), (y, 2), (z, 3)}. Here, . F and . Kj , .j = 1, 2, 3 are defined in (3.12). 
Similar to the proof of Theorem 3.2, we obtain the following result. 

Lemma 4.5 The system (4.98) preserves the stochastic multi-symplectic conserva-
tive law, that is, for .(α, j) ∈ {(x, 1), (y, 2), (z, 3)}, 

. d𝜛 [j ] + ∂ακ
[j ]dt = 0, P-a.s.,

which means 

. 

∫ α1

α0

𝜛 [j ](t1, α)dα +
∫ t1

t0

κ [j ](t, α1)dt =
∫ α1

α0

𝜛 [j ](t0, α)dα +
∫ t1

t0

κ [j ](t, α0)dt,

where .𝜛 [j ](t, x) = 1
2du

[j ] ∧ Fdu[j ] and .κ [j ](t, x) = 1
2du

[j ] ∧ Kj du
[j ] are 

differential 2-forms associated with skew-symmetric matrices . F and . Kj , .j = 1, 2, 3.
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Summary and Outlook 

This chapter is devoted to the construction and analysis of structure-preserving 
algorithms, which can inherit the intrinsic properties of the stochastic Maxwell 
equations with Stratonovich noise. 

For the temporal semi-discretizations for the stochastic Maxwell equations, we 
investigate stochastic symplectic Runge–Kutta methods and exponential-type meth-
ods. The well-posedness and regularity of exponential-type methods are presented 
for both the additive and multiplicative cases. While we restrict the analysis to the 
additive noise case for stochastic Runge–Kutta methods. For the multiplicative noise 
case, we only establish the well-posedness and regularity of the stochastic midpoint 
method. It is worth studying these problems for the general stochastic Runge–Kutta 
methods in the multiplicative noise case. 

Then we present the construction of full discretizations by discretizing the 
temporal semi-discretizations further in the spatial direction via the finite difference 
method, the wavelet method, and the dG method, respectively. The a priori  
estimates and intrinsic discrete structures of these obtained full discretization are 
analyzed, which will play an important role in the error analysis in Chap. 5. 
There are some other approaches to constructing structure-preserving algorithms 
for stochastic partial differential equations. For instance, we refer to [180] for  
the stochastic multi-symplectic Runge–Kutta method, and to [104] for the mesh-
less local radial basis function collocation method, the splitting multi-symplectic 
Runge–Kutta method and the multi-symplectic partitioned Runge–Kutta method for 
the stochastic Hamiltonian partial differential equations. Moreover, we propose and 
analyze the stochastic conformal multi-symplectic and ergodic algorithm for the 
stochastic Maxwell equations with damping; see [45] for more details. We also refer 
to [156] for the study of stochastic conformal schemes for the damped stochastic 
Klein–Gordon equation, and to [10] for the approach based on the Wiener chaos 
expansion for the stochastic wave equation. 

In the implementation of numerical algorithms for the three-dimensional stochas-
tic Maxwell equations, we remark that it is required to solve at least a .106-scale 
algebraic equation at every time step provided that the considered spatial domain 
is divided into .100 × 100 × 100 cells. Moreover, the computational cost will be 
at least a multiple of P , where P is the number of samples. Thus, the numerical 
implementation of the three-dimensional stochastic Maxwell equations is a very 
difficult issue due to the limitation of memory and the performance of the CPU in a 
common computing environment. The splitting technique proposed in this chapter 
is a good tool to reduce computational costs. It is also a challenging and meaningful 
topic to study whether the time parallel method, the domain decomposition method, 
and the multilevel Monte–Carlo method can be utilized to construct both highly 
efficient and structure-preserving algorithms for the stochastic Maxwell equations.



Chapter 5 
Convergence Analysis of 
Structure-Preserving Algorithms for 
Stochastic Maxwell Equations 

This chapter is concerned with the convergence analysis of structure-preserving 
algorithms proposed in Chap. 4 for the stochastic Maxwell equations. 

Section 5.1 concentrates on the convergence analysis of the temporally semi-
discrete algorithms. The mean-square convergence orders of stochastic midpoint 
methods for the considered system with either additive noise or multiplicative 
noise are presented in Sect. 5.1.1. Moreover, we introduce error estimates of the 
general stochastic symplectic Runge–Kutta methods for the additive noise case in 
Sect. 5.1.2. Finally, the convergence analyses of exponential-type methods for the 
considered system with either additive noise or multiplicative noise are shown in 
Sect. 5.1.3. 

Section 5.2 is devoted to studying the mean-square convergence order of the fully 
discrete algorithms. We first present the convergence analysis of the dG method in 
space in Sect. 5.2.1. Then for the stochastic symplectic dG full discretization, its 
mean-square convergence order is obtained in Sect. 5.2.2. 

As discussed in the previous chapter, the splitting technique for the stochastic 
Maxwell equations is proposed to reduce the computational cost. In order to clarify 
the influence of the splitting technique on the convergence order of the numerical 
algorithm, we analyze the splitting error and derive the mean-square convergence 
order of the splitting midpoint method in Sect. 5.3. 

5.1 Convergence Analysis for Temporally Semi-Discrete 
Algorithms 

In this section, we focus on the convergence analysis of temporally semi-
discrete structure-preserving algorithms, including the stochastic midpoint method, 
stochastic symplectic Runge–Kutta methods, and exponential-type methods, for the 
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stochastic Maxwell equations. Let .D ⊂ R
3 be an open, bounded, and Lipschitz 

domain with boundary . ∂D. 

5.1.1 Stochastic Midpoint Method 

Let us first consider the stochastic Maxwell equations with additive noise 

.

⎧
⎨

⎩

du(t) =
[
Mu(t) + F(t, u(t))

]
dt + B(t)dW(t), t ∈ (0, T ],

u(0) = u0

(5.1) 

and the corresponding stochastic midpoint method 

. un+1 = un + τMun+ 1
2 + τFn+ 1

2 (un+ 1
2 ) + Bn+ 1

2 ΔWn+1, n = 0, 1, . . . , N − 1
(5.2) 

with .u0 = u0, .un+ 1
2 = 1

2

(
un+un+1

)
, .Fn+ 1

2 (un+ 1
2 ) = F(t

n+ 1
2
, un+ 1

2 ), and . Bn+ 1
2 =

B(t
n+ 1

2
). We have the following mean-square convergence result. 

Theorem 5.1 Let conditions with .k ∈ {1, 2} in Proposition 4.3 hold. Assume that 
.F(t, ·) is twice Fréchet differentiable with bounded derivatives for .t ∈ [0, T ]. Then 
the solution of (5.2) satisfies 

. max
1≤n≤N

(
E

[
‖u(tn) − un‖2

H

])1/2 ≤ Cτk/2,

where the positive constant C depends on T , F , B, and . u0. 

Proof For .n = 1, 2, . . . , N , note that (5.1) has a unique mild solution given by 

. u(tn) = S(tn)u0 +
∫ tn

0
S(tn − r)F (r, u(r))dr +

∫ tn

0
S(tn − r)B(r)dW(r),

(5.3) 

and that the mild form of (5.2) is 

. un = (Sτ )
nu0 + τ

n−1∑

j=0

(Sτ )
n−j−1TτF

j+ 1
2 (uj+ 1

2 ) +
n−1∑

j=0

(Sτ )
n−j−1TτB

j+ 1
2 ΔWj+1,

(5.4)
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where .Sτ :=
(
Id − τ

2 M
)−1(

Id + τ
2 M

)
and .Tτ :=

(
Id − τ

2 M
)−1

. Denoting 

.en := u(tn) − un, we have  

. en =
(
S(tn) − (Sτ )

n
)
u0

+
n−1∑

j=0

∫ tj+1

tj

[
S(tn − r)F (r, u(r)) − (Sτ )

n−j−1TτF
j+ 1

2 (uj+ 1
2 )
]
dr

+
n−1∑

j=0

∫ tj+1

tj

[
S(tn − r)B(r) − (Sτ )

n−j−1TτB
j+ 1

2

]
dW(r)

= : (S(tn) − (Sτ )
n
)
u0 + In + Jn. (5.5) 

It follows from Lemma C.3 (iii) that 

. E

[∥
∥
(
S(tn) − (Sτ )

n
)
u0

∥
∥2
H

]
≤ CE

[‖u0‖2
D(Mk)

]
τ k.

Step 1. Estimate of the term . In. We have  

. In =
n−1∑

j=0

∫ tj+1

tj

[
S(tn − r)

(
F(r, u(r)) − F(tj , u(tj ))

)]
dr

+
n−1∑

j=0

∫ tj+1

tj

[
S(tn − r)

(
F(tj , u(tj )) − F

(
t
j+ 1

2
,
u(tj ) + u(tj+1)

2

))]
dr

(5.6) 

+ 
n−1∑

j=0

∫ tj+1 

tj

[(
S(tn − r) − (Sτ )

n−j−1Tτ

)
F
(
t
j+ 1 

2 
, 
u(tj ) + u(tj+1) 

2

)]
dr 

+ 
n−1∑

j=0

∫ tj+1 

tj

[
(Sτ )

n−j−1Tτ

(
F
(
t
j+ 1 

2 
, 
u(tj ) + u(tj+1) 

2

) − F(t
j+ 1 

2 
, uj+ 1 

2 )
)]

dr 

=: I 1 
n + I 2 

n + I 3 
n + I 4 

n . 

Using the Taylor expansion gives 

.

F(r, u(r))−F(tj , u(tj )) = F(r, u(r))−F(tj , u(r)) + Fu(tj , u(tj ))
(
u(r) − u(tj )

)

+
∫ 1

0
θFuu(tj , uθ )

(
u(r) − u(tj ), u(r) − u(tj )

)
dθ,
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where .uθ = θu(tj )+ (1−θ)u(r) for .θ ∈ [0, 1]. Combining this with (5.3), the term  
. I 1
n can be rewritten as 

. I 1
n =

n−1∑

j=0

∫ tj+1

tj

[
S(tn − r)Fu(tj , u(tj ))

(
S(r − tj ) − Id

)
u(tj )

]
dr

+
n−1∑

j=0

∫ tj+1

tj

[
S(tn − r)Fu(tj , u(tj ))

∫ r

tj

S(r − ξ)F (ξ, u(ξ))dξ
]
dr

+
n−1∑

j=0

∫ tj+1

tj

[
S(tn − r)Fu(tj , u(tj ))

∫ r

tj

S(r − ξ)B(ξ)dW(ξ)
]
dr (5.7) 

+ 
n−1∑

j=0

∫ tj+1 

tj

[
S(tn − r)

∫ 1 

0 
Fuu(tj , uθ )

(
u(r) − u(tj ), u(r) − u(tj )

)
dθ

]
dr 

+ 
n−1∑

j=0

∫ tj+1 

tj

[
S(tn − r)

(
F(r,  u(r)) − F(tj , u(r))

)]
dr 

=: I 1,1 
n + I 1,2 

n + I 1,3 
n + I 1,4 

n + I 1,5 
n . 

For the term .I
1,1
n , by the unitarity of the semigroup .{S(t), t ∈ [0, T ]}, 

Lemma C.1, and Theorem 2.4, we obtain 

. E
[‖I 1,1

n ‖2
H

] ≤ C E

n−1∑

j=0

∫ tj+1

tj

∥
∥
∥Fu(tj , u(tj ))

(
S(r − tj ) − Id

)
u(tj )

∥
∥
∥

2

H

dr

≤ C

n−1∑

j=0

∫ tj+1

tj

(r − tj )
2
E
[‖u(tj )‖2

D(M)

]
dr

≤ Cτ 2.

For the term .I 1,2
n , by the linear growth of F , it holds that 

.E
[‖I 1,2

n ‖2
H

] ≤ C

n−1∑

j=0

∫ tj+1

tj

(r − tj )

∫ r

tj

E
[‖F(ξ, u(ξ))‖2

H

]
dξdr

≤ C

n−1∑

j=0

∫ tj+1

tj

(r − tk)

∫ r

tj

(1 + E
[‖u(ξ)‖2

H

]
)dξdr

≤ Cτ 2.
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For the third term .I 1,3
n , the stochastic Fubini theorem and the Itô isometry lead to 

. E
[‖I 1,3

n ‖2
H

]

= E

[∥
∥
∥

n−1∑

j=0

∫ tj+1

tj

∫ tj+1

ξ

[
S(tn+1 − r)Fu(tj , u(tj ))S(r − ξ)B(ξ)

]
drdW(ξ)

∥
∥
∥

2

H

]

=
n−1∑

j=0

∫ tj+1

tj

E

[∥
∥
∥

∫ tj+1

ξ

[
S(tn+1 − r)Fu(tj , u(tj ))S(r − ξ)B(ξ)

]
dr

∥
∥
∥

2

HS(U0,H)

]
dξ

≤ Cτ 2.

It follows from Assumption 2.4 and Theorem 2.5 that 

. E

[
‖I 1,4

n ‖2
H

+ ‖I 1,5
n ‖2

H

]
≤ Cτ 2.

Combining the above estimates, we have 

. E

[
‖I 1

n‖2
H

]
≤ Cτ 2.

Similar to the estimate of . I 1
n , the term . I 2

n is estimated as 

. E

[
‖I 2

n‖2
H

]
≤ Cτ 2.

For the term . I 3
n , one has 

. E

[
‖I 3

n‖2
H

]
≤ C

n−1∑

j=0

∫ tj+1

tj

E

[∥
∥
∥

(
S(tn − r) − (Sτ )

n−j−1Tτ

)

× F
(
t
j+ 1

2
,
u(tj ) + u(tj+1)

2

)∥∥
∥

2

H

]
dr

≤ Cτk
n−1∑

j=0

∫ tj+1

tj

E

[
1 + ‖u(tj )‖2

D(Mk)
+ ‖u(tj+1)‖2

D(Mk)

]
dr

≤ Cτk,

where we used Lemma  C.3 (iv) and Theorem 2.4. For the last term . I 4
n , one has 

.E

[
‖I 4

n‖2
H

]
≤ Cτ

n−1∑

j=0

E

[
‖ej‖2

H
+ ‖ej+1‖2

H

]
.
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Therefore, we obtain 

.E

[
‖In‖2

H

]
≤ Cτk + Cτ

n∑

j=0

E

[
‖ej‖2

H
+ ‖ej+1‖2

H

]
. (5.8) 

Step 2. Estimate of the term . Jn. We decompose the term . Jn as 

. Jn =
n−1∑

j=0

∫ tj+1

tj

[
S(tn − r) − (Sτ )

n−j−1Tτ

]
B(r)dW(r)

+
n−1∑

j=0

∫ tj+1

tj

(Sτ )
n−j−1Tτ

[
B(r) − B(t

j+ 1
2
)
]
dW(r)

=: J 1
n + J 2

n .

Notice that 

. E

[
‖J 1

n ‖2
H

]
=

n−1∑

j=0

∫ tj+1

tj

E

[∥
∥
∥

(
S(tn − r) − (Sτ )

n−j−1Tτ

)
B(r)

∥
∥
∥

2

HS(U0,H)

]
dr

≤
n−1∑

j=0

∫ tj+1

tj

∥
∥S(tn − r)−(Sτ )

n−j−1
∥
∥2

L (D(Mk),H)
‖B(r)‖2

HS(U0,D(Mk))
dr

≤ Cτk

due to Lemma C.3 (iii). Similarly, we can derive .E
[
‖J 2

n ‖2
H

]
≤ Cτ 2. 

Combining Step 1 and Step 2 yields 

. E

[
‖en‖2

H

]
≤ Cτk + Cτ

n−1∑

j=0

E

[
‖ej‖2

H
+ ‖ej+1‖2

H

]
.

The conclusion of Theorem 5.1 follows from the discrete Grönwall inequality given 
in Proposition A.5. ⨅⨆

Now we are in the position to study the stochastic Maxwell equations driven by 
linear multiplicative noise 

. 

⎧
⎨

⎩

du(t) =
[
Mu(t) + F(t, u(t))

]
dt + λJ−1u(t) ◦ dW(t), t ∈ (0, T ],

u(0) = u0,

(5.9)
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and the convergence analysis of the corresponding stochastic midpoint method 

.un+1 = un + τMun+ 1
2 + τFn+ 1

2 (un+ 1
2 ) + λJ−1un+ 1

2 ζ n+1, (5.10) 

where .u0 = u0, and .ζ n+1 := ΔW
n+1

is defined in (4.20). Recall that . FQ(x) :=
∑

j∈N
(Q

1
2 ej (x))2. 

Proposition 5.1 Let conditions in Proposition 4.5 hold. Assume that . FQ ∈
W 1,∞(D) and 

. E

[
‖Mu0‖4

H
+ ‖∇ · E0‖4

U + ‖∇ · H0‖4
U

]
< ∞.

Then there exists a positive constant .C = C(T , λ, u0, F,Q,FQ) such that the 
solution of (5.10) satisfies 

. max
1≤n≤N

(
E

[
‖u(tn) − un‖2

H

]) 1
2 ≤ Cτ

1
2 .

Proof Notice that (5.9) is equivalent to 

. 

⎧
⎨

⎩

du(t) =
[
Mu(t) + F(t, u(t)) − λ2

2 FQu(t)
]
dt + λJ−1u(t)dW(t), t ∈ (0, T ],

u(0) = u0.

From the definition of the mild solution, 

. 

u(tn) = S(tn)u0 +
∫ tn

0
S(tn − r)F (r, u(r))dr

− λ2

2

∫ tn

0
S(tn − r)FQu(r)dr + λ

∫ tn

0
S(tn − r)J−1u(r)dW(r)

(5.11) 

for all .tn ∈ [0, T ]. Equation (5.10) implies that for .n = 1, 2, . . . , N , 

. un = (Sτ )
nu0+τ

n−1∑

j=0

(Sτ )
n−j−1TτF

j+ 1
2 (uj+ 1

2 )+λ

n−1∑

j=0

(Sτ )
n−j−1TτJ

−1uj+ 1
2 ζ j+1.

(5.12)
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Denoting .en := u(tn) − un and subtracting (5.12) from (5.11), we arrive at  

. en = (
S(tn) − (Sτ )

n
)
u0

+
n−1∑

j=0

∫ tj+1

tj

(
S(tn − r)F (r, u(r)) − (Sτ )

n−j−1TτF
j+ 1

2 (uj+ 1
2 )
)

dr

+
n−1∑

j=0

[
λ

∫ tj+1

tj

S(tn − r)J−1u(r)dW(r) − λ2

2

∫ tj+1

tj

S(tn − r)FQu(r)dr

− λ(Sτ )
n−j−1TτJ

−1uj+ 1
2 ζ j+1

]

=:
(
S(tn) − (Sτ )

n
)
u0 + In + Jn.

For the term . In, we proceed similarly as (5.6), but use the unitarity of the semigroup 
.{S(t), t ∈ [0, T ]} and the Lipschitz continuity of F to estimate the term . I 1

n , 

. E

[
‖I 1

n‖2
H

]
= E

[∥
∥
∥

n−1∑

j=0

∫ tj+1

tj

[
S(tn − r)

(
F(r, u(r)) − F(tj , u(tj ))

)]
dr

∥
∥
∥

2

H

]

≤ C

n−1∑

j=0

∫ tj+1

tj

E

[∥
∥
∥S(tn − r)

(
F(r, u(r)) − F(tj , u(tj ))

)∥
∥
∥

2

H

]
dr

≤ C

n−1∑

j=0

∫ tj+1

tj

(
(r − tj )

2 + E

[
‖u(r) − u(tj )‖2

H

])
dr ≤ Cτ

due to the Hölder continuity of u in Theorem 2.5. Combining the estimates of terms 
. I 2
n , . I 3

n , and . I 4
n in Step 1 of Theorem 5.1, we have  

.E

[
‖In‖2

H

]
≤ Cτ + Cτ

n−1∑

j=0

E

[
‖ej‖2

H
+ ‖ej+1‖2

H

]
. (5.13) 

To estimate the term . Jn, we decompose it into 

.Jn =
n−1∑

j=0

(
J 1

n,j + J 2
n,j + J 3

n,j

)
,
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where 

. J 1
n,j := λ2

2
(Sτ )

n−j−1Tτu
j (ΔWj+1)2 − λ2

2

∫ tj+1

tj

S(tn − r)FQu(r)dr,

J 2
n,j := λ(Sτ )

n−j−1TτJ
−1uj

(
ΔWj+1 − ζ j+1) − λτ

2
(Sτ )

n−j−1TτJ
−1Muj+ 1

2 ζ j+1

− λτ

2
(Sτ )

n−j−1TτJ
−1Fj+ 1

2 (uj+ 1
2 )ζ j+1

+ λ2

4
(Sτ )

n−j−1Tτ

(
uj+1 − uj

)
(ζ j+1)2

− λ2

2
(Sτ )

n−j−1Tτu
j
(
(ΔWj+1)2 − (ζ j+1)2),

J 3
n,j := λ

∫ tj+1

tj

(
S(tn − r)J−1u(r) − (Sτ )

n−j−1TτJ
−1uj

)
dW(r).

(i) Estimate of the term .
∑n−1

j=0 J 1
n,j . Note that 

.J 1
n,j = λ2

∫ tj+1

tj

∫ r

tj

(Sτ )
n−j−1Tτu

j dW(ρ)dW(r)

+ λ2

2

∫ tj+1

tj

[
(Sτ )

n−j−1TτFQuj − S(tn − r)FQu(r)
]
dr

= λ2
∫ tj+1

tj

∫ r

tj

(Sτ )
n−j−1Tτu

j dW(ρ)dW(r)

+ λ2

2

∫ tj+1

tj

[
(Sτ )

n−j−1Tτ − S(tn − r)
]
FQuj dr

− λ2

2

∫ tj+1

tj

S(tn − r)FQej dr

− λ2

2

∫ tj+1

tj

S(tn − r)FQ

(
u(r) − u(tj )

)
dr

=: J 1
n,j,1 + J 1

n,j,2 + J 1
n,j,3 + J 1

n,j,4.
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For the term .J 1
n,j,1, it follows from the Itô isometry, the Sobolev embedding 

.Hγ (D) →ͨ L∞(D) with .γ > 3/2, Lemma C.3 (i)–(ii), and Proposition 4.4 
that 

. E
[‖J 1

n,j,1‖2
H

] = λ2
∫ tj+1

tj

E

[∥
∥
∥

∫ r

tj

(Sτ )
n−j−1Tτu

j dW(ρ)Q
1
2

∥
∥
∥

2

HS(U,H)

]
dr

≤ C‖Q 1
2 ‖2

HS(U,Hγ (D))

∫ tj+1

tj

∫ r

tj

E

[∥
∥
∥(Sτ )

n−j−1Tτu
jQ

1
2

∥
∥
∥

2

HS(U,H)

]
dρdr

≤ Cτ 2‖Q 1
2 ‖4

HS(U,Hγ (D))E
[‖uj‖2

H

] ≤ Cτ 2.

Hence, 

. E

[∥
∥
∥

n−1∑

j=0

J 1
n,j,1

∥
∥
∥

2

H

]
=

n−1∑

j=0

E

[∥
∥J 1

n,j,1

∥
∥2
H

]
≤ Cτ.

For the term .J 1
n,j,2, we utilize Lemma C.3 (iv) and Propositions 4.4–4.5 to 

obtain 

. E
[‖J 1

n,j,2‖2
H

] ≤ Cτ

∫ tj+1

tj

E

[∥
∥
∥
[
(Sτ )

n−j−1Tτ − S(tn − r)
]
FQuj

∥
∥
∥

2

H

]
dr

≤ Cτ

∫ tj+1

tj

∥
∥(Sτ )

n−j−1Tτ − S(tn − r)
∥
∥2
L (D(M),H)

× E
[‖FQuj‖2

D(M)

]
dr

≤ Cτ 3,

which leads to 

. E

[∥
∥
∥

n−1∑

j=0

J 1
n,j,2

∥
∥
∥

2

H

]
≤ n

n−1∑

j=0

E
[‖J 1

n,j,2‖2
H

] ≤ Cτ.

For the term .J 1
n,j,3, one has 

.E
[‖J 1

n,j,3‖2
H

] ≤ Cτ

∫ tj+1

tj

E
[‖S(tn − r)FQej‖2

H

]
dr ≤ Cτ 2

E
[‖ej‖2

H

]
,



5.1 Convergence Analysis for Temporally Semi-Discrete Algorithms 183

which leads to 

. E

[∥
∥
∥

n−1∑

j=0

J 1
n,j,3

∥
∥
∥

2

H

]
≤ n

n−1∑

j=0

E
[‖J 1

n,j,3‖2
H

] ≤ Cτ

n−1∑

j=0

E
[‖ej‖2

H

]
.

For the term .J 1
n,j,4, by similar arguments, we have 

. E

[∥
∥
∥

n−1∑

j=0

J 1
n,j,4

∥
∥
∥

2

H

]
≤ n

n−1∑

j=0

E
[‖J 1

n,j,4‖2
H

] ≤ Cτ.

Combining estimates of .
∑n−1

j=0 J 1
n,j,1, . . . ,

∑n−1
j=0 J 1

n,j,4 yields 

. E

[∥
∥
∥

n−1∑

j=0

J 1
n,j

∥
∥
∥

2

H

]
≤ Cτ + Cτ

n−1∑

j=0

E
[‖ej‖2

H

]
.

(ii) Estimate of the term .
∑n−1

j=0 J 2
n,j . It follows from Lemma C.3, the Lipschitz 

continuity of F , and the Sobolev embedding .Hγ (D) →ͨ L∞(D) with . γ > 3/2
that 

. E

[∥
∥J 2

n,j

∥
∥2
H

]
≤ CE

[‖uj‖2
H
‖ΔWj+1 − ζ j+1‖2

Hγ (D)

]

+ Cτ 2
E

[
‖Muj+ 1

2 ‖2
H
‖ζ j+1‖2

Hγ (D)

]

+ Cτ 2
E

[(
1 + ‖uj+ 1

2 ‖2
H

)‖ζ j+1‖2
Hγ (D)

]

+ CE

[∥
∥uj+ 1

2 (ζ j+1)3‖2
H

]

+ CE

[
‖uj‖2

H

∥
∥(ΔWj+1)2 − (ζ j+1)2

∥
∥2

Hγ (D)

]
.

Note that Remark 4.2 yields .sup1≤n≤N E

[
‖un‖4

H 1(D)6

]
≤ C, which together 

with (4.21) and Proposition 4.4 leads to 

.E

[∥
∥

n−1∑

j=0

J 2
n,j

∥
∥2
H

]
≤ n

n−1∑

j=0

E

[∥
∥J 2

n,j

∥
∥2
H

]
≤ Cτ.
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(iii) Estimate of the term .
∑n−1

j=0 J 3
n,j . Based on the Itô isometry and the Sobolev 

embedding .Hγ (D) →ͨ L∞(D) with .γ > 3/2, we obtain 

. E

[∥
∥J 3

n,j

∥
∥2
H

]

= λ2
∫ tj+1

tj

E

[∥
∥
(
S(tn − r)J−1u(r) − (Sτ )

n−j−1TτJ
−1uj

)
Q

1
2
∥
∥2

HS(U,H)

]
dr

≤ C

∫ tj+1

tj

E

[∥
∥S(tn − r)J−1u(r) − (Sτ )

n−j−1TτJ
−1uj

∥
∥2

HS(U,H)

]
dr

≤ C

∫ tj+1

tj

∥
∥S(tn − r) − (Sτ )

n−j−1Tτ‖2
L (D(M),H)E

[
‖J−1u(r)‖2

D(M)

]
dr

+ C

∫ tj+1

tj

‖(Sτ )
n−j−1Tτ‖2

L (H,H)E

[
‖J−1(u(r) − u(tj ))‖2

H
+ ‖J−1ej‖2

H

]
dr

≤ Cτ 2 + CτE
[‖ej‖2

H

]
,

which yields 

. E

[∥
∥

n−1∑

j=0

J 3
n,j

∥
∥2
H

]
=

n−1∑

j=0

E

[∥
∥J 3

n,j

∥
∥2
H

]
≤ Cτ + Cτ

n−1∑

j=0

E
[‖ej‖2

H

]
.

Combining (i)–(iii), we obtain 

. E

[∥
∥Jn

∥
∥2
H

]
≤ CE

[∥
∥

n−1∑

j=0

J 1
n,j‖2

H
+ ∥

∥
n−1∑

j=0

J 2
n,j

∥
∥2
H

+ ∥
∥

n−1∑

j=0

J 3
n,j

∥
∥2
H

]

≤ Cτ + Cτ

n−1∑

j=0

E
[‖ej‖2

H

]
.

Altogether, we arrive at 

. E
[‖en‖2

H

] ≤ Cτ + Cτ

n−1∑

j=0

E
[‖ej‖2

H
+ ‖ej+1‖2

H

]
.

Then, the discrete Grönwall inequality given in Proposition A.5 implies the 
assertion. 

⨅⨆
Remark 5.1 Similarly, we can obtain the error estimate of the modified stochastic 
midpoint method (4.34), that is, there exists a positive constant C such that the
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solution . un of (4.34) satisfies 

. max
n∈N

(
E

[
‖u(tn) − un‖2

H

]) 1
2 ≤ Cτ

1
2 , (5.14) 

where .u(tn) is the exact solution of the damped stochastic Maxwell equations (3.34) 
at time . tn. See [45] for more details. 

Furthermore, by Theorem 3.6 (iii) and (5.14), the error between the invariant 
measure .π∗ of the exact solution and the invariant measure .πτ of the numerical 
solution in the .L2-Wasserstein distance can be estimated. More precisely, we have 

. W2(π
∗, πτ ) ≤ W2((P

τ
n )∗πτ , P ∗

tn
πτ ) + W2(P

∗
tn
πτ , P ∗

tn
π∗)

≤ Cτ
1
2 + e−σ0tnW2(π

∗, πτ ).

Letting .n → ∞ leads to 

. W2(π
∗, πτ ) ≤ Cτ

1
2 .

5.1.2 Stochastic Symplectic Runge–Kutta Methods 

This subsection is devoted to discussing the generalization of Theorem 5.1 to 
stochastic symplectic Runge–Kutta methods of the stochastic Maxwell equations 
with additive noise. More precisely, we study 

.

Un
i = un + τ

s∑

j=1

aij

(
MUn

j + Fnj (Un
j )

) +
s∑

j=1

ãijB
njΔWn+1,

un+1 = un + τ

s∑

i=1

bi

(
MUn

i + Fni(Un
i )

) +
s∑

i=1

b̃iB
niΔWn+1

(5.15) 

with the symplectic condition .biaij + bjaji − bibj = 0 for all .i, j = 1, 2, . . . , s. 
For convenience of notations, we denote .A := (aij )

s
i,j=1, .Ã := (̃aij )

s
i,j=1, . b :=

(b1, . . . , bs)
⏉ and .̃b := (̃b1, . . . , b̃s)

⏉, and rewrite (5.15) as 

. 

Un = 1s ⊗ un + τ
(
A ⊗ M

)
Un + τ

(
A ⊗ Id

)
Fn(Un) + (

Ã ⊗ Id
)
BnΔWn+1,

un+1 = un + τ
(
b⏉ ⊗ M

)
Un + τ

(
b⏉ ⊗ Id

)
Fn(Un) + (

b̃⏉ ⊗ Id
)
BnΔWn+1.

(5.16) 

Now we formulate the main result of this subsection.
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Theorem 5.2 Let conditions with .k = 2 in Proposition 4.6 hold. Suppose that 
.
∑s

i=1 bi = ∑s
i=1 b̃i = 1. Then there exists a positive constant . C = C(T , u0, F, B)

such that 

. max
1≤n≤N

(
E

[
‖u(tn) − un‖2

H

]) 1
2 ≤ Cτ. (5.17) 

Proof Eliminating the intermediate variable . Un from (5.16) yields that 

. 

un+1 = un + τ
(
b⏉ ⊗ M

)[
Id − τ

(
A ⊗ M

)]−1(1s ⊗ un
) + τ

(
b⏉ ⊗ Id

)
Fn(Un)

+ τ 2(b⏉ ⊗ M
)[

Id − τ
(
A ⊗ M

)]−1(
A ⊗ Id

)
Fn(Un)

+ τ
(
b⏉ ⊗ M

)[
Id − τ

(
A ⊗ M

)]−1(
Ã ⊗ Id

)
BnΔWn+1

+ (
b̃⏉ ⊗ Id

)
BnΔWn+1.

(5.18) 

Let .en := u(tn) − un. From the definition of the strong solution of (5.1), 

.u(tn+1) = u(tn) +
∫ tn+1

tn

[
Mu(s) + F(s, u(s))

]
ds +

∫ tn+1

tn

B(s)dW(s). (5.19) 

Subtracting (5.18) from (5.19), we obtain 

. en+1 − en =
∫ tn+1

tn

Mu(s)ds − τ
(
b⏉ ⊗ M

)[
Id − τ

(
A ⊗ M

)]−1(1s ⊗ un
)

+
∫ tn+1

tn

F (s, u(s))ds − τ
(
b⏉ ⊗ Id

)
Fn(Un)

+ τ 2(b⏉ ⊗ M
)[

Id − τ
(
A ⊗ M

)]−1(
A ⊗ Id

)
Fn(Un) (5.20) 

+
∫ tn+1 

tn 
B(s)dW(s) − (

b̃⏉ ⊗ Id
)
Bn ΔWn+1 

+ τ
(
b⏉ ⊗ M

)[
Id  − τ

(
A ⊗ M

)]−1
((

Ã ⊗ Id
)
Bn ΔWn+1

)

=: I + IIa − IIb + IIIa − IIIb. 

Taking the .H-norm on both sides of (5.20) leads to 

.‖en+1‖2
H

≤ ‖en‖2
H

+ 3‖I‖2
H

+ 2〈en, I 〉H + 3‖II‖2
H

+ 2〈en, II 〉H
+ 3‖III‖2

H
+ 2〈en, III 〉H
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with .II = IIa − IIb and .III = IIIa − IIIb. Now we estimate terms .‖I‖2
H

, 
.〈en, I 〉H, .‖II‖2

H
, .〈en, II 〉H, .‖III‖2

H
, and .〈en, III 〉H separately. 

Step 1. Estimates of terms .‖I‖2
H

and .〈en, I 〉H. Notice that 

. 

I = τMen +
∫ tn+1

tn

M
[
u(s) − u(tn)

]
ds

+
(
τMun − τ

(
b⏉ ⊗ M

)[
Id − τ

(
A ⊗ M

)]−1(1s ⊗ un
))

=: τMen + Ia + Ib.

Theorem 2.4 and Proposition 4.6 with .p = 2 and .k = 2 imply that 

. E
[‖τMen‖2

H

] = −τ 2
E
[〈en,M2en〉H

]

≤ τE
[‖en‖2

H

] + Cτ 3
E

[
‖M2u(tn)‖2

H
+ ‖M2un‖2

H

]

≤ τE
[‖en‖2

H

] + Cτ 3.

It follows from Theorem 2.5 that 

. E
[‖Ia‖2

H

] ≤ τ

∫ tn+1

tn

E
[‖u(s) − u(tn)‖2

D(M)

]
ds ≤ Cτ 3

and 

. E

[∥
∥E

[
Ia|Ftn

]∥
∥2
H

]
≤ τ

∫ tn+1

tn

∥
∥E

[
(u(s) − u(tn))|Ftn

]∥
∥2

D(M)
ds ≤ Cτ 4.

For the term . Ib, using the assumption .
∑s

i=1 bi = 1, we have  

.
(
b⏉⊗Id

)(
1s ⊗Mun

) = (b⏉1s)⊗(Mun) =
s∑

i=1

bi ⊗(Mun) = Mun. (5.21) 

Additionally, it holds that 

.

(b⏉ ⊗ M)
[
Id − τ

(
A ⊗ M

)]−1(1s ⊗ un
)

= (b⏉ ⊗ Id)
[
Id − τ

(
A ⊗ M

)]−1(
Id ⊗ M

)(
1s ⊗ un

)

= (b⏉ ⊗ Id)
[
Id − τ

(
A ⊗ M

)]−1(1s ⊗ Mun
)
.

(5.22)
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Hence, plugging (5.21)–(5.22) into the term . Ib yields 

. 

Ib = τ(b⏉ ⊗ Id)(1s ⊗ Mun) − τ(b⏉ ⊗ Id)
[
Id − τ(A ⊗ M)

]−1
(1s ⊗ Mun)

= τ(b⏉ ⊗ Id)
(
Id − [

Id − τ(A ⊗ M)
]−1

)
(1s ⊗ Mun),

(5.23) 

which combining Lemma C.2 (ii) leads to 

. E
[‖Ib‖2

H

] ≤ CτE
[∥
∥
∥

(
Id − [

Id − τ(A ⊗ M)
]−1

)
(1s ⊗ Mun)

∥
∥
∥

2

H⊗s

]
≤ Cτ 4.

Combining the above estimates, we see that 

. E
[‖I‖2

H

] ≤ CτE
[‖en‖2

H

] + Cτ 3

and 

. E
[〈en, I 〉H

] = E
[〈
en,E

[
Ia|Ftn

]〉

H

] + E
[〈en, Ib〉H

]

≤ τE
[‖en‖2

H

] + Cτ−1
E
[‖E[Ia|Ftn

]‖2
H

] + Cτ−1
E
[‖Ib‖2

H

]

≤ τE
[‖en‖2

H

] + Cτ 3.

Step 2. Estimates of terms .‖II‖H and .〈en, II 〉H. We have  

. IIa = τ
(
F(tn, u(tn)) − F(tn, u

n)
)

+
∫ tn+1

tn

(
F(r, u(r)) − F(tn, u(tn))

)
dr

+ τ

s∑

i=1

bi

(
F(tn, u

n) − F(tn + ciτ, U
n
i )

)

due to the assumption .
∑s

i=1 bi = 1. From the Lipschitz continuity of F , we  
obtain 

. 

‖IIa‖2
H

≤ Cτ 2‖en‖2
H

+ Cτ 4 + Cτ

∫ tn+1

tn

‖u(r) − u(tn)‖2
H

dr

+ Cτ 2‖Un
j − un‖2

H
.

Based on Theorem 2.5 and Proposition 4.6 (iii), we derive that 

.E
[‖IIa‖2

H

] ≤ Cτ 2
E
[‖en‖2

H

] + Cτ 3.
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For the term .〈en, IIa〉H, we need to estimate .E
[‖E[IIa|Ftn

]‖2
H

]
, whose estimate 

is technical. We take the term 

. 

∫ tn+1

tn

(
F(u(r)) − F(u(tn))

)
dr

in .IIa as an example, where F is supposed to be independent of t for the 
simplicity of notations. The dependence on t causes no substantial problems in 
the analysis but just leads to longer formulas. 
Thanks to the Taylor formula, we have 

. 

∫ tn+1

tn

(
F(u(r)) − F(u(tn))

)
dr

=
∫ tn+1

tn

Fu(u(tn))
(
u(r) − u(tn)

)
dr

+
∫ tn+1

tn

∫ 1

0
θFuu(θu(tn) + (1 − θ)u(r))(u(r) − u(tn), u(r) − u(tn))dθdr.

(5.24) 

The second moment of the second term on the right-hand side of (5.24) is 
bounded by .Cτ 4 due to Theorem 2.5. For the first term on the right-hand side 
of (5.24), we apply the conditional expectation first to obtain 

.

E

[ ∫ tn+1

tn

Fu(u(tn))
(
u(r) − u(tn)

)
dr

∣
∣
∣Ftn

]

=
∫ tn+1

tn

Fu(u(tn))E
[
u(r) − u(tn)

∣
∣Ftn

]
dr,

(5.25) 

where the adaptedness of .{u(t)}t∈[0,T ] and properties of the conditional expecta-
tion are used. Then using again Theorem 2.5, we can show that 

. E

[
‖E[IIa|Ftn

]‖2
H

]
≤ Cτ 2

E
[‖en‖2

H

] + Cτ 4.

For the term . IIb, we have  

. 

IIb = τ 2(b⏉ ⊗ Id
)(

Id ⊗ M
)[

Id − τ
(
A ⊗ M

)]−1(
A ⊗ Id

)
Fn(Un)

= τ 2(b⏉ ⊗ Id
)[

Id − τ
(
A ⊗ M

)]−1(
Id ⊗ M

)(
A ⊗ Id

)
Fn(Un)

= τ 2(b⏉ ⊗ Id
)[

Id − τ
(
A ⊗ M

)]−1(
A ⊗ Id

)(
Id ⊗ M

)
Fn(Un).

(5.26)
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Hence, it follows from Lemma C.2 and the linear growth of F that 

. ‖IIb‖H ≤ Cτ 2
∥
∥
∥
[
Id − τ

(
A ⊗ M

)]−1(
A ⊗ Id

)(
Id ⊗ M

)
Fn(Un)

∥
∥
∥
H⊗s

≤ Cτ 2
∥
∥
∥
(
A ⊗ Id

)(
Id ⊗ M

)
Fn(Un)

∥
∥
∥
H⊗s

≤ Cτ 2(1 + ‖Un‖D(M)⊗s

)
,

which leads to .E
[‖IIb‖2

H

] ≤ Cτ 4. 
Therefore, we deduce that 

. E
[‖II‖2

H

] ≤ Cτ 2
E
[‖en‖2

H

] + Cτ 3

and 

. E
[〈en, II 〉H

] = E
[〈en,E

(
IIa|Ftn

)〉H
] − E

[〈en, IIb〉H
]

≤ CτE
[‖en‖2

H

] + C

τ
E

[
‖E[IIa|Ftn

]‖2
H

]
+ C

τ
E
[‖IIb‖2

H

]

≤ CτE
[‖en‖2

H

] + Cτ 3.

Step 3. Estimates of terms .‖III‖H and .〈en, III 〉H. For the term .IIIa , it follows 
from .

∑s
i=1 b̃i = 1 that 

. IIIa =
∫ tn+1

tn

(
B(s) −

s∑

i=1

b̃iB
ni
)

dW(s) =
∫ tn+1

tn

s∑

i=1

b̃i

(
B(s) − Bni

)
dW(s).

Hence, 

. E
[‖IIIa‖2

H

] =
∫ tn+1

tn

∥
∥
∥

s∑

i=1

b̃i

(
B(s) − Bni

)∥
∥
∥

2

HS(U0,H)
ds ≤ Cτ 3.

Similar to . IIb, for the term .IIIb, we obtain 

.

IIIb = τ
(
b⏉ ⊗ Id

)(
Id ⊗ M

)[
Id − τ

(
A ⊗ M

)]−1(
Ã ⊗ Id

)
BnΔWn+1

= τ
(
b⏉ ⊗ Id

)[
Id − τ

(
A ⊗ M

)]−1(
Id ⊗ M

)(
Ã ⊗ Id

)
BnΔWn+1

= τ
(
b⏉ ⊗ Id

)[
Id − τ

(
A ⊗ M

)]−1(
Ã ⊗ Id

)(
Id ⊗ M

)
BnΔWn+1,
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which yields 

. 

E
[‖IIIb‖2

H

]

≤ Cτ 2
E

[∥
∥
∥
[
Id − τ

(
A ⊗ M

)]−1(
Ã ⊗ Id

)(
Id ⊗ M

)(
BnΔWn+1)

∥
∥
∥

2

H⊗s

]

≤ Cτ 2
E

[∥
∥
(
Ã ⊗ Id

)(
Id ⊗ M

)(
BnΔWn+1)∥∥2

H⊗s

]

≤ Cτ 3

due to Lemma C.2. Therefore, 

. E
[‖III‖2

H

] ≤ Cτ 3, E
[〈en, III 〉H

] = 0.

Combining Steps 1–3 above, we conclude that 

. E
[‖en+1‖2

H

] ≤ (1 + Cτ)E
[‖en‖2

H

] + Cτ 3.

Then the Grönwall inequality gives the desired result. The proof of Theorem 5.2 is 
finished. ⨅⨆

5.1.3 Exponential-Type Methods 

This part presents the convergence analysis of the exponential Euler method and the 
accelerated exponential Euler method for the stochastic Maxwell equations 

. 

⎧
⎨

⎩

du(t) =
[
Mu(t) + F̃ (t, u(t))

]
dt + B(t, u(t))dW(t), t ∈ (0, T ],

u(0) = u0,

(5.27) 

where 

. ̃F(t, u(t)) := F(t, u(t))+ 1

2
Bu(t, u(t))B(t, u(t))FQ, FQ(x) =

∑

j∈N

(
Q

1
2 ej (x)

)2
.

Recall that for .n = 0, 1, . . . , N − 1, the exponential Euler method for (5.27) reads 
as 

.un+1 = S(τ)un + τS(τ)F̃ (tn, u
n) + S(τ)B(tn, u

n)ΔWn+1, (5.28)
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and the accelerated exponential Euler method is 

.

un+1 = S(τ)un +
∫ tn+1

tn

S(tn+1 − s)F̃ (tn, u
n)ds

+
∫ tn+1

tn

S(tn+1 − s)B(tn, u
n)dW(s).

(5.29) 

First, we present the convergence result for the additive noise case. 

Theorem 5.3 Let conditions in Proposition 4.7 hold. Assume that . ̃F is twice 
Fréchet differentiable with bounded derivatives. Then for .p ≥ 1 there exists a 
positive constant .C = C(p, T ,Q, u0) such that solutions of (5.28) and (5.29) in 
the additive noise case satisfy 

. E

[
max

1≤n≤N
‖u(tn) − un‖2p

H

]
≤ Cτ 2p.

Proof We only present the proof for the exponential Euler method. The proof for 
the accelerated exponential Euler method is similar and is omitted. Denoting . en :=
u(tn) − un, it follows from mild solutions of (5.27) and (5.28) that 

. en+1 =
n∑

k=0

∫ tk+1

tk

[
S(tn+1 − r)F̃ (r, u(r)) − S(tn+1 − tk)F̃ (tk, u

k)
]
dr

+
n∑

k=0

∫ tk+1

tk

[
S(tn+1 − r)B(r) − S(tn+1 − tk)B(tk)

]
dW(r) (5.30) 

=: In + Jn 

for all .n = 0, 1, . . . , N − 1. 

Step 1. Estimate of the term . In. We decompose . In as 

.

In =
n∑

k=0

∫ tk+1

tk

[
S(tn+1 − r)

(
F̃ (r, u(r)) − F̃ (tk, u(tk))

)]
dr

+
n∑

k=0

∫ tk+1

tk

[(
S(tn+1 − r) − S(tn+1 − tk)

)
F̃ (tk, u(tk))

]
dr

+
n∑

k=0

∫ tk+1

tk

[
S(tn+1 − tk)

(
F̃ (tk, u(tk)) − F̃ (tk, u

k)
)]

dr

=: I 1
n + I 2

n + I 3
n .

(5.31)
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Similar to (5.7), the term . I 1
n can be rewritten as 

. I 1
n =

n∑

k=0

∫ tk+1

tk

[
S(tn+1 − r)F̃u(tk, u(tk))

(
S(r − tk) − I

)
u(tk)

]
dr

+
n∑

k=0

∫ tk+1

tk

[
S(tn+1 − r)F̃u(tk, u(tk))

∫ r

tk

(
S(r − ξ)F̃ (ξ, u(ξ))

)
dξ

]
dr

+
n∑

k=0

∫ tk+1

tk

[
S(tn+1 − r)F̃u(tk, u(tk))

∫ r

tk

(
S(r − ξ)B(ξ)

)
dW(ξ)

]
dr

+
n∑

k=0

∫ tk+1

tk

[
S(tn+1 − r)

∫ 1

0

(
θF̃uu(tk, uθ )

(
u(r)

− u(tk), u(r) − u(tk)
))

dθ
]
dr

+
n∑

k=0

∫ tk+1

tk

[
S(tn+1 − r)

(
F̃ (r, u(r)) − F̃ (tk, u(r))

)]
dr

=: I 1,1
n + I 1,2

n + I 1,3
n + I 1,4

n + I 1,5
n ,

where .uθ := θu(tk) + (1 − θ)u(r) for .θ ∈ [0, 1]. By the assumption on . ̃F and 
the Hölder continuity of u in Theorem 2.5, we deduce that 

. E

[
max

0≤n≤N−1

(
‖I 1,4

n ‖2p

H
+ ‖I 1,5

n ‖2p

H

)]
≤ Cτ 2p.

For the term .I 1,1
n , in virtue of the unitarity of the semigroup . {S(t), t ∈ [0, T ]}

and Lemma C.1, we have  

. ‖I 1,1
n ‖H ≤

n∑

k=0

∫ tk+1

tk

∥
∥F̃u(tk, u(tk))

(
S(r − tk) − Id

)
u(tk)

∥
∥
H

dr

≤ C

n∑

k=0

∫ tk+1

tk

(r − tk)‖u(tk)‖D(M)dr

≤ Cτ
(

max
0≤k≤n

‖u(tk)‖2p

D(M)

) 1
2p

,

then 

.E

[
max

0≤n≤N−1
‖I 1,1

n ‖2p

H

]
≤ Cτ 2p
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due to the .D(M)-regularity of u given in Theorem 2.4. 
For the term .I 1,2

n , using the linear growth of . ̃Fgives 

. ‖I 1,2
n ‖H ≤ C

n∑

k=0

∫ tk+1

tk

[ ∫ r

tk

‖F̃ (ξ, u(ξ))‖Hdξ
]
dr

≤ C

n∑

k=0

∫ tk+1

tk

[ ∫ r

tk

(1 + ‖u(ξ)‖H)dξ
]
dr

≤ Cτ + Cτ
(

sup
0≤t≤T

‖u(t)‖2p

H

) 1
2p

.

Applying Theorem 2.4 again yields 

. E

[
max

0≤n≤N−1
‖I 1,2

n ‖2p

H

]
≤ Cτ 2p.

For the term .I 1,3
n , the stochastic Fubini theorem leads to 

. I 1,3
n =

n∑

k=0

∫ tk+1

tk

∫ tk+1

ξ

[
S(tn+1 − r)F̃u(tk, u(tk))S(r − ξ)B(ξ)

]
drdW(ξ)

=
∫ tn+1

0

∫ (⎿ ξ
τ
⏌+1)τ

ξ

[
S(tn+1 − r)F̃u(t⎿ r

τ
⏌τ , u(t⎿ r

τ
⏌τ ))S(r − ξ)B(ξ)

]
drdW(ξ).

Using Proposition D.5, we obtain 

.E

[
max

0≤n≤N−1
‖I 1,3

n ‖2p

H

]

≤ CE

[( ∫ T

0

∥
∥
∥

∫ (⎿ ξ
τ
⏌+1)τ

ξ

(
S(ξ − r)F̃u(t⎿ r

τ
⏌τ , u(t⎿ r

τ
⏌τ ))S(r − ξ)B(ξ)

)
dr

∥
∥
∥

2

HS(U0,H)
dξ

)p
]

≤ CE

[(N−1∑

k=0

∫ tk+1

tk

( ∫ tk+1

ξ

∥
∥S(−r)F̃u(tk, u(tk))S(r − ξ)B(ξ)

∥
∥

HS(U0,H)
dr

)2
dξ

)p]

≤ CE

[(N−1∑

k=0

∫ tk+1

tk

( ∫ tk+1

ξ

∥
∥B(ξ)

∥
∥

HS(U0,H)
dr

)2
dξ

)p] ≤ Cτ 2p.
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Combining the above estimates, one has 

. E

[
max

0≤n≤N−1
‖I 1

n‖2p

H

]
≤ Cτ 2p.

For the term . I 2
n , the unitarity of the semigroup .{S(t), t ∈ [0, T ]}, the linear 

growth of . ̃F , and Theorem 2.4 imply 

. E

[
max

0≤n≤N−1
‖I 2

n‖2p

H

]

≤ E

[
max

0≤n≤N−1

( n∑

k=0

∫ tk+1

tk

∥
∥
∥

(
S(tn+1 − r) − S(tn+1 − tk)

)
F̃ (tk, u(tk))

∥
∥
∥
H

dr
)2p]

= E

[
max

0≤n≤N−1

( n∑

k=0

∫ tk+1

tk

∥
∥
∥

(
S(r − tk) − Id)

)
F̃ (tk, u(tk))

∥
∥
∥
H

dr
)2p]

≤ Cτ 2p + Cτ 2p
E

[
max

0≤t≤T
‖u(t)‖2p

D(M)

]
≤ Cτ 2p.

By a similar argument, one has 

. E

[
max

0≤n≤N−1
‖I 3

n‖2p

H

]
≤ Cτ

N−1∑

n=0

E

[
max

0≤k≤n
‖ek‖2p

H

]
.

Therefore, we obtain 

.E

[
max

0≤n≤N−1
‖In‖2p

H

]
≤ Cτ 2p + Cτ

N−1∑

n=0

E

[
max

0≤k≤n
‖ek‖2p

H

]
. (5.32) 

Step 2. Estimate of the term . Jn. We decompose the term . Jn as 

.Jn =
n∑

k=0

∫ tk+1

tk

[
S(tn+1 − r) − S(tn+1 − tk)

]
B(r)dW(r)

+
n∑

k=0

∫ tk+1

tk

S(tn+1 − tk)
[
B(r) − B(tk)

]
dW(r)

=: J 1
n + J 2

n .
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Notice that 

. E

[
max

0≤n≤N−1
‖J 1

n ‖2p

H

]

= E

[
max

0≤n≤N−1

∥
∥
∥

∫ tn+1

0

(
S
(
tn+1 −

⌊ r

τ

⌋
τ
)

− S(tn+1 − r)
)
B(r)dW(r)

∥
∥
∥

2p

H

]

≤ E

[
sup

0≤t≤T

∥
∥
∥

∫ t

0
S(t − r)

(
S
(
r −

⌊ r

τ

⌋
τ
)

− Id
)
B(r)dW(r)

∥
∥
∥

2p

H

]
.

It follows from Proposition D.5 and Lemma C.1 that 

. E

[
max

0≤n≤N−1
‖J 1

n ‖2p

H

]

≤ C E

[( ∫ t

0

∥
∥
∥

(
S
(
r −

⌊ r

τ

⌋
τ
)

− Id
)
B(r)

∥
∥
∥

2

HS(U0,H)
dr

)p]

= C E

[(N−1∑

k=0

∫ tk+1

tk

∥
∥
∥
(
S(r − tk) − Id

)
B(r)

∥
∥
∥

2

HS(U0,H)
dr

)p]

≤ C E

[(N−1∑

k=0

∫ tk+1

tk

(r − tk)
2
∥
∥B(r)

∥
∥2

HS(U0,D(M))
dr

)p]

≤ Cτ 2p.

The estimate of the term . J 2
n is similar to that of . J 1

n , which gives 

. E

[
max

0≤n≤N−1
‖J 2

n ‖2p

H

]
≤ Cτ 2p.

Therefore, 

.E

[
max

0≤n≤N−1
‖Jn‖2p

H

]
≤ Cτ 2p. (5.33) 

Combining (5.32) and (5.33) yields 

. E

[
max

0≤n≤N−1
‖en+1‖2p

H

]
≤ Cτ 2p + Cτ

N−1∑

n=0

E

[
max

0≤k≤n
‖ek‖2p

H

]
.

The conclusion of Theorem 5.3 follows from the Grönwall inequality.

⨅⨆
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Next, we consider the mean-square errors of the exponential Euler method and 
the accelerated exponential Euler method for the multiplicative noise case. 

Theorem 5.4 Let conditions in Proposition 4.7 hold. Assume that . ̃F is twice 
Fréchet differentiable with bounded derivatives. Then for .p ≥ 1 there exists a 
positive constant .C = C(p, T ,Q, u0) such that solutions of (5.28) and (5.29) 
in the multiplicative noise case satisfy 

. E

[
max

0≤n≤N
‖u(tn) − un‖2p

H

]
≤ Cτp.

Proof We only present the proof for the exponential Euler method. The proof for 
the accelerated exponential Euler method is similar and is omitted. We use the same 
notations as those in Theorem 5.3. Note that the main difference lies in terms . I 1

n and 
. Jn. 

For the term . I 1
n in (5.31), we use the Lipschitz continuity of . ̃F and Theorem 2.5 

to obtain 

. E

[
max

0≤n≤N−1
‖I 1

n‖2p

H

]

≤ E

[
max

0≤n≤N−1

( n∑

k=0

∫ tk+1

tk

∥
∥
∥S(tn+1 − r)

(
F̃ (r, u(r)) − F̃ (tk, u(tk))

)∥
∥
∥
H

]
dr

)2p]

≤ CE

[
max

0≤n≤N−1

n∑

k=0

∫ tk+1

tk

(
(r − tk)

2p + ‖u(r) − u(tk)‖2p

H

)
dr

]

≤ CE

[N−1∑

k=0

∫ tk+1

tk

(r − tk)
pdr

]
≤ Cτp.

By Theorem 5.3, we know that 

. E

[
max

0≤n≤N−1
‖I 2

n‖2p

H

]
≤ Cτ 2p,

E

[
max

0≤n≤N−1
‖I 3

n‖2p

H

]
≤ Cτ

N−1∑

n=0

E

[
max

0≤k≤n
‖ek‖2p

H

]
.

Therefore, 

.E

[
max

0≤n≤N−1
‖In‖2p

H

]
≤ Cτp + Cτ

N−1∑

n=0

E

[
max

0≤k≤n
‖ek‖2p

H

]
. (5.34)
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We are now in the position to give the estimate of . Jn. Here . Jn reads as 

. Jn =
n∑

k=0

∫ tk+1

tk

[
S(tn+1 − r)

(
B(r, u(r)) − B(tk, u(tk))

)]
dW(r)

+
n∑

k=0

∫ tk+1

tk

[(
S(tn+1 − r) − S(tn+1 − tk)

)
B(tk, u(tk))

]
dW(r)

+
n∑

k=0

∫ tk+1

tk

[
S(tn+1 − tk)

(
B(tk, u(tk)) − B(tk, u

k)
)]

dW(r)

=: J 1
n + J 2

n + J 3
n .

Thanks to Proposition D.5 and the Lipschitz continuity of B, we have  

. E

[
max

0≤n≤N−1
‖J 1

n ‖2p

H

]

≤ CE

[( ∫ T

0

∥
∥
∥B(r, u(r)) − B

(⌊ r

τ

⌋
τ, u

(⌊ r

τ

⌋
τ
))∥

∥
∥

2

HS(U0,H)
dr

)p]

≤ CE

[( ∫ T

0

((
r −

⌊ r

τ

⌋
τ
)2 +

∥
∥
∥u(r) − u

(⌊ r

τ

⌋
τ
)∥
∥
∥

2

H

)
dr

)p]
.

Thus, 

. E

[
max

0≤n≤N−1
‖J 1

n ‖2p

H

]
≤ C

N−1∑

k=0

∫ tk+1

tk

(r − tk)
pdr ≤ Cτp

due to the Hölder continuity of u in Theorem 2.5. Similarly, for the term . J 2
n , we  

have 

.

E

[
max

0≤n≤N−1
‖J 2

n ‖2p

H

]

≤ E

[
sup

0≤t≤T

∥
∥
∥

∫ t

0

(
S(t − r) − S

(
t −

⌊ r

τ

⌋
τ
))

B
(⌊ r

τ

⌋
τ, u

(⌊ r

τ

⌋
τ
))

dW(r)

∥
∥
∥

2p

H

]

≤ CE

[( ∫ T

0

∥
∥
∥

(
Id − S

(
r −

⌊ r

τ

⌋
τ
))

B
(⌊ r

τ

⌋
τ, u

(⌊ r

τ

⌋
τ
))∥

∥
∥

2

HS(U0,H)
dr

)p]

≤ C

N−1∑

k=0

∫ tk+1

tk

(
r −

⌊ r

τ

⌋
τ
)2p

E

[∥
∥
∥B

(⌊ r

τ

⌋
τ, u

([ r

τ

]
τ
))∥

∥
∥

2p

HS(U0,D(M))
dr

]

≤ Cτ 2p.
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For the last term . J 3
n , the Lipschitz continuity of B yields 

. E

[
max

0≤n≤N−1
‖J 3

n ‖2p

H

]
≤ Cτ

N−1∑

n=0

E

[
max

0≤k≤n
‖ek‖2p

H

]
.

Altogether, we obtain 

.E

[
max

0≤n≤N−1
‖Jn‖2p

H

]
≤ Cτp + Cτ

N−1∑

n=0

E

[
max

0≤k≤n
‖ek‖2p

H

]
. (5.35) 

Combining (5.34) and (5.35), and using the Grönwall inequality give the desired 
result. ⨅⨆

5.2 Convergence Analysis for Fully Discrete Algorithms 

In Sect. 4.2.3, we have constructed several fully discrete algorithms for 

.

⎧
⎨

⎩

du(t) = Mu(t)dt + λdW(t), t ∈ (0, T ],
u(0) = u0,

(5.36) 

where .λ = (λ⏉
1 ,λ⏉

2 )⏉ ∈ R
6 and 

. M =
[

0 ε−1∇×
−μ−1∇× 0

]

with D(M) = H0(curl,D) × H(curl,D).

Those fully discrete algorithms are constructed via dG methods in space and 
the stochastic midpoint method in time. And the well-posedness, regularities of 
the numerical solution, and some intrinsic properties of the fully discrete system 
were analyzed. In this section, we continue to give their mean-square convergence 
analysis. We take the error analysis of the following stochastic symplectic dG 
algorithm as an example 

. 

⎧
⎨

⎩

un+1
h = un

h + τM
upw
h u

n+ 1
2

h + ΠhλΔWn+1, n = 0, 1, . . . , N − 1,

u0
h = Πhu0,

(5.37)
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where .ΔWn+1 = W(tn+1) − W(tn) and .Mupw
h is given in Definition 4.4. And the  

finite element space is taken as 

. Hh,1 = {
vh ∈ L2(D) : vh|K ∈ P 1(K) for all K ∈ Th

}6
.

5.2.1 Error Estimate of the Spatial Semi-Discretization 

To give the convergence analysis of (5.37), we first study the mean-square conver-
gence of the spatial semi-discretization (4.75), that is, 

.

⎧
⎨

⎩

duh(t) = M
upw
h uh(t)dt + ΠhλdW(t), t ∈ (0, T ],

uh(0) = Πhu0.
(5.38) 

Proposition 5.2 Suppose that Assumption 4.1 holds. The spatial semi-discretization 
(5.38) is well-posed, i.e., there exists a unique mild solution . uh ∈ L2(Ω,C([0, T ],
Hh,1)) given by 

.uh(t) = etM
upw
h uh(0) +

∫ t

0
e(t−s)M

upw
h ΠhλdW(s), P-a.s. (5.39) 

for all .t ∈ [0, T ]. Moreover, 

. E
[

sup
0≤t≤T

‖uh(t)‖2
H

] ≤ C
(
1 + E

[‖u0‖2
H

])
,

where the positive constant C depends on T , . ε, . μ, . λ, and .Tr(Q). 

Proof Note that 

. Id − M
upw
h : Hh,1 → Hh,1

is injective and surjective, and thus .ran(Id − M
upw
h ) = Hh,1. It follows from 

Proposition 4.25 (ii) that .Mupw
h is dissipative on .Hh,1, and thus it generates a 

contraction semigroup .{Sh(t) := etM
upw
h , t ≥ 0}. Similar to Theorem 2.2, for any 

.t ∈ [0, T ], there exists a unique mild solution . uh of (5.38) given by (5.39). 
Combining (5.39) and Proposition D.5 yields 

.E
[

sup
0≤t≤T

‖uh(t)‖2
H

]

≤ 2E
[

sup
0≤t≤T

∥
∥
∥Sh(t)uh(0)

∥
∥
∥

2

H

]
+ 2E

[
sup

0≤t≤T

∥
∥
∥

∫ t

0
Sh(t − s)ΠhλdW(s)

∥
∥
∥

2

H

]



5.2 Convergence Analysis for Fully Discrete Algorithms 201

≤ 2E
[‖uh(0)‖2 

H

] + 2T E
[‖ΠhλQ 

1 
2 ‖2 

HS(U,H)

]

≤ 2E
[‖uh(0)‖2 

H

] + 2T max{‖ε‖L∞(D), ‖μ‖L∞(D)}|λ|2Tr(Q) 

≤ C
(
1 + E

[‖u0‖2 
H

])

due to the property .‖Πhv‖H ≤ ‖v‖H for .v ∈ H of the projection operator. ⨅⨆
Now, we apply the projection operator .Πh to (5.36) and use the property . M

upw
h =

ΠhMu in Proposition 4.25 (i) to obtain 

.

⎧
⎨

⎩

dΠhu(t) = M
upw
h u(t)dt + ΠhλdW(t), t ∈ (0, T ],

Πhu(0) = Πhu0.
(5.40) 

We need the following result of projection operator .Πh (see e.g., [143] for more  
details). 

Lemma 5.1 For all .v ∈ Hk(Th) with . k ∈ {1, 2},

. |v − Πhv|Hs(Th) ≤ Chk−s |v|Hk(Th) ∀ s ∈ {0, 1, . . . , k}

and 

. 
∑

F∈Gh

‖v − Πhv‖2
L2(F )6 ≤ Ch2k−1|v|2

Hk(Th)
,

where the positive constant C is independent of h. 

After these preparations, the mean-square convergence order of (5.38) is stated 
as follows. 

Theorem 5.5 Let .u ∈ C
([0, T ], L2(Ω,Hk(D)6)

)
with .k ∈ {1, 2} be the solution 

of (5.36), and .uh ∈ C
([0, T ], L2(Ω,Hh,1)

)
be the solution of (5.38). Then there 

exists a positive constant C independent of h such that 

. sup
0≤t≤T

E
[‖uh(t) − u(t)‖2

H

] ≤ Ch2k−1.

Proof Define the error .e(t) := uh(t) − u(t) for all .t ∈ [0, T ], which can be 
decomposed as 

. e(t) = (
uh(t) − Πhu(t)

) − (
u(t) − Πhu(t)

) =: eh(t) − eπ (t).

For the error .eπ (t), it follows immediately from Lemma 5.1 that 

.E
[‖eπ (t)‖2

H

] = E
[‖u(t) − Πhu(t)‖2

H

] ≤ Ch2k
E
[‖u(t)‖2

Hk(D)6

]
. (5.41)
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For the error .eh(t), subtracting (5.40) from (5.38) obtains 

. deh(t) = M
upw
h eh(t)dt − M

upw
h eπ (t)dt, t ∈ (0, T ]

with .eh(0) = 0. Then for any .t ∈ [0, T ], we have  

. 
1

2
‖eh(t)‖2

H
−

∫ t

0

〈
M

upw
h eh(s), eh(s)

〉

H

ds = −
∫ t

0

〈
M

upw
h eπ (s), eh(s)

〉

H

ds.

(5.42) 

Let .eπ =: ((eEπ )⏉, (eHπ )⏉
)⏉ and .eh =: ((eEh )⏉, (eHh )⏉

)⏉. Notice that . eh(t) ∈ Hh,1

and .eπ (t) ∈ Hh,1 + (D(M) ∩ H 1(D)6) for .t ∈ [0, T ]. Proposition 4.25 (iii) implies 

. 

〈
M

upw
h eπ , eh

〉

H

=
∑

K∈Th

[〈
eHπ ,∇ × eEh

〉

L2(K)3
−

〈
eEπ ,∇ × eHh

〉

L2(K)3

]

+
∑

G∈GI
h

[〈
βKeHπ,KG

+ βKG
eHπ,K − γGnG × [[eEπ ]]G,nG × [[eEh ]]G

〉

L2(G)3

−
〈
αKeEπ,KG

+ αKG
eEπ,K + δGnG × [[eHπ ]]G,nG × [[eHh ]]G

〉

L2(G)3

]

−
∑

G∈GB
h

[〈
eHπ ,nG × eEh

〉

L2(G)3
+ 2γG

〈
nG × eEπ ,nG × eEh

〉

L2(G)3

]
.

Using the fact that .〈v − Πhv,wh〉H = 0 for all .v ∈ H and .wh ∈ Hh,1 leads to 

. 
〈
eHπ ,∇ × eEh

〉

L2(K)3 = 〈
eEπ ,∇ × eHh

〉

L2(K)3 = 0.

Then the Young inequality yields 

. 

∣
∣
∣

〈
M

upw
h eπ , eh

〉

H

∣
∣
∣

≤
∑

G∈GB
h

γG‖nG × eEh ‖2
L2(G)3

+ 1

2

∑

G∈GI
h

[
γG

∥
∥nG × [[eEh ]]G

∥
∥2

L2(G)3 + δG

∥
∥nG × [[eHh ]]G

∥
∥2

L2(G)3

]

+ 1

2

∑

G∈GI
h

[ 1

γG

∥
∥βKeHπ,KG

+ βKG
eHπ,K − γGnG × [[eEπ ]]G

∥
∥2

L2(G)3 (5.43)



5.2 Convergence Analysis for Fully Discrete Algorithms 203

+ 
1 

δG

∥
∥αKeE π,KG + αKG e

E 
π,K + δGnG × [[eH 

π ]]G
∥
∥2 

L2(G)3

]

+
∑

G∈GB 
h

[ 1 

2γG

∥
∥eH 

π

∥
∥2 

L2(G)3 + 2γG

∥
∥nG × eE π

∥
∥2 

L2(G)3

]

≤ −1 

2

〈
M

upw 
h eh, eh

〉

H 
+ Ch2k−1‖u(s)‖2 

Hk(D)6 , 

where in the last step we used Proposition 4.25 (ii) and Lemma 5.1. Plugging (5.43) 
into (5.42), we obtain 

. 
1

2
‖eh(t)‖2

H
− 1

2

∫ t

0

〈
M

upw
h eh(s), eh(s)

〉

H

ds ≤ Ch2k−1
∫ t

0
‖u(s)‖2

Hk(D)6ds.

By .
〈
M

upw
h vh, vh

〉

H
≤ 0 for all .vh ∈ Hh,1 given in Proposition 4.25 (ii), and the 

.Hk-regularity of the solution u (see Theorems 2.6 and 2.7), one has 

. sup
0≤t≤T

E
[‖eh(t)‖2

H

] ≤ Ch2k−1
∫ T

0
E
[‖u(s)‖2

Hk(D)6

]
ds,

which combining with (5.41) completes the proof. ⨅⨆

5.2.2 Error Estimate of the Full Discretization 

Now, we focus on the convergence analysis of the full discretization (5.37) for the 
stochastic Maxwell equations (5.36). Denote 

. Sh,τ :=
(
Id − τ

2
M

upw
h

)−1(
Id + τ

2
M

upw
h

)
and Th,τ :=

(
Id − τ

2
M

upw
h

)−1
,

then (5.37) can be rewritten in a compact form 

.un+1
n = Sh,τ u

n
h + Th,τΠhλΔWn+1 (5.44) 

for all .n = 0, 1, . . . , N − 1. 

Proposition 5.3 Suppose that Assumption 4.1 holds. Let . un
h be the solution of 

(5.37). Then there exists a positive constant .C = C(T , ε, μ,λ,Q) such that 

. max
1≤n≤N

E
[‖un

h‖2
H

] ≤ C
(

1 + E
[‖u0‖2

H

])
.
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Proof It follows from (5.44) that 

. un
h = Sn

h,τΠhu0 +
n∑

j=1

S
n−j
h,τ Th,τΠhλΔWj, n = 1, 2, . . . , N.

Taking the .H-norm on both sides of the above equation, one obtains 

. E
[‖un

h‖2
H

] ≤ 2E
[
‖Sn

h,τΠhu0‖2
H

]
+ 2E

[∥
∥
∥

n∑

j=1

S
n−j
h,τ Th,τΠhλΔWj

∥
∥
∥

2

H

]
.

This combining with Lemma C.4 and the property .‖Πhv‖H ≤ ‖v‖H for all . v ∈ H

leads to 

. E
[‖un

h‖2
H

] ≤ 2E
[‖Πhu0‖2

H

] + 2
n∑

j=1

E
[∥
∥ΠhλΔWj

∥
∥2
H

]

≤ 2E
[‖Πhu0‖2

H

] + 2nτ max{‖ε‖L∞(D), ‖μ‖L∞(D)}|λ|2Tr(Q)

≤ C
(

1 + E
[‖u0‖2

H

])
,

which completes the proof. ⨅⨆
In order to present the mean-square convergence result of the full discretiza-

tion (5.37), we need .Hk(D)6-regularity (.k = 1, 2) of the solution . un of the 
stochastic midpoint method 

.un+1 = un + τMun+ 1
2 + λΔWn+1, n = 0, 1, . . . , N − 1. (5.45) 

Similar to Theorems 2.6 and 2.7, we have the following proposition. 

Proposition 5.4 Under conditions in Theorem 2.7 and the PEC boundary condi-
tions .n × E|∂D = 0, .n · H|∂D = 0, the solution . un of (5.45) satisfies 

. max
1≤n≤N

E
[‖un‖2

Hk(D)6

] ≤ C
(

1 + E
[‖u0‖2

Hk(D)6

])
, k = 1, 2,

where the positive constant C depends on T , . λ, and .‖Q 1
2 ‖HS(U,Hk(D)). 

Based on the above analyses, we finally derive the following mean-square error 
for the full discretization (5.37).



5.2 Convergence Analysis for Fully Discrete Algorithms 205

Theorem 5.6 Under conditions in Theorem 5.1 and Proposition 5.4, there exists a 
positive constant C such that 

. max
1≤n≤N

(
E
[‖u(tn) − un

h‖2
H

]) 1
2 ≤ Cτ

k
2 + Chk− 1

2 , k = 1, 2.

Proof We divide the error .un
h − u(tn) into two parts: 

. un
h − u(tn) =

(
un

h − un
)

︸ ︷︷ ︸
Spatial error

+
(
un − u(tn)

)

︸ ︷︷ ︸
Temporal error

.

The convergence analysis of the temporal error has been established in Theorem 5.1, 
namely, 

. max
0≤n≤N

(
E
[‖u(tn) − un‖2

H

]) 1
2 ≤ Cτ

k
2 .

Now we give the spatial error estimate. Note that 

. un
h − un =

(
un

h − Πhu
n
)

+
(
Πhu

n − un
)

=: en
h + en

π .

It follows from Lemma 5.1 that 

. E
[‖en

π‖2
H

] ≤ Ch2k
E
[‖un‖2

Hk(D)6

]
,

which combining Proposition 5.4 gives 

.E
[‖en

π‖2
H

] ≤ Ch2k
(

1 + E
[‖u0‖2

Hk(D)6

])
. (5.46) 

The estimate of . en
h is stated below. We apply the projection operator .Πh to (5.45) 

and use Proposition 4.25 (i) to obtain 

.Πhu
n+1 = Πhu

n + τ

2

(
M

upw
h un + M

upw
h un+1

)
+ ΠhλΔWn+1. (5.47) 

Subtracting (5.37) from (5.47) yields 

.en+1
n = en

h + τ

2

(
M

upw
h en

h + M
upw
h en+1

h

)
+ τ

2

(
M

upw
h en

π + M
upw
h en+1

π

)
.
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Applying .〈·, en
h + en+1

h 〉H to both sides of the above equation, we obtain 

.

‖en+1
h ‖2

H
− ‖en

h‖2
H

= τ

2

〈
M

upw
h (en

h + en+1
h ), en

h + en+1
h

〉

H

+ τ

2

〈
M

upw
h (en

π + en+1
π ), en

h + en+1
h

〉

H

.

(5.48) 

For the first term on the right-hand side of (5.48), it follows from Proposition 4.25 
(ii) that 

. 

〈
M

upw
h (en

h + en+1
h ), en

h + en+1
h

〉

H

≤ 0.

Similar to (5.43), for the second term on the right-hand side of (5.48), we have  

. 

〈
M

upw
h (en

π + en+1
π ), en

h + en+1
h

〉

H

≤ −1

2

〈
M

upw
h (en

h + en+1
h ), en

h + en+1
h

〉

H

+ Ch2k−1‖un + un+1‖2
Hk(D)6 .

(5.49) 

Plugging (5.49) into (5.48) gives 

. E

[
‖en+1

h ‖2
H

− ‖en
h‖2

H

]
≤ Cτh2k−1

E

[
‖un‖2

Hk(D)6 + ‖un+1‖2
Hk(D)6

]
≤ Cτh2k−1.

Then the Grönwall inequality yields that 

.E
[‖en

h‖2
H

] ≤ Ch2k−1. (5.50) 

Combining (5.46) and (5.50) yields that 

. max
1≤n≤N

(
E
[‖un

h − un‖2
H

]) 1
2 ≤ Chk− 1

2 .

The desired mean-square convergence order can be derived by adding up the 
temporal and spatial errors. ⨅⨆
Remark 5.2 Using similar arguments as in the proof of Theorem 5.6, we can derive 
the convergence analysis for other dG full discretizations to (5.36). See also [160] 
for the study of the optimal spatial error estimates in the case of .d ≤ 2.
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5.3 Convergence Analysis for Splitting Algorithms 

This section mainly focuses on the convergence analysis of splitting algorithms 
discussed in Sect. 4.3 for the stochastic Maxwell equations with additive noise 

.

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dE(t) = ∇ × H(t)dt + λ1dW(t), t ∈ (0, T ],
dH(t) = −∇ × E(t)dt + λ2dW(t), t ∈ (0, T ],
E(0) = E0, H(0) = H0

(5.51) 

on a cuboid .D = (a−
1 , a+

1 ) × (a−
2 , a+

2 ) × (a−
3 , a+

3 ). We first investigate the mean-
square error of the splitting process. Then the stochastic midpoint method is taken 
as an example to discretize each subsystem in the temporal direction and the 
corresponding convergence analysis is also given. 

5.3.1 Splitting Error 

The splitting error is introduced by solving the subproblems in a completely 
decoupled manner. Generally, the splitting error always exists, even when all 
subproblems are solved exactly. The aim of this subsection is to present an analysis 
of operator splitting and to provide insight into the splitting error. 

Let .{uτ (t), t ∈ [0, T ]} be a sequence of splitting processes. Recall that the 
system (4.98) is obtained based on the local one-dimensional splitting of the 
Maxwell operator. On the time interval .(tn, tn+1] with .tn = nτ , .n = 0, 1, . . . , N−1, 
(4.98) reads as 

.

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

du
[1]
τ,n(t) = Mxu

[1]
τ,n(t)dt + λ[1]dW(t), u

[1]
τ,n(tn) = uτ (tn),

du
[2]
τ,n(t) = Myu

[2]
τ,n(t)dt + λ[2]dW(t), u

[2]
τ,n(tn) = u

[1]
τ,n(tn+1),

du
[3]
τ,n(t) = Mzu

[3]
τ,n(t)dt + λ[3]dW(t), u

[3]
τ,n(tn) = u

[2]
τ,n(tn+1).

(5.52) 

Let .
{
φα

n,t−tn
: 0 ≤ tn ≤ t

}
, .α = x, y, z be the solution operators of equations 

in (5.52) on .(tn, tn+1], then the splitting process . uτ on .(tn, tn+1] is defined as 

.uτ (t) :=
(
φz

n,t−tn
φ

y
n,τ φ

x
n,τ

)
uτ (tn) (5.53) 

with .uτ (0) = u0. It is obvious that 

.uτ (tn) =
n−1∏

j=0

(
φz

j,τ φ
y
j,τ φ

x
j,τ

)
uτ (0), n = 1, 2, . . . , N.
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Theorem 5.7 Under conditions in Theorem 2.7, for sufficiently small . τ , there exists 
a positive constant C such that 

. max
1≤n≤N

(
E
[‖u(tn) − uτ (tn)‖2

H

]) 1
2 ≤ Cτ.

Proof For .n = 0, 1, . . . , N −1, according to (5.53) and the mild solutions of (5.52), 
we have 

. 

uτ (tn+1) = Sz(τ )(φ
y
n,τ φ

x
n,τ uτ (tn)) +

∫ t

tn

Sz(tn+1 − r)λ[3]dW(r)

= Sz(τ )
[
Sy(τ )φx

n,τ uτ (tn) +
∫ tn+1

tn

Sy(tn+1 − r)λ[2]dW(r)
]

+
∫ tn+1

tn

Sz(tn+1 − r)λ[3]dW(r)

= Sz(τ )Sy(τ )
[
Sx(τ )uτ (tn) +

∫ tn+1

tn

Sx(tn+1 − r)λxdW(r)
]

+
∫ tn+1

tn

Sz(τ )Sy(tn+1 − r)λ[2]dW(r) +
∫ tn+1

tn

Sz(tn+1 − r)λ[3]dW(r)

= Sz(τ )Sy(τ )Sx(τ )uτ (tn) +
∫ tn+1

tn

Sz(τ )Sy(τ )Sx(tn+1 − r)λ[1]dW(r)

+
∫ tn+1

tn

Sz(τ )Sy(tn+1 − r)λ[2]dW(r) +
∫ tn+1

tn

Sz(tn+1 − r)λ[3]dW(r).

(5.54) 

It follows from (5.51) and .(λ⏉
1 ,λ⏉

2 )⏉ = λ[1] + λ[2] + λ[3] that 

. 

u(tn+1) = S(τ)u(tn) +
∫ tn+1

tn

S(tn+1 − r)λ[1]dW(r)

+
∫ tn+1

tn

S(tn+1 − r)λ[2]dW(r) +
∫ tn+1

tn

S(tn+1 − r)λ[3]dW(r).

(5.55)
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Let .en := u(tn) − uτ (tn). Subtracting (5.54) from (5.55) leads to 

.

en+1 = Sz(τ )Sy(τ )Sx(τ )en + [
S(τ) − Sz(τ )Sy(τ )Sx(τ )

]
u(tn)

+
∫ tn+1

tn

[
S(tn+1 − r) − Sz(τ )Sy(τ )Sx(tn+1 − r)

]
λ[1]dW(r)

+
∫ tn+1

tn

[
S(tn+1 − r) − Sz(τ )Sy(tn+1 − r)

]
λ[2]dW(r)

+
∫ tn+1

tn

[
S(tn+1 − r) − Sz(tn+1 − r)

]
λ[3]dW(r)

=: Sz(τ )Sy(τ )Sx(τ )en + I1 + I2 + I3 + I4.

(5.56) 

For the term . I1, by Lemma C.5 (iii) and the .H 2(D)6-regularity of u in Theorem 2.7, 
we have 

.E
[ ‖I1‖2

H

] ≤ Cτ 4
E
[‖u(tn)‖2

H 2(D)6

] ≤ Cτ 4. (5.57) 

For the term . I2, the Itô isometry yields 

. 

E
[‖I2‖2

H

]

=
∫ tn+1

tn

∥
∥
∥

(
S(tn+1 − s) − Sz(τ )Sy(τ )Sx(tn+1 − s)

)
λ[1] ◦ Q

1
2

∥
∥
∥

2

HS(U,H)
ds

≤ C

∫ tn+1

tn

∥
∥
∥Sz(τ )Sy(τ )

(
S(tn+1 − s) − Sx(tn+1 − s)

)
λ[1] ◦ Q

1
2

∥
∥
∥

2

HS(U,H)
ds

+ C

∫ tn+1

tn

∥
∥
∥

(
Sz(τ )

(
Id − Sy(τ )

)
S(tn+1 − s)

)
λ[1] ◦ Q

1
2

∥
∥
∥

2

HS(U,H)
ds

+ C

∫ tn+1

tn

∥
∥
∥ (Id − Sz(τ )) S(tn+1 − s)λ[1] ◦ Q

1
2

∥
∥
∥

2

HS(U,H)
ds

≤ Cτ 3,

where we used the unitarity of semigroups . Sα (.α = x, y, z) and Lemma C.5 (i)–(ii). 
Similarly, one has 

.E
[‖I3‖2

H

] ≤ Cτ 3, E
[‖I4‖2

H

] ≤ Cτ 3.
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Then combining the above estimates for terms .I1, . . . , I4, we obtain 

. 

E
[‖en+1‖2

H

] ≤ E

[
‖Sz(τ )Sy(τ )Sx(τ )en‖2

H

]
+ 2E

[〈
Sz(τ )Sy(τ )Sx(τ )en, I1

〉

H

]

+ CE

[
‖I1‖2

H
+ ‖I2‖2

H
+ ‖I3‖2

H
+ ‖I4‖2

H

]

≤ (1 + Cτ)E
[
‖Sz(τ )Sy(τ )Sx(τ )en‖2

H

]
+ C

τ
E
[‖I1‖2

H

]

+ CE

[
‖I1‖2

H
+ ‖I2‖2

H
+ ‖I3‖2

H
+ ‖I4‖2

H

]

≤ (1 + Cτ)E
[‖en‖2

H

] + Cτ 3

due to the Young inequality. The conclusion of the theorem follows from the 
Grönwall inequality. ⨅⨆

5.3.2 Error of the Splitting Midpoint Method 

In this part, we apply the stochastic midpoint method to discretize (5.52) temporally 
and obtain the following splitting midpoint method starting from . u0: 

.

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

un+1,[1] = un + 1
2τMx

(
un + un+1,[1]) + λ[1]ΔWn+1,

un+1,[2] = un+1,[1] + 1
2τMy

(
un+1,[1] + un+1,[2]) + λ[2]ΔWn+1,

un+1 = un+1,[2] + 1
2τMz

(
un+1,[2] + un+1

) + λ[3]ΔWn+1.

(5.58) 

The convergence analysis for (5.58) is stated below. 

Theorem 5.8 Under conditions in Theorem 2.7, for sufficiently small . τ , there exists 
a positive constant C such that 

. max
0≤n≤N

(
E
[ ∥
∥u(tn) − un

∥
∥2
H

]) 1
2 ≤ Cτ.

Proof Denoting 

.Sτ,α :=
(
Id − τ

2
Mα

)−1(
Id + τ

2
Mα

)
, Tτ,α :=

(
Id − τ

2
Mα

)−1
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with .α = x, y, z, the splitting midpoint method (5.58) can be rewritten as 

. 

un+1 = Sτ,zSτ,ySτ,xu
n + Sτ,zSτ,yTτ,xλ

[1]ΔWn+1

+ Sτ,zTτ,yλ
[2]ΔWn+1 + Tτ,zλ

[3]ΔWn+1, n = 0, 1, . . . , N − 1.

(5.59) 

Let .ên := u(tn) − un. Subtracting (5.59) from (5.55), we obtain 

. ̂en+1 = Sτ,zSτ,ySτ,x ê
n +

(
S(τ) − Sτ,zSτ,ySτ,x

)
u(tn)

+
∫ tn+1

tn

[
S(tn+1 − r) − Sτ,zSτ,yTτ,x

]
λ[1]dW(r)

+
∫ tn+1

tn

[
S(tn+1 − r) − Sτ,zTτ,y

]
λ[2]dW(r)

+
∫ tn+1

tn

[
S(tn+1 − r) − Tτ,z

]
λ[3]dW(r)

=: Sτ,zSτ,ySτ,x ê
n + Î1 + Î2 + Î3 + Î4.

It follows from Lemma C.6 (iii) and Theorem 2.7 that 

. E
[‖Î1‖2

H

] ≤ Cτ 4
E
[‖u(tn)‖2

H 2(D)6

] ≤ Cτ 4.

For the term . Î2, the Itô isometry leads to 

. E
[‖Î2‖2

H

] =
∫ tn+1

tn

∥
∥
∥

(
S(tn+1 − s) − Sτ,zSτ,yTτ,x

)
λ[1]Q

1
2

∥
∥
∥

2

HS(U,H)
ds

≤ C

∫ tn+1

tn

∥
∥
∥Sτ,zSτ,y

(
S(tn+1 − s) − Tτ,x

)
λ[1]Q

1
2

∥
∥
∥

2

HS(U,H)
ds

+ C

∫ tn+1

tn

∥
∥
∥

(
Sτ,z

(
Id − Sτ,y

)
S(tn+1 − s)

)
λ[1]Q

1
2

∥
∥
∥

2

HS(U,H)
ds

+ C

∫ tn+1

tn

∥
∥
(
Id − Sτ,z

)
S(tn+1 − s)λ[1]Q

1
2
∥
∥2

HS(U,H)
ds

≤ Cτ 3,

where the last inequality follows from Lemma C.6 (i)–(ii). Similarly, we can obtain 

.E
[‖Î3‖2

H

] ≤ Cτ 3, E
[‖Î4‖2

H

] ≤ τ 3.
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Altogether, by the Young inequality, we obtain 

. E
[‖ên+1‖2

H

] ≤ E

[∥
∥Sτ,zSτ,ySτ,x ên

∥
∥2
H

]
+ 2E

[〈
Sτ,zSτ,ySτ,x ên, Î1

〉

H

]

+ CE

[
‖Î1‖2

H
+ ‖Î2‖2

H
+ ‖Î3‖2

H
+ ‖Î4‖2

H

]

≤ (1 + Cτ)E
[∥
∥Sτ,zSτ,ySτ,x ên

∥
∥2
H

]
+ C

τ
E
[‖Î1‖2

H

]

+ CE

[
‖Î1‖2

H
+ ‖Î2‖2

H
+ ‖Î3‖2

H
+ ‖Î4‖2

H

]

≤ (1 + Cτ)E
[‖ên‖2

H

] + Cτ 3.

The proof is thus completed by the Grönwall inequality. ⨅⨆
Remark 5.3 If we use the exponential Euler method (4.44) to discretize (5.53) in 
the temporal direction, one can derive the corresponding mean-square convergence 
order in a similar approach as Theorem 5.8. 

Summary and Outlook 

With the regularity analysis of the exact solution for the stochastic Maxwell 
equations in Chap. 2 and that of numerical solutions in Chap. 4, we give the  
convergence analyses for several structure-preserving algorithms. The mean-square 
errors of the temporal semi-discretizations, including the stochastic symplectic 
Runge–Kutta methods and the exponential-type methods are estimated in Sect. 5.1. 
Then, a fully discrete algorithm via the dG method in space and the midpoint method 
in time is analyzed in Sect. 5.2. Finally, the error estimate of the splitting process is 
derived and the mean-square convergence order of a splitting midpoint method is 
obtained in the last section. 

There are still some unsolved problems in the mean-square convergence anal-
ysis of structure-preserving algorithms for the stochastic Maxwell equations. For 
example:

● What is the mean-square convergence order of the stochastic symplectic Runge– 
Kutta methods for the stochastic Maxwell equations driven by multiplicative 
noise?

● How to give the mean-square convergence analyses of the fully discrete structure-
preserving algorithms, whose spatial direction is discretized by utilizing the 
wavelet method or the finite difference method? 

In many applications of stochastic partial differential equations, researchers 
sometimes are interested in simulating the average of the functional of the solution
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to the stochastic partial differential equation, which prompts the development of 
weakly convergent numerical methods. There have been plenty of works related to 
the weak convergence analysis of numerical algorithms for stochastic systems; see 
e.g., [6, 7, 54, 64, 65, 68, 86, 93, 119–121, 128, 152, 175, 176] and references therein. 
However, there is no work on this subject for the stochastic Maxwell equations. 

Besides, we would like to mention that all the results in this chapter are 
derived for the stochastic Maxwell equations with globally Lipschitz continuous 
coeffiicents. For the case with the non-globally Lipschitz continuous drift term, such 
as the second harmonic generation and the Kerr-type nonlinearity, to our knowledge, 
there is no work on their numerical study. Generally, it is a difficult problem 
to obtain the mean-square convergence order of the numerical approximation of 
stochastic nonlinear partial differential equations. So far, one approach to deal with 
this problem is to study the exponential integrability of both the exact and the 
numerical solutions (see [17, 22, 55–57, 60, 106] and references therein). Another 
approach is to utilize techniques like truncating the nonlinear term [37, 63], using 
the tamed function [89, 108, 110], and adapting the step-size to control the stability 
[79, 99, 114, 115]. More efforts need to be paid to the numerical study of the 
stochastic Maxwell equations with non-globally Lipschitz continuous coefficients.



Chapter 6 
Implementation of Numerical 
Experiments 

The last chapter is dedicated to the numerical experiments to verify our theoretical 
results obtained in this monograph, particularly in Chaps. 4 and 5. The efficient 
numerical scientific computing environment—MATLAB—will be used in this chap-
ter to solve numerical examples that illustrate some key concepts and theoretical 
properties. 

We begin with MATLAB codes for the standard Brownian motion and the Q-
Wiener process in Sect. 6.1. Section 6.2 turns to present some numerical experiments 
to confirm the structure-preserving properties and convergence order results investi-
gated in the previous chapters. Particularly, some core MATLAB codes of numerical 
experiments are provided for the reader’s convenience. 

For more details of the MATLAB programs to the numerical simulation for the 
stochastic system, we refer to [95] and references therein for the stochastic ordinary 
differential equations, and to [130] for the stochastic partial differential equations. 
Readers can also find codes for the numerical implementation of the exponential 
Euler method (4.44) under the link www.math.chalmers.se/~cohend/Recherche/ 
codeMaxwell@CohenCuiHongSun.zip which is provided by Cohen et al. in [53]. 

6.1 MATLAB Codes for Wiener Processes 

This section introduces some basic MATLAB codes for the standard Brownian 
motion and the Q-Wiener process. 
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6.1.1 Standard Brownian Motion 

A standard Brownian motion .{W(t), t ∈ [0, T ]} is a stochastic process that is 
continuous with respect to t . It is necessary to consider the simulation of a Brownian 
motion for the computational purpose. To be specific, let .τ = T/N for some positive 
integer N , and denote by .Wn := W(tn) the specified value at the discrete time point 
.tn = nτ for .n = 0, 1, . . . , N . 

The MATLAB M-file brownian.m in Listing 6.1 performs one simulation of 
the Brownian motion over .[0, 1] with .N = 1000; see Fig. 6.1 for the numerical 
result. Here, the random number generator randn is used which produces a number 
obeying the standard normal distribution, denoted by .N (0, 1). In order to make 
experiments repeatable, MATLAB allows the initial state of the random number 
generator to be set. We set the state to be 100 with the command randn (‘state’, 
100). 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 
Time t

-0.4

-0.2 

0 

0.2 
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1.2 

1.4 

W
(t)

 

Fig. 6.1 A single sample path of .W(t) on .[0, 1], generated by using the uniform time step size 
.τ = 0.001 and linear interpolation. The graph is produced by Listing 6.1
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u(
t)

 
average over 1000 paths 
50 individual paths 

Fig. 6.2 The average of u over 1000 sample paths, and 50 individual sample paths of u. The graph 
is produced by Listing 6.2 

Listing 6.1 M-file brownian.m 

1 randn('state',100) % set the state of randn 
2 T=1; N=1000; tau=T/N; t=[0:tau:T]; 
3 W=zeros(1,N+1); 
4 for n=2:N+1 
5 dW=sqrt(tau)*randn; % increment of the Brownian motion 
6 W(n)=W(n-1)+dW; 
7 end 
8 figure 
9 plot(t,W,'r-') 
10 xlabel('Time t');ylabel('W(t)'); 

The MATLAB M-file meanbrown.m in Lising 6.2 produces Fig. 6.2. Here, we 
evaluate the function .u(t) = exp (t + 0.5W(t)) along 1000 sample paths. The 
average of u over these paths is plotted with a solid blue line. Fifty individual sample 
paths are also plotted by a dashed red line. 

Listing 6.2 M-file meanbrown.m 

1 randn('state',100) % set the state of randn 
2 T=1; N=500; tau=T/N; t=[0:tau:1]; 
3 M=1000; % M Brownian paths 
4 dW=sqrt(tau)*randn(M,N);
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5 W=zeros(M,N+1); 
6 W(:,2:end)=cumsum(dW,2); 
7 u=exp(repmat(t,[M 1])+0.5*W); 
8 umean=mean(u); 
9 figure 
10 plot(t,umean,'b-','LineWidth',5) % average over 1000 paths 
11 hold on 
12 plot(t,u(1:50,:),'r--') % 50 individual paths 
13 hold off 
14 xlabel('Time t');ylabel('u(t)'); 
15 legend('average over 1000 paths','50 individual paths'); 

6.1.2 Q-Wiener Process 

Let Q be a nonnegative and symmetric operator with a finite trace on a separable 
Hilbert space V . A  V -valued Q-Wiener process .{W(t), t ≥ 0} has the following 
Karhunen–Loève expansion 

.W(t) =
∞∑

j=1

√
ηj ejβj (t), t ≥ 0, (6.1) 

where .{βj }j∈N+ is a family of independent standard Brownian motions and . (ej , ηj ),

.j ∈ N+ are the eigenpairs of Q with .{ej }j∈N+ being an orthonormal basis of V . 
In order to obtain the numerical approximation of .W(t), we first truncate (6.1) 

by 

. WM(t) :=
M∑

j=1

√
ηj ejβj (t), M ≥ 1, t ≥ 0.

Note that 

. E
[∥∥W(t) − WM(t)

∥∥2] = E

[∥∥∥
∞∑

j=M+1

√
ηj ejβj (t)

∥∥∥
2] = t

∞∑

j=M+1

ηj ,

which tends to zero as .M → ∞, since the trace of the operator Q is finite. Hence, in 
the following numerical simulations, one can choose M sufficiently large to control 
the error induced by the truncation of the noise. For the time interval .[0, T ], we still 
introduce a uniform partition with time step size .τ = T/N , .N ∈ N+. The increment 
of .WM can be computed by 

. WM(tn+1) − WM(tn) = √
τ

M∑

j=1

√
ηj ej ξ

n
j ,

where .tn = nτ and .ξn
j := (

βj (tn+1) − βj (tn)
)
/
√

τ ∼ N (0, 1).
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Fig. 6.3 A single sample path of the Q-Wiener process with .M = 100, .K = 101, and  . τ = 0.01
for .r = 0.5 (left) and .r = 2 (right). The graph is produced by Listing 6.3 

For example, we let .V := L2(0, a) with a positive constant a, and take 

.ej (x) =
√
2

a
sin

(
jπx

a

)
, ηj = j−(2r+1+ε), j ∈ N+ (6.2) 

for some .ε > 0 and .r ≥ 0. In this case, .Tr(Q) = ∑∞
j=1 ηj < ∞. The  value of  r 

has an effect on the regularity of the noise. Choose K grid points . xk = ka/K, k =
1, 2, . . . , K , then 

.WM(tn+1, xk) − WM(tn, xk) =
√
2τ

a

M∑

j=1

|j |− (2r+1+ε)
2 sin

(
jπk

K

)
ξn
j . (6.3) 

Let .T = 1 and .a = 2. We plot one sample path of .WM(t) in Fig. 6.3 in the 
cases .r = 0.5 and .r = 2, respectively. These figures are generated with .M = 100, 
.K = 101, and .τ = 0.01 using M-file Q-Wiener.m in Listing 6.3. Here, we fix 
.ε = 0.001. 

Listing 6.3 M-file Q-Wiener.m 

1 T=1; tau=0.01; N=T/tau; 
2 a=2; epsilon=0.001; r=0.5; % parameters in (6.2) 
3 M=100; K=101;dx=a/K; 
4 xx=dx:dx:a; tt=0:tau:T; 
5 [x,t]=meshgrid(xx,tt); 
6 W=zeros(size(x)); xi=zeros(size(tt)); y=zeros(size(tt)); 
7 eta=[1:M].^(-(2*r+1+epsilon)); 
8 basis=sqrt(2/a)*sin(pi/a*repmat([1:M],K,1).*repmat(xx',1,M)); 
9 for i=1:N 
10 dB=sqrt(tau)*randn(1,M); 
11 dW=sum(repmat(sqrt(eta).*dB,K,1).*basis,2)'; 
12 W(i+1,:)=W(i,:)+dW; 
13 end
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14 % When K=M+1, one can also use the discrete sine ... 
transform 'dst' of the vector ... 
sqrt{eta}.*randn(1,M)*sqrt(2*tau/a) to generate the ... 
increment of the Wiener process. Namely, lines 4-13 ... 
can be replaced by the following code: 

15 %xx=dx:dx:a-dx; tt=0:tau:T; 
16 %[x,t]=meshgrid(xx,tt); 
17 %W=zeros(size(x)); xi=zeros(size(tt)); y=zeros(size(tt)); 
18 %eta=[1:M].^(-(2*r+1+epsilon)); 
19 %for i=1:N 
20 % dB=sqrt(tau)*randn(1,M); 
21 % dW=sqrt(2/a)*dst(sqrt(eta).*dB); 
22 % W(i+1,:)=W(i,:)+dW; 
23 %end 
24 figure 
25 mesh(x,t,W); 
26 xlabel('Space x');ylabel('Time t');zlabel('W(t,x)'); 

We remark that it is an important problem to consider the simulation of . W(t)

when the eigenpairs of Q are not known explicitly. Suppose that the expression of 
the kernel . ρ of Q is known. Then one can also approximate .W(t), for example, by 
using the finite element method. Precisely, we can approximate .W(t) by 

. Wh(t) := ΠhW(t) =
Nh∑

i=1

〈W(t), ψi〉V ψi,

where .{ψi}Nh

i=1 is a basis of some finite element space . Vh and .Πh : V → Vh is the 
orthogonal projection. Note that for any .ψ, ϕ ∈ V , .E

[〈W(t), ψ〉V
] = 0 and 

. E
[〈W(t), ψ〉V 〈W(t), ϕ〉V

] = t

∫ ∫
ψ(x)ϕ(y)ρ(x, y)dxdy.

Therefore, .{〈W(t), ψi〉V }Nh

i=1 and then .Wh(t) can be simulated numerically. It can 
also be shown that .Wh(t) converges to .W(t) in the mean-square sense as h tends to 
0 if some spatial regularity of W is assumed. 

6.2 Numerical Experiments for Structure-Preserving 
Algorithms 

This section provides some MATLAB codes of structure-preserving algorithms for 
the stochastic Maxwell equations proposed in Chap. 4.
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6.2.1 Stochastic Multi-Symplectic Algorithms 

We first focus on the numerical experiments of several stochastic multi-symplectic 
algorithms, which are proposed in Sect. 4.2.1, for the stochastic Maxwell equations. 
We verify the performance of the developed algorithms in the aspect of the energy 
evolution law and the divergence conservation laws; see Listings 6.4–6.6 for the 
main MATLAB codes. To give the numerical implementation, we apply the MS 
Method-I (4.49), the MS Method-II (4.50), and the MS Method-III (4.51) to the 
two-dimensional TM polarization case 

. 

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dE3(t) = [∂xH2(t) − ∂yH1(t)]dt − λ1dW,

dH1(t) = −∂yE3(t)dt + λ2dW,

dH2(t) = ∂xE3(t)dt + λ2dW

for .t ∈ (0, 1], where initial data are 

. E30(x, y) = sin(3πx) sin(4πy),

H10(x, y) = −0.8 cos(3πx) cos(4πy),

H20(x, y) = −0.6 sin(3πx) sin(4πy)

for .(x, y) ∈ D = [0, 2
3 ] × [0, 1

2 ]. 
Recall the Q-Wiener process .W(t) = ∑∞

j=1
√

ηj ejβj (t), for .t ≥ 0. We choose 

the eigenvalues .{ηm,l}m,l∈N+ and the orthonormal basis .{em,l}m,l∈N+ of . U = L2(D)

in this subsection as 

. em,l(x, y) = 2
√
3 sin

(3
2
mπx

)
sin

(
2lπy

)
, ηm,l = 1

m3 + l3
, m, l ∈ N+,

which implies 

. (ΔW)ni,j := Wn+1
i,j − Wn

i,j =
∞∑

m,l=1

2

√
3τ

m3 + l3
sin

(3
2
mπx

)
sin

(
2lπy

)
ξn
m,l

(6.4) 

with .ξn
m,l being independent .N (0, 1)-random variables. 

We take the time step size .τ = 0.001 and the space mesh sizes . Δx = Δy =
1/150 (i.e., .I = 100, J = 75). Let .λ1 = λ2 = λ. Now we concentrate on 
numerically performing the evolution of the discrete averaged energies of the MS 
Method-I (4.49), the MS Method-II (4.50), and the MS Method-III (4.51). It follows
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from the theoretical results given in Sect. 4.2.1.2 that the concrete expressions of the 
corresponding energies for these three algorithms have the following forms. 

(i) MS Method-I 

. Φ[I](tn+1) = Φ[I](tn) + 2ΔxΔy

I∑

i=1

J∑

j=1

(
Υ

n+ 1
2

i+ 1
2 ,j+ 1

2
(ΔW)n+1

i,j

)
,

n = 0, 1, . . . , N − 1,

where 

. Φ[I](tn+1) := ΔxΔy

I∑

i=1

J∑

j=1

[∣∣∣(E3)
n+1
i+ 1

2 ,j+ 1
2

∣∣∣
2 +

∣∣∣(H1)
n+1
i+ 1

2 ,j+ 1
2

∣∣∣
2

+
∣∣∣(H2)

n+1
i+ 1

2 ,j+ 1
2

∣∣∣
2]

and 

. Υ
n+ 1

2

i+ 1
2 ,j+ 1

2
:= λ2

(
(H1)

n+ 1
2

i+ 1
2 ,j+ 1

2
+ (H2)

n+ 1
2

i+ 1
2 ,j+ 1

2

)
− λ1(E3)

n+ 1
2

i+ 1
2 ,j+ 1

2
.

(ii) MS Method-II 

. Φ[II](tn+1) = Φ[II](tn) + ΔxΔy

I∑

i=1

J∑

j=1

(
Υ n

i,j (W
n+1
i,j − Wn−1

i,j )
)
,

n = 1, . . . , N − 1,

where 

. Φ[II](tn+1) := ΔxΔy

I∑

i=1

J∑

j=1

[
(E3)

n+1
i,j (E3)

n
i,j + (H1)

n+1
i,j (H1)

n
i,j

+ (H2)
n+1
i,j (H2)

n
i,j

]

and 

.Υ n
i,j := λ2

(
(H1)

n
i,j + (H2)

n
i,j

)
− λ1(E3)

n
i,j .
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(iii) MS Method-III 

. Φ[III](tn+1) = Φ[III](tn) + ΔxΔy

I∑

i=1

J∑

j=1

(
Υ

n+ 1
2

i,j (ΔW)n+1
i,j

)
,

n = 0, 1, . . . , N − 1,

where 

. Φ[III](tn+1) := ΔxΔy

I∑

i=1

J∑

j=1

[∣∣∣(E3)
n+1
i,j

∣∣∣
2 +

∣∣∣(H1)
n+1
i,j

∣∣∣
2 +

∣∣∣(H2)
n+1
i,j

∣∣∣
2]

and 

. Υ
n+ 1

2
i,j := λ2

(
(H1)

n+ 1
2

i,j + (H2)
n+ 1

2
i,j

)
− λ1(E3)

n+ 1
2

i,j .

Figures. 6.4, 6.5, and 6.6 present the evolution of discrete energies and averaged 
energies of the MS Method-I, the MS Method-II, and the MS Method-III with 
various sizes (.λ = 0.1, 1, and 2) of the noise. Here blue lines denote discrete 
energies along 100 trajectories, and red lines represent discrete averaged energies 
over these trajectories using the Monte–Carlo method. As shown in these figures, 
discrete averaged energies are of linear growth with respect to time for all of 
the three numerical algorithms with different values of . λ, which coincides with 
the theoretical results (see Corollaries 4.1–4.3). Note that for the MS Method-I, 
Figs. 6.4a, 6.5a, and 6.6a are generated by combining Listing 6.4 and the MATLAB 

M-file ms-method1-energy.m in Listing 6.7. The  MATLAB codes for the evolution 
of discrete energies and averaged energies of the MSMethod-II and the MSMethod-
III can be given similarly as Listing 6.7. 

Next, we consider the numerical simulation for the discrete conservation law 
of the averaged divergence. Since the first two components of the electric field . E
are zero for the two-dimensional TM system, the averaged divergence-preserving 
property of the electric field holds naturally. Therefore, we focus on the divergence-
preserving property of the magnetic field .H = (H1,H2, 0)⏉. Thanks to definitions 
of discrete divergence operators .∇̄[I]

i,j and .∇̄[II]
i,j given in (4.60), we have  

(i) MS Method-I 

.∇̄[I]
i,j · Hn+1 − ∇̄[I]

i,j · Hn

= λ2

Δx

[
(ΔW)n+1

i,j + (ΔW)n+1
i,j−1 − (ΔW)n+1

i−1,j − (ΔW)n+1
i−1,j−1

]

+ λ2

Δy

[
(ΔW)n+1

i,j + (ΔW)n+1
i−1,j − (ΔW)n+1

i,j−1 − (ΔW)n+1
i−1,j−1

]
;
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Fig. 6.4 The evolution of the discrete energies and averaged energies generated by (a) the MS 
Method-I, (b) the MS Method-II, and (c) the MS Method-III along 100 trajectories with .τ = 0.001, 
.Δx = Δy = 1/150, and . λ = 0.1

(ii) MS Method-II 

.∇̄[II]
i,j · Hn+ 1

2 − ∇̄[II]
i,j · Hn− 1

2

= λ2

4Δx

[
(ΔW)n+1

i+1,j + (ΔW)ni+1,j − (ΔW)n+1
i−1,j − (ΔW)ni−1,j

]

+ λ2

4Δy

[
(ΔW)n+1

i,j+1 + (ΔW)ni,j+1 − (ΔW)n+1
i,j−1 − (ΔW)ni,j−1

]
;
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Fig. 6.5 The evolution of the discrete energies and averaged energies generated by (a) the MS 
Method-I, (b) the MS Method-II, and (c) the MS Method-III along 100 trajectories with .τ = 0.001, 
.Δx = Δy = 1/150, and . λ = 1

(iii) MS Method-III 

. ∇̄[II]
i,j · Hn+1 − ∇̄[II]

i,j · Hn

= λ2

2Δx

[
(ΔW)n+1

i+1,j − (ΔW)n+1
i−1,j

]
+ λ2

2Δy

[
(ΔW)n+1

i,j+1 − (ΔW)n+1
i,j−1

]
.

In the sequel, we use the Monte–Carlo method to approximate the expectation, 
and numerically perform the error of the discrete divergence, which is defined by 

.Err-Div(n) := ΔxΔy

I∑

i=1

J∑

j=1

∣∣∣
1

P

P∑

s=1

(
∇̄i,j · Hn+1(ωs) − ∇̄i,j · Hn(ωs)

)∣∣∣
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Fig. 6.6 The evolution of the discrete energies and averaged energies generated by (a) the MS 
Method-I, (b) the MS Method-II, and (c) the MS Method-III along 100 trajectories with .τ = 0.001, 
.Δx = Δy = 1/150, and . λ = 2

for .n = 0, 1, . . . , N , where .∇̄i,j ∈ {∇̄[I]
i,j , ∇̄[II]

i,j

}
. The errors of the discrete averaged 

divergence for the MS Method-I, the MS Method-II, and the MS Method-III are 
presented in Fig. 6.7. We can see that the scale of the error here is only of . 10−2

since the number .P = 100 of truncation is not large enough. As the value of P 
increases, the error of the averaged divergence decreases. This fact is also verified 
through numerical simulations shown in Fig. 6.8. It presents in Fig. 6.8 the error of 
the averaged divergence of the MS Method-III with .P = 10s , .s = 1, 2, . . . , 6.
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(b) MS Method-II 
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(c) MS Method-III 

Fig. 6.7 The errors of the discrete averaged divergence of (a) the MS Method-I, (b) the MS 
Method-II, and (c) the MS Method-III along 100 trajectories with .τ = 0.001, .Δx = Δy = 1/150, 
and . λ = 0.1

Listing 6.4 A MATLAB code for the MS Method-I (4.49) 

1 function [E_z1, H_x1, H_y1]=Method1(A, B, C, D, I, J, ... 
rrx1, rry1, E_zinitial1, H_xinitial1, H_yinitial1) 

2 % Using the splitting approach to solve Method-I, the ... 
original system is split into two subsystems: one is ... 
the system of E_z and H_y (subsystem1), and another is ... 
the system of H_x (subsystem2) 

3 % A,B,C,D: coefficient matrices of algebraic equations; ... 
rrx1: noise for subsystem1; rry1: noise for subsystem2 

4 % 1) Solve u_1^{n+1}: A*u_1^{n+1}=B*u_1^{n}+rrx1/2; 
5 % 2) Update the value of u_2^{n} by u_1^{n+1}; 
6 % 3) Solve u_2^{n+1}: C*u_2^{n+1}=D*u_2^{n}+rry1; 
7 % 4) Update the value of u_1^{n} by u_2^{n+1}; 
8 % 5) Solve u_1^{n+1}: A*u_1^{n+1}=B*u_1^{n}+rrx1/2; 
9 

10 % I,J: numbers of the spatial grid points
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11 % E_zinitial1, H_xinitial1, H_yinitial1: initial data 
12 

13 u1=zeros(2*I*J,1); u2=zeros(2*I*J,1); 
14 u1(1:I*J)=E_zinitial1(:); 
15 u1(I*J+1:2*I*J)=H_yinitial1(:); 
16 u2(I*J+1:2*I*J)=H_xinitial1(:); 
17 u1=A$B*u1+rrx1/2); 
18 u2(1:I*J,1)=u1(1:I*J,1); u2=C$D*u2+rry1); 
19 u1(1:I*J,1)=u2(1:I*J,1); u1=A$B*u1+rrx1/2); 
20 E_z1colum=u1(1:I*J,1); H_x1colum=u2(I*J+1:2*I*J,1); 
21 H_y1colum=u1(I*J+1:2*I*J,1); 
22 E_z1=reshape(E_z1colum,[I,J]); 
23 H_x1=reshape(H_x1colum,[I,J]); 
24 H_y1=reshape(H_y1colum,[I,J]); 

Listing 6.5 A MATLAB code for the MS Method-II (4.50) 

1 function d=mmod2(i,I) 
2 if i< =I 
3 d=i; 
4 elseif i> =I+2 
5 d=2; 
6 else 
7 d=1; 

Fig. 6.8 The error of the discrete averaged divergence of the MS Method-III along .P = 10s , 
.s = 1, 2, . . . , 6 with .τ = 0.001, .Δx = Δy = 1/150, and .λ = 0.1
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8 end 
9 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
10 function [E_z2 H_x2 H_y2]=Method2(I, J, lambda, c11, c12, ... 

c21, dW, E_z3, H_x3, H_y3, E_zinitial2, H_xinitial2, ... 
H_yinitial2) 

11 % Method-II is a three-layer method, and we choose ... 
Method-III to initialize it 

12 % I,J: numbers of the spatial grid points 
13 % E_zinitial2, H_xinitial2, H_yinitial2: initial data 
14 % E_z3, H_x3, H_y3: given by Listing 6.6 (i.e., Method-III) 
15 % c11=tau/dx; c12=tau/dy 
16 % c21=2*lamada*tau with lambda being the scale of the ... 

noise (lambda_1=lambda_2=lambda) 
17 

18 E_z2=zeros(I,J);H_x2=zeros(I,J);H_y2=zeros(I,J); 
19 for j=2:J+1 
20 for i=2:I+1 
21 H_y2(mmod2(i,I),mmod2(j,J))=H_yinitial2(mmod2(i,I),... 
22 mmod2(j,J))+c11*(E_z3(mmod2(i+1,I),mmod2(j,J))-... 
23 E_z3(i-1,mmod2(j,J)))+c21*E_z3(mmod2(i,I),... 
24 mmod2(j,J))*dW(i-1); 
25 H_x2(mmod2(i,I),mmod2(j,J))=H_xinitial2(mmod2(i,I),... 
26 mmod2(j,J))-c12*(E_z3(mmod2(i,I),mmod2(j+1,J))-... 
27 E_z3(mmod2(i,I),j-1))+c21*E_z3(mmod2(i,I),... 
28 mmod2(j,J))*dW(i-1); 
29 E_z2(mmod2(i,I),mmod2(j,J))=E_zinitial2(mmod2(i,I),... 
30 mmod2(j,J))+c11*(H_y3(mmod2(i+1,I),mmod2(j,J))-... 
31 H_y3(i-1,mmod2(j,J)))-c12*(H_x3(mmod2(i,I),... 
32 mmod2(j+1,J))-H_x3(mmod2(i,I),j-1))-c21*dW(i-1); 
33 end 
34 end 

Listing 6.6 A MATLAB code for the MS Method-III (4.51) 

1 function [E_z3, H_x3, H_y3]=Method3(C, D, I, J, rrx3, ... 
E_zinitial3, H_xinitial3, H_yinitial3) 

2 % I,J: number of the spatial grid points 
3 % E_zinitial3,H_xinitial3,H_yinitial3: initial data 
4 % rrx3: noise 
5 % C,D: coefficient matrices of the algebraic equation 
6 % C*u3^{n+1}=D*u3^{n}+rrx3 
7 

8 u3=zeros(3*I*J,1); 
9 u3(1:I*J)=E_zinitial3(:); 
10 u3(I*J+1:2*I*J)=H_xinitial3(:); 
11 u3(2*I*J+1:3*I*J)=H_yinitial3(:); 
12 u3=C$D*u3+rrx3); 
13 E_z3=reshape(u3(1:I*J),[I,J]); 
14 H_x3=reshape(u3(I*J+1:2*I*J),[I,J]); 
15 H_y3=reshape(u3(2*I*J+1:3*I*J),[I,J]);
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Listing 6.7 M-file ms-method1-energy.m 

1 % Generate the evolution law of the discrete energy by ... 
using Listing 6.4 (i.e., Method-I) 

2 T=1; tau=0.001; N=T/tau; 
3 xl=0;xr=2/3; yl=0;yr=1/2; % spatial domain D=[xl, ... 

xr]*[yl, yr] 
4 I=100; dx=(xr-xl)/I; J=75; dy=(yr-yl)/J; % mesh sizes 
5 xx=xl:dx:(xr-dx); yy=yl:dy:(yr-dy); 
6 x=[xx,xr,xr+dx]; y=[yy,yr,yr+dy]; 
7 t=(1:N)*tau; 
8 % covariance matrix of the noise term 
9 lambda=0.1; % scale of the noise (lambda_1=lambda_2=lambda) 
10 M=I; L=J; % numbers of the trucation for the noise term 
11 P=1; % number of the path 
12 [NN,PP]=meshgrid([1:L],[1:M]); 
13 NN=NN.^3;PP=PP.^3; %(L*M)-matrix 
14 eta_ml=2*sqrt(3./(NN+PP)); 
15 dW=zeros(I,J); 
16 EX=sin(3/2*pi*repmat([1:M],I,1).*repmat(xx',1,M)); 
17 EY=sin(2*pi*repmat([1:L]',1,J).*repmat(yy,L,1)); 
18 clear NN PP 
19 % generate coefficient matrices of algebraic equations ... 

for Method-I 
20 c11=tau/dx; c12=tau/dy; c13=lambda; c14=2*lambda; 
21 A_11=sparse(1:I,1:I,1*ones(1,I),I,I)+sparse(1:I-1,2:I,... 
22 ones(1,I-1),I,I)+sparse(I,1,1,I,I); 
23 A_12=sparse(1:I,1:I,1*ones(1,I),I,I)+sparse(1:I-1,2:I,... 
24 -1*ones(1,I-1),I,I)+sparse(I,1,-1,I,I); 
25 A_12x=0.5*(tau/dx)*A_12; 
26 A1=kron(speye(J),A_11); A2=kron(speye(J),A_12x); 
27 A=[A1,A2;A2,A1]; B=[A1,-A2;-A2,A1]; 
28 C1=kron(speye(J),eye(I))+kron(sparse(1:J-1,2:J,... 
29 ones(1,J-1),J,J),eye(I))+kron(sparse(J,1,1,J,J),eye(I)); 
30 C_12x=(tau/dy)*eye(I); 
31 C2=kron(speye(J),-C_12x)+kron(sparse(1:J-1,2:J,... 
32 ones(1,J-1),J,J),C_12x)+kron(sparse(J,1,1,J,J),C_12x); 
33 C=[C1,C2;C2,C1]; D=[C1,-C2;-C2,C1]; 
34 clear A_12 A_12x A1 A2 A_2 C1 C2 C_12x 
35 % obtain the discrete energy using Method-I 
36 Energy=zeros(P,N); 
37 for p=1:P 
38 % initial value 
39 E_zinitial1=sin(3*pi*xx')*sin(4*pi*yy); 
40 H_xinitial1=-0.8*cos(3*pi*xx')*cos(4*pi*yy); 
41 H_yinitial1=-0.6*sin(3*pi*xx')*sin(4*pi*yy); 
42 for n=1:N 
43 Z=randn(M,L); Bcoe=sqrt(tau)*eta_ml.*Z; 
44 dW=EX*Bcoe*EY; dWnewnew=reshape(dW,[I*J,1]); 
45 rrx1=[-c13*dWnewnew' c14*dWnewnew']'; 
46 rry1=[-c13*dWnewnew' c14*dWnewnew']'; 
47 % solve the numerical solution by using Listing ... 

6.4 (Method-I)
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48 [E_z1, H_x1, H_y1]=Method1(A, B, C, D, I, J, ... 
rrx1, rry1, E_zinitial1, H_xinitial1, ... 
H_yinitial1); 

49 E11=A_11*E_zinitial1; E12=A_11*H_xinitial1; 
50 E13=A_11*H_yinitial1; ... 

E14=A_11*E_zinitial1(1:I,[2:J,1]); 
51 E15=A_11*H_xinitial1(1:I,[2:J,1]); 
52 E16=A_11*H_yinitial1(1:I,[2:J,1]); 
53 Energy(p,n)=1/16*dx*dy*sum((sum((E11+E14).^2... 
54 +(E12+E15).^2+(E13+E16).^2))); 
55 E_zinitial1=E_z1; H_yinitial1=H_y1; H_xinitial1=H_x1; 
56 fprintf('p=%d,n=%d\n',p,n) 
57 end 
58 end 
59 figure 
60 plot(Energy','b') 
61 hold on 
62 plot(mean(Energy,1),'ro') 
63 xlabel('Time t');ylabel('Energy') 

6.2.2 Stochastic Multi-Symplectic Wavelet Algorithm 

This section concerns the numerical experiments of the stochastic multi-symplectic 
wavelet algorithm developed in Sect. 4.2.2. We investigate the performance of 
the proposed method in the preservation of energy; see Listings 6.8–6.10 for the 
corresponding MATLAB codes. 

We consider the stochastic Maxwell equations driven by multiplicative 
noise (4.61) on .D = [0, 1]3 with initial data 

. 

E10 = cos(2π(x + y + z)), E20 = −2E10 , E30 = E10,

H10 = √
3E10, H20 = 0, H30 = −√

3E10

and the periodic boundary condition. We use the order .r = 4 of the Daubechies 
scaling function . φ (see (4.62)) to solve the problem and choose 100 realizations to 
approximate the expectation. 

We take the eigenvalues .{ηm,l,q}m,l,q∈N+ and the orthonormal basis 
.{em,l,q}m,l,q∈N+ of .U = L2(D) in this subsection as 

.ηm,l,q = 1

m3 + l3 + q3
,

em,l,q(x, y, z) = 2
√
2 sin(mπx) sin(lπy) sin(qπz)
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Fig. 6.9 Evolution of the discrete energy along a single trajectory until .T = 20 with .τ = 0.1, 
. Δx = Δy = Δz = 1/24

for .m, l, q ∈ N+, which implies 

. (ΔW)ni,j,k = 2
√
2τ

∞∑

m,l,q=1

1√
m3 + l3 + q3

sin(mπxi) sin(lπyj ) sin(qπzk)ξ
n
m,l,q

(6.5) 

with .{ξn
m,l,q} being independent .N (0, 1)-random variables. 

Figure 6.9 shows the evolution of the discrete energy with various scales of the 
noise: .λ = 0, . 0.5, 1, and 5. Although different scales of noise are chosen, graphs 
of the discrete energy remain to be horizontal lines approximately. We observe the 
agreement with the theoretical result (see Proposition 4.24). 

In Fig. 6.10, we plot the discrete energy evolution of one trajectory, and the 
discrete averaged energy evolution until .T = 20 with .λ = 0.5. Here the blue dotted 
line denotes the evolution of the discrete averaged energy over 100 trajectories 
and three solid lines represent three sample paths of the energy, respectively. This 
figure shows that the numerical result coincides with the theoretical analysis in 
Proposition 4.24. 

Now, we further investigate the energy conservation law under various time step 
sizes and space mesh sizes. To this end, we define the energy error by 

.Energy error := Υ n − Υ 0, n = 0, 1, . . . , N,
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Fig. 6.10 Evolution of the discrete averaged energy over 100 trajectories and discrete energy along 
one trajectory until .T = 20 with .τ = 0.1, . Δx = Δy = Δz = 1/24

where . Υ n is the discrete energy along one trajectory at time . tn given by 

. Υ n = ΔxΔyΔz

N1∑

i=1

N2∑

j=1

N3∑

k=1

(
|En

i,j,k|2 + |Hn
i,j,k|2

)
, n = 0, 1, . . . , N.

Figures 6.11, 6.12, 6.13, and 6.14 display the discrete energy errors with various 
time step sizes and spatial resolutions until .T = 20. It can be seen that the magnitude 
for the errors of the discrete energy is of .10−11 for various parameters. 

Listing 6.8 A MATLAB code for solving wavelet matrices .Bx , By , and . Bz

1 function W_m=wavelet_matrix(s,J,N) 
2 % Solve the wavelet matrix B=F^{-1}*diag(W_m)*F 
3 % s: s order derivative of autocorrelation function (s=1) 
4 % J: scale (J=J_1,J_2,J_3, space mesh size 1/2^J) 
5 % N: number of spatial grid points (N=N_1,N_2,N_3) 
6 

7 % solve Daubechies wavelet filter coefficients h_k 
8 r=4; % order of the Daubechies scaling function 
9 h(2*r:-1:1)=wfilters('db4'); % Daubechies wavelet db4 
10 % solve s-order derivative of autocorrelation function 
11 a=zeros(2*r-1,1);
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12 for m=1:2:2*r-1 
13 a(m)=h(1:2*r-m)*h(1+m:2*r)'; 
14 end 
15 b=2^s*[a(2*r-1:-1:1);1;a]; 
16 A=zeros(4*r-3,4*r-3); 
17 for l=1:2*r-2 
18 A(l,1:2*l)=b(2*l:-1:1)'; 
19 end 
20 A(2*r-1,1:4*r-3)=b(4*r-2:-1:2)'; 
21 for l=2*r:4*r-4 
22 A(l,2*l-4*r+2:4*r-3)=b(4*r-1:-1:2*l-4*r+4)'; 
23 end 
24 A=A-eye(4*r-3); A(4*r-3,:)=(-2*r+2:2*r-2).^s; 
25 c=[zeros(4*r-4,1);(-1)^s*factorial(s)]; 
26 theta_s=A\c; 
27 W_m=zeros(N,1); 
28 W_m(1:2*r-1)=theta_s(2*r-1:4*r-3); 
29 W_m(N-2*r+3:N)=(-1)^s*W_m(2*r-1:-1:2); 
30 W_m=fft(2^(s*J)*W_m); 
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Fig. 6.11 Errors of the discrete energy for .λ = 0, . 0.5, 1, and 5 with .τ = 0.1, . Δx = Δy = Δz =
1/24, respectively
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Fig. 6.12 Errors of the discrete energy for .λ = 0, . 0.5, 1, and 5 with .τ = 0.1, . Δx = Δy = Δz =
1/25, respectively 

Listing 6.9 A MATLAB code to obtain drift terms on the right-hand side of (4.65) 

1 function d=dis_curl(u,J_1,J_2,J_3,N_1,N_2,N_3) 
2 % u: electromagnetic field u=(E_1,E_2,E_3,H_1,H_2,H_3)' 
3 % 1/2^J_1,1/2^J_2,1/2^J_3: space mesh sizes 
4 % N_1,N_2,N_3: number of spatial grid points 
5 d=zeros(3*N_1*N_2*N_3,1);d1=zeros(N_1*N_2*N_3,1);d2=d1;x=d1; 
6 X=zeros(N_1*N_2,1); 
7 Fx=u(1:N_1*N_2*N_3,1); % E_1 or H_1 
8 Fy=u(N_1*N_2*N_3+1:2*N_1*N_2*N_3,1); % E_2 or H_2 
9 Fz=u(2*N_1*N_2*N_3+1:3*N_1*N_2*N_3,1); % E_3 or H_3 
10 % solve wavelet matrices by using Listing 6.8 
11 M_1=zeros(N_1,1);M_2=zeros(N_2,1);M_3=zeros(N_3,1); 
12 M_1=wavelet_matrix(1,J_1,N_1); 
13 M_2=wavelet_matrix(1,J_2,N_2); 
14 M_3=wavelet_matrix(1,J_3,N_3); 
15 % solve drift terms on the right-hand side of (4.63) 
16 tag=1; 
17 for j=1:N_2 
18 for i=1:N_1 
19 x(1:N_3)=Fy(tag:N_1*N_2:N_1*N_2*N_3); 
20 X=real(ifft(M_3.*fft(x(1:N_3))));% Kronecker ... 

inner product in z-direction 
21 d1(tag:N_1*N_2:N_1*N_2*N_3)=X; 
22 tag=tag+1;
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Fig. 6.13 Errors of the discrete energy for .λ = 0, . 0.5, 1, and  5 with  .τ = 0.005, . Δx = Δy =
Δz = 1/24, respectively 

23 end 
24 end 
25 for k=1:N_3 
26 for i=1:N_1 
27 x(1:N_2)=Fz((k-1)*N_1*N_2+i:N_1:k*N_1*N_2); 
28 X=real(ifft(M_2.*fft(x(1:N_2))));% Kronecker ... 

inner product in y-direction 
29 d2((k-1)*N_1*N_2+i:N_1:k*N_1*N_2)=X; 
30 end 
31 end 
32 d(1:N_1*N_2*N_3)=-d1+d2; % solve A_2H_3-A_3H_2 
33 

34 tag=1; 
35 for j=1:N_2 
36 for i=1:N_1 
37 x(1:N_3)=Fx(tag:N_1*N_2:N_1*N_2*N_3); 
38 X=real(ifft(M_3.*fft(x(1:N_3))));% Kronecker ... 

inner product in z-direction 
39 d1(tag:N_1*N_2:N_1*N_2*N_3)=X; 
40 tag=tag+1; 
41 end 
42 end 
43 for k=1:N_3 
44 for j=1:N_2 
45 x(1:N_1)=Fz((k-1)*N_1*N_2+(j-1)*N_1+1:(k-1)*N_1*N_2+j*N_1);
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Fig. 6.14 Errors of the discrete energy for .λ = 0, . 0.5, 1, and  5 with  .τ = 0.005, . Δx = Δy =
Δz = 1/25, respectively 

46 X=real(ifft(M_1.*fft(x(1:N_1)))); 
47 % Kronecker inner product in x-direction 
48 d2((k-1)*N_1*N_2+(j-1)*N_1+1:(k-1)*N_1*N_2+j*N_1)=X; 
49 end 
50 end 
51 d(N_1*N_2*N_3+1:2*N_1*N_2*N_3)=d1-d2; % solve A_3H_1-A_1H_3 
52 

53 for k=1:N_3 
54 for i=1:N_1 
55 x(1:N_2)=Fx((k-1)*N_1*N_2+i:N_1:k*N_1*N_2); 
56 X=real(ifft(M_2.*fft(x(1:N_2))));% Kronecker ... 

inner product in y-direction 
57 d1((k-1)*N_1*N_2+i:N_1:k*N_1*N_2)=X; 
58 end 
59 end 
60 for k=1:N_3 
61 for j=1:N_2 
62 x(1:N_1)=Fy((k-1)*N_1*N_2+(j-1)*N_1+1:(k-1)*N_1*N_2+j*N_1); 
63 X=real(ifft(M_1.*fft(x(1:N_1)))); 
64 % Kronecker inner product 
65 d2((k-1)*N_1*N_2+(j-1)*N_1+1:(k-1)*N_1*N_2+j*N_1)=X; 
66 end 
67 end 
68 d(2*N_1*N_2*N_3+1:3*N_1*N_2*N_3)=d2-d1; % solve A_1H_2-A_2H_1
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Listing 6.10 A MATLAB code for solving the algebraic equation .Au=b induced by (4.65) 
1 % this function return b 
2 function b=get_b(u, mu, varepsilon, tau, J_1, J_2, J_3, ... 

N_1, N_2, N_3, xi, lambda) 
3 % u: electromagnetic field u=(E_1,E_2,E_3,H_1,H_2,H_3)' 
4 % mu,varepsilon: electric permittivity, magnetic permeability 
5 % tau: time step size 
6 % 1/2^J_1,1/2^J_2,1/2^J_3: space mesh sizes 
7 % N_1,N_2,N_3: number of spatial grid points 
8 % xi: noise 
9 % lambda: scale of the noise 
10 r_1=2*mu/tau;r_2=2*varepsilon/tau; 
11 b=zeros(6*N_1*N_2*N_3,1); 
12 b(1:3*N_1*N_2*N_3)=r_1*u(1:3*N_1*N_2*N_3)... 
13 -dis_curl(u(3*N_1*N_2*N_3+1:6*N_1*N_2*N_3),J_1,J_2,J_3,... 
14 N_1,N_2,N_3)+lambda*xi.*u(3*N_1*N_2*N_3+1:6*N_1*N_2*N_3); 
15 b(3*N_1*N_2*N_3+1:6*N_1*N_2*N_3)... 
16 =dis_curl(u(1:3*N_1*N_2*N_3),J_1,J_2,J_3,N_1,N_2,N_3)... 
17 +r_2*u(3*N_1*N_2*N_3+1:6*N_1*N_2*N_3)... 
18 -lambda*xi.*u(1:3*N_1*N_2*N_3); 
19 

20 % this function return A*u 
21 function d=get_Au(u, mu, varepsilon, tau, J_1, J_2, J_3, ... 

N_1, N_2, N_3, xi, lambda) 
22 r_1=2*mu/tau;r_2=2*varepsilon/tau; 
23 d=zeros(6*N_1*N_2*N_3,1); 
24 d(1:3*N_1*N_2*N_3)=r_1*u(1:3*N_1*N_2*N_3)... 
25 +dis_curl(u(3*N_1*N_2*N_3+1:6*N_1*N_2*N_3),J_1,J_2,J_3,... 
26 N_1,N_2,N_3)-lambda*xi.*u(3*N_1*N_2*N_3+1:6*N_1*N_2*N_3); 
27 d(3*N_1*N_2*N_3+1:6*N_1*N_2*N_3)... 
28 =-dis_curl(u(1:3*N_1*N_2*N_3),J_1,J_2,J_3,N_1,N_2,N_3)... 
29 +r_2*u(3*N_1*N_2*N_3+1:6*N_1*N_2*N_3)... 
30 +lambda*xi.*u(1:3*N_1*N_2*N_3); 
31 

32 % this function use to solve A*u=b 
33 function u=GMRES(u, mu, varepsilon, tau, J_1, J_2, J_3, ... 

N_1, N_2, N_3, xi, lambda) 
34 b=get_b(u, mu, varepsilon, tau, J_1, J_2, J_3, N_1, N_2, ... 

N_3, xi, lambda); 
35 r1=b-get_Au(u, mu, varepsilon, tau, J_1, J_2, J_3, N_1, ... 

N_2, N_3, xi, lambda); 
36 u1=zeros(max(size(u)),1); 
37 m=20; 
38 while max(abs(r1))>0.00001 
39 v(:,1)=r1/norm(r1); 
40 for j=1:m 
41 d=get_Au(v(:,j),mu,varepsilon,tau,J_1,J_2,J_3,N_1,N_2,... 
42 N_3,xi,lambda); 
43 for i=1:j 
44 H(i,j)=v(:,i)'*d; 
45 end 
46 u1(:)=0; 
47 for i=1:j
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48 u1=H(i,j)*v(:,i)+u1; 
49 end 
50 u1=d-u1; 
51 H(j+1,j)=norm(u1); 
52 if (H(j+1,j)<0.0001 || j==m) 
53 e1=zeros(j+1,1); 
54 e1(1)=norm(r1); 
55 y=pinv(H(1:j+1,1:j))*e1; 
56 u=u+v(:,1:j)*y; 
57 r1=b-get_AX(u,mu,varepsilon,tau,J_1,J_2,J_3,N_1,N_2,... 
58 N_3,xi,lambda); 
59 break; 
60 end 
61 v(:,j+1)=u1/H(j+1,j); 
62 end 
63 end 

6.2.3 Splitting Midpoint Method 

This section presents some numerical experiments of the splitting algorithm devel-
oped in Sect. 4.3. To be precise, we investigate the energy evolution of the splitting 
midpoint method (5.58), and check the temporal accuracy by fixing the space mesh 
size; see Listings 6.11–6.13 for the corresponding MATLAB codes. 

In the sequel, we consider the stochastic Maxwell equations (4.95) on the domain 
.D = [0, 1]3 with .λ1 = λ2 = (1, 1, 1)⏉. The initial data read as 

. 

E10 = ky − kz

r
cos(kxπx) sin(kyπy) sin(kzπz),

H10 = sin(kxπx) cos(kyπy) cos(kzπz),

E20 = kz − kx

r
sin(kxπx) cos(kyπy) sin(kzπz),

H20 = cos(kxπx) sin(kyπy) cos(kzπz),

E30 = kx − ky

r
sin(kxπx) sin(kyπy) cos(kzπz),

H30 = cos(kxπx) cos(kyπy) sin(kzπz)

with .kx = 1, .ky = 2, .kz = −3, and .r =
√

k2x + k2y + k2z . The formulation of the 

increment of the Q-Wiener process is given by (6.5). 
As stated in Proposition 4.32, the averaged energy of the splitting subsystems 

grows linearly. To illustrate this phenomenon, we set the time interval to be . [0, 1000]
with .τ = 0.001. The discrete averaged energy over 200 trajectories is displayed in
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Fig. 6.15 The averaged energy over 200 trajectories with .τ = 10−3, . Δx = Δy = Δz = 1/60

Fig. 6.15, where the bold red line represents the discrete averaged energy. It can 
be observed the linear growth of the averaged energy of the splitting midpoint 
method (5.58). 

Next, we illustrate the mean-square convergence order in the temporal direction 
of the splitting midpoint method in Theorem 5.8. To this end, we compute the 
error at the terminal time .T = 1/4 and plot the error against . τ on a log-log 
scale for the truncated Q-Wiener process with the truncation numbers .M = 1, 
4, and 8, respectively. The reference solution is computed by using the same 
numerical algorithm for a small time step size .τ = 0.001 and the expectation 
is realized by using the average of 100 independent paths. Fix space mesh sizes 
.Δx = Δy = Δz = 1/60. We then compare the reference solution with solutions 
of the splitting midpoint method with time step sizes being . 21τ , . 22τ , and . 23τ , 
respectively, to estimate the mean-square convergence order. 

Figure 6.16 displays the mean-square error. It can be seen that the convergence 
order for the deterministic case is 1, while the observations are different from 
the stochastic case, where various sorts of Q-Wiener processes depending on M 
are used. The mean-square order of convergence drops approximately from 1 to 
. 0.5, which results from the regularities of the noise and the exact solution of the 
stochastic Maxwell equations.
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Fig. 6.16 Convergence orders of the operator splitting midpoint algorithm for the deterministic 
case (left) and the stochastic case for .M = 1, 4, and 8 (right) 

As mentioned in Sect. 4.3, the splitting technique can improve the computational 
efficiency. In order to demonstrate the efficiency and superiority of the proposed 
method (5.58), we compare the splitting midpoint method with the following ones: 

• The stochastic multi-symplectic wavelet algorithm for (4.95) (wavelet method 
for short) 

.
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(6.6) 

where .As .(s = 1, 2, 3) and .ΔWn+1 are given in (4.66). 
• The splitting wavelet method (obtained by applying the wavelet method (6.6) to 

each subsystem (5.52)). 

Figure 6.17 displays the total CPU time of each numerical method with various 
mesh sizes for 2000 samples. We summarize that the splitting methods have higher 
efficiency than non-splitting ones.
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Fig. 6.17 Efficiency for the splitting midpoint method, wavelet method, and splitting wavelet 
method applied to three-dimensional stochastic Maxwell equations (4.95). Left: mesh sizes . Δx =
Δy = Δz = 1/24; Right: mesh sizes . Δx = Δy = Δz = 1/27

Listing 6.11 A MATLAB code for the first subsystem (5.58) 

1 function [E_1,E_2,E_3,H_1,H_2,H_3]=sto_subsystem1( I, J, ... 
K, tau, dx, lambda_1, lambda_2, noise, E_10, E_20, ... 
E_30, H_10, H_20, H_30) 

2 % I,J,K: numbers of spatial grid points 
3 % tau: time step size 
4 % dx: mesh size in x-direction 
5 % E_10,E_20,E_30,H_10,H_20,H_30: initial data 
6 % lambda_1, lambda_2: scales of the noise (lambda_1= ... 

lambda_2) 
7 % noise: the increment of the Wiener process 
8 E_1=zeros(I,J,K);E_2=zeros(I,J,K);E_3=zeros(I,J,K); 
9 H_1=zeros(I,J,K);H_2=zeros(I,J,K);H_3=zeros(I,J,K); 
10 X1=zeros(2*I,J);X2=zeros(2*I,J); 
11 Y1=zeros(2*I,J);Y2=zeros(2*I,J); 
12 % solve coefficient matrices of the algebraic equation 
13 rx=tau/dx; 
14 Ax1=sparse(1:I,1:I,1*ones(1,I),I,I)+sparse(1:I-1,2:I,... 
15 1*ones(1,I-1),I,I)+sparse(I,1,1,I,I); 
16 Ax2=sparse(1:I,1:I,(-1)*ones(1,I),I,I)+sparse(1:I-1,2:I,... 
17 1*ones(1,I-1),I,I)+sparse(I,1,1,I,I); 
18 Ax2=rx*Ax2; 
19 A=[Ax1,Ax2;Ax2,Ax1];B=[Ax1,-Ax2;-Ax2,Ax1]; 
20 % solve the numerical solution 
21 % A(E_2^{n+1,[1]},H_3^{n+1,[1]})=B(E_2^{n,[1]},H_3^{n,[1]}) 
22 % B(E_3^{n+1,[1]},H_2^{n+1,[1]})=A(E_3^{n,[1]},H_2^{n,[1]}) 
23 % E_1^{n+1,[1]}=E_1^{n,[1]}+\lambda_1*\Delta W 
24 % H_1^{n+1,[1]}=H_1^{n,[1]}+\lambda_2*\Delta W 
25 E_1=E_10+lambda_1*noise;H_1=H_10+lambda_2*noise; 
26 for k=1:K 
27 X1=[E_20(:,:,k);H_30(:,:,k)]; Y1=A$B*X1); 
28 E_2(:,:,k)=Y1(1:I,:);H_3(:,:,k)=Y1(I+1:2*I,:);
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29 X2=[E_30(:,:,k);H_20(:,:,k)]; Y2=B$A*X2); 
30 E_3(:,:,k)=Y2(1:I,:);H_2(:,:,k)=Y2(I+1:2*I,:); 
31 end 

Listing 6.12 A MATLAB code for the second subsystem (5.58) 

1 function [E_1,E_2,E_3,H_1,H_2,H_3]=sto_subsystem2(I, J, ... 
K, tau, dy, lambda_1, lambda_2, noise, E_10, E_20, ... 
E_30, H_10, H_20, H_30) 

2 % I,J,K: numbers of spatial grid points 
3 % tau: time step size 
4 % dy: mesh size in y-direction 
5 % E_10,E_20,E_30,H_10,H_20,H_30: initial data 
6 % lambda_1, lambda_2: scales of the noise (lambda_1= ... 

lambda_2) 
7 % noise: the increment of the Wiener process 
8 E_1=zeros(I,J,K);E_2=zeros(I,J,K);E_3=zeros(I,J,K); 
9 H_1=zeros(I,J,K);H_2=zeros(I,J,K);H_3=zeros(I,J,K); 
10 X1=zeros(2*J,I);X2=zeros(2*J,I); 
11 Y1=zeros(2*J,I);Y2=zeros(2*J,I); 
12 % solve coefficient matrices of the algebraic equation 
13 ry=tau/dy; 
14 Ay1=sparse(1:J,1:J,1*ones(1,J),J,J)+sparse(1:J-1,2:J,... 
15 1*ones(1,J-1),J,J)+sparse(J,1,1,J,J); 
16 Ay2=sparse(1:J,1:J,(-1)*ones(1,J),J,J)+sparse(1:J-1,2:J,... 
17 1*ones(1,J-1),J,J)+sparse(J,1,1,J,J); 
18 Ay2=ry*Ay2; 
19 A=[Ay1,Ay2;Ay2,Ay1];B=[Ay1,-Ay2;-Ay2,Ay1]; 
20 % solve the numerical solution 
21 % A(E_3^{n+1,[2]},H_1^{n+1,[2]})=B(E_3^{n,[2]},H_1^{n,[2]}) 
22 % B(E_1^{n+1,[2]},H_3^{n+1,[2]})=A(E_1^{n,[2]},H_3^{n,[2]}) 
23 % E_2^{n+1,[2]}=E_2^{n,[2]}+\lambda_1*\Delta W 
24 % H_2^{n+1,[2]}=H_2^{n,[2]}+\lambda_2*\Delta W 
25 E_2=E_20+lambda_1*noise; H_2=H_20+lambda_2*noise; 
26 for k=1:K 
27 X1=[E_30(:,:,k)';H_10(:,:,k)']; Y1=A$B*X1); 
28 E_3(:,:,k)=Y1(1:J,:)';H_1(:,:,k)=Y1(J+1:2*J,:)'; 
29 X2=[E_10(:,:,k)';H_30(:,:,k)']; Y2=B$A*X2); 
30 E_1(:,:,k)=Y2(1:J,:)';H_3(:,:,k)=Y2(J+1:2*J,:)'; 
31 end 

Listing 6.13 A MATLAB code for the third subsystem (5.58) 

1 function [E_1,E_2,E_3,H_1,H_2,H_3]=sto_subsystem3(I, J, ... 
K, tau, dz, lambda_1, lambda_2, noise, E_10, E_20, ... 
E_30, H_10, H_20, H_30) 

2 % I,J,K: numbers of spatial grid points 
3 % tau: time step size 
4 % dz: mesh size in z-direction 
5 % E_10,E_20,E_30,H_10,H_20,H_30: initial data
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6 % lambda_1, lambda_2: scales of the noise (lambda_1= ... 
lambda_2) 

7 % noise: the increment of the Wiener process 
8 E_1=zeros(I,J,K);E_2=zeros(I,J,K);E_3=zeros(I,J,K); 
9 H_1=zeros(I,J,K);H_2=zeros(I,J,K);H_3=zeros(I,J,K); 
10 X1=zeros(2*K,J);X2=zeros(2*K,J); 
11 Y1=zeros(2*K,J);Y2=zeros(2*K,J); 
12 % solve coefficient matrices of the algebraic equation 
13 rz=tau/dz; 
14 Az1=sparse(1:K,1:K,1*ones(1,K),K,K)+sparse(1:K-1,2:K,... 
15 1*ones(1,K-1),K,K)+sparse(K,1,1,K,K); 
16 Az2=sparse(1:K,1:K,(-1)*ones(1,K),K,K)+sparse(1:K-1,2:K,... 
17 1*ones(1,K-1),K,K)+sparse(K,1,1,K,K); 
18 Az2=rz*Az2; 
19 A=[Az1,Az2;Az2,Az1];B=[Az1,-Az2;-Az2,Az1]; 
20 % solve the numerical solution 
21 % A(E_1^{n+1,[3]},H_2^{n+1,[3]})=B(E_1^{n,[3]},H_2^{n,[3]}) 
22 % B(E_2^{n+1,[3]},H_1^{n+1,[3]})=A(E_2^{n,[3]},H_1^{n,[3]}) 
23 % E_3^{n+1,[3]}=E_3^{n,[3]}+\lambda_1*\Delta W 
24 % H_3^{n+1,[3]}=H_3^{n,[3]}+\lambda_2*\Delta W 
25 E_3=E_30+lambda_1*noise;H_3=H_30+lambda_2*noise; 
26 for i=1:I 
27 v=reshape(E_10(i,:,:),[J,K]); ... 

w=reshape(H_20(i,:,:),[J,K]); 
28 X1=[v';w'];Y1 =A$B*X1); 
29 E_1(i,:,:)=reshape(Y1(1:K,:)',[1,J,K]); 
30 H_2(i,:,:)=reshape(Y1(K+1:2*K,:)',[1,J,K]); 
31 v1=reshape(E_20(i,:,:),[J,K]); 
32 w1=reshape(H_10(i,:,:),[J,K]); 
33 X2=[v1';w1'];Y2=B$A*X2); 
34 E_2(i,:,:)=reshape(Y2(1:K,:)',[1,J,K]); 
35 H_1(i,:,:)=reshape(Y2(K+1:2*K,:)',[1,J,K]); 
36 end



Appendix A 
Basic Identities and Inequalities 

This chapter is devoted to giving some basic identities and inequalities which 
are frequently used throughout this monograph. For the identities, the divergence 
theorem, the Stokes theorem, and the Green formulae are presented. And for the 
inequalities, the Young inequality, the Hölder inequality, the Minkowski inequality, 
several versions of the Grönwall inequality, and the algebraic inequality are 
introduced. 

A.1 Basic Identities 

Let u be a scalar function, and let .u = (u1, u2, u3)
⏉, .v = (v1, v2, v3)

⏉, and 
.w = (w1, w2, w3)

⏉ be vector functions. Denote the gradient, divergence, and curl 
operators, respectively by 

. ∇u := (∂xu, ∂yu, ∂zu)⏉,

∇ · u := ∂xu1 + ∂yu2 + ∂zu3,

∇ × u :=
⎡
⎣

∂yu3 − ∂zu2

∂zu1 − ∂xu3

∂xu2 − ∂yu1

⎤
⎦ .

The cross product of vector functions . u and . v is denoted by 

. u × v :=
⎡
⎣

u2v3 − u3v2

u3v1 − u1v3

u1v2 − u2v1

⎤
⎦ .
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The commonly used vector identities include: 

. ∇ × (uv) = u
(∇ × v

) − v × (∇u
)
,

∇ × (∇ × u) = −Δu + ∇(∇ · u),

∇ · (∇u) = Δu,

∇ × (∇u) = 0,

∇ · (∇ × u) = 0,

∇ · (u × v) = v · (∇ × u) − u · (∇ × v),

u · (v × w) = v · (w × u) = w · (u × v).

Let .D ⊂ R
3 be an open, bounded, and Lipschitz domain with boundary . ∂D. 

Let .S ⊂ R
3 be an open surface with boundary . ∂S. Denote by . n the unit outward 

normal vector on .∂D or S, and by . ̂n the unit tangential vector on the contour . ∂S that 
encloses S. The commonly used integral identities include: 

The divergence theorem: 

. 

∫
D

∇ · u dx =
∮

∂D

u · n ds.

The Stokes theorem: 

. 

∫
S

(∇ × u) · n ds =
∮

∂S

u · n̂ dl.

The Green formulae: 

. 

∫
D

u · ∇φ dx +
∫

D

(∇ · u)φ dx =
∮

∂D

n · uφ ds,

∫
D

∇ × u · w dx −
∫

D

u · ∇ × w dx =
∮

∂D

(n × u) · w ds.

A.2 Basic Inequalities 

Below we present the Young inequality, the Hölder inequality, the Minkowski 
inequality, several versions of the Grönwall inequality, and the algebraic inequality. 
We refer to e.g. [77, 87] for the proof of different versions of the Grönwall inequality, 
and to [70] for the algebraic inequality.
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Proposition A.1 (Young Inequality) Let . γ be a positive real number, and . p, q >

1 such that . 1
p

+ 1
q

= 1. Then 

. |ab| ≤ γ
|a|p
p

+ γ
− q

p
|b|q
q

, a, b ∈ R.

Proposition A.2 (Hölder Inequality) Let .p, q > 1 such that . 1
p

+ 1
q

= 1. Then 

. ‖fg‖L1(D) ≤ ‖f ‖Lp(D)‖g‖Lq(D), f ∈ Lp(D), g ∈ Lq(D).

Proposition A.3 (Minkowski Inequality) Let .p > 1 and .f, g ∈ Lp(D). Then 

. ‖f + g‖Lp(D) ≤ ‖f ‖Lp(D) + ‖g‖Lp(D).

Proposition A.4 (Continuous Grönwall Inequality) Let .T > 0, . f, g ∈
L∞(0, T ), the constant .c ≥ 0, and g be a monotonically increasing and continuous 
function. If f satisfies 

. f (t) ≤ g(t) + c

∫ t

0
f (s)ds a.e. in t ∈ [0, T ],

then 

. f (t) ≤ ectg(t) a.e. in t ∈ [0, T ].

Proposition A.5 (Discrete Grönwall Inequality) Let .{an}n∈N and .{bn}n∈N be two 
sequences. Let .θ ∈ [0, 1], .c0 > 0, .τ > 0, and .1 − θc0τ > 0. If .a0 ≤ b0 and 

. an+1 ≤ bn+1 + c0τ

n∑
j=0

(
(1 − θ)aj + θaj+1

) ∀ n ∈ N,

then for all .n ∈ N, 

. an+1 ≤ bn+1 + c0τ

1 − θc0τ

n∑
j=0

(1 + (1 − θ)c0τ

1 − θc0τ

)n−j (
(1 − θ)bj + θbj+1

)
.

Moreover, if .{bn}n∈N is monotonically increasing, it follows that for all .n ∈ N, 

.an ≤ bn

(1 + (1 − θ)c0τ

1 − θc0τ

)n

.
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Proposition A.6 (Grönwall Inequality: Differential Form) Let .T > 0, . f ∈
W 1,1(0, T ), and g, .λ ∈ L1(0, T ). Then 

. f '(t) ≤ g(t) + λ(t)f (t) a.e. in t ∈ [0, T ]

implies that for almost all .t ∈ [0, T ], 

. f (t) ≤ eΛ(t)f (0) +
∫ t

0
eΛ(t)−Λ(s)g(s)ds,

where .Λ(t) := ∫ t

0 λ(s)ds. 

Proposition A.7 (Algebraic Inequality) Let .p ≥ 2. Then for any .a, b ∈ R
m with 

.m ∈ N+, it holds that 

. 
(|a|p−2a − |b|p−2b

) · (a − b) ≥ γ0|a − b|p.

Moreover, if .1 < p < 2, then 

. 
(|a|p−2a − |b|p−2b

) · (a − b) ≤ γ1|a − b|p.

Here, the positive constants .γ0, γ1 depend on p and m.



Appendix B 
Semigroup, Sobolev Space, 
and Differential Calculus 

B.1 Operator Semigroup 

We refer readers to [78, 142] for more details about the theory of the operator 
semigroup. 

Let .(V , 〈·, ·〉V ) be a Hilbert space with corresponding norm .‖ · ‖V = √〈·, ·〉V . 
By .L (V ) we denote the space of all bounded linear operators on V . For any . A ∈
L (V ), the operator norm is given by 

. ‖A‖L (V ) := sup
x /=0

‖Ax‖V

‖x‖V

.

Some fundamentals of semigroup theory needed in this monograph are shown 
below. 

Definition B.1 A mapping .S(·) : [0,+∞) → L (V ) is called a strongly 
continuous semigroup or .C0-semigroup if the following conditions are satisfied: 

(i) .S(0) = Id and .S(t + s) = S(t)S(s) for all . t, s ≥ 0;
(ii) For each .u ∈ V , the mapping .S(·)u : [0,∞) → V , .t I→ S(t)u is continuous. 

In particular, a .C0-semigroup .S(·) is called a unitary semigroup if . ‖S(t)u‖V =
‖u‖V for all .u ∈ V and .t ≥ 0. 

The operator A defined by 

. Au := lim
t→0+

S(t)u − u

t
∀ u ∈ D(A)
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with domain 

. D(A) :=
{
u ∈ V

∣∣∣ lim
t→0+

S(t)u − u

t
exists in V

}

is called the infinitesimal generator of the strongly continuous semigroup .S(·). 
Definition B.2 Let .(A,D(A)) be a densely defined linear operator on V , i.e., 
.D(A) = V . The adjoint operator . A∗ of A is defined by 

. D(A∗) := {
u ∈ V : ∃ v ∈ V s.t. 〈v,w〉V = 〈u,Aw〉V for all w ∈ D(A)

}
,

and .A∗u := v for .u ∈ D(A∗). 

Definition B.3 Let .A : D(A) → V be a densely defined linear operator. The 
operator A is called 

(i) symmetric if .Au = A∗u for all . u ∈ D(A) ⊂ D(A∗);
(ii) skew-symmetric if .Au = −A∗u for all . u ∈ D(A) ⊂ D(A∗);

(iii) self-adjoint if .A = A∗ (i.e., A is symmetric and .D(A) = D(A∗)); 
(iv) skew-adjoint if .A∗ = −A (i.e., A is skew-symmetric and .D(A) = D(A∗)). 

The following lemma states the criterion for a skew-symmetric operator to be 
skew-adjoint; see for instance [147]. 

Lemma B.1 Let .A : D(A) → V be skew-symmetric. Then A is skew-adjoint if 
. Id ± A have dense range, that is, 

. ran(Id ± A) = V.

The skew-adjointness of the densely defined operator forms a sufficient and 
necessary condition for the unitary .C0-semigroup as stated in [78, Theorem 3.24]. 

Theorem B.1 Let .A : D(A) → V be a densely defined linear operator. Then A 
generates a unitary .C0-semigroup .S(·) if and only if A is skew-adjoint. 

B.2 Sobolev Space 

In this section, we state some fundamental definitions and results in the context of 
the Sobolev space. We refer to [165] and [23, Chap. 8] for more details. 

Let .D ⊂ R
d be an open set with a Lipschitz boundary . ∂D. For each multi-index 

.α = (α1, . . . , αd), we define 

.|α| :=
d∑

m=1

αm, Dα := ∂α1

∂x
α1
1

· · · ∂αd

∂x
αd

d

.
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For an integer .k ≥ 0 and a real number .p ∈ [1,∞], we define the Sobolev space 
.Wk,p(D) as 

. Wk,p(D) := {
u ∈ Lp(D) : Dαu ∈ Lp(D) for all α with |α| ≤ k

}
,

where the derivatives are understood in the weak sense. When endowed with the 
norm 

. ‖u‖Wk,p(D) :=
( ∑

|α|≤k

‖Dαu‖p

Lp(D)

) 1
p
,

.Wk,p(D) is a Banach space. In the special case .p = 2, we denote . Hk(D) :=
Wk,2(D). With the inner product 

. 〈u, v〉Hk(D) :=
∑
|α|≤k

∫
D

Dαu(x)Dαv(x)dx,

the space .Hk(D) becomes a Hilbert space. If . D is a bounded domain with a 
Lipschitz boundary, then there exists a trace operator 

. γ ∂D : H 1(D) → H 1/2(∂D)

such that .γ ∂Du = u|∂D for all .u ∈ C∞(D). The kernel of .γ ∂D is denoted by 
.H 1

0 (D). 
The following Sobolev embedding theorem is very useful in applications; see for 

instance [148, Theorem 3.2.2]. Denote by .H →ͨ V (resp. .H
c→ͨ V ) the continuous 

(resp. compact) embedding of H into V . 

Theorem B.2 (Sobolev Embedding Theorem) Let D be a d-dimensional domain 
with .C0,1 boundary, and .j, k ∈ N and .p ∈ [1,∞). 

(i) If .kp < d and .1 ≤ p ≤ q < ∞ satisfy .q(d − kp) ≤ dp, then 

. Wj+k,p(D) →ͨ Wj,q(D).

In particular, if . D is bounded, then the above embedding holds additionally for 
.1 ≤ q < p. 

(ii) If .kp = d and .1 ≤ p ≤ q < ∞, then 

. Wj+k,p(D) →ͨ Wj,q(D).

In particular, if . D is bounded, then the above embedding holds additionally for 
.1 ≤ q < p. If .p = 1, the embedding holds for .q = ∞ as well.
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(iii) If .kp > d and one of the following cases holds 

(a) .d > (k − 1)p and . 0 < α ≤ (k − d/p);
(b) .d = (k − 1)p and . 0 < α < 1;
(c) .d = k − 1, p = 1 and .0 < α ≤ 1, 

then 

. Wj+k,p(D) →ͨ Cj,α(D̄).

To end this section, we give several lemmas which will be used to analyze the 
.Hk-regularity of the solution of the stochastic Maxwell equations on a cuboid . D ⊂
R

3. 

Lemma B.2 ([5, Theorem 2.17]) The spaces 

. 

{
u ∈ H(curl,D) ∩ H(div,D) : n × u|∂D = 0

}

and 

. 

{
u ∈ H(curl,D) ∩ H(div,D) : n · u|∂D = 0

}

are both continuously imbedded in .H 1(D)3. Moreover, 

.‖u‖H 1(D)3 ≤ C
(
‖u‖L2(D)3 + ‖∇ × u‖L2(D)3 + ‖∇ · u‖U

)
, (B.1) 

where the positive constant C depends on . |D|. 
Lemma B.3 ([5, Theorem 2.8]) The following compact embeddings hold: 

(i) .{u ∈ H(curl,D) ∩ H(div,D) : n × u|∂D = 0} c→ͨ L2(D)3, 

(ii) . {u ∈ H(curl,D) ∩ H(div,D) : n · u|∂D = 0} c→ͨ L2(D)3.

The following lemma is about the homogeneous boundary value problem for the 
Laplacian on a cuboid. 

Lemma B.4 ([98, Lemma 3.6]) Let . Γ be a union of faces of a cuboid D in . R3, 
and . ̃Γ be the union of the remaining open faces. Let .f ∈ U . Then there is a unique 
function .v ∈ H 1

Γ
(D) such that 

. 

∫
D

vϕdx +
∫

D

∇v · ∇ϕdx =
∫

D

f ϕdx

for all .ϕ ∈ H 1
Γ

(D). Moreover, the solution v belongs to .H 2(D) ∩ H 1
Γ

(D) and 

satisfies .v − Δv = f on . D, .∂nv := ∇v · n = 0 on . ̃Γ , and . ‖v‖H 2(D) ≤ C‖f ‖L2(D)

with the positive constant C depending only on . |D|.
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The case for the mixed inhomogeneous boundary value problem for the Lapla-
cian on a cuboid is stated below. We denote 

. Γ +
1 := {x ∈ D : x = a+

1 }, Γ +
2 := {x ∈ D : y = a+

2 },
Γ +

3 := {x ∈ D : z = a+
3 },

. Γ −
1 := {x ∈ D : x = a−

1 }, Γ −
2 := {x ∈ D : y = a−

2 },
Γ −

3 := {x ∈ D : z = a−
3 },

and .Γj := Γ −
j ∪ Γ +

j for .j = 1, 2, 3. For .p ≥ 1, .s ∈ (0,∞)\N, .s < k ∈ N, and 

some open set .D1 ⊆ R
d , we define the Sobolev–Slobodeckij space . Ws,p(D1) :=(

Lp(D1), Wk,p(D1)
)
s/k,p

by the real interpolation, see for instance [2]. 

Lemma B.5 ([73, Lemma 3.1]) Let .j ∈ {1, 2, 3} and .Γ ∗ := ∂D\Γj . Take  . f ∈ U

and .g ∈ H
1/2
0 (Γj ) := (

L2(Γj ), H 1
0 (Γj )

)
1/2,2. If there exists a unique function 

.v ∈ H 1
Γ ∗(D) solving 

. 

∫
D

vϕdx +
∫

D

∇v · ∇ϕdx =
∫

D

f ϕdx +
∫

Γ +
j

gϕdσ −
∫

Γ −
j

gϕdσ

for all .ϕ ∈ H 1
Γ ∗(D), then the solution v belongs to .H 2(D) ∩ H 1

Γ ∗(D) and satisfies 
.v − Δv = f on . D, .∂nv = g on . Γj , and .‖v‖H 2(D) ≤ C

(‖f ‖U + ‖g‖
H

1/2
0 (Γj )

)
with 

the positive constant C depending only on . |D|. 
To check the boundary conditions, we often use the following lemma. 

Lemma B.6 ([74, Lemma 2.1]) For some .j, k ∈ {1, 2, 3} with .k /= j , let  . f ∈ U

satisfy . ∂jf , . ∂kf , .∂jkf ∈ U and .f = 0 on . Γj . Then .∂kf = 0 on . Γj . 

B.3 Fréchet and Gâteaux Derivatives 

Now we recall some basic facts on the Fréchet differentiability and Gâteaux 
differentiability of a mapping. For more details, see e.g., [9, Sect. 5.3] and [14, 
Sect. 2.1]. 

Let E and V be two Banach spaces. Let .L (E, V ) be the Banach space of all 
bounded linear operators from E into V endowed with the usual operator norm. 

Definition B.4 A mapping .ψ : E → V is Fréchet differentiable at .x ∈ E if there 
exists a continuous linear map .A ∈ L (E, V ) such that 

. lim
h→0

ψ(x + h) − ψ(x) − Ah

‖h‖E

= 0. (B.2)
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The linear map A will be denoted by .ψx(x) and is called the Fréchet derivative of 
. ψ at x. 

Definition B.5 A mapping .φ : E → V is Gâteaux differentiable at .x ∈ E if there 
exists a continuous linear map .A ∈ L (E, V ) such that 

. lim
ρ→0

φ(x + ρh) − φ(x)

ρ
= Ah ∀ h ∈ E. (B.3) 

The linear map A will be denoted by .Dxφ(x) and is called the Gâteaux derivative 
of . φ at x. 

Evidently, (B.3) is equivalent to 

. ψ(x + ρh) = ψ(x) + ρAh + o(|ρ|) ∀ h ∈ E.

Thus Fréchet differentiability implies Gâteaux differentiability, while the converse 
is not true. We shall often use the following characterization of Fréchet differentia-
bility (see e.g., [134, Lemma 2.1]). 

Lemma B.7 A mapping .ψ : E → V is Fréchet differentiable at .x ∈ E with 
.ψx(x) = A if and only if for each bounded set .Ê ⊂ E, 

. lim
ρ→0

ψ(x + ρh) − ψ(x) − ρAh

ρ
= 0

uniformly with respect to .h ∈ Ê.



Appendix C 
Estimates Related to Maxwell Operators 

This chapter presents some estimates related to the continuous and discrete Maxwell 
operators, which are frequently used in the convergence analysis of the structure-
preserving algorithms for the stochastic Maxwell equations. We refer to [29, 41–43] 
for more details. 

Recall the Maxwell operator 

. M =
[

0 ε−1∇×
−μ−1∇× 0

]

with domain 

. D(M) =
{[

E
H

]
∈ H : M

[
E
H

]
=

[
ε−1∇ × H

−μ−1∇ × E

]
∈ H, n × E

∣∣
∂D

= 0

}
,

where .D ⊂ R
3 is an open, bounded, and Lipschitz domain with boundary . ∂D. The  

corresponding norm is defined as 

. ‖u‖D(M) :=
(
‖u‖2

H
+ ‖Mu‖2

H

) 1
2
.

The following lemma presents the estimate for the .C0-semigroup 

. 
{
S(t) = etM, t ≥ 0

}

generated by the Maxwell operator M . 
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Lemma C.1 For the semigroup .
{
S(t) = etM, t ≥ 0

}
on . H, there exists a positive 

constant C such that 

. ‖S(t) − Id‖L (D(M),H) ≤ Ct

for all .t ≥ 0. 

Proof We start from the deterministic system 

.
du(t)

dt
= Mu(t), t ∈ (0, T ]; u(0) = u0. (C.1) 

Thus 

. 
d

dt
‖u(t)‖2

H
= 2

〈du(t)

dt
, u(t)

〉
H

= 2
〈
Mu(t), u(t)

〉
H

= 0,

which leads to 

. ‖u(t)‖H = ‖S(t)u0‖H = ‖u0‖H,

that is, .‖S(t)‖L (H) = 1. 
Similarly, consider 

. 
d

dt
‖Mu(t)‖2

H
= 2

〈
M

du(t)

dt
, Mu(t)

〉
H

= 2
〈
M2u(t), Mu(t)

〉
H

= 0,

from which we have .‖S(t)‖L (D(M)) = 1. 
The assertion in this lemma is equivalent to 

. ‖u(t) − u0‖H = ‖(S(t) − Id)u0‖H ≤ Ct‖u0‖D(M).

In fact, we can conclude from (C.1) that 

. 〈u(t) − u0, u(t)〉H = 〈 ∫ t

0
Mu(s)ds, u(t)

〉
H
,

where the term on the left-hand side is 

.
1

2

(
‖u(t)‖2

H
− ‖u0‖2

H
+ ‖u(t) − u0‖2

H

)
= 1

2
‖u(t) − u0‖2

H
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and the term on the right-hand side can be estimated by 

. 

〈 ∫ t

0
Mu(s)ds, u(t)

〉
H

≤
∫ t

0
‖Mu(s)‖H‖u(t)‖Hds

≤ ‖u0‖H
∫ t

0
‖u(s)‖D(M)ds ≤ Ct‖u0‖2

D(M).

The proof is thus finished. ⨅⨆
The following lemma gives the estimates of the operator 

. 
[
Id − τ(A ⊗ M)

]−1
,

which is related to the stochastic symplectic Runge–Kutta method (4.5)–(4.6). 
Recall that the matrix .A = (aij )

s
i,j=1 is said to satisfy the coercivity condition 

if it is invertible, and there exists a diagonal positive definite matrix . K =
diag(k1, k2, . . . , ks) and a constant .α > 0 such that 

. u⏉K A−1u ≥ αu⏉K u ∀ u ∈ R
s .

Lemma C.2 Suppose that the matrix .A = (aij )
s
i,j=1 satisfies the coercivity 

condition. Then there exist positive constants C such that 

(i) . 
∥∥[Id − τ(A ⊗ M)

]−1∥∥
L (H⊗s )

≤ C;
(ii) .

∥∥Id − [
Id − τ(A ⊗ M)

]−1∥∥
L (D(M)⊗s ,H⊗s )

≤ Cτ , 

where .H
⊗s := H × H × · · · × H︸ ︷︷ ︸

s

and .D(M)⊗s = D(M) × D(M) × · · · × D(M)︸ ︷︷ ︸
s

. 

Proof Denote .u = [
Id − τ(A ⊗ M)

]−1
v, where . v = (

(v1)⏉, (v2)⏉, . . . , (vs)⏉
)⏉

with .vi ∈ H for each .i = 1, 2, . . . , s. Then we have 

. u = v + τ
(
A ⊗ M

)
u.

Since A satisfies the coercivity condition, we apply .〈u,
(
K A−1 ⊗Id

) · 〉H⊗s to both 
sides of the above equation and obtain 

.

〈
u,

(
K A−1 ⊗ Id

)
u
〉
H⊗s

=
〈
u,

(
K A−1 ⊗ Id

)
v
〉
H⊗s

+ τ
〈
u,

(
K A−1 ⊗ Id

)(
A ⊗ M

)
u
〉
H⊗s

.

(C.2)
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Note that 

. 

〈
u,

(
K A−1 ⊗ Id

)
u
〉
H⊗s

≥ α

s∑
i=1

ki‖ui‖2
H

≥ α min
1≤i≤s

{ki}‖u‖2
H⊗s

and 

. 

〈
u,

(
K A−1 ⊗ Id

)(
A ⊗ M

)
u
〉
H⊗s

=
〈
u,

(
K ⊗ M

)
u
〉
H⊗s

=
s∑

i=1

ki

〈
ui,Mui

〉
H

= 0.

Thus, it follows from (C.2) and the Young inequality that 

. α min
1≤i≤s

{ki}‖u‖2
H⊗s ≤ 〈u,

(
K A−1 ⊗ Id

)
v〉H⊗s ≤ γ ‖u‖2

H⊗s + C

γ
‖v‖2

H⊗s .

Taking .γ = α min1≤i≤s{ki}/2 leads to 

. ‖u‖2
H⊗s ≤ C‖v‖2

H⊗s ,

where the positive constant C depends on . α, .min1≤i≤s{ki}, .|K |, and .|A−1|. It means 
that 

.

∥∥∥[Id − τ
(
A ⊗ M

)]−1
v

∥∥∥2

H⊗s
≤ C‖v‖2

H⊗s . (C.3) 

Therefore, we prove the first assertion. 
Similarly, we can show that 

. ‖(A ⊗ M
)
u‖2

H⊗s ≤ C‖(A ⊗ M
)
v‖2

H⊗s .

It follows from 

. 

([
Id − τ(A ⊗ M)

]−1 − Id
)
v = u − v = τ(A ⊗ M)u

that 

. 

∥∥∥
([

Id − τ(A ⊗ M)
]−1 − Id

)
v

∥∥∥
H⊗s

= τ
∥∥(A ⊗ M)u

∥∥
H⊗s

≤ Cτ
∥∥(A ⊗ M)v

∥∥
H⊗s ≤ Cτ‖v‖D(M)⊗s ,

which leads to the second assertion. ⨅⨆
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The estimates of operators 

. Sτ =
(
Id − τ

2
M

)−1(
Id + τ

2
M

)
and Tτ =

(
Id − τ

2
M

)−1

related to the stochastic midpoint method (4.15) are stated in the following lemma. 

Lemma C.3 There exist positive constants C such that 

(i) . ‖Tτ‖L (H) ≤ 1, ‖Id − Tτ‖L (D(M),H) ≤ Cτ ;
(ii) . ‖Sτ‖L (H) = 1, ‖Id − Sτ‖L (D(M),H) ≤ Cτ ;

(iii) . max
1≤n≤N

‖S(tn) − (Sτ )
n‖L (D(Mk),H) ≤ Cτ

k
2 with . k ∈ {1, 2};

(iv) for .n = 1, 2, . . . , N and .s ∈ [tj , tj+1] with .j = 0, 1, . . . , n − 1, it holds that 

. ‖S(tn − s) − (Sτ )
n−j−1Tτ‖L (D(Mk),H) ≤ Cτ

k
2 , k ∈ {1, 2}.

Proof 

(i) Define .̃v := Tτ v for any .v ∈ H, which means that 

. ̃v = v + τ

2
Mṽ.

Taking the inner product with . ̃v yields 

. 
1

2

[
‖̃v‖2

H
− ‖v‖2

H
+ ‖̃v − v‖2

H

]
= τ

2
〈Mṽ, ṽ〉H = 0.

Hence, .‖̃v‖H = ‖Tτ v‖H ≤ ‖v‖H leads to .‖Tτ‖L (H,H) ≤ 1. Notice that for 
.v ∈ D(M), 

. ‖(Id − Tτ )v‖H = ‖v − ṽ‖H = τ

2
‖Mṽ‖H = τ

2
‖MTτv‖H ≤ τ

2
‖v‖D(M),

which completes the proof of (i). 
(ii) Let .ũ := Sτu for any .u ∈ H. Then 

. ̃u = u + τ

2
M(u + ũ).

Taking the inner product with .u + ũ yields 

.‖ũ‖2
H

− ‖u‖2
H

= τ

2
〈M(u + ũ), u + ũ〉H = 0.
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Hence, .‖ũ‖H = ‖Sτu‖H = ‖u‖H leads to .‖Sτ‖L (H,H) = 1. For .u ∈ D(M), 
we have 

. ‖(Id − Sτ )u‖H = ‖u − ũ‖H = τ

2
‖M(u + ũ)‖H ≤ τ

2

(‖Mu‖H + ‖MSτu‖H
)

≤ τ‖u‖D(M),

which completes the proof of (ii). 
(iii) Denote 

. v(t) := S(t)v0 and vj := Sj
τ v0, j = 0, 1, . . . , N,

then .v(t) is the exact solution of 

. 

{
dv(t)

dt
= Mv(t), t ∈ (0, T ],

v(0) = v0,

while . vj is the solution of 

. 

⎧⎨
⎩

vj = vj−1 + τ
2

(
Mvj−1 + Mvj

)
, j = 1, 2, . . . , N,

v0 = v0.

Let .ej := v(tj ) − vj , j = 0, 1, . . . , N . Note that . v(tj ) = v(tj−1) +∫ tj
tj−1

Mv(s)ds, we have  

. ej = ej−1 + τ

2

(
Mej−1 +Mej

)
+

∫ tj

tj−1

(
Mv(s)− 1

2
Mv(tj−1)− 1

2
Mv(tj )

)
ds.

Applying .〈 · , ej + ej−1〉H to both sides of the above equation, and using the 
skew-adjointness of the Maxwell operator M lead to 

. 

‖ej‖2
H

= ‖ej−1‖2
H

+ 1

2

∫ tj

tj−1

〈
2Mv(s) − Mv(tj−1) − Mv(tj ), ej + ej−1

〉
H

ds

= ‖ej−1‖2
H

− 1

2

∫ tj

tj−1

〈 ∫ s

tj−1

Mv(r)dr −
∫ tj

s

Mv(r)dr, Mej + Mej−1
〉
H

ds

≤ ‖ej−1‖2
H

+ Cτ 2
(

sup
0≤t≤T

‖v(t)‖2
D(M) + max

0≤j≤N
‖vj‖2

D(M)

)

≤ ‖ej−1‖2
H

+ Cτ 2‖v0‖2
D(M),

(C.4)
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which implies 

. max
0≤j≤N

‖ej‖H = max
0≤j≤N

‖(S(tj ) − (Sτ )
j )v0‖H ≤ Cτ

1
2 ‖v0‖D(M).

Furthermore, it follows from (C.4) that 

. ‖ej‖2
H

= ‖ej−1‖2
H

− 1

2

∫ tj

tj−1

〈 ∫ s

tj−1

Mv(r)dr

−
∫ tj

s

Mv(r)dr, Mej + Mej−1
〉
H

ds

= ‖ej−1‖2
H

+ 1

2

∫ tj

tj−1

〈( ∫ s

tj−1

∫ r

tj−1

−
∫ tj

s

∫ r

tj−1

)
Mv(ξ)dξdr,

M2(ej + ej−1)
〉
H

ds

≤ ‖ej−1‖2
H

+ Cτ 3‖v0‖2
D(M2)

,

from which we obtain 

. max
0≤j≤N

‖ej‖H = max
0≤j≤N

∥∥(S(tj ) − (Sτ )
j
)
v0

∥∥
H

≤ Cτ‖v0‖D(M2).

(iv) For .s ∈ [tj , tj+1], .j = 0, 1, . . . , n − 1, we have  

. S(tn − s) − (Sτ )
n−j−1Tτ = S(tn − tj+1)

(
S(tj+1 − s) − Id

)

+
(
S(tn − tj+1) − (Sτ )

n−j−1
)

+
(
(Sτ )

n−j−1(Id − Tτ )
)
.

Then assertion (iv) follows from combining results in (i)–(iii). 
⨅⨆

Below, we give estimates of operators 

. Sh,τ =
(
Id − τ

2
M

upw
h

)−1(
Id + τ

2
M

upw
h

)
and Th,τ =

(
Id − τ

2
M

upw
h

)−1

related to the stochastic symplectic dG midpoint algorithm (5.37).
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Lemma C.4 For any .v ∈ Hh,r , it holds 

(i) . ‖Th,τ v‖H ≤ ‖v‖H;
(ii) .‖(Sh,τ )

nv‖H ≤ ‖v‖H, .n = 0, 1, . . . , N . 

Proof 

(i) Define .̃v := Th,τ v for any .v ∈ Hh,r , then 

.̃v = v + τ

2
M

upw
h ṽ. (C.5) 

Taking the .H-inner product with . ̃v on both sides of (C.5), we have  

. 
1

2

[
‖̃v‖2

H
− ‖v‖2

H
+ ‖̃v − v‖2

H

]
= τ

2

〈
M

upw
h ṽ, ṽ

〉
H

≤ 0

due to Proposition 4.25 (ii). Hence, for any .v ∈ Hh,r , we have  

. ‖Th,τ v‖H = ‖̃v‖H ≤ ‖v‖H,

which implies assertion (i). 
(ii) Similarly, to prove assertion (ii), define .vn

h := (Sh,τ )
nv for any .v ∈ Hh,r , which 

means that 

.v𝓁
h = v𝓁−1

h + τ

2

(
M

upw
h v𝓁−1

h + M
upw
h v𝓁

h

)
, 𝓁 = 1, 2, . . . , n (C.6) 

with .v0
h = v. 

Taking the .H-inner product with .v𝓁−1
h + v𝓁

h on both sides of (C.6) yields 

. ‖v𝓁
h‖2

H
− ‖v𝓁−1

h ‖2
H

≤ 0,

and thus .‖v𝓁
h‖H ≤ ‖v𝓁−1

h ‖H ≤ · · · ≤ ‖v0
h‖H = ‖v‖H. This leads to assertion 

(ii). 
⨅⨆

Finally, we present estimates of operators .Sα(t) := etMα , t ≥ 0, 

. Sτ,α =
(
Id− τ

2
Mα

)−1(
Id+ τ

2
Mα

)
and Tτ,α =

(
Id− τ

2
Mα

)−1
, α = x, y, z

related to the splitting midpoint method (5.58). 

Lemma C.5 Let assumptions .n × E|∂D = 0, .n · H|∂D = 0, and . ∇ · E ∈
L2(Ω,H 1

00(D)) hold. Then for any .v = (E⏉, H⏉)⏉ ∈ H 2(D)6, it holds that 

(i) . ‖Sα(t) − Id‖L (D(Mα),H) ≤ Ct;
(ii) .‖(S(τ) − Sz(τ )Sy(τ )Sx(τ )

)
v‖H ≤ Cτ 2‖v‖H 2(D)6 .
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Proof 

(i) Following the approach in [92], for the generator A of a .C0-semigroup and 
.τ ≥ 0, we define the bounded operators .β0(τA) = eτA and 

. βk(τA) =
∫ 1

0
e(1−ξ)τA ξk−1

(k − 1)!dξ

for any .k ≥ 1. These operators satisfy the following recurrence relation 

. βk(τA) = 1

k!Id + τAβk+1(τA), k ≥ 0.

Then, assertion (i) follows from the fact .Sα(t) − Id = tβ1(tMα)Mα for all 
.t ∈ [0, T ]. 

(ii) Note that .S(τ)v is the solution .u(tn+1) of the problem 

. 

⎧⎨
⎩

d
dt

u(t) = (Mz + My + Mx)u(t), t ∈ (tn, tn+1],
u(tn) = v.

By the variation of constants formula and the integration by parts formula, we 
have 

. 

u(tn+1) = S(τ)v

= Sz(τ )v +
∫ τ

0
Sz(s)MyS(τ − s)vds +

∫ τ

0
Sz(s)MxS(τ − s)vds

= Sz(τ )v + τSz(τ )Myv −
∫ τ

0
sSz(s)

(
MzMy − MyM

)
S(τ − s)vds

+ τSz(τ )Mxv −
∫ τ

0
sSz(s)

(
MzMx − MxM

)
S(τ − s)vds.

(C.7) 

For the term .Sz(τ )v, we use relations 

. Sy(τ ) = β0(τMy) = Id + τMy + τ 2β2(τMy)M
2
y

and 

.Sx(τ ) = β0(τMx) = Id + τMx + τ 2β2(τMx)M
2
x
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to obtain 

.

Sz(τ )v = Sz(τ )
[
Sy(τ ) − τMy − τ 2β2(τMy)M

2
y

]
v

= Sz(τ )Sy(τ )v − τSz(τ )Myv − τ 2Sz(τ )β2(τMy)M
2
yv

= Sz(τ )Sy(τ )
[
Sx(τ ) − τMx − τ 2β2(τMx)M

2
x

]
v

− τSz(τ )Myv − τ 2Sz(τ )β2(τMy)M
2
yv

= Sz(τ )Sy(τ )Sx(τ )v − τSz(τ )Sy(τ )Mxv − τSz(τ )Myv

− τ 2Sz(τ )Sy(τ )β2(τMx)M
2
xv − τ 2Sz(τ )β2(τMy)M

2
yv.

(C.8) 

Plugging (C.8) into (C.7) and using .Sy(τ ) − Id = τMyβ1(τMy) yield 

. 
(
S(τ) − Sz(τ )Sy(τ )Sx(τ )

)
v

= −τ 2Sz(τ )β1(τMy)MyMxv − τ 2Sz(τ )Sy(τ )β2(τMx)M
2
xv

− τ 2Sz(τ )β2(τMy)M
2
yv −

∫ tn+1

tn

sSz(s)
(
MzMy − MyM

)
S(tn+1 − s)vds

−
∫ tn+1

tn

sSz(s)
(
MzMx − MxM

)
S(tn+1 − s)vds.

Hence, 

. 
∥∥(S(τ) − Sz(τ )Sy(τ )Sx(τ )

)
v
∥∥
H

≤ C‖v‖H 2(D)6τ
2,

which completes the proof of assertion (ii). 
⨅⨆

Lemma C.6 Let conditions in Lemma C.5 hold. Then 

(i) . 
∥∥Sτ,α

∥∥
L (H)

= 1, ‖Sτ,α − Id‖L (D(Mα),H) ≤ Cτ ;
(ii) . ‖Tτ,α‖L (H) ≤ 1,

∥∥Tτ,α − Id
∥∥

L (D(Mα),H)
≤ Cτ ;

(iii) .
∥∥(S(τ) − Sτ,zSτ,ySτ,x

)
v
∥∥
H

≤ Cτ 2‖v‖H 2(D)6 .
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Proof Proofs of assertions (i) and (ii) are similar to those of Lemma C.3 (i)–(ii) 
and Lemma C.5 (i), and hence are omitted here. Below we focus on the proof of 
assertion (iii). From Lemma C.5 (ii), it suffices to prove 

. ‖Sz(τ )Sy(τ )Sx(τ )v − Sτ,zSτ,ySτ,xv‖H ≤ Cτ 2‖v‖H 2(D)6 ∀ v ∈ H 2(D)6.

For .α = x, y, z, denote .a = τ
2 Mα and .ξ = (Id − a)−1. Then 

. ξ = Id + ξa = Id + τ

2
ξMα,

which gives 

. Sτ,α = ξ(Id + τ

2
Mα) = Id + τ

2
Mα + τ

2
ξMα + τ 2

4
ξM2

α

= Id + τ

2
Mα + τ

2
(Id + τ

2
ξMα)Mα + τ 2

4
ξM2

α

= Id + τMα + τ 2

2
ξM2

α.

Based on the relation 

. Sα(τ) = Id + τMα + τ 2β2(τMα)M2
α,

we have 

. ‖(Sα(τ ) − Sτ,α)v‖H =
∥∥∥τ 2β2(τMα)M2

αv − τ 2

2
ξM2

αv

∥∥∥
H

≤ Cτ 2‖v‖D(M2
α).

Therefore, 

. ‖Sz(τ )Sy(τ )Sx(τ )v − Sτ,zSτ,ySτ,xv‖H
≤ ‖(Sz(τ ) − Sτ,z)Sy(τ )Sx(τ )v‖H + ‖Sτ,z(Sy(τ ) − Sτ,y)Sx(τ )v‖H

+ ‖Sτ,zSτ,y(Sx(τ ) − Sτ,x)v‖H ≤ Cτ 2‖v‖H 2(D)6 .

The proof is thus finished. ⨅⨆



Appendix D 
Some Results of Stochastic Partial 
Differential Equations 

This appendix is devoted to the introduction of the Wiener process and some 
properties of the stochastic integral, including the Itô isometry, the Itô formula, 
and the stochastic Fubini theorem. Furthermore, the Burkholder–Davis–Gundy type 
inequalities are also presented. Finally, a concise introduction to the strong, weak, 
and mild solutions of stochastic partial differential equations is given. We refer 
readers to [62, 129, 145] for more details. 

D.1 Hilbert Space Valued Wiener Process 

We give the definition of the Q-Wiener process. Let Q be a nonnegative and 
symmetric operator with a finite trace on a separable Hilbert space .(V , 〈·, ·〉V , ‖·‖V ). 

Definition D.1 Let . T > 0. A V -valued stochastic process .{W(t), t ∈ [0, T ]}, on a  
probability space .(Ω,F ,P) is called a Q-Wiener process if 

(i) .W(0) = 0, .P-a.s.; 
(ii) W has .P-a.s. continuous trajectories; 

(iii) W has independent increments, that is, for all .n ∈ N+ and all partitions . 0 ≤
t1 < · · · < tn ≤ T , the random variables 

. W(t1), W(t2) − W(t1), . . . ,W(tn) − W(tn−1)

are independent; 
(iv) for all .0 ≤ s < t ≤ T , the increment .W(t) − W(s) is a Gaussian random 

variable with mean zero and covariance operator .(t − s)Q, that is, 

. P ◦ (
W(t) − W(s)

)−1 = N(0, (t − s)Q).
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Note that there exists an orthonormal basis .{ek}k∈N of V and a sequence of 
nonnegative real numbers .{ηk}k∈N such that . Qek = ηkek, k ∈ N.

Proposition D.1 Assume that W is a Q-Wiener process. Then the following 
statements hold: 

(i) W is a Gaussian process on V and 

. E
[
W(t)

] = 0, E
[〈W(t), u〉V 〈W(s), v〉V

] = min{t, s}〈Qu, v〉V
for .u, v ∈ V, t, s ≥ 0; 

(ii) for .t ≥ 0, .W(t) has the expansion 

.W(t) =
∑
k∈N

√
ηkβk(t)ek, (D.1) 

where .{βk}k∈N is a family of independent standard Brownian motions on 
.(Ω,F ,P) and the series in (D.1) is convergent in .L2(Ω, V ). 

Definition D.2 A Q-Wiener process .{W(t), .t ≥ 0}, is called a Q-Wiener process 
with respect to a filtration .{Ft }t≥0, if  

(i) .W(t) is .Ft -measurable; 
(ii) .W(t) − W(s) is independent of .Fs for all .0 ≤ s ≤ t . 

D.2 Hilbert–Schmidt Operator 

Let .(H, 〈·, ·〉H , ‖ · ‖H ) be a separable Hilbert space. 

Definition D.3 Let .A ∈ L (V ) and .{ek}k∈N be an orthonormal basis of . V . The  
trace of the operator A is defined as 

. Tr(A) :=
∑
k∈N

〈Aek, ek〉V ,

if the series is convergent. 

Definition D.4 (Hilbert. –Schmidt Operator) A bounded linear operator . A : V →
H is called Hilbert. –Schmidt if 

. 
∑
k∈N

‖Aek‖2
H < ∞,

where .{ek}k∈N is an orthonormal basis of . V .



D Some Results of Stochastic Partial Differential Equations 269

Denote by .HS(V,H) the space of all Hilbert–Schmidt operators from V to H . 
One can check that .HS(V,H) equipped with the inner product . 〈S,A〉HS(V,H) :=
∑

k∈N〈Sek,Aek〉H and the norm .‖A‖HS(V,H) :=
(∑

k∈N ‖Aek‖2
H

)1/2
is a separa-

ble Hilbert space. 

Proposition D.2 Let G be a separable Hilbert space, and let .S1 ∈ L (H,G), 
.S2 ∈ L (G, V ), .A ∈ HS(V,H). Then .S1A ∈ HS(V,G) and . AS2 ∈ HS(G,H)

satisfying 

. 

‖S1A‖HS(V,G) ≤ ‖S1‖L (H,G)‖A‖HS(V,H),

‖AS2‖HS(G,H) ≤ ‖A‖HS(V,H)‖S2‖L (G,V ).

D.3 Properties of the Stochastic Integral 

Let .Q ∈ L (V ) be symmetric, nonnegative, and of finite trace, and . {W(t), t ∈
[0, T ]} be a Q-Wiener process with respect to the filtration .{Ft }t∈[0,T ]. This section 
introduces some properties of the stochastic integral with respect to W . 

Introduce the subspace .V0 := Q
1
2 V of V with the inner product given by 

. 〈u, v〉V0 := 〈Q− 1
2 u,Q− 1

2 v〉V

for all .u, v ∈ V0, where .Q− 1
2 is the pseudo-inverse of . Q

1
2 . We define the following 

predictable .σ -algebra: 

. PT : = σ
({

(s, t] × Gs, 0 ≤ s < t ≤ T ,Gs ∈ Fs

} ∪ {{0} × G0,G0 ∈ F0
})

σ
(
Y : [0, T ] × Ω → R

∣∣∣ Y is left-continuous and adapted to {Ft }t∈[0,T ]
)
.

Let .Φ : [0, T ] × Ω → H be an .PT /B(H)-measurable mapping. Then . Φ is called 
an H -predictable stochastic process. 

Proposition D.3 (Itô Isometry) Let .T ∈ (0,∞) and .[a, b] ⊂ [0, T ]. Let the 
stochastic process .Φ : [0, T ] × Ω → HS(V0,H) be .HS(V0,H)-predictable with 

.

∫ b

a

E
[‖Φ(s)‖2

HS(V0,H)

]
ds < ∞.
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Then 

. E

[∥∥∥
∫ b

a

Φ(s)dW(s)

∥∥∥2

H

]
= E

[ ∫ b

a

‖Φ(s)‖2
HS(V0,H)ds

]
.

Theorem D.1 (Stochastic Fubini Theorem) Assume that .(A,A , μ) is a measur-
able space, where . μ is finite. Let .Φ(·, ·, x) be an .HS(V0,H)-predictable stochastic 
process for all .x ∈ A and satisfy 

. 

∫
A

[
E

( ∫ T

0
‖Φ(s, ·, x)‖2

HS(V0,H)ds
)] 1

2
μ(dx) < ∞.

Then 

. 

∫
A

[ ∫ T

0
Φ(s, x)dW(s)

]
μ(dx) =

∫ T

0

[ ∫
A

Φ(s, x)μ(dx)
]
dW(s), P-a.s.

Assume that . Φ is an .HS(V0,H)-valued predictable stochastic process with 

. E

[ ∫ T

0
‖Φ(s)‖2

HS(V0,H)ds
]

< ∞,

and . ϕ is a Bochner integrable H -valued predictable process. Let .X(0) be an .F0-
measurable H -valued random variable. Then for the stochastic process 

. X(t) = X(0) +
∫ t

0
ϕ(s)ds +

∫ t

0
Φ(s)dW(s), t ∈ [0, T ],

we have the following Itô formula. 

Theorem D.2 (Itô Formula) Assume that a functional .F : [0, T ]×H → R and its 
Fréchet derivatives . Ft , . Fx , and .Fxx are uniformly continuous on bounded subsets 
of .[0, T ] × H . Then, for all .t ∈ [0, T ], 

. 

F(t,X(t)) = F(0, X(0)) +
∫ t

0

〈
Fx(s,X(s)),Φ(s)dW(s)

〉

+
∫ t

0

(
Ft(s,X(s)) +

〈
Fx(s,X(s)), ϕ(s)

〉)
ds

+ 1

2

∫ t

0
Tr

[
Fxx(s,X(s))(Φ(s)Q1/2)(Φ(s)Q1/2)∗

]
ds, P-a.s.

(D.2) 

We conclude this section by presenting two propositions which are widely used 
to show the well-posedness and the regularity of solutions of stochastic partial
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differential equations and their numerical approximations. The first proposition 
is about the Burkholder–Davis–Gundy type inequalities; see for instance [109, 
Corollary A.2] for more details about proofs and applications. 

Proposition D.4 (Burkholder–Davis–Gundy Type Inequalities) Let . Φ be an 
.HS(V0,H)-valued predictable stochastic process with 

. E

[ ∫ t

0
‖Φ(s)‖2

HS(V0,H)ds
]

< ∞.

Then 

(i) for all .p ≥ 2 and .t ≥ 0, 

. 

(
E

[
sup

t∈[0,T ]

∥∥∥
∫ t

0
Φ(s)dW(s)

∥∥∥p

H

]) 1
p

≤
(p(p − 1)

2

) 1
2
( ∫ t

0

(
E

[
‖Φ(s)‖p

HS(V0,H)

]) 2
p

ds
) 1

2 ;

(ii) for all .p ≥ 2, there exists a constant .Cp > 0 such that for all .t ≥ 0, 

. E

[
sup

0≤s≤t

∥∥∥
∫ s

0
Φ(τ)dW(τ)

∥∥∥p

H

]
≤ CpE

[( ∫ t

0
‖Φ(s)‖2

HS(V0,H)ds
) p

2
]
.

The second proposition is the estimate of the stochastic convolution; see e.g., 
[62, Proposition 7.3] for the case .p > 2 and [94] for .p > 0. 

Proposition D.5 Suppose that .{S(t), t ≥ 0} is a .C0-semigroup on H satisfying 
.‖S(t)‖L (H) ≤ eζ t for some .ζ ≥ 0 and all .t ≥ 0. Let . Φ be an .HS(V0,H)-
predictable stochastic process with 

. E

[ ∫ t

0
‖Φ(s)‖2

HS(V0,H)ds
]

< ∞.

Then for every .p > 0, there exists a positive constant . Cp such that 

.E

[
sup

0≤t≤T

∥∥∥
∫ t

0
S(t − s)Φ(s)dW(s)

∥∥∥p

H

]
≤ CpeζpT

E

[( ∫ T

0
‖Φ(s)‖2

HS(V0,H)ds
) p

2
]
.



272 D Some Results of Stochastic Partial Differential Equations

D.4 Solutions of Stochastic Partial Differential Equations 

Consider the following stochastic partial differential equation 

. 

⎧⎨
⎩

dX(t) = [AX(t) + F(t,X(t))]dt + B(t,X(t))dW(t), t ∈ (0, T ],
X(0) = X0,

(D.3) 

where .A : D(A) → H is the infinitesimal generator of a .C0-semigroup . {S(t) =
etA, t ≥ 0}, .F : [0, T ] × Ω × H → H is .PT × B(H)/B(H)-measurable, 
.B : [0, T ]×Ω×H → HS(V0,H) is .PT ×B(H)/B(HS(V0,H))-measurable, . X0
is an H -valued .F0-measurable random variable, and W is the Q-Wiener process. 

Below we give definitions of the strong, mild, and weak solutions for (D.3). 

Definition D.5 (Strong Solution) A .D(A)-valued predictable process . {X(t), t ∈
[0, T ]} is called a strong solution of (D.3) if 

. X(t) = X0 +
∫ t

0

[
AX(s) + F(s,X(s))

]
ds +

∫ t

0
B(s,X(s))dW(s), P-a.s.

for . t ∈ [0, T ].
Definition D.6 (Mild Solution) An H -valued predictable stochastic process 
.{X(t), t ∈ [0, T ]} is called a mild solution of (D.3) if 

. X(t) = S(t)X0+
∫ t

0
S(t−s)F (s,X(s))ds+

∫ t

0
S(t−s)B(s,X(s))dW(s), P-a.s.

for . t ∈ [0, T ].
Definition D.7 (Weak Solution) An H -valued predictable process . {X(t), t ∈
[0, T ]} is called a weak solution of (D.3) if 

. 〈X(t), η〉H = 〈X0, η〉H +
∫ t

0
〈X(s),A∗η〉H + 〈F(s,X(s)), η〉H ds

+
∫ t

0
〈η, B(s,X(s))dW(s)〉H , P-a.s.

for .t ∈ [0, T ] and .η ∈ D(A∗). Here, .(A∗,D(A∗)) is the adjoint of .(A,D(A)) on H . 

The following proposition states that a strong solution is also a weak solution; 
conversely, under certain conditions, a weak solution can also be a strong one; see 
e.g., [62, 129].
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Proposition D.6 (Weak Versus Strong Solutions) 

(i) Every strong solution of (D.3) is also a weak solution. 
(ii) Let .{X(t), t ∈ [0, T ]} be a weak solution of (D.3) with values in .D(A) such that 

.B(t,X(t)) takes values in .HS(V0,H) for all .t ∈ [0, T ]. In addition, assume 
that 

. P

( ∫ T

0
‖AX(t)‖H dt < ∞

)
= 1,

P

( ∫ T

0
‖F(t,X(t))‖H dt < ∞

)
= 1,

P

( ∫ T

0
‖B(t,X(t))‖2

HS(V0,H)dt < ∞
)

= 1.

Then .{X(t), t ∈ [0, T ]} is also a strong solution. 
The following proposition gives the relationship between the weak solution and 

the mild solution; see [62, 129], 

Proposition D.7 (Weak Versus Mild Solutions) 

(i) Let .{X(t), t ∈ [0, T ]} be a weak solution of (D.3) such that .B(t,X(t)) takes 
values in .HS(V0,H) for all .t ∈ [0, T ]. In addition, assume that 

. P

( ∫ T

0
‖X(t)‖H dt < ∞

)
= 1,

P

( ∫ T

0
‖F(t,X(t))‖H dt < ∞

)
= 1,

P

( ∫ T

0
‖B(t,X(t))‖2

HS(V0,H)dt < ∞
)

= 1.

Then .{X(t), t ∈ [0, T ]} is also a mild solution. 
(ii) Let .{X(t), t ∈ [0, T ]} be a mild solution of (D.3) such that 

. 

∫ t

0
S(t − s)F (s,X(s))ds,

∫ t

0
S(t − s)B(s,X(s))dW(s), t ∈ [0, T ]

have predictable versions. In addition, assume that 

. P

( ∫ T

0
‖F(t,X(t))‖H dt < ∞

)
= 1,

E

[∫ T

0

∫ t

0

∥∥〈S(t − s)B(s,X(s)), A∗η〉H
∥∥2

HS(V0,R)
dsdt

]
< ∞ ∀ η ∈ D(A∗).

Then .{X(t), t ∈ [0, T ]} is also a weak solution.
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