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We investigate stochastic modified equations to explain the mathematical mechanism of symplectic
methods applied to rough Hamiltonian systems. The contribution of this paper is threefold. First, we
construct a new type of stochastic modified equation. For symplectic methods applied to rough Hamilto-
nian systems, the associated stochastic modified equations are proved to have Hamiltonian formulations.
Secondly, the pathwise convergence order of the truncated modified equation to the numerical method is
obtained by techniques in rough path theory. Thirdly, if increments of noises are simulated by truncated
random variables, we show that the error can be made exponentially small with respect to the time step size.
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1. Introduction

In the study of a numerical method for a differential equation, the modified equation gives a lot of
insights into the numerical method and is crucial in backward error analysis. For the stochastic differential
equation (SDE) driven by a standard Brownian motion

dYt = V(Yt) dWt,

there exist various types of stochastic modified equations in different senses of convergence. In view of
the weak convergence, adding a modified coefficient with powers of the time step size h to the original
SDE yields a modified equation of the form

dỸt = [V(Ỹt) + Ṽ(Ỹt)h
p] dWt, (1.1)

which fits the numerical method to a higher weak order. The modified coefficient Ṽ can be determined
by the weak Taylor expansion (Shardlow, 2006) or by the expansion of the backward Kolmogorov
equation (Zygalakis, 2011). As an application, the first-order integrated Euler method is proposed for
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STOCHASTIC MODIFIED EQUATIONS 895

the stochastic Langevin equation in Zygalakis (2011) to preserve the mean of a modified Hamiltonian.
Another application of this kind of modified equations is to construct high weak order methods; see
Abdulle et al. (2012) and Hong et al. (2017). The modification is also considered at the level of the
Kolmogorov equation instead of at the level of the SDE. Given φ, denote u(t, x) = E[φ(Yt(x))] and
(L f )(x) = 1

2

∑
i,j(VV�)ij(x)∂ijf (x). The modified Kolmogorov equation for ∂u

∂t = L u is

∂ ũ

∂t
= [L + L1h + · · · + LNhN]ũ

with Ll being some modified operators of order 2l+2, l = 1, · · · , N. Based on the modified Kolmogorov
equation, Debussche & Faou (2012) proved that the numerical solution obtained by the Euler method for
SDEs on the torus is exponentially mixing up to negligible terms. The results are extended to implicit
methods for SDEs on Rm in Kopec (2015a,b); Anton (2019). With respect to strong convergence, using
multiple Stratonovich integrals Jα,t, Deng (2016) defined the modified equation

dỸt = [V(Ỹt) +
∑
α

Ṽα(Ỹt)Jα,t

]
dWt

for the Euler method, and the optimal truncation of the above series is studied.
Stochastic Hamiltonian systems are fundamental models in many physical and engineering sciences,

such as the passive tracer model and the Kubo oscillator. The phase flow of a stochastic Hamiltonian
system driven by standard Brownian motions preserves the symplectic structure almost surely and
there has been a great amount of work about the construction of stochastic symplectic methods after
the pioneering results in Milstein et al. (2002a,b). Lots of numerical simulations have shown that the
stochastic symplectic methods are superior over long time computation to non-symplectic ones. From the
perspective of the stochastic modified equation to investigate the superiority of the stochastic symplectic
methods, it is natural to ask:

Problem 1.1 For a stochastic symplectic method applied to a stochastic Hamiltonian system, does there
exist a stochastic modified equation that has a stochastic Hamiltonian formulation, such that its exact
solution coincides with the numerical solution?

This problem is partially solved by Wang et al. (2016, 2018). As far as the weak convergence is
concerned, for the case that the Hamiltonian functions associated to the diffusion parts do not depend
on the generalized coordinate and momenta simultaneously, the modified equations in the form of (1.1)
for stochastic symplectic methods are derived in Wang et al. (2016) via the generating function. These
modified equations are perturbed stochastic Hamiltonian systems with respect to the original systems. In
Wang et al. (2018), the modified coefficient in (1.1) is deduced for a symplectic splitting method applied
to separable Hamiltonian systems with additive noises, and the flow of the corresponding modified
equation preserves the symplectic structure.

With further researches on modeling random phenomenon, the stochastic signals are not necessarily
semi-martingales or Markovian processes (Deya et al., 2012; Friz & Riedel, 2014; Bayer et al., 2016;
Kelly, 2016; Liu & Tindel, 2019; Hu et al., 2021), which motivates the study of SDEs driven by rough
paths

dYt = V(Yt) dXt. (1.2)

In particular, when the driving signals are standard Brownian motions, the solution of (1.2) is equivalent
to that of the Stratonovich SDE, which is used to define the canonical formulation of stochastic
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896 C. CHEN ET AL.

Hamiltonian systems driven by standard Brownian motions. In Hong et al. (2018), it is shown that the
phase flow of a stochastic Hamiltonian system driven by rough paths also preserves the symplectic
structure almost surely, and stochastic symplectic methods are proposed to inherit this property. In
this article, we investigate the modified equations for stochastic symplectic methods applied to (1.2).
Overcoming the difficulties caused by the non-differentiability and the low regularity of X, we propose
a new type of stochastic modified equation

dỹt = [V(ỹt) +
∑
α

Ṽα(ỹt)(X
1
tn,tn+1

)α1 · · · (Xd
tn,tn+1

)αd
]

dxh
t , t ∈ (tn, tn+1], tn = nh,

which satisfies ỹtn = Yh
n with Yh

n being the numerical solution. Based on the Hermite polynomials, we
prove that if a symplectic method is applied to a rough Hamiltonian system, then for any α, there exists
a Hamiltonian Hα such that

Ṽα = J
−1∇Hα .

This implies that stochastic modified equations for symplectic methods are also stochastic Hamiltonian
systems, and gives a positive answer to Problem 1.1.

Note that the coefficient of the stochastic modified equation is an infinite series. In order to obtain
some rigorous estimates, we truncate the stochastic modified equation as

dỹÑ
t = [V(ỹÑ

t ) +
∑

|α|�Ñ

Ṽα(ỹÑ
t )(X1

tn,tn+1
)α1 · · · (Xd

tn,tn+1
)αd
]

dxh
t , t ∈ (tn, tn+1].

We further study the following two problems concerning the estimate between the numerical solution
Yh

n given by a stochastic symplectic method and the exact solution ỹÑ
tn of the corresponding truncated

modified equation.

Problem 1.2 What is the convergence rate of the error between the numerical solution and the exact
solution of the truncated modified equation?

Problem 1.3 Does there exist a truncation number Ñ such that the error is exponentially small with
respect to the time step size?

Considering the nontrivial covariances of increments of X, we utilize the Itô–Lyons map in the
rough path theory to obtain the pathwise convergence rate of the exact solution ỹÑ of truncated modified
equation to the numerical solution Yh, that is,

sup
1�n�N

‖ỹÑ
tn − Yh

n‖ � C(ω)h
Ñ+1

p −1, a.s.,

where Ñ is the truncation number and p depends on the regularity of the driving signal. This answers
Problem 1.2. For Problem 1.3, we focus on the case of the standard Brownian motion where the
increments of noises are simulated by truncated random variables proposed in Milstein et al. (2002a).
Due to the lack of explicit expansion formulas of implicit numerical methods, we use the analytic
assumption to estimate the numerical solution, the modified equation and the truncated modified
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STOCHASTIC MODIFIED EQUATIONS 897

equation, successively. Combining the estimates yields that there exists some truncation number Ñ =
Ñ(h) such that the one-step error is exponentially small with respect to the time step size:

‖ỹÑ
t1 − Yh

1‖ � Ch e−h0/h
1
2 −ε

.

The rest of this article is organized as follows. In Section 2, we introduce basic results in the rough
path theory. In Section 3, for Problem 1.1, we illustrate the procedure in constructing stochastic modified
equations and prove that stochastic modified equations associated to stochastic symplectic methods
are Hamiltonian systems as well. In Section 4, we prove the pathwise convergence rate of the error
between the numerical solution and the exact solution of the truncated modified equation, and obtain the
exponential convergence for one-step error in the case of truncated Brownian increments, which answers
Problems 1.2–1.3. Numerical experiments are presented in Section 5 to support theoretical results.

2. Preliminaries

In this section, we review the well-posedness of SDEs in the sense of the rough path theory; see, e.g.,
Lyons (1998); Friz & Victoir (2010).

Consider the SDE driven by multi-dimensional Gaussian signal⎧⎪⎪⎨
⎪⎪⎩

dYt = V0(Yt) dt +
d∑

l=1

Vl(Yt) dXl
t , t ∈ (0, T];

Y0 = z ∈ R
m.

(2.1)

For a convenient notation involving the drift term, we define V := (V0, V1, · · · , Vd), X0
t := t, X :=

(X0, X1, · · · , Xd), and then an equivalent form of (2.1) is{
dYt = V(Yt) dXt, t ∈ (0, T];

Y0 = z.
(2.2)

In this article, we focus on the case that the driving signal X satisfies the following assumption.

Assumption 2.1 Let Xl : [0, T] → R, l = 1, · · · , d be independent centered Gaussian processes with
continuous sample paths. There exist some ρ ∈ [1, 2) and K ∈ (0, +∞) such that the covariance of X
satisfies

sup
{tk},{ti}∈D([s,t])

(∑
tk ,ti

∣∣∣E[Xl
tk ,tk+1

Xl
ti,ti+1

]∣∣∣ρ
)1/ρ

� K|t − s|1/ρ ∀ 0 � s < t � T ,

where D([s, t]) denotes the set of all dissections of [s, t] and Xl
tk ,tk+1

:= Xl
tk+1

− Xl
tk .

For instance, one can check that the fractional Brownian motion with Hurst parameter H ∈ ( 1
4 , 1

2

]
,

whose covariance is E
[|Xl

s,t|2
] = |t − s|2H , satisfies Assumption 2.1 with ρ = 1

2H . Since the Hölder
regularity for the trajectory of the fractional Brownian motion is not larger than H, the well-posedness
of (2.2) fails to be established in the Riemann–Stieltjes integral sense. Hence, we interprete (2.2) in the
rough path sense. To this end, we introduce some basic concepts in the rough path theory; see Friz &
Victoir (2010) for more details.
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898 C. CHEN ET AL.

Let p ∈ [1, ∞) and [p] be the integer part of p, i.e., [p] ∈ N+ with p − 1 < [p] � p. We denote by(
G[p](Rd+1), d

)
the free step-[p] nilpotent Lie group of Rd+1 equipped with the Carnot–Carathéodory

metric (Friz & Victoir, 2010, Chap. 7). A continuous map X : [0, T] → G[p](Rd+1) ⊂ ⊕[p]
n=0(R

d+1)⊗n

is called p-rough path if

‖X‖p-var;[0,T] := sup
{tk}∈D([0,T])

(∑
tk

d(Xtk , Xtk+1
)p

)1/p

< ∞,

where D([0, T]) is the set of dissections of [0, T]. Furthermore, we say that X is of Hölder-type if

‖X‖ 1
p -Höl;[0,T] := sup

0�s<t�T

d(Xs, Xt)

|t − s|1/p
< ∞.

For example, if x : [0, T] → Rd+1 is a function of bounded variation and x0 = 0, the corresponding
rough path can be defined by S[p](x) : [0, T] → G[p](Rd+1) with

S[p](x)t =
(

1,
∫

0�u1�t
dxu1

, · · · ,
∫

0�u1<···<u[p]�t
dxu1

⊗ · · · ⊗ dxu[p]

)
.

It is a canonical lift for x in the sense that the projection of S[p](x) onto Rd+1 coincides with x.
Moreover, the Gaussian process X under Assumption 2.1 can be lifted to a Hölder-type p-rough path

X ∈ G[p](Rd+1) for any p > 2ρ (Friz & Victoir, 2010, Theorem 15.33), which is defined by the limit
of {S3(x

n)}∞n=1 with {xn}∞n=1 being a sequence of piecewise linear or mollifier approximations to X. As a
consequence, the well-posedness of (2.2) is given by that of the rough differential equation (RDE){

dYt = V(Yt) dXt, t ∈ (0, T];

Y0 = z.
(2.3)

In the sequel, we introduce the definition of the solution of (2.3) and state the condition for the existence
and uniqueness of the solution. Throughout the rest of this paper, we denote by ‖ · ‖ the Euclidean norm
and by C a generic constant which may be different from line to line.

Definition 2.2 (Friz & Victoir, 2010, Definition 10.17) Let p ∈ [1, ∞) and X be a p-rough path.
Suppose that there exists a sequence of functions {xn}∞n=1 of bounded variation taking values in Rd+1

such that

sup
n∈N

‖S[p](x
n)‖p-var;[0,T] < ∞ and lim

n→∞ sup
0�s<t�T

d
(
S[p](x

n)s,t, Xs,t

) = 0,

where S[p](x
n)s,t := S[p](x

n)−1
s ⊗ S[p](x

n)t and Xs,t := X−1
s ⊗ Xt. Suppose in addition that {yn}∞n=1 are

solutions of equations dyn
t = V(yn

t ) dxn
t , in the Riemann–Stieltjes integral sense, with the same initial

value z as in (2.3). If yn
t converges to Yt in the L∞([0, T])-norm, i.e.,

lim
n→∞ sup

0�t�T
‖yn

t − Yt‖ = 0,

then we call Yt a solution of (2.3).
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STOCHASTIC MODIFIED EQUATIONS 899

Definition 2.3 (Friz & Victoir, 2010, Definition 10.2) Let γ > 0, and �γ 
 be the largest integer strictly
smaller than γ , i.e., γ − 1 � �γ 
 < γ . We say that V ∈ Lipγ , if V : Rm → Rm×d is �γ 
-times
continuously differentiable and there exists some constant C such that

‖DkV(y)‖ � C ∀ k = 0, · · · , �γ 
 ∀ y ∈ R
m,

‖D�γ 
V(y1) − D�γ 
V(y2)‖ � C‖y1 − y2‖γ−�γ 
 ∀ y1, y2 ∈ R
m,

where DkV denotes kth derivative of V . The smallest constant C satisfying the above inequalities is
denoted by ‖V‖Lipγ .

Lemma 2.4 (Friz & Victoir, 2010, Theorem 10.26 and Theorem 11.6) Let p ∈ [1, ∞) and X be a p-rough
path. If V ∈ Lipγ with γ > p, or V is linear, then (2.3) has a unique solution. Additionally, the Jacobian
∂Yt
∂z exists and satisfies the linear RDE⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩
d
∂Yt

∂z
=

d∑
l=0

DVl(Yt)
∂Yt

∂z
dXl

t, t ∈ (0, T];

∂Y0

∂z
= Im ∈ R

m×m,

where Im is the identity matrix.

Remark 2.5 If X is the standard Brownian motion, the solution Y of (2.3) solves the corresponding
Stratonovich SDE almost surely (Friz & Victoir, 2010, Theorem 17.3).

3. Construction of the stochastic modified equation

In this section, we investigate the formulation of stochastic modified equations associated to numerical
methods for the SDE (2.1). In subsection 3.1, we construct a new stochastic modified equation and verify
that the numerical solution to the original SDE solves exactly the proposed stochastic modified equation.
In subsection 3.2, we prove that the stochastic modified equation preserves the symplectic conservation
law if it is associated with a stochatic symplectic method for a rough Hamiltonian system. This answers
Problem 1.1 proposed in the introduction.

3.1 Construction of the stochastic modified equations for general methods

Fix the time step size h = T/N, N ∈ N+. Let Yh
n be the numerical solution given by a numerical method,

which is an approximation for Ytn , where tn = nh, n = 0, · · · , N. Our main assumption on the numerical
method is as follows.

Assumption 3.1 The numerical solution Yh
n+1 can be expanded as an infinite series of functions of Yh

n :

Yh
n+1 = Yh

n +
∞∑

|α|=1

dα(Yh
n )hα0(X1

tn,tn+1
)α1 · · · (Xd

tn,tn+1
)αd , (3.1)

where α = (α0, · · · , αd) ∈ Nd+1, |α| := α0 + · · · + αd � 1 and Yh
0 = z. In addition, it holds that

dα(y) = Vl(y), |α| = 1, αl = 1, l ∈ {1, · · · , d}. (3.2)
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900 C. CHEN ET AL.

Here, (3.1) is a formal series obtained by the Taylor expansion, which is used for deducing the
formulation of stochastic modified equations. Since {Yh

n }N
n=1 is the numerical solution given by a

numerical method, the coefficients dα in the series are composed by V and its derivatives. The specific
conditions on V , which also imply conditions on dα , will be given in the theorems in the following
sections. Moreover, (3.2) is a necessary condition to ensure that the numerical solution converges to the
exact solution almost surely; see the convergence analysis in Corollary 9 of Friz & Riedel (2014) and
in Theorems 5.2–5.3 of Hong et al. (2018). For convenience, in the rest of the article, we will denote
Vα(y) := Vl(y) with |α| = 1, αl = 1 and l ∈ {0, · · · , d}.

In Example 3.2, we take the Runge–Kutta (RK) method for an example to illustrate how to verify
the expansion (3.1) for numerical solutions.

Example 3.2 The s-stage RK method is defined by⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Yh
n+1,i = Yh

n +
s∑

j=1

aij

(
V0(Y

h
n+1,j)h +

d∑
l=1

Vl(Y
h
n+1,j)X

l
tn,tn+1

)
,

Yh
n+1 = Yh

n +
s∑

i=1

bi

(
V0(Y

h
n+1,i)h +

d∑
l=1

Vl(Y
h
n+1,i)X

l
tn,tn+1

)
.

(3.3)

Then the Taylor expansion produces that for l = 0, · · · , d,

Vl(Y
h
n+1,i)

= Vl(Y
h
n ) + V ′

l (Y
h
n )
( s∑

j=1

aij

(
V0(Y

h
n+1,j)h +

d∑
l1=1

Vl1(Y
h
n+1,j)X

l1
tn,tn+1

))

+ 1

2
V ′′

l (Yh
n )
( s∑

j=1

aij

(
V0(Y

h
n+1,j)h +

d∑
l1=1

Vl1(Y
h
n+1,j)X

l1
tn,tn+1

))⊗2 + · · ·

= Vl(Y
h
n ) +

s∑
j=1

aijV
′
l (Y

h
n )
(

V0(Y
h
n )h +

d∑
l1=1

Vl1(Y
h
n )Xl1

tn,tn+1

)

+
s∑

j1,j2=1

aij1 aj1j2V ′
l (Y

h
n )V ′

0(Y
h
n )
(

V0(Y
h
n )h +

d∑
l1=1

Vl1(Y
h
n )Xl1

tn,tn+1

)
h

+
d∑

l1=1

s∑
j1,j2=1

aij1 aj1j2 V ′
l (Y

h
n )V ′

l1(Y
h
n )
(

V0(Y
h
n )h +

d∑
l2=1

Vl2(Y
h
n )Xl2

tn,tn+1

)
Xl1

tn,tn+1

+ 1

2

s∑
j1,j2=1

aij1 aij2 V ′′
l (Yh

n )
(

V0(Y
h
n )h +

d∑
l1=1

Vl1(Y
h
n )Xl1

tn,tn+1

)(
V0(Y

h
n )h +

d∑
l2=1

Vl2(Y
h
n )Xl2

tn,tn+1

)

+ · · · .
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Here V ′
0(y)V0(y) is the derivative of V0(y) acting on V0(y), and V ′′

0 (y)V0(y)V0(y) is the second derivative
of V0(y) acting (V0(y), V0(y)). Other operators are defined similarly. Substituting them into (3.3), we get

Yh
n+1

= Yh
n +

s∑
i=1

bi

[
V0(Y

h
n ) +

s∑
j=1

aijV
′
0(Y

h
n )
(

V0(Y
h
n )h +

d∑
l1=1

Vl1(Y
h
n )Xl1

tn,tn+1

)

+
s∑

j1,j2=1

aij1 aj1j2 V ′
0(Y

h
n )V ′

0(Y
h
n )
(

V0(Y
h
n )h +

d∑
l1=1

Vl1(Y
h
n )Xl1

tn,tn+1

)
h

+
d∑

l1=1

s∑
j1,j2=1

aij1 aj1j2 V ′
0(Y

h
n )V ′

l1(Y
h
n )
(

V0(Y
h
n )h +

d∑
l2=1

Vl2(Y
h
n )Xl2

tn,tn+1

)
Xl1

tn,tn+1

+ 1

2

s∑
j1,j2=1

aij1 aij2 V ′′
0 (Yh

n )
(

V0(Y
h
n )h +

d∑
l1=1

Vl1(Y
h
n )Xl1

tn,tn+1

)(
V0(Y

h
n )h +

d∑
l2=1

Vl2(Y
h
n )Xl2

tn,tn+1

)]
h

+
s∑

i=1

d∑
l=1

bi

[
Vl(Y

h
n ) +

s∑
j=1

aijV
′
l (Y

h
n )
(

V0(Y
h
n )h +

d∑
l1=1

Vl1(Y
h
n )Xl1

tn,tn+1

)

+
s∑

j1,j2=1

aij1 aj1j2 V ′
l (Y

h
n )V ′

0(Y
h
n )
(

V0(Y
h
n )h +

d∑
l1=1

Vl1(Y
h
n )Xl1

tn,tn+1

)
h

+
d∑

l1=1

s∑
j1,j2=1

aij1 aj1j2 V ′
l (Y

h
n )V ′

l1(Y
h
n )
(

V0(Y
h
n )h +

d∑
l2=1

Vl2(Y
h
n )Xl2

tn,tn+1

)
Xl1

tn,tn+1

+ 1

2

s∑
j1,j2=1

aij1 aij2 V ′′
l (Yh

n )
(

V0(Y
h
n )h +

d∑
l1=1

Vl1(Y
h
n )Xl1

tn,tn+1

)(
V0(Y

h
n )h +

d∑
l2=1

Vl2(Y
h
n )Xl2

tn,tn+1

)]
Xl

tn,tn+1

+ · · · ,

which satisfies the form of (3.1).

From Assumption 3.1, the increments of X are utilized in numerical methods. Based on this
observation, we combine with the piecewise approximation xh of X, which is given by

xh,l
t := Xl

tn + t − tn
h

Xl
tn,tn+1

, t ∈ (tn, tn+1], n = 0, · · · , N − 1, (3.4)

to define the new stochatic modified equation as follows.

Definition 3.3 For α = (α0, · · · , αd) ∈ Nd+1, denote

Oα
i :=

{
(ki,1, · · · , ki,i) : ki,1, · · · , ki,i ∈ N

d+1, |ki,1|, · · · , |ki,i| � 1,

ki,1
l + · · · + ki,i

l = αl, l = 0, · · · , d
}

.
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The stochastic modified equation for a numerical method satisfying (3.1) is defined as an RDE

⎧⎪⎪⎨
⎪⎪⎩

dỹt =
d∑

l=0

∑
i(α)=l

fα(ỹt)h
α0(X1

tn,tn+1
)α1 · · · (Xl

tn,tn+1
)αl−1 · · · (Xd

tn,tn+1
)αd dxh,l

t , t ∈ (tn, tn+1];

ỹ0 = z,

(3.5)

where ỹ is continuous on [0, T], i(α) is denoted by

i(α) = min{l : αl � 1, l = 0, · · · , d} ∈ {0, · · · , d}, (3.6)

and the coefficients fα(y) are

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

fα(y) = dα(y), |α| = 1,

fα(y) = dα(y) −
|α|∑
i=2

1

i!

∑
(ki,1,··· ,ki,i)∈Oα

i

(Dki,1 · · · Dki,i−1 fki,i)(y), |α| � 2,
(3.7)

with (Dki1,i2 g)(y) := g′(y)fki1,i2 (y) for ki1,i2 = (ki1,i2
0 , · · · , ki1,i2

d ) ∈ Nd+1, |ki1,i2 | � 1.

Remark 3.4 For a fixed time step size h, the driving signal xh is of bounded variation, then the stochastic
modified equation is well defined in the Riemann–Stieltjes integral sense. It is emphasized that the 1-
variation of xh is not uniformly bounded with respect to h in general. Indeed, we only have that for
p > 2ρ,

sup
h

‖S[p](x
h)‖p-var;[0,T] < ∞

with ρ given in Assumption 2.1; see Section 15.3.2 in Friz & Victoir (2010) for more details. In this
sense, we call (3.5) an RDE.

Remark 3.5 Recall the Wong–Zakai approximation of (2.2), i.e.,

⎧⎪⎪⎨
⎪⎪⎩

dyh
t = V(yh

t ) dxh
t =

d∑
l=0

Vl(y
h
t ) dxh,l

t , t ∈ (0, T];

yh
0 = z.

The stochastic modified equation (3.5) associated with a numerical method under Assumption 3.1 is also
a perturbation of the Wong–Zakai approximation of the original equation.

Remark 3.6 The framework in this article about constructing the stochastic modified equation is also
applicable for numerical methods with adaptive time step sizes.
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Example 3.7 Let d = 1. The modified Milstein scheme (see, e.g., Deya et al., 2012) reads

Yh
n+1 = Yh

n + V0(Y
h
n )h + V1(Y

h
n )X1

tn,tn+1
+ 1

2
V ′

1(Y
h
n )V1(Y

h
n )(X1

tn,tn+1
)2,

which implies

d(1,0)(y) = V0(y), d(0,1)(y) = V1(y),

d(2,0)(y) = d(1,1)(y) = 0, d(0,2)(y) = 1

2
V ′

1(y)V1(y),

dα(y) = 0, |α| � 3.

According to (3.7), the coefficients of the associated stochastic modified equations are

|α| = 1 : f(1,0)(y) = d(1,0)(y) = V0(y),

f(0,1)(y) = d(0,1)(y) = V1(y);

|α| = 2 : f(2,0)(y) = d(2,0)(y) − 1

2!

(
D(1,0)f(1,0)

)
(y) = −1

2
V ′

0(y)V0(y),

f(1,1)(y) = d(1,1)(y) − 1

2!

[(
D(1,0)f(0,1)

)
(y) + (D(0,1)f(1,0)

)
(y)
]

= −1

2

[
V ′

1(y)V0(y) + V ′
0(y)V1(y)

]
,

f(0,2)(y) = d(0,2)(y) − 1

2!

(
D(0,1)f(0,1)

)
(y)

= 1

2
V ′

1(y)V1(y) − 1

2
V ′

1(y)V1(y) = 0;

|α| � 3 : · · ·

Theorem 3.8 Suppose that ỹ is the solution of the stochastic modified equation (3.5) associated with a
numerical method with numerical solution Yh. Then we have

ỹtn = Yh
n , n = 0, · · · , N.

Proof. Consider t ∈ (tn, tn+1]. Due to Definition 3.3, the stochastic modified equation can be written as

dỹt =
∞∑

|α|=1

fα(ỹt)h
α0−1(X1

tn,tn+1
)α1 · · · (Xd

tn,tn+1
)αd dt.
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Using the Taylor expansion and the chain rule, we have

ỹtn+1

= ỹtn +
∞∑

k=1

dk

dtk
(ỹt)

∣∣∣
t=tn

hk

k!

= ỹtn +
∞∑

|α|=1

fα(ỹtn)h
α0(X1

tn,tn+1
)α1 · · · (Xd

tn,tn+1
)αd

+ 1

2!

⎡
⎣ ∂

∂y

( ∞∑
|α|=1

fα(y)hα0(X1
tn,tn+1

)α1 · · · (Xd
tn,tn+1

)αd

)∣∣∣∣
y=ỹtn

⎤
⎦

×
⎛
⎝ ∞∑

|α|=1

fα(ỹtn)h
α0(X1

tn,tn+1
)α1 · · · (Xd

tn,tn+1
)αd

⎞
⎠

+ 1

3!

[
∂

∂y

(( ∂

∂y

( ∞∑
|α|=1

fα(y)hα0(X1
tn,tn+1

)α1 · · · (Xd
tn,tn+1

)αd
))

×
( ∞∑

|α|=1

fα(y)hα0(X1
tn,tn+1

)α1 · · · (Xd
tn,tn+1

)αd
))∣∣∣∣

y=ỹtn

]

×
⎛
⎝ ∞∑

|α|=1

fα(ỹtn)h
α0(X1

tn,tn+1
)α1 · · · (Xd

tn,tn+1
)αd

⎞
⎠+ · · ·

=: ỹtn +
∞∑

|α|=1

f̃α(ỹtn)h
α0(X1

tn,tn+1
)α1 · · · (Xd

tn,tn+1
)αd , (3.8)

where

f̃α(y) = fα(y), |α| = 1,

f̃α(y) = fα(y) +
|α|∑
i=2

1

i!

∑
(ki,1,··· ,ki,i)∈Oα

i

(Dki,1 · · · Dki,i−1 fki,i)(y), |α| � 2.

Together with (3.7), we have

f̃α(y) = dα(y) ∀ α ∈ N
d+1, |α| � 1.

Therefore, we obtain ỹtn = Yh
n , for n = 0, · · · , N. �
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3.2 Stochastic modified equation of stochastic symplectic method for stochastic Hamiltonian system

We consider the stochastic Hamiltonian system in the rough path sense (rough Hamiltonian system for
short): ⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dPt = − ∂H0(Pt, Qt)

∂Qt
dt −

d∑
l=1

∂Hl(Pt, Qt)

∂Qt
dXl

t , P0 = p ∈ R
m;

dQt =∂H0(Pt, Qt)

∂Pt
dt +

d∑
l=1

∂Hl(Pt, Qt)

∂Pt
dXl

t , Q0 = q ∈ R
m.

(3.9)

One characteristic property of the rough Hamiltonian system is that its phase flow preserves the
symplectic structure. Namely, the differential 2-form dP ∧ dQ is invariant under the phase flow. Here
the differential is made with respect to the initial value (p, q), which is different from the formal time
derivative in (3.9).

Lemma 3.9 (Hong et al., 2018, Theorem 3.1) The phase flow of the rough Hamiltonian system (3.9)
preserves the symplectic structure, that is,

dP ∧ dQ = dp ∧ dq, a.s.

Denote by J2m :=
(

0 Im−Im 0

)
the standard symplectic matrix. Letting Y := (P�, Q�)�, z :=

(p�, q�)� and Vl(y) := J
−1
2m∇Hl(y), l = 0, · · · , d, we obtain a compact form as (2.2). Thus the stochastic

modified equations in Definition 3.3 of numerical methods satisfying (3.1) for (3.9) are constructed.
Moreover, based on Lemma 3.9, it is natural to perform symplectic methods which inherit the symplectic
structure of the original rough Hamiltonian system, such as the symplectic RK methods in the next
lemma.

Lemma 3.10 (Hong et al., 2018, Theorem 4.1) The s-stage RK method (3.3) inherits the symplectic
structure of a rough Hamiltonian system, if the coefficients satisfy

aijbi + ajibj = bibj ∀ i, j = 1, · · · , s.

The following theorem reveals that the stochastic modified equation associated to a stochastic
symplectic method is still a Hamiltonian system, which gives a positive answer to Problem 1.1 in the
introduction. In the proof, since the vector field of the stochastic modified equation is a sum of random
coefficients, we make use of the Hermite polynomial to separate each coefficient and then obtain the
Hamiltonian formulation.

Theorem 3.11 Assume that V is bounded with bounded derivatives up to any order, and that there exist
a constant ς > 1/2 and a function L : [0, T] → (0, +∞) such that

lim
h→0

h−1/ς
E
∥∥Xt − Xt+h

∥∥2 = L(t). (3.10)
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If Yh
1 (z), the one-step numerical solution, is given by applying a symplectic method satisfying Assump-

tion 3.1 to (3.9), then the associated stochastic modified equation (3.5) is a Hamiltonian system. More
precisely, for any fα : R2m → R2m in (3.5), there exists a Hamiltonian Hα : R2m → R such that

fα(y) = J
−1
2m∇Hα(y). (3.11)

Proof. By ς > 1/2, we have 1/2ς < 1. For α ∈ Nd+1, define θ(α) := α0 + α1+···+αd
2ς

. Define a set

S := {x : x = m + k
2ς

, m, k ∈ N}. We sequence the elements in S and denote them by θ0, θ1, θ2, · · · , such
that θn < θn+1. Then for any α, there exits an integer n such that θ(α) = θn.

From condition (3.2), we have immediately that (3.11) holds for α with θ(α) = θ1. For r ∈ N+,
assume by induction that for any α such that θ(α) � θr, (3.11) holds. By Assumption 3.1, the expansion
of the one-step numerical solution is

Yh
1 (z) = z +

∞∑
|α|=1

dα(z)hα0(X1
t0,t1)

α1 · · · (Xd
t0,t1)

αd .

Consider the following equation:

dỹr
t =

θr∑
θ(α)=θ1

fα(ỹr
t )h

α0−1(X1
tn,tn+1

)α1 · · · (Xd
tn,tn+1

)αd dt, ỹr
0 = z, t ∈ (0, t1].

Denote by π r(z)t the flow of the above equation. By the Taylor expansion and the chain rule, similar
approach to calculating (3.8) leads to

π r(z)h = z +
∞∑

|α|=1

f r
α(z)hα0(X1

t0,t1)
α1 · · · (Xd

t0,t1)
αd ,

where f r
α is determined by fα′ with |α′| � |α|. Comparing the above expansion with (3.1), we have from

the recursion (3.7) that for all α such that θ(α) � θr,

dα(z) − f r
α(z) = 0;

for all α such that θ(α) = θr+1,

dα(z) − f r
α(z) = fα .

Based on the assumption that V and its derivatives are bounded, we have
∥∥Yh

1 (z)
∥∥

Lp(Ω)
� C for p � 1.

Moreover, since the coefficients {fα} and {f r
α} are determined by V and its derivatives, we obtain the

boundedness of {fα} and {f r
α}, which yields

∥∥π r(z)t

∥∥
Lp(Ω)

� C. Then there exists a random variable
Rr+2 such that

Yh
1 (z) = π r(z)h +

∑
θ(α)=θr+1

fα(z)hα0(X1
t0,t1)

α1 · · · (Xd
t0,t1)

αd + Rr+2, a.s.,
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STOCHASTIC MODIFIED EQUATIONS 907

where the leading term of Rr+2 involves hα0(X1
t0,t1)

α1 · · · (Xd
t0,t1)

αd with α0 + α1+···+αd
2ς

= θr+2, which

gives ‖Rr+2‖Lp(Ω) � Chθr+2 . Taking the derivatives of π r(z)h and Yh
1 (z) with respect to z, we deduce

that the Jacobians satisfy

∂π r(z)h

∂z
= I2m + Rh, a.s.,

∂Yh
1 (z)

∂z
= ∂π r(z)h

∂z
+

∑
θ(α)=θr+1

f ′
α(z)hα0(X1

t0,t1)
α1 · · · (Xd

t0,t1)
αd + ∂Rr+2

∂z
, a.s.,

where f ′
α(z) := ∂fα(z)

∂z . Since the leading term of Rh involves hα0(X1
t0,t1)

α1 · · · (Xd
t0,t1)

αd with α0 +
α1+···+αd

2ς
= θ1, and the leading term of ∂Rr+2

∂z involves hα0(X1
t0,t1)

α1 · · · (Xd
t0,t1)

αd with α0 + α1+···+αd
2ς

=
θr+2, we get ‖Rh‖Lp(Ω) � C(p)hθ1 and

∥∥∥ ∂Rr+2
∂z

∥∥∥
Lp(Ω)

� C(p)hθr+2 . The definition of the symplectic

method means

J2m =
(∂Yh

1 (z)

∂z

)�
J2m

∂Yh
1 (z)

∂z
, a.s.

Substituting the expressions of the Jacobians into the above equality, we obtain

J2m =
(∂π r(z)h

∂z

)�
J2m

∂π r(z)h

∂z
+

∑
θ(α)=θr+1

J2m f ′
α(z)hα0(X1

t0,t1)
α1 · · · (Xd

t0,t1)
αd

+
∑

θ(α)=θr+1

f ′
α(z)�J2m hα0(X1

t0,t1)
α1 · · · (Xd

t0,t1)
αd + R, a.s.,

where ‖R‖Lp(Ω) � C(p)hθr+2 , due to the leading term of R involving hα0(X1
t0,t1)

α1 · · · (Xd
t0,t1)

αd with

α0 + α1+···+αd
2ς

= θr+2. The induction assumption implies

J2m =
(∂π r(z)h

∂z

)�
J2m

∂π r(z)h

∂z
, a.s.,

which provides

∑
θ(α)=θr+1

(
J2m f ′

α(z) + f ′
α(z)�J2m

)
h− α1+···+αd

2ς (X1
t0,t1)

α1 · · · (Xd
t0,t1)

αd = −h−θr+1 R, a.s.

The assumption (3.10) implies that for l = 1, · · · , d, there exists a function M : [0, T] × (0, +∞) →
(0, +∞) such that

Xl
t0,t1 = h

1
2ς M

1
2 (t0, h)ξh,l, lim

h→0
M(t, h) = L(t),
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where ξh,l, l = 1, · · · , d, are independent and identically distributed standard normal random variables.
Letting h tend to 0 and using the fact L(t) > 0 and

lim
h→0

∥∥h−θr+1 R
∥∥

L2(Ω)
= 0,

we have that ∑
θ(α)=θr+1

(
J2m f ′

α(z) + f ′
α(z)�J2m

)
ξ

α1
1 · · · ξαd

d = 0, a.s., (3.12)

where ξl, l = 1, · · · , d, are independent and identically distributed standard normal random variables.
In Theorem 1.6 of Gautschi (2004), it is proved that there exists a unique monic orthogonal polynomial
sequence {pk(x)}∞k=1 with respect to the measure induced by ξ1, i.e., the Hermite polynomials. This means
that for any k ∈ N+, we have

xk = pk(x) +
∑
j<k

ajpj(x).

Then we rewrite (3.12) as

0 =
∑

θ(α)=θr+1

(
J2m f ′

α(z) + f ′
α(z)�J2m

)

×
(

pα1
(ξ1) +

∑
k1<α1

ak1
pk1

(ξ1)
)

· · ·
(

pαd
(ξd) +

∑
kd<αd

akd
pkd

(ξd)
)

.

Recall that θ(α) = α0 + α1+···+αd
2ς

. We denote G the integer part of 2ςθr+1. We decomposite the
summation above by

0 =
∑

θ(α)=θr+1,α1+···+αd=G

(
J2m f ′

α(z) + f ′
α(z)�J2m

)

×
(

pα1
(ξ1) +

∑
k1<α1

ak1
pk1

(ξ1)
)

· · ·
(

pαd
(ξd) +

∑
kd<αd

akd
pkd

(ξd)
)

+
∑

θ(α)=θr+1,α1+···+αd�G−1

(
J2m f ′

α(z) + f ′
α(z)�J2m

)

×
(

pα1
(ξ1) +

∑
k1<α1

ak1
pk1

(ξ1)
)

· · ·
(

pαd
(ξd) +

∑
kd<αd

akd
pkd

(ξd)
)

=
∑

θ(α)=θr+1,α1+···+αd=G

(
J2m f ′

α(z) + f ′
α(z)�J2m

)
pα1

(ξ1) · · · pαd
(ξd)

+
∑

θ(α)=θr+1,k1+···+kd�G−1

gk1,··· ,kd
(z)pk1

(ξ1) · · · pkd
(ξd), a.s.,

where the last line in the above equality collects the polynomials with degree lower than G. For any α

satisfying θr+1 and α1 +· · ·+αd = G, multiplying the above equation by pα1
(ξ1) · · · pαd

(ξd) and taking
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the expectation, we deduce from the independence of ξ1, · · · , ξd and the orthogonality of {pk(x)}∞k=1 that

J2m f ′
α(z) + f ′

α(z)�J2m = 0.

Plugging it into (3.12) and rewriting it as before, we have

0 =
∑

θ(α)=θr+1,α1+···+αd=G−1

(
J2m f ′

α(z) + f ′
α(z)�J2m

)
pα1

(ξ1) · · · pαd
(ξd)

+
∑

θ(α)=θr+1,k1+···+kd�G−2

g̃k1,··· ,kd
(z)pk1

(ξ1) · · · pkd
(ξd), a.s.

Similarly, we have for any α satisfying θr+1 and α1 + · · · + αd = G − 1, J2m f ′
α(z) + f ′

α(z)�J2m = 0.
Repeatedly using previous arguments, we have J2m f ′

α(z) + f ′
α(z)�J2m = 0 for any α satisfying θr+1.

Combining with the fact J�
2m = −J2m, we obtain J2m f ′

α(z) − (J2m f ′
α(z))� = 0, i.e., J2m f ′

α(z) is
symmetric. Then the statement (3.11) follows from the integrability lemma (Hairer et al., 2006, Lemma
2.7 in Chap. VI). �

Remark 3.12 Based on Assumption 2.1, we have ‖Xtn,tn+1
‖L2(Ω) � Kh1/2ρ , 1 � ρ < 2, which is an

upper bound for the regularity of the noise. In the proof of Theorem 3.11, we use the assumption (3.10)
to characterize the regularity of the noise more precisely, which is satisfied by a large class of Gaussian
processes used in the rough path theory. For example, for the fractional Brownian motion, the constant
ς = 1

2H and L(t) ≡ 1 in (3.10). In particular, ς = 1 and L(t) ≡ 1 when the noise is the standard
Brownian motion.

Remark 3.13 For the weak convergent symplectic method which approximates Xl
tn,tn+1

by ςln

√
h with

the random variable ςln defined through P(ςln = ±1) = 1
2 , such as the method studied in Anton (2019),

one can construct the stochastic modified equation by regarding Xl
tn,tn+1

as ςln

√
h. Further, since the

formulation of the coefficients {fα} of the stochastic modified equation does not rely on the simulation
of the noise, the proof above also leads to fα(y) = J

−1
2m∇Hα(y).

Remark 3.14 Theorems 3.8–3.11 show that the numerical solution given by a rough symplectic method
applied to a rough Hamiltonian system exactly solves another rough Hamiltonian system. For non-
symplectic methods, the associated modified equations are not Hamiltonian systems in general. This
explains the superiority of rough symplectic methods over long time computation to non-symplectic
ones in numerical simulations presented in Section 5.

4. Convergence analysis

In this section, we consider the Ñ-truncated modified equation (Ñ � 1)⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dỹÑ
t =

d∑
l=0

1�|α|�Ñ∑
i(α)=l

fα(ỹÑ
t )hα0(X1

tn,tn+1
)α1 · · · (Xl

tn,tn+1
)αl−1 · · · (Xd

tn,tn+1
)αd dxh,l

t , t ∈ (tn, tn+1];

ỹÑ
0 = z,

(4.1)
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where fα is given by (3.7), |α| = 1, · · · , Ñ. We remark that Theorem 3.11 also implies the symplecticity of
the Ñ-truncated modified equation associated with a symplectic method applied to a rough Hamiltonian
system. Therefore, taking Ñ as an index, we obtain a family of stochastic modified equations with
Hamiltonian formulations.

In subsection 4.1, we give the convergence analysis on the error between Yh
n and ỹÑ

tn for the case that
X is a general Gaussian rough path satisfying Assumption 2.1, which answers Problem 1.2. Here the
rough path theory is essential since

sup
h

‖xh‖1-var;[0,T] = ∞, sup
h

‖S[p](x
h)‖p-var;[0,T] < ∞, p > 2ρ.

As for Problem 1.3, we focus on the case that X is the standard Brownian motion and the increments are
simulated by bounded Gaussian random variables. We optimize Ñ such that the error is exponentially
small with respect to h, in subsection 4.2.

Remark 4.1 For the forward error analysis, that is, the estimate for the difference between the numerical
solution Yh

n and the exact solution Ytn of the original stochastic equation (2.1), we refer to Hong et al.
(2018), Bayer et al. (2016) and Friz & Riedel (2014), and the references therein.

4.1 The general rough case

Theorem 4.2 Under Assumption 2.1, if V is bounded with bounded derivatives up order Ñ, then for any
p > 2ρ, there exists a random variable C(ω) = C(ω, p, ‖V‖LipÑ , Ñ) such that

‖ỹÑ
t1 − Yh

1‖ � C(ω)h
Ñ+1

p , a.s.,

where ỹÑ is the solution of (4.1) and Yh
1 is defined by a numerical method satisfying (3.1).

Proof. Consider the expansion

ỹÑ
h = z +

∞∑
|α|=1

f Ñ
α (z)hα0(X1

t0,t1)
α1 · · · (Xd

t0,t1)
αd .

Fix p > 2ρ � 2. Since the recursion (3.7) implies f Ñ
α = f̃α = dα with 1 � |α| � Ñ, and Assumption 2.1

produces ‖X‖ 1
p -Höl;[t0,t1] < ∞, we deduce from the Taylor expansion that the leading term of the error

between ỹÑ
t1 and Yh

1 is involved with hα0(X1
t0,t1)

α1 · · · (Xd
t0,t1)

αd , where α0 = 0 and α1 · · · + αd = Ñ + 1.
Hence,

‖ỹÑ
t1 − Yh

1‖ � C(ω, p, ‖V‖LipÑ , Ñ)h
Ñ+1

p .

�
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STOCHASTIC MODIFIED EQUATIONS 911

Theorem 4.3 Under Assumption 2.1, if V ∈ LipÑ−1+γ with γ > 2ρ and Ñ > 2ρ − 1, then for any
p ∈ (2ρ, γ ), there exists a random variable C(ω) = C(ω, p, γ , ‖V‖LipÑ−1+γ , Ñ, T) such that

sup
1�n�N

‖ỹÑ
tn − Yh

n‖ � C(ω)h
Ñ+1

p −1, a.s.,

where ỹÑ is the solution of (4.1) and Yh
n is defined by a numerical method satisfying (3.1).

Proof. Denoting by π(t0, y0, xh)t the flow of (4.1), which initiates from y0 at time t0, we have

‖Yh
k − ỹÑ

tk ‖ = ‖π(tk, Yh
k , xh)tk − π(t0, Yh

0 , xh)tk‖

�
k∑

s=1

‖π(ts, Yh
s , xh)tk − π(ts−1, Yh

s−1, xh)tk‖, 1 � k � N.

Due to the Lipschitz continuity of the Itô–Lyons map (Friz & Victoir, 2010, Theorem 10.26), we get

‖π(ts, Yh
s , xh)tk − π(ts−1, Yh

s−1, xh)tk‖
= ‖π(tk−1, π(ts, Yh

s , xh)tk−1
, xh)tk − π(tk−1, π(ts−1, Yh

s−1, xh)tk−1
, xh)tk‖

� C exp{Cν̄p‖S[p](x
h)(ω)‖p

p-var;[tk−1,tk]}‖π(ts, Yh
s , xh)tk−1

− π(ts−1, Yh
s−1, xh)tk−1

‖,

where C := C(p, γ ) and ν̄ := ν̄(‖X‖ 1
p -Höl;[0,T](ω), ‖V‖LipÑ−1+γ , Ñ). From

‖S[p](x
h)(ω)‖p

p-var;[u1,u2] + ‖S[p](x
h)(ω)‖p

p-var;[u2,u3] � ‖S[p](x
h)(ω)‖p

p-var;[u1,u3],

it yields that

‖π(ts, Yh
s , xh)tk − π(ts−1, Yh

s−1, xh)tk‖
� C exp{Cν̄p‖S[p](x

h)(ω)‖p
p-var;[ts,tk]}‖π(ts, Yh

s , xh)ts − π(ts−1, Yh
s−1, xh)ts‖

� C exp{Cν̄p‖S[p](x
h)(ω)‖p

p-var;[0,T]}‖Yh
s − π(ts−1, Yh

s−1, xh)ts‖, 1 � s � k.

It follows from Theorem 15.33 in Friz & Victoir (2010) that

lim
h→0

‖S[p](x
h)(ω)‖p-var;[0,T] = ‖X(ω)‖p-var;[0,T], a.s.,
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which yields

sup
h>0

‖S[p](x
h)(ω)‖p

p-var;[0,T] < ∞, a.s.

According to Assumption 2.1 and Definition 2.3, V ∈ LipÑ−1+γ with γ > 2ρ > 1 leads to that V is
bounded with bounded derivatives up order Ñ. Then we derive by Theorem 4.2 that

‖Yh
k − ỹÑ

tk ‖ �
k∑

s=1

C exp{Cν̄p‖S[p](x
h)(ω)‖p

p-var;[0,T]}‖Yh
s − π(ts−1, Yh

s−1, xh)ts‖

� C(ω, p, γ , ‖V‖LipÑ−1+γ , Ñ, T)h
Ñ+1

p −1

due to γ > 2ρ � 2. �
In the case of additive noises, the terms satisfying |α| � 2 and α0 = 0 will include the derivatives
of the diffusion coefficients, which are zero. Then (3.1) in Assumption 3.1 on the numerical method
degenerates to

Yh
n+1 = Yh

n +
∑
|α|=1

dα(Yh
n )hα0(X1

tn,tn+1
)α1 · · · (Xd

tn,tn+1
)αd

+
∞∑

|α|�2,α0�1

dα(Yh
n )hα0(X1

tn,tn+1
)α1 · · · (Xd

tn,tn+1
)αd . (4.2)

Consequently, the convergence rate of the error between Yh
n and ỹÑ

tn increases, which is stated in the
following theorem.

Theorem 4.4 Let Assumption 2.1 hold and Vi(y) ≡ σi ∈ Rm, i = 1, · · · , d. If V0 ∈ LipÑ−1+γ with
γ > 2ρ, then for any p ∈ (2ρ, γ ), there exists a random variable C(ω) = C(ω, p, ‖V‖LipÑ , Ñ) such that

sup
1�n�N

‖ỹÑ
tn − Yh

n‖ � C(ω)h
Ñ
p , a.s.,

where ỹÑ is the solution of (4.1) and Yh
n is defined by a numerical method satisfying (4.2).

Proof. Combining (4.2) with (3.7), we have that the leading term of the local error between ỹÑ
t1 and Yh

1

is involved with hα0(X1
t0,t1)

α1 · · · (Xd
t0,t1)

αd , where α0 = 1 and α1 · · · + αd = Ñ. Then

‖ỹÑ
t1 − Yh

1‖ � C(ω)h
Ñ
p +1, a.s.,

from which we conclude the result by using the same arguments as in the proof of Theorem 4.3. �

4.2 The standard Brownian case

In the previous subsection, we prove that the error between the numerical solution and the exact solution
of the truncated modified equation is bounded by a polynomial function with respect to the time step
size h by fixing the truncation number Ñ. To further study the convergence analysis, we show in this
subsection that by fixing the time step size h, there exists a truncation number Ñ such that the error
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STOCHASTIC MODIFIED EQUATIONS 913

can be made exponentially small. In this sense, we call it the best truncation number. We deal with the
case that Xl, l = 1, · · · , d are independent standard Brownian motions. In this case, we simulate the
increments Xl

tn,tn+1
by

Δn+1,l := ζn+1,l

√
h (4.3)

with

ζn+1,l :=
⎧⎨
⎩

ξn+1,l, |ξn+1,l| � Ah,
Ah, ξn+1,l > Ah,
−Ah, ξn+1,l < −Ah.

Here ξn+1,l, n = 0, 1, · · · , N − 1, l = 1, · · · , d, are independent Gaussian normal random variables, and
Ah = √

4|ln h|. Similar to Assumption 3.1, we assume that the expansion of the numerical solution is

Yh
n+1 = Yh

n +
∞∑

|α|=1

dα(Yh
n )hα0Δ

α1
n+1,1 · · · Δαd

n+1,d.

For convenience, we illustrate our idea by the RK method⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Yh
n+1,i = Yh

n +
s∑

j=1

aij

(
V0(Y

h
n+1,j)h +

d∑
l=1

Vl(Y
h
n+1,j)Δn+1,l

)
,

Yh
n+1 = Yh

n +
s∑

i=1

bi

(
V0(Y

h
n+1,i)h +

d∑
l=1

Vl(Y
h
n+1,i)Δn+1,l

)
.

(4.4)

We also stress that the procedure does not rely on the special structure of RK methods and is available
for a large class of numerical methods.

To fit this case into the previous analysis, it suffices to prove that the process x̄h = (x̄h,1, · · · , x̄h,d)

defined by

x̄h,l
t := x̄h,l

tn + t − tn
h

Δn+1,l ∀ t ∈ (tn, tn+1], l = 1, · · · , d, n = 0, · · · , N − 1,

can be lifted to a p-rough path with [p] = 2 almost surely, as a counterpart of the process (3.4).

Proposition 4.5 Let 2 < p < 3. Then it holds that there exists some random variable C(ω) :=
C(ω, p, T) independent of h such that∥∥∥S2(x̄

h(ω))

∥∥∥
p-var;[0,T]

� C(ω), a.s.

Proof. Let ti−1 < s < ti < tj < t < tj+1. Since for any m ∈ N+, E
[
Δ2m

1,1

]
� (2m − 1)! ! hm and

E

[
Δ2m−1

1,1

]
= 0, we have

E

[∣∣∣∣
∫ ti

s
dx̄h,l

u1

∣∣∣∣ 2m
]

= E

[(
ti − s

h
Δi,l

)2m
]

�
(

ti − s

h

)2m

E

[
Δ2m

1,1

]
� C|ti − s|m,

E

[∣∣∣∣∣
∫ t

tj
dx̄h,l

u1

∣∣∣∣∣ 2m

]
= E

[(
t − tj

h
Δj+1,l

)2m
]

�
(

t − tj
h

)2m

E

[
Δ2m

1,1

]
� C|t − tj|m,
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and

E

[∣∣∣∣
∫ tj

ti
dx̄h,l

u1

∣∣∣∣ 2m
]

= E

⎡
⎢⎣
⎛
⎝ j∑

k=i+1

Δk,l

⎞
⎠

2m
⎤
⎥⎦

=
∑

βi+1+···+βj=2m, βi+1,··· ,βj are even

C
βi+1
2m C

βi+2
2m−βi+1

· · · C
βj
2m−βi+1−···−βj−1

E

[
Δ

βi+1
i+1,l · · · Δ

βj
j,l

]

�
∑

βi+1+···+βj=2m, βi+1,··· ,βj are even

(2m)!E
[
Δ

βi+1
i+1,l

]
· · ·E

[
Δ

βj
j,l

]

� #
{
(βi+1, · · · , βj) : βi+1 + · · · + βj = 2m, βi+1, · · · , βj are even

}
(2m)! (2m − 1)! ! hm

� (j − i)m(2m)! (2m − 1)! ! hm � C|tj − ti|m.

Here, Cm
n denotes the combinatorial number and #O gives the number of elements in the set O .

Combining the above estimates, we obtain

E

[∣∣∣∣
∫ t

s
dx̄h,l

u1

∣∣∣∣ 2m
]

� C

{
E

[∣∣∣∣
∫ ti

s
dx̄h,l

u1

∣∣∣∣ 2m
]

+ E

[∣∣∣∣
∫ tj

ti
dx̄h,l

u1

∣∣∣∣ 2m
]

+ E

[∣∣∣∣∣
∫ t

tj
dx̄h,l

u1

∣∣∣∣∣ 2m

]}
� C|t − s|m.

For an iterated integral, let ti−1 < s < ti < tj < t < tj+1 and l1, l2 ∈ {1, · · · , d}. If l1 �= l2, then the
definition of x̄ and the independence of Δk1,l1 and Δk2,l2 lead to

E

[∣∣∣∣
∫ tj

ti

∫ u1

ti
dx̄h,l1

u2
dx̄h,l2

u1

∣∣∣∣ 2m
]

= E

⎡
⎣
∣∣∣∣∣∣

j∑
k=i+1

k−1∑
l=i+1

Δk,l1Δl,l2 +
j∑

k=i+1

1

2
Δk,l1Δk,l2

∣∣∣∣∣∣ 2m

⎤
⎦

�
∑

βi+1+···+βj=2m, βi+1,··· ,βj are even

Cβi+1
2m Cβi+2

2m−βi+1
· · · C

βj
2m−βi+1−···−βj−1

E

[
Δ

βi+1
i+1,l1

· · ·Δβj
j,l1

]

×
∑

γi+1+···+γj=2m, γi+1,··· ,γj are even

Cγi+1
2m Cγi+2

2m−γi+1
· · · C

γj
2m−γi+1−···−γj−1

E

[
Δ

γi+1
i+1,l2

· · · Δγj
j,l2

]

�
(
(j − i)m(2m)! (2m − 1)! ! hm

)2
� C|tj − ti|2m.
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If l1 = l2, then

E

[∣∣∣∣
∫ tj

ti

∫ u1

ti
dx̄h,l1

u2
dx̄h,l2

u1

∣∣∣∣ 2m
]

= E

⎡
⎣
∣∣∣∣∣∣

j∑
k=i+1

k−1∑
l=i+1

Δk,l1Δl,l1 +
j∑

k=i+1

1

2
Δ2

k,l1

∣∣∣∣∣∣ 2m

⎤
⎦

�
∑

βi+1+···+βj=4m, βi+1,··· ,βj are even

Cβi+1
4m Cβi+2

4m−βi+1
· · · C

βj
4m−βi+1−···−βj−1

E

[
Δ

βi+1
i+1,l1

· · · Δβj
j,l1

]

� #
{
(βi+1, · · · , βj) : βi+1 + · · · + βj = 4m, βi+1i+1, · · · , βj are even

}
(4m)!E

[
Δ

βi+1
i+1,l1

]
· · ·E

[
Δ

βj
j,l1

]
� (j − i)2m(4m)! (4m − 1)! ! h2m � C|tj − ti|2m.

Besides,

E

[∣∣∣∣
∫ tj

ti

∫ ti

s
dx̄h,l1

u2
dx̄h,l2

u1

∣∣∣∣ 2m
]

�
(

ti − s

h

)2m

E

[
Δ2m

1,1

]
E

[∣∣∣∣
∫ tj

ti
dx̄h,l

u1

∣∣∣∣ 2m
]

� C|ti − s|m|tj − ti|m,

E

[∣∣∣∣
∫ ti

s

∫ u1

s
dx̄h,l1

u2
dx̄h,l2

u1

∣∣∣∣ 2m
]

�
(

ti − s

h

)4m (
E

[
Δ2m

1,1

] )2
� C|ti − s|2m.

Similarly, it holds that

E

[∣∣∣∣∣
∫ t

tj

∫ u1

s
dx̄h,l1

u2
dx̄h,l2

u1

∣∣∣∣∣ 2m

]
� C|t − tj|m|tj − s|m + C|t − tj|2m.

Therefore, we obtain

E

[∣∣∣∣
∫ t

s

∫ u1

s
dx̄h,l1

u2
dx̄h,l2

u1

∣∣∣∣ 2m
]

� C|t − s|2m.

For any p such that 2 < p < 3, i.e., 1
3 < 1

p < 1
2 , choose q = 4m sufficiently large with m ∈ N+ such

that
( 1

2 − 1
q

)− 1
q > 1

p . By the Besov–Hölder embedding theorem (Friz & Victoir, 2010, Corollary A.2),
we get

∥∥∥S2(x̄
h)

∥∥∥q((
1
2 − 1

q

)
− 1

q

)
-Höl;[0,T]

� C(q)

∫ T

0

∫ T

0

∣∣d(S2(x̄
h)s, S2(x̄

h)t)
∣∣ q

|t − s|1+q
(

1
2 − 1

q

) ds dt,

D
ow

nloaded from
 https://academ

ic.oup.com
/im

ajna/article/45/2/894/7676802 by Library of Academ
y of M

athem
atics & System

 Sciences user on 23 April 2025



916 C. CHEN ET AL.

where

d(S2(x̄
h)s, S2(x̄

h)t) � C max

{∣∣∣∣
∫ t

s
dx̄h,l

u1

∣∣∣∣ ,
∣∣∣∣
∫ t

s

∫ u1

s
dx̄h,l1

u2
dx̄h,l2

u1

∣∣∣∣ 1
2

}

� C

(∣∣∣∣
∫ t

s
dx̄h,l

u1

∣∣∣∣+
∣∣∣∣
∫ t

s

∫ u1

s
dx̄h,l1

u2
dx̄h,l2

u1

∣∣∣∣ 1
2

)
.

Taking the expectation on both sides, we obtain

E

[∥∥∥S2(x̄
h)

∥∥∥q

( 1
2 − 1

q − 1
q )-Höl;[0,T]

]
� C(q)

∫ T

0

∫ T

0

E
[∣∣d(S2(x̄

h)s, S2(x̄
h)t)
∣∣ q
]

|t − s| q
2

ds dt

� C(q)

∫ T

0

∫ T

0

E

[∣∣∣∫ t
s dx̄h,l

u1

∣∣∣ q +
∣∣∣∫ t

s

∫ u1
s dx̄h,l1

u2 dx̄h,l2
u1

∣∣∣ q
2

]
|t − s| q

2
ds dt

� C(q)T2.

This yields that x̄h can be lifted to a p-rough path almost surely, and that there exists some random
variable C(ω) independent of h such that

∥∥∥S2(x̄
h(ω))

∥∥∥
p-var;[0,T]

� C
∥∥∥S2(x̄

h)(ω)

∥∥∥ 1
p -Höl;[0,T]

� C(ω, p, T), a.s.

With the help of Proposition 4.5, the associated modified equation here is

⎧⎪⎪⎨
⎪⎪⎩

dỹt =
d∑

l=0

∑
i(α)=l

fα(ỹt)h
α0Δ

α1
n+1,1 · · · Δαl−1

n+1,l · · · Δαd
n+1,d dx̄h,l

t , t ∈ (tn, tn+1];

ỹ0 = z,

(4.5)

and the Ñ-truncated modified equation is⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dỹÑ
t =

d∑
l=0

1�|α|�Ñ∑
i(α)=l

fα(ỹÑ
t )hα0Δ

α1
n+1,1 · · ·Δαl−1

n+1,l · · · Δαd
n+1,d dx̄h,l

t , t ∈ (tn, tn+1];

ỹÑ
0 = z.

(4.6)

We obtain that there exists some truncated number Ñ = Ñ(h) such that the local error is exponentially
small with respect to the time step size h, which answers Problem 1.3. Included in the appendix, the proof
combines estimates for coefficients of the truncated increments, the numerical solution, the modified
equation and the truncated modified equation such that the temporal regularity of increments of the
Brownian motion is unfolded in the result (4.7). �
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STOCHASTIC MODIFIED EQUATIONS 917

Theorem 4.6 Assume that there exist positive constants R, M such that Vl, l = 0, 1, · · · , d are analytic
on a neighbourhood of the closed ball

B2R(z) := {y ∈ C
m : ‖y − z‖ � 2R

}
with

‖Vl(y)‖ � M ∀ y ∈ B2R(z).

Then for any ε ∈ (0, 1
2 ), there exist constants C = C(ε, R, M), τ = τ(ε, R, M) and h0 = h0(R, M) such

that for any h ∈ (0, τ), there exists a truncation number Ñ = Ñ(ε, R, M, h) satisfying

‖ỹÑ
t1 − Yh

1‖ � Che−h0/h
1
2 −ε

, (4.7)

where ỹÑ
t1 is the solution of (4.6) and Yh

1 is defined by the one-step numerical method (4.4).

Remark 4.7 We remark that in the backward error analysis of the deterministic Hamiltonian system, the
result that the error between the numerical solution and the exact solution of the corresponding modified
equation is exponentially small leads to the near conservation of the energy of the original Hamiltonian
system with symplectic methods over an exponentially long time interval. The key lies in the conservation
of the energy (resp. modified energy) of the original Hamiltonian system (resp. the modified equation);
see Hairer et al. (2006). However, in the stochastic case, the stochastic Hamiltonian system does not
have the energy conservation law in general, not to mention the stochastic modified equation. Even for
a special case (e.g., Vl = ClV0 with Cl a constant, l = 1, · · · , d in (2.1)) where the stochastic system has
the energy conservation law, the modified equation associated to a symplectic method does not have the
energy conservation law in general. Therefore, the long-term conservation of the energy by the stochastic
symplectic methods is still an open problem.

5. Numerical experiments

Numerical experiments are carried out based on three rough Hamiltonian systems in this section. Based
on Examples 5.1–5.2, we verify the convergence orders proved in Theorems 4.3–4.4 for multiplicative
and additive cases, accordingly. In Example 5.3, which is a linear system with the energy conservation
law, we present the long time behavior of several numerical methods and the corresponding modified
equations.

Example 5.1 {
dPt = sin(Pt) sin(Qt) dt − cos(Qt) dX2

t , P0 = p,

dQt = cos(Pt) cos(Qt) dt − sin(Pt) dX1
t , Q0 = q,

where X1 and X2 are independent fractional Brownian motions with Hurst parameter H ∈ (1/4, 1/2].
The Hamiltonians are

H0(Pt, Qt) = sin(Pt) cos(Qt), H1(Pt, Qt) = cos(Pt), H2(Pt, Qt) = sin(Qt).

D
ow

nloaded from
 https://academ

ic.oup.com
/im

ajna/article/45/2/894/7676802 by Library of Academ
y of M

athem
atics & System

 Sciences user on 23 April 2025



918 C. CHEN ET AL.

Example 5.2 (flow driven by the Taylor–Green velocity field (Wang et al., 2018, Corollary 4.3))⎧⎨
⎩

dPt = − sin(Qt) dt + √
2σ dX1

t , P0 = p,

dQt = sin(Pt) dt + √
2σ dX2

t , Q0 = q,

where X1 and X2 are independent fractional Brownian motions with Hurst parameter H ∈ (1/4, 1/2].
The Hamiltonians are

H0(Pt, Qt) = − cos(Pt) − cos(Qt), H1(Pt, Qt) = −√
2σQt, H2(Pt, Qt) = √

2σPt.

We consider the midpoint scheme

Yh
n+1 = Yh

n + V

(
Yh

n + Yh
n+1

2

)
Xtn,tn+1

, (5.1)

whose 2-truncated and 4-truncated modified equations are defined via the following formulas for the
coefficients:

|α| = 1 : fα(y) = Vα(y);

|α| = 2 : fα(y) = 0;

|α| = 3 : fα(y) =
∑

α1+α2+α3=α

[
− 1

24
V ′′

α3
(y)Vα2

(y)Vα1
(y) + 1

12
V ′

α3
(y)V ′

α2
(y)Vα1

(y)

]
;

|α| = 4 : fα(y) = 0.

To investigate the error between the numerical solution and the exact solution of the associated
Ñ-truncated modified equation, we apply the midpoint scheme to Example 5.1 with the initial datum

(p, q) = (1, 0) and the time interval [0, T] = [0, 1]. Figure 1 plots the mean-square error ‖Yh
N − ỹÑ

T ‖L2(Ω),

where Ñ = 2, 4, the time step sizes are h = 2−i, i = 4, 5, 6, 7, 8, and the Hurst parameters are
H = 0.4, 0.45, 0.5. For each time step size h, the ‘exact’ solution of a truncated modified equation is
simulated by using the midpoint scheme to this modified equation with a tiny step size δ = 2−12. The
increments of the fractional Brownian motions are simulated by the method introduced in Wood & Chan
(1994), which exploits the efficiency of the fast Fourier transform. The expectation is approximated by
200 sample trajectories. The convergence orders are showed to be 3H−1 and 5H−1 for the cases Ñ = 2
and Ñ = 4, respectively. According to Proposition 15.5 in Friz & Victoir (2010), the fractional Brownian
motion satisfies Assumption 2.1 with ρ = 1

2H . For a sufficiently small ε > 0, we take p = 1
H + ε > 2ρ

and γ = 1
H + 2ε > p in Theorem 4.3 and then the theoretical estimate for the multiplicative case is

supported by the numerical result. In Example 5.2, we take p = 1, q = 0, σ = 2 and T = 1, and choose
H = 0.3, 0.4, 0.5. Figure 2 presents that the convergence orders for the cases Ñ = 2 and Ñ = 4 are 2H
and 4H, respectively. With p = 1

H +ε and γ = 1
H +2ε, the estimate for the additive case in Theorem 4.4

is verified. Furthermore, one can find out that the numerical solution is closer to the exact solution of the
4-truncated modified equation than that of the 2-truncated modified equation.
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STOCHASTIC MODIFIED EQUATIONS 919

Fig. 1. Mean-square error vs. Step size for Example 5.1.

Fig. 2. Mean-square error vs. Step size for Example 5.2.

Example 5.3 (Kubo oscillator in Hong et al. (2018))

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

dPt = − aQt dt − σ

2∑
i=1

Qt dXi
t , P0 = p,

dQt =aPt dt + σ

2∑
i=1

Pt dXi
t , Q0 = q,

where X1 and X2 are independent standard Brownian motions. The Hamiltonians satisfy

2

a
H0(Pt, Qt) = 2

σ
H1(Pt, Qt) = 2

σ
H2(Pt, Qt) = P2

t + Q2
t .
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Note that H (Pt, Qt) = P2
t + Q2

t is an invariant. The exact solution reads⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Pt = p cos

(
at + σ

2∑
i=1

Xi
t

)
− q sin

(
at + σ

2∑
i=1

Xi
t

)
,

Qt = q cos

(
at + σ

2∑
i=1

Xi
t

)
+ p sin

(
at + σ

2∑
i=1

Xi
t

)
.

We compare the midpoint scheme (5.1), which is symplectic and energy-preserving, with the
following two numerical methods. One is an explicit RK method defined by

Yh
n+1 = Yh

n + V

(
Yh

n + 1

2
V(Yh

n )Xtn,tn+1

)
Xtn,tn+1

, (5.2)

which is neither symplectic nor energy-preserving. The associated 2-truncated and 4-truncated modified
equations are defined through the formulas for the coefficients:

|α| = 1 : fα(y) = Vα(y); |α| = 2 : fα(y) = 0;

|α| = 3 : fα(y) =
∑

α1+α2+α3=α

[
− 1

24
V ′′

α3
(y)Vα2

(y)Vα1
(y) − 1

6
V ′

α3
(y)V ′

α2
(y)Vα1

(y)

]
;

|α| = 4 : fα(y) =
∑

α1+α2+α3+α4=α

[
1

12
V ′

α4
V ′′

α3
(y)Vα2

(y)Vα1
(y) + 1

8
V ′

α4
(y)V ′

α3
(y)V ′

α2
(y)Vα1

(y)

]
.

Another one is a symplectic partitioned RK method which is not energy-preserving. Applying it to
Example 5.3 leads to ⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Ph
n+1 = Ph

n − aQh
nh − σ 2Ph

n+1h − σ

2∑
i=1

Qh
nXi

tn,tn+1
,

Qh
n+1 = Qh

n + aPh
n+1h + σ 2Qh

nh + σ

2∑
i=1

Ph
n+1Xi

tn,tn+1
;

(5.3)

see also Section 5.1 in Milstein et al. (2002a). The coefficients of the associated modified equations for
1 � |α| � 3 are calculated as follows. Denote y = (y1, y2)� ∈ R2, then

|α| = 1 : f(1,0,0)(y) =
( −σ 2 −a

a σ 2

)(
y1

y2

)
,

f(0,1,0)(y) = f(0,0,1)(y) =
(

0 −σ

σ 0

)(
y1

y2

)
;

|α| = 2 : f(2,0,0)(y) =
(

σ 4

2 + a2

2 aσ 2

−aσ 2 −σ 4

2 − a2

2

)(
y1

y2

)
,
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STOCHASTIC MODIFIED EQUATIONS 921

Fig. 3. Evolution of domains in the phase plane.

f(0,1,1)(y) =
(

σ 2 0
0 −σ 2

)(
y1

y2

)
,

f(1,1,0)(y) = f(1,0,1)(y) =
(

aσ σ 3

−σ 3 −aσ

)(
y1

y2

)
,

f(0,2,0)(y) = f(0,0,2)(y) =
(

σ 2

2 0

0 −σ 2

2

)(
y1

y2

)
;
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Fig. 4. The midpoint scheme (5.1).

|α| = 3 : f(3,0,0)(y) =
(

−σ 6

3 − 2a2σ 2

3 − 5aσ 4

6 − a3

6
5aσ 4

6 + a3

6
σ 6

3 + 2a2σ 2

3

)(
y1

y2

)
,

f(1,1,1)(y) =
(

− 4σ 4

3 −aσ 2

aσ 2 4σ 4

3

)(
y1

y2

)
,

f(1,2,0)(y) = f(1,0,2)(y) =
(

−σ 4 − 2aσ 2

3
2aσ 2

3 σ 4

)(
y1

y2

)
,

f(0,2,1)(y) = f(0,1,2)(y) =
(

0 −σ 3

2
σ 3

2 0

)(
y1

y2

)
,

f(2,1,0)(y) = f(2,0,1)(y) =
(

− 4aσ 3

3 − 5σ 5

6 − a2σ
2

5σ 5

6 + a2σ
2

4aσ 3

3

)(
y1

y2

)
,

f(0,3,0)(y) = f(0,0,3)(y) =
(

0 −σ 3

6
σ 3

6 0

)(
y1

y2

)
.

We set a = 1, σ = 0.9, T = 20, N = 10 × 26 (i.e., h = T
N = 0.0313). We present the evolution

of domains under the flow of Yh
n (z), Ytn(z) and ỹÑ

tn(z) with n = 0, 75, 100, 180, for one realization of

Example 5.3 in Figure 3. For the methods (5.1)-(5.2), the truncation numbers are Ñ = 2, 4. For the
method (5.3), Ñ = 2, 3. The ‘exact’ solution of a truncated modified equation is taken as the numerical
solution given by applying the midpoint scheme to this modified equation with a tiny step size δ =

T
10×215 = 2−14. Notice the fact that the preservation of the symplectic structure is equivalent to the
preservation of the area of domains in two-dimensional case. The areas of domains remain unchanged
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STOCHASTIC MODIFIED EQUATIONS 923

Fig. 5. The explicit RK method (5.2).

Fig. 6. The symplectic partitioned RK method (5.3).

under symplectic methods (5.1) and (5.3), as well as those given by the flows of associated truncated
modified equations. However, the corresponding areas for the method (5.2) and its 4-truncated modified
equation increase. In particular, we point out that the 2-truncated modified equation of the method (5.2)
possesses the symplectic conservation law, since it coincides with the Wong–Zakai approximation of the
original system and shares the same formula as the 2-truncated modified equation of the method (5.1).
These numerical results confirm Theorem 3.11.

In Figures 4–6, we perform simulations for a trajectory with a = 1, σ = 1, p = 1, q = 0, T = 50,
N = 10×28 (i.e., h = T

N = 0.0195) by the three methods, successively. The errors ‖Yh
n −Ytn‖ and ‖Yh

n −
ỹÑ

tn‖ are given in Figures 4(a)–6(a). The ‘exact’ solution of a truncated modified equation is simulated by

applying the midpoint scheme to this modified equation with a tiny step size δ = T
10×215 . As expected,
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we see that the error decreases as Ñ becomes larger for a numerical method. Besides, the energy errors
|(Yh

n )�Yh
n −p2 −q2| and |(ỹÑ

tn)
�ỹÑ

tn −p2 −q2| are presented in Figures 4(b)–6(b). Noting that the energy-
preserving method (5.1) is also a symmetry method, we have that fα(y) = 0 for any |α| = 2k, k ∈ N+.
Therefore, what we observe is that the energy error is almost zero for the method (5.1) and its truncated
modified equations. As to the other two methods, the energy is not preserved, but the energy error is
generally controlled better by the symplectic method (5.3) than by the non-symplectic method (5.2).
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Appendix

In this section, we prove Theorem 4.6. Before that, we recall Cauchy’s estimate for analytic functions,
and give four lemmas about estimates for the truncated increments, the numerical solution, the modified
equation and the truncated modified equation, respectively.

Lemma A.1 (Cauchy’s estimate) Suppose that f is analytic on a neighbourhood of the closed ball BR(y∗)
and MR = max{|f (y)| : y ∈ BR(y∗)} < ∞, then

|f (n)(y∗)| � n! MR

Rn
.

Proof. By Cauchy’s integral formula,

|f (n)(y∗)| =
∣∣∣∣ n!

2π i

∫
|y−y∗|=R

f (y)

(y − y∗)n+1 dy

∣∣∣∣ � n!

2π

MR

Rn+1 2πR = n! MR

Rn
.

�

Lemma A.2 (estimate for Δn+1,l) Let 0 < ε < 1
2 and k � 1. Then there exists a constant C = C(ε, k)

such that

|Δn+1,l| � h
1
2 −ε ∀ h < C. (A.1)

Proof. Consider the function v1(h) = k ln h + h−2ε . Since limh→0 v1(h) = +∞, we obtain that there
exists a constant C = C(ε, k) such that

v1(h) � 0 ∀ h < C.

Then we have

|ζn+1,l| � Ah = √k|ln h| � h−ε ∀ h < C,

which implies (A.1). �
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Lemma A.3 (estimate for dα) Denote κ := maxi=1,··· ,s

{∑s
j=1 |aij|

}
and μ := ∑s

i=1 |bi|. Under

assumptions as in Theorem 4.6, if

max{h, |Δ1,1|, · · · , |Δ1,d|} <
R

2κM(d + 1)
√

s
, (A.2)

then it holds that

‖dα(y)‖ � μ(d + 1)M

[
2κM(d + 1)

√
s

R

]|α|−1

∀ y ∈ BR(z),

where the coefficient dα is defined by the expansion

Yh
1 (z) = z +

∞∑
|α|=1

dα(z)hα0Δ
α1
1,1 · · ·Δαd

1,d, α = (α0, · · · , αd) ∈ N
d+1.

Proof. For any y ∈ B 3
2 R(z) and ‖Δy‖ � 1, define v(θ) := Vl(y+θΔy), |θ | � R

2 . Then Cauchy’s estimate
shows

‖V ′
l (y)Δy‖ = ∥∥v′(θ)

∣∣
θ=0

∥∥ � M
R
2

= 2M

R
,

which implies

‖V ′
l (y)‖ = sup

‖Δy‖�1
‖V ′

l (y)Δy‖ � 2M

R
∀ y ∈ B 3

2 R(z). (A.3)

For any y ∈ BR(z), define a map F : Cm×s → Cm×s by

F : g = (g1, · · · , gs) �→ F(g) = (F(g)1, · · · , F(g)s),

F(g)i = y +
s∑

j=1

aij

[
V0(gj)h +

d∑
l=1

Vl(gj)Δ1,l

]
, i = 1, · · · , s.

We claim that F is a contraction on the closed set B := {(g1, · · · , gs) : ‖gi − y‖ � R
2 , i = 1, · · · , s

}
with

y ∈ BR(z). Indeed, for any 0 < γ < 1 and

max{|h|, |Δ1,1|, · · · , |Δ1,d|} � γ R

2κM(d + 1)
√

s
=: C1(γ ),

we have

‖F(g)i − y‖ �
s∑

j=1

|aij|M
[

h +
d∑

l=1

|Δ1,l|
]

<
R

2
∀ g ∈ B.
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Besides, (A.3) yields

‖F(g)i − F(g̃)i‖ �
s∑

j=1

|aij|
2M

R

[
h +

d∑
l=1

|Δ1,l|
]

‖g − g̃‖ � γ√
s
‖g − g̃‖ ∀ g, g̃ ∈ B,

which leads to ‖F(g)−F(g̃)‖ � γ ‖g− g̃‖. Therefore, there exists a unique fixed point g∗ = (g∗
1, · · · , g∗

s )

for F on the set B. Denote

Yh
1 (y) := y +

s∑
i=1

bi

(
V0(g

∗
i )h +

d∑
l=1

Vl(g
∗
i )Δ1,l

)
.

Together with the analyticity of V , Yh
1 (y)−y is analytic for |h|, |Δ1,1|, · · · , |Δ1,d| � C1(γ ) and y ∈ BR(z).

In this case, due to g∗
i ∈ B 3R

2
(z), the boundedness of V implies

‖Yh
1 (y) − y‖ � μ(d + 1)MC1(γ ).

Repeatedly applying Cauchy’s estimate, we have

‖dα(y)‖ =
∥∥∥∥∥ 1

α0! · · · αd!

[
dαd

dΔ
αd
1,d

· · ·
[

dα0

dhα0

(
Yh

1 (y) − y
)] ∣∣∣

h=0
· · ·
] ∣∣∣∣

Δ1,d=0

∥∥∥∥∥
� μ(d + 1)MC1(γ )

C|α|
1 (γ )

= μ(d + 1)M

[
2κM(d + 1)

√
s

γ R

]|α|−1

.

Letting γ → 1, we obtain

‖dα(y)‖ � μ(d + 1)M

[
2κM(d + 1)

√
s

R

]|α|−1

∀ y ∈ BR(z).

�

Remark A.4 Let ε = 1
4 and k = 4. Lemma A.2 shows that condition (A.2) holds if we simulate the

random variable Δ1,l in (4.3) by taking

h < min

{
C(ε, k),

R

2κM(d + 1)
√

s
,

[
R

2κM(d + 1)
√

s

]4
}

. (A.4)

Lemma A.5 (estimate for fα) Denote η := 2 max{κ , μ/(2 ln 2 − 1)}. Under assumptions as in Theorem
4.6 and Lemmas A.2–A.3, then the coefficients of the associated stochastic modified equation (4.5)
satisfy

∑
|α|=J

‖fα(y)‖ � (ln 2)ηM(d + 1)2√s

(
ηM(d + 1)2√sJ

R

)J−1

∀ y ∈ B 1
2 R(z), J ∈ N+.
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Proof. For J = 1, it follows from Lemma A.3 that for y ∈ B 1
2 R(z),

∑
|α|=1

‖fα(y)‖ � μM(d + 1)2 � (ln 2)ηM(d + 1)2√s.

Suppose J � 2. We consider α ∈ Nd+1 such that 1 � |α| � J. The definitions of {dα} and {fα} imply that
{dα} and {fα} are composed by V and its derivatives in general, which are analytic on a neighbourhood
of B2R(z). For any analytic function g on a neighbourhood of B2R(z), we define

‖g‖m := max

{
‖g(y)‖ : y ∈ BR−(m−1)δ(z), δ = R

2(J − 1)

}
∀ m ∈ N+.

It holds that ‖g‖m1
� ‖g‖m2

if m1 � m2. Moreover, the function v(θ) := g(y + θ fα(y)) with |θ | � δ
‖fα‖m

and y ∈ BR−(m−1)δ(z) is analytic. It follows from Cauchy’s estimate that

‖Dαg(y)‖ = ‖g(y)fα(y)‖
= ‖v′(0)‖

�
sup|θ |�δ/‖fα‖m

‖v(θ)‖
δ/‖fα‖m

= 1

δ
‖fα‖m‖g‖m−1,

which implies ‖Dαg‖m � 1
δ
‖fα‖m‖g‖m−1. Then given ki,1, · · · , ki,i ∈ Nd+1 such that |ki,1|, · · · , |ki,i| � 1

and |ki,1| + · · · + |ki,i| = |α|, i = 1, · · · , |α|, we get

‖Dki,1 · · · Dki,i−1 fki,i‖|α| � 1

δ
‖fki,1‖|α|‖Dki,2 · · · Dki,i−1 fki,i‖|α|−1

� 1

δ2
‖fki,1‖|α|‖fki,2‖|α|−1‖Dki,3 · · · Dki,i−1 fki,i‖|α|−2

� · · ·

� 1

δi−1 ‖fki,1‖|α|‖fki,2‖|α|−1 · · · ‖fki,i‖|α|−(i−1)

� 1

δi−1
‖fki,1‖|ki,1| · · · ‖fki,i‖|ki,i|.

Combining with (3.7), we have

‖fα‖|α| � ‖dα‖|α| +
|α|∑
i=2

1

i!

∑
(ki,1,··· ,ki,i)∈Oα

i

1

δi−1
‖fki,1‖|ki,1| · · · ‖fki,i‖|ki,i|.
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STOCHASTIC MODIFIED EQUATIONS 929

By the notation Fα̃ :=∑|α|=α̃ ‖fα‖|α| and Gα̃ :=∑|α|=α̃ ‖dα‖|α|, the above inequality yields

Fα̃ � Gα̃ +
α̃∑

i=2

1

i!

∑
k̃i,1+···+k̃i,i=α̃

1

δi−1 Fk̃i,1 · · · Fk̃i,i . (A.6)

Lemma A.3 produces

‖dα‖|α| � μ(d + 1)M

[
2κM(d + 1)

√
s

R

]α̃−1

, |α| = α̃.

Together with #{α = (α0, · · · , αd) : |α| = α̃} = (α̃+(d+1)−1)!
((d+1)−1)!α̃! = (d+α̃)!

d!α̃! , we have

Gα̃ � (d + α̃)!

d! α̃!
μ(d + 1)M

[
2κM(d + 1)

√
s

R

]α̃−1

� (d + 1)α̃μ(d + 1)M
√

s

[
2κM(d + 1)

√
s

R

]α̃−1

= μM(d + 1)2√s

[
2κM(d + 1)2√s

R

]α̃−1

. (A.7)

For all α̃ ∈ N+, we let

βα̃ := μM(d + 1)2√s

δ

(
2κM(d + 1)2√s

R

)α̃−1

+
α̃∑

i=2

1

i!

∑
k̃i,1+···+k̃i,i=α̃

βk̃i,1 · · · βk̃i,i . (A.8)

Based on (A.5), we have that Fα̃ � δβα̃ holds for α̃ = 1. Moreover, assume by induction that Fα̃ � δβα̃

holds for α = 1, · · · , n. Then according to (A.6)–(A.8), we know that for α̃ = n + 1,

Fα̃ � μM(d + 1)2√s

[
2κM(d + 1)2√s

R

]α̃−1

+
α̃∑

i=2

1

i!

∑
k̃i,1+···+k̃i,i=α̃

1

δi−1

(
δβk̃i,1

) · · · (δβk̃i,i

) = δβα̃ .

Therefore, we have that Fα̃ � δβα̃ for α̃ = 1, · · · , J. In order to estimate FJ , it suffices to estimate βJ .

Let c1 := μM(d+1)2√s
δ

, c2 := 2κM(d+1)2√s
R . For |ξ | � 1/c2, multiplying (A.8) by ξ α̃ and summarizing

for α̃ leads to

∞∑
α̃=1

βα̃ξ α̃ =
∞∑

α̃=1

c1cα̃−1
2 ξ α̃ +

∞∑
α̃=1

α̃∑
i=2

1

i!

∑
k̃i,1+···+k̃i,i=α̃

βk̃i,1 · · · βk̃i,iξ
α̃

= c1ξ

∞∑
α̃=1

(c2ξ)α̃−1 +
∞∑

i=2

1

i!

∞∑
α̃=i

∑
k̃i,1+···+k̃i,i=α̃

βk̃i,1 · · · βk̃i,iξ
α̃ ,
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which produces

b(ξ) = c1ξ

1 − c2ξ
+ eb(ξ) − 1 − b(ξ)

with

b(ξ) :=
∞∑

α̃=1

βα̃ξ α̃ . (A.9)

Consider the function

q(b, ξ) = c1ξ

1 − c2ξ
+ eb − 1 − 2b = 0.

If ∂q(b,ξ)
∂b = eb − 2 �= 0 (i.e., b �= ln 2), the implicit function theorem shows that there exists a map

b : ξ �→ b(ξ) and the series in (A.9) is convergent. Since c1, c2 > 0, we know that the range of the
increasing function ξ �→ c1ξ

1−c2ξ
for |ξ | ∈ [0, (2 ln 2 − 1)/(c1 + c2(2 ln 2 − 1))

)
is(− 2 ln 2 + 1 + (2c2(2 ln 2 − 1)2)/(c1 + 2c2(2 ln 2 − 1)), 2 ln 2 − 1

)
.

Meanwhile, the range of the increasing function b �→ −eb + 1 + 2b for |b| ∈ [0, ln 2) is

(−2 ln 2 + 1/2, 2 ln 2 − 1),

which includes the range of the function. Then we have that for any ξ satisfying |ξ | ∈ [
0, (2 ln 2 −

1)/(c1 + c2(2 ln 2 − 1))
)
, there exists b(ξ) ∈ (− ln 2, ln 2) such that q(b, ξ) = 0, which implies

|b(ξ)| � ln 2 ∀ |ξ | < (2 ln 2 − 1)/(c1 + c2(2 ln 2 − 1)).

Since b(ξ) equals to a convergent polynomials series (A.9) of ξ , b(ξ) is analytic with respect to ξ . By
Cauchy’s estimate, we derive

|βα̃| � ln 2

((2 ln 2 − 1)/(c1 + c2(2 ln 2 − 1)))α̃
, α̃ ∈ N+,

and then

FJ � δβJ � R

2(J − 1)

ln 2

((2 ln 2 − 1)/(c1 + c2(2 ln 2 − 1)))J
� (ln 2)R

2(J − 1)

(
ηM(d + 1)2√sJ

R

)J

.

Therefore,

∑
|α|=J

‖fα(y)‖ � (ln 2)ηM(d + 1)2√s

(
ηM(d + 1)2√sJ

R

)J−1

∀ y ∈ B 1
2 R(z).

�
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In order to estimate the exact solution of the Ñ-truncated modified equation (4.6), we consider the
infinite expansion for its solution with respect to the initial value z:

ỹÑ
t1 = z +

∞∑
|α|=1

f Ñ
α (z)hα0Δ

α1
1,1 · · ·Δαd

1,d.

Lemma A.6 (estimate for f Ñ
α ) Let 0 < ε < 1

2 . Under assumptions as in Theorem 4.6 and Lemmas A.2–
A.5, then there exist constants C = C(ε, R, M) and τ = τ(ε, R, M) such that for any h ∈ (0, τ), if the
truncation number Ñ satisfies

1 � Ñ � R

ηM(d + 1)2
√

sh
1
2 −ε

, (A.10)

then we have

‖f Ñ
α (z)‖ � (ln 2)ηM(d + 1)2√sC[

R
2(ln 2)ηM(d+1)2√sC

]( 1
1/2−ε

)|α|−1
.

Proof. For simplicity, we let ε = 1
4 , as the proof is similar for ε ∈ (0, 1

2

)
.

According to Lemma A.5, as long as {ỹÑ
t : t � t1 = h} ⊂ B R

2
(z), we have the estimate

‖ỹÑ
t − z‖ �

Ñ∑
J=1

h
1
4 J(ln 2)ηM(d + 1)2√s

(
ηM(d + 1)2√sJ

R

)J−1

� h
1
4 (ln 2)ηM(d + 1)2√s

⎛
⎝1 +

Ñ∑
J=2

(
ηM(d + 1)2√sJh

1
4

R

)J−1
⎞
⎠ ∀ t � h.

Since 1 � Ñ � R

ηM(d+1)2√sh
1
4

, we know

1 +
Ñ∑

J=2

(
ηM(d + 1)2√sJh

1
4

R

)J−1

� 1 +
Ñ∑

J=2

(
J

Ñ

)J−1

� C0.

Then a sufficient condition for {ỹÑ
t : t � h} ⊂ B R

2
(z) is

h �
(

R

2(ln 2)ηM(d + 1)2
√

sC0

)4

. (A.11)

In this case, it has

‖ỹÑ
t − z‖ � h

1
4 (ln 2)ηM(d + 1)2√sC0 ∀ t � h.
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Moreover, since the coefficients {fα} of (4.6) are generally composed by V and its derivatives, {fα} are

also analytic. Then {ỹÑ
t : t � h} ⊂ B R

2
(z) produces that ỹÑ

h − z is analytic for h satisfying (A.11).
Combining the conditions (A.4) and (A.11) on h together, we obtain that there exists a sufficiently

large C1 such that

[
R

2(ln 2)ηM(d + 1)2
√

sC1

]4

< min

{
C(ε, k),

R

2κM(d + 1)
√

s
,

[
R

2κM(d + 1)
√

s

]4

,

[
R

2(ln 2)ηM(d + 1)2
√

sC0

]4
}

.

Defining C2 :=
[

R
2(ln 2)ηM(d+1)2√sC1

]4
, we use Cauchy’s estimate to get

‖f Ñ
α (z)‖ = 1

α0! · · · αd!

[
dαd

dΔ
αd
1,d

· · ·
[

dα0

dhα0

(
ỹÑ

h − z
)] ∣∣∣

h=0
· · ·
] ∣∣∣∣

Δ1,d=0

�
C

1
4
2 (ln 2)ηM(d + 1)2√sC0

C|α|
2

� (ln 2)ηM(d + 1)2√sC1[
R

2(ln 2)ηM(d+1)2√sC1

]4|α|−1 .

�
Now we can proceed to the proof of Theorem 4.6.

Proof of Theorem 4.6. We know that dα = f Ñ
α with 1 � |α| � Ñ, then it remains to estimate the terms

for |α| � Ñ + 1. For simplicity, we let ε = 1
4 , since the proof is similar for 0 < ε < 1

2 .
For the numerical solution given by (4.4), Lemma A.3 yields that the sum of remainder terms is

bounded by

∞∑
|α|=Ñ+1

‖dα(z)‖hα0 |Δα1
1,1| · · · |Δαd

1,d|

�
∞∑

J=Ñ+1

μM(d + 1)2√s

[
2κM(d + 1)2√s

R

]J−1

h
J
4

�
{ ∞∑

J=0

h
J
4

[
2κM(d + 1)2√s

R

]J−1}
μM(d + 1)2√s

[
2κM(d + 1)2√s

R

]Ñ+1

h
Ñ+1

4

� CC̃Ñh
Ñ+1

4 .

The last inequality holds if h
1
4

[
2κM(d+1)2√s

R

]
< 1, i.e., h <

[
R

2κM(d+1)2√s

]4
.
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For the exact solution of the Ñ-truncated modified equation (4.6), Lemma A.6 leads to that the sum
of remainder terms is bounded by

∞∑
|α|=Ñ+1

‖f Ñ
α (z)‖hα0 |Δα1

1,1| · · · |Δαd
1,d|

�
∞∑

J=Ñ+1

(d + 1)J (ln 2)ηM(d + 1)2C1
√

s[
R

2(ln 2)ηM(d+1)2C1
√

s

]4J−1 h
J
4

�

⎧⎪⎨
⎪⎩

∞∑
J=0

h
J
4 (d + 1)J[

R
2(ln 2)ηM(d+1)2C1

√
s

]4J−1

⎫⎪⎬
⎪⎭

(ln 2)ηM(d + 1)2C1
√

s(d + 1)Ñ+1[
R

2(ln 2)ηM(d+1)2C1
√

s

]4(Ñ+1)
h

Ñ+1
4

� CC̃Ñh
Ñ+1

4 .

The last inequality holds if (d+1)h
1
4[

R
2(ln 2)ηM(d+1)2C1

√
s

]4 < 1, i.e., h <
(

1
d+1

)4 [
R

2(ln 2)ηM(d+1)2C1
√

s

]16
.

Define h0 := R
ηM(d+1)2√s

. Then the condition (A.10) reads Ñ � h0h− 1
4 . We choose Ñ for the largest

integer under this condition and then

CC̃Ñh
Ñ+1

4 = CC̃3hC̃Ñ−3h
1
4 (Ñ−3) = CC̃3h

(
C̃h

1
4

)Ñ−3
.

Due to h0h− 1
4 < Ñ + 1, we have(

C̃h
1
4

)Ñ−3
� e−(Ñ−3) � e4e−(Ñ+1) � e4e−h0/h

1
4 ∀ h � (C̃e)−4.

Therefore, if the time step size h ∈ (0, τ) with

τ = min

{[
R

2(ln 2)ηM(d + 1)2
√

sC1

]4

,

[
R

2κM(d + 1)2
√

s

]4

,

(
1

d + 1

)4 [ R

2(ln 2)ηM(d + 1)2C1
√

s

]16

, (C̃e)−4

}
,

then the local error is

‖ỹÑ
t1 − Yh

1‖ � Che−h0/h
1
4 .

�
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