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We investigate stochastic modified equations to explain the mathematical mechanism of symplectic
methods applied to rough Hamiltonian systems. The contribution of this paper is threefold. First, we
construct a new type of stochastic modified equation. For symplectic methods applied to rough Hamilto-
nian systems, the associated stochastic modified equations are proved to have Hamiltonian formulations.
Secondly, the pathwise convergence order of the truncated modified equation to the numerical method is
obtained by techniques in rough path theory. Thirdly, if increments of noises are simulated by truncated
random variables, we show that the error can be made exponentially small with respect to the time step size.
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1. Introduction

In the study of a numerical method for a differential equation, the modified equation gives a lot of
insights into the numerical method and is crucial in backward error analysis. For the stochastic differential
equation (SDE) driven by a standard Brownian motion

dy, = V() dw,,

there exist various types of stochastic modified equations in different senses of convergence. In view of
the weak convergence, adding a modified coefficient with powers of the time step size A to the original
SDE yields a modified equation of the form

dy, = [V(¥,)) + V(¥)h’] dW,, (1.1)

which fits the numerical method to a higher weak order. The modified coefficient V can be determined
by the weak Taylor expansion (Shardlow, 2006) or by the expansion of the backward Kolmogorov
equation (Zygalakis, 2011). As an application, the first-order integrated Euler method is proposed for
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2 C. CHEN ET AL.

the stochastic Langevin equation in Zygalakis (2011) to preserve the mean of a modified Hamiltonian.
Another application of this kind of modified equations is to construct high weak order methods; see
Abdulle et al. (2012) and Hong et al. (2017). The modification is also considered at the level of the
Kolmogorov equation instead of at the level of the SDE. Given ¢, denote u(t,x) = E[¢(Y,(x))] and
(ZNHx) = % > J(VVT)l-j(x) Gijf (x). The modified Kolmogorov equation for % = Zuis

-
8—: =[Z+ Lh+-+ L a

with .Z) being some modified operators of order 2/+2,/ =1, - - - , N. Based on the modified Kolmogorov
equation, Debussche & Faou (2012) proved that the numerical solution obtained by the Euler method for
SDEs on the torus is exponentially mixing up to negligible terms. The results are extended to implicit
methods for SDEs on R in Kopec (2015a,b); Anton (2019). With respect to strong convergence, using
multiple Stratonovich integrals J,, ,, Deng (2016) defined the modified equation

v, = [V(¥) + DV, (¥)J,, | dW,

for the Euler method, and the optimal truncation of the above series is studied.

Stochastic Hamiltonian systems are fundamental models in many physical and engineering sciences,
such as the passive tracer model and the Kubo oscillator. The phase flow of a stochastic Hamiltonian
system driven by standard Brownian motions preserves the symplectic structure almost surely and
there has been a great amount of work about the construction of stochastic symplectic methods after
the pioneering results in Milstein er al. (2002a,b). Lots of numerical simulations have shown that the
stochastic symplectic methods are superior over long time computation to non-symplectic ones. From the
perspective of the stochastic modified equation to investigate the superiority of the stochastic symplectic
methods, it is natural to ask:

ProOBLEM 1.1 For a stochastic symplectic method applied to a stochastic Hamiltonian system, does there
exist a stochastic modified equation that has a stochastic Hamiltonian formulation, such that its exact
solution coincides with the numerical solution?

This problem is partially solved by Wang et al. (2016, 2018). As far as the weak convergence is
concerned, for the case that the Hamiltonian functions associated to the diffusion parts do not depend
on the generalized coordinate and momenta simultaneously, the modified equations in the form of (1.1)
for stochastic symplectic methods are derived in Wang et al. (2016) via the generating function. These
modified equations are perturbed stochastic Hamiltonian systems with respect to the original systems. In
Wang et al. (2018), the modified coefficient in (1.1) is deduced for a symplectic splitting method applied
to separable Hamiltonian systems with additive noises, and the flow of the corresponding modified
equation preserves the symplectic structure.

With further researches on modeling random phenomenon, the stochastic signals are not necessarily
semi-martingales or Markovian processes (Deya et al., 2012; Friz & Riedel, 2014; Bayer et al., 2016;
Kelly, 2016; Liu & Tindel, 2019; Hu et al., 2021), which motivates the study of SDEs driven by rough
paths

dy, = V(¥,) dX,. (1.2)

In particular, when the driving signals are standard Brownian motions, the solution of (1.2) is equivalent
to that of the Stratonovich SDE, which is used to define the canonical formulation of stochastic
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STOCHASTIC MODIFIED EQUATIONS 3

Hamiltonian systems driven by standard Brownian motions. In Hong et al. (2018), it is shown that the
phase flow of a stochastic Hamiltonian system driven by rough paths also preserves the symplectic
structure almost surely, and stochastic symplectic methods are proposed to inherit this property. In
this article, we investigate the modified equations for stochastic symplectic methods applied to (1.2).
Overcoming the difficulties caused by the non-differentiability and the low regularity of X, we propose
a new type of stochastic modified equation

dy, = V(yt) + z |4 (yt)( tn,ty +1) o (Xgl,tn+|)ad] dxiz’ re (tn’tnﬂ]’ t, = nh,

which satisfies y, = Y with Y! being the numerical solution. Based on the Hermite polynomials, we
prove that if a symplectic method is applied to a rough Hamiltonian system, then for any «, there exists
a Hamiltonian 7%, such that

v, =l"'v.z,.

This implies that stochastic modified equations for symplectic methods are also stochastic Hamiltonian
systems, and gives a positive answer to Problem 1.1.

Note that the coefficient of the stochastic modified equation is an infinite series. In order to obtain
some rigorous estimates, we truncate the stochastic modified equation as

& = [V + > VML, el D%, re (]

la| <N

We further study the following two problems concerning the estimate between the numerical solution

Y,ﬁ‘ given by a stochastic symplectic method and the exact solution 5{;’ of the corresponding truncated
modified equation.

ProBLEM 1.2 What is the convergence rate of the error between the numerical solution and the exact
solution of the truncated modified equation?

PrOBLEM 1.3 Does there exist a truncation number N such that the error is exponentially small with
respect to the time step size?

Considering the nontrivial covariances of increments of X, we utilize the Ito—Lyons map in the

rough path theory to obtain the pathwise convergence rate of the exact solution ¥ of truncated modified
equation to the numerical solution Y", that is,

sup ||y -Y" < C(a))h i ‘, as.,

1<n<N

where N is the truncation number and p depends on the regularity of the driving signal. This answers
Problem 1.2. For Problem 1.3, we focus on the case of the standard Brownian motion where the
increments of noises are simulated by truncated random variables proposed in Milstein et al. (2002a).
Due to the lack of explicit expansion formulas of implicit numerical methods, we use the analytic
assumption to estimate the numerical solution, the modified equation and the truncated modified
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4 C. CHEN ET AL.

equation, successively. Combining the estimates yields that there exists some truncation number N =
N (h) such that the one-step error is exponentially small with respect to the time step size:

- 1_.
I35 — Y < Che™ho/m?

The rest of this article is organized as follows. In Section 2, we introduce basic results in the rough
path theory. In Section 3, for Problem 1.1, we illustrate the procedure in constructing stochastic modified
equations and prove that stochastic modified equations associated to stochastic symplectic methods
are Hamiltonian systems as well. In Section 4, we prove the pathwise convergence rate of the error
between the numerical solution and the exact solution of the truncated modified equation, and obtain the
exponential convergence for one-step error in the case of truncated Brownian increments, which answers
Problems 1.2—-1.3. Numerical experiments are presented in Section 5 to support theoretical results.

2. Preliminaries

In this section, we review the well-posedness of SDEs in the sense of the rough path theory; see, e.g.,
Lyons (1998); Friz & Victoir (2010).
Consider the SDE driven by multi-dimensional Gaussian signal

d
dy, = Vy(Y,) dt + Z Vy(Y)dx!, te T
= 2.1
YO =z Ec R’n.
For a convenient notation involving the drift term, we define V = (V,,, V{,---,Vy), X? =1 X =
X%, x1, ..., x9), and then an equivalent form of (2.1) is
dy,=V(,)dX,, te(0,T];
2.2)
YO =2
In this article, we focus on the case that the driving signal X satisfies the following assumption.
AsSUMPTION 2.1 Let X! : [0,T] - R,I=1,---,d be independent centered Gaussian processes with

continuous sample paths. There exist some p € [1,2) and K € (0, +00) such that the covariance of X
satisfies

1/p
1 ! ’ 1
sup (Z LX), X ] ) <Klt—s|'? YO<s<t<T,

(e} {t} e 2 ([s.1]) ot

= X!

where Z([s, t]) denotes the set of all dissections of [s, f] and X! fert

Teali41

[
~ Xl

For instance, one can check that the fractional Brownian motion with Hurst parameter H € (}‘, %],
whose covariance is E[|X/,|?] = |t — 5|/, satisfies Assumption 2.1 with p = 5} Since the Holder
regularity for the trajectory of the fractional Brownian motion is not larger than H, the well-posedness
of (2.2) fails to be established in the Riemann—Stieltjes integral sense. Hence, we interprete (2.2) in the
rough path sense. To this end, we introduce some basic concepts in the rough path theory; see Friz &
Victoir (2010) for more details.
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STOCHASTIC MODIFIED EQUATIONS 5

Let p € [1,00) and [p] be the integer part of p, i.e., [p] € N, with p — 1 < [p] < p. We denote by
(G[I’] (REH, d) the free step-[p] nilpotent Lie group of R¢*! equipped with the Carnot—Carathéodory
metric (Friz & Victoir, 2010, Chap. 7). A continuous map X : [0, T] — GPI(RH!) ¢ @ (ra+1)®n
is called p-rough path if

1/p
X, varro. == sup dX, , X, )P < 00,
PO o) Z,j‘ Tk

where 2([0, T]) is the set of dissections of [0, T]. Furthermore, we say that X is of Holder-type if

dX.,X
sup —(s )

X1l 1
z os<i<T |t —s|1/P

HoL[0,T] -

For example, if x : [0, T] — R4+ is a function of bounded variation and xo = 0, the corresponding
rough path can be defined by S, (x) : [0,T] — GPI(Rt1) with

Sy, =(1 [ @ | dx, ®--® dv, ).
P10 ( o< <t “ 0y <--<up) <t “ “irl

It is a canonical lift for x in the sense that the projection of Sy, (x) onto R4*! coincides with x.
Moreover, the Gaussian process X under Assumption 2.1 can be lifted to a Holder-type p-rough path
X e GIPI(R4*Y) for any p > 2p (Friz & Victoir, 2010, Theorem 15.33), which is defined by the limit
of {S3(x")}°2, with {x"}7° | being a sequence of piecewise linear or mollifier approximations to X. As a
consequence, the well-posedness of (2.2) is given by that of the rough differential equation (RDE)

[ 4y, = v(r)dX,, 1€ (0,TI;
(2.3)

YO:Z.

In the sequel, we introduce the definition of the solution of (2.3) and state the condition for the existence
and uniqueness of the solution. Throughout the rest of this paper, we denote by || - || the Euclidean norm
and by C a generic constant which may be different from line to line.

DEeFrINITION 2.2 (Friz & Victoir, 2010, Definition 10.17) Let p € [1,00) and X be a p-rough path.
Suppose that there exists a sequence of functions {x"}°°, of bounded variation taking values in R4+!
such that

sulg IS(p1 O M povarjory <00 and  lim  sup d(S[p](x”)s,t,Xs,t) =0,
ne

=0 0Ls<t<T

where Sy, (x"),, = Sy 0 T Sy, and X, := X! ® X,. Suppose in addition that e, are
solutions of equations dy} = V(y}) dx}, in the Riemann-Stieltjes integral sense, with the same initial
value z as in (2.3). If y} converges to Y, in the L°>°([0, T'])-norm, i.e.,

lim sup |y} — Y, =0,
n—00 04T

then we call ¥, a solution of (2.3).
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6 C. CHEN ET AL.

DEFINITION 2.3 (Friz & Victoir, 2010, Definition 10.2) Let y > 0, and |y | be the largest integer strictly
smaller than y, ie., ¥y — 1 < |y] < y. Wesay that V e Lip?,if V : R" — R”™ 4 is |y |-times
continuously differentiable and there exists some constant C such that

ID'VO) | < C Yk=0,---,|y]¥yeR",
IDYIV(y) — DYVl < Clly, =y, I” ™) Yyp,y, e R™,

where D¥V denotes kth derivative of V. The smallest constant C satisfying the above inequalities is
denoted by ||V||Ll~py.

LeEmmMmA 2.4 (Friz & Victoir, 2010, Theorem 10.26 and Theorem 11.6) Let p € [1, 00) and X be a p-rough
path. If V € Lip¥ with y > p, or V is linear, then (2.3) has a unique solution. Additionally, the Jacobian

aa_? exists and satisfies the linear RDE

val(m ’dxl te 0T}

01 ¢ Rmxm’
0z "

where [, is the identity matrix.

REMARK 2.5 If X is the standard Brownian motion, the solution Y of (2.3) solves the corresponding
Stratonovich SDE almost surely (Friz & Victoir, 2010, Theorem 17.3).

3. Construction of the stochastic modified equation

In this section, we investigate the formulation of stochastic modified equations associated to numerical
methods for the SDE (2.1). In subsection 3.1, we construct a new stochastic modified equation and verify
that the numerical solution to the original SDE solves exactly the proposed stochastic modified equation.
In subsection 3.2, we prove that the stochastic modified equation preserves the symplectic conservation
law if it is associated with a stochatic symplectic method for a rough Hamiltonian system. This answers
Problem 1.1 proposed in the introduction.

3.1 Construction of the stochastic modified equations for general methods

Fix the time step size h = T/N,N € N, . Let Y, " be the numerical solution given by a numerical method,
which is an approximation for Y, , where t, = nh n=0,---,N.Our main assumption on the numerical
method is as follows.

AsSUMPTION 3.1 The numerical solution Y’ : 1 can be expanded as an infinite series of functions of ¥, ,ﬁ’:

Yh =v+ Z d, (Yhmeox) e xd, e 3.1)
la|=1
where o = (g, -+ ,0q) € Nd+1, la| := g+ ---+ag > 1and Y{)‘ = z. In addition, it holds that
d, 0 =V,», lal=1, =1 1€({l,---,d}. 3.2)
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STOCHASTIC MODIFIED EQUATIONS 7

Here, (3.1) is a formal series obtained by the Taylor expansion, which is used for deducing the
formulation of stochastic modified equations. Since {Y,’}};V:l is the numerical solution given by a
numerical method, the coefficients d, in the series are composed by V and its derivatives. The specific
conditions on V, which also imply conditions on d,, will be given in the theorems in the following
sections. Moreover, (3.2) is a necessary condition to ensure that the numerical solution converges to the
exact solution almost surely; see the convergence analysis in Corollary 9 of Friz & Riedel (2014) and
in Theorems 5.2-5.3 of Hong et al. (2018). For convenience, in the rest of the article, we will denote
Vo) :=V,(y) with |a| =1,y =1 and [ € {0, --- ,d}.

In Example 3.2, we take the Runge—Kutta (RK) method for an example to illustrate how to verify
the expansion (3.1) for numerical solutions.

ExaMPLE 3.2 The s-stage RK method is defined by

h h
Yn+11_ Y "‘Z%(Vo( n+1,])h+zvl( n+1,/ t,, t,,+1)

= (3.3)

Yh = Yh—l—Zb (VO( n+11)h+zV1( n+l, l) lln,tn+1)'

i=1

Then the Taylor expansion produces that for/ =0, - - - ,d,

Vl( n+l, !)

= V() + V,’(Y,ﬁ‘)(z (Vo( i h+ Z Vi, (¥, +1,/)in fn+1))
=1

L=1

1 2
+§V1”( (Z“U(Vo( +1,;)h+ZVzl +1,/)Xlnfn+l))® L

L=1

K d
I
=V + > a Vi (Vo + 3 v (X, )

j=1 L1=1

1
Y W@ VIV (Vo + ZVh(YbX,;,z,m)h
J1j2=1 =1
d

I 1
+ Z > apa, ViV @0 (Vo@Dh+ 3 Vi (DX )X,
h=1j1j2=1 h=1

+ Z aljla,szl”(Yh)(VO(Yh)h + Z v, (Yhxh, Ml) (VO(Yh)h + Z v, (YHX2 ,M)
/1:/2 1 =1 h=1
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8 C. CHEN ET AL.

Here V{j(y)V,(y) is the derivative of V(y) acting on V;,(y), and V{ (y) V,(y) V() (») is the second derivative
of V(y) acting (V;,(3), V(). Other operators are defined similarly. Substituting them into (3.3), we get

h
Yn+1

d

= Yh + Zb |:V0(Yh) + ZaUVO(Yh) (VO(Yh)h + z Vl1 (Yh)an tn+1)

i=1 j=1 h=1

!
£ szO(Yh)Vo(Yh)(Vo(Yh)h+ZVII DXL, )
JiJj2=1 =1
d

h h h hy [
+ Z Z‘, ayay, Varm Vi O Vot + 3" Vi X, )Xi

li=1j142=1 h=1
d d

Z a,ap, VoD (Vo + 3 Vi (rxit, ) (Vo + 37 Vi, (VX ,M)}h

11J2 1 h=1 h=1

s d
+>> bl-[V,( "+ Z azVirD (Vorin + Z Vi (YOXiL,, )

i=1 I=1 h=1

d
£ 3 VDV (Vo + 3V, X, )
J1v2=1 I1=1

d
h h h Nyl I
+ Z z @i, Jl]zvl(Y )Vll(Y )(VO(Y )h+lez(Y )th»tn+1)Xt)Ltn+l

l1=1j142=1 h=1

1 K d ,
g 2 aap Vi D (VoDh+ 3V, DXL, ) (Vo + > v )}x

J1J2=1 h=1 b=l
+ cee,
which satisfies the form of (3.1).
From Assumption 3.1, the increments of X are utilized in numerical methods. Based on this
observation, we combine with the piecewise approximation x” of X, which is given by
xf’l = an + i "Xl

h Intn1?

te (t,t, 1, n=0,--- ,N—1, (3.4)

to define the new stochatic modified equation as follows.

DEFINITION 3.3 For o = (0, -+ ,04) € N4+1 denote

0% = {(ki,l,m By L e N R > 1

k;’1+'-'+k;’i=al’ l=0,""d}'
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STOCHASTIC MODIFIED EQUATIONS 9

The stochastic modified equation for a numerical method satisfying (3.1) is defined as an RDE

_ hil
Z DR ACALEITC GRS LURERY e AP LU RRRY 0 e LN AR N (AP
1=0 i(a)=I (3.5

S)OZZ’

where y is continuous on [0, T'], i(«) is denoted by

i(l0) =min{l:0; > 1,1 =0,--- ,d} € {0,---,d}, (3.6)
and the coefficients f,, (y) are

Jo) =d, ), el =1,
a 3.7)
fo ) =d, ) — z Z (Dyit -+ - Dpiimi fra) ), ] =2

= 2 (kzl .. k”)EO?

with (Dyiy iy €) () = & Ofyirir () for k2 = (kP2 KP2) @ NOHT [iniz) > 1,

REMARK 3.4 For a fixed time step size h, the driving signal x* is of bounded variation, then the stochastic
modified equation is well defined in the Riemann—Stieltjes integral sense. It is emphasized that the 1-
variation of x is not uniformly bounded with respect to % in general. Indeed, we only have that for

p>2p,

h
st;p ||S[p] (x )”p-var;[O,T] <

with p given in Assumption 2.1; see Section 15.3.2 in Friz & Victoir (2010) for more details. In this
sense, we call (3.5) an RDE.

REMARK 3.5 Recall the Wong—Zakai approximation of (2.2), i.e.,

dy] = V() d ZVI@»dxﬁ L, 1e,T];
=0
Y=z

The stochastic modified equation (3.5) associated with a numerical method under Assumption 3.1 is also
a perturbation of the Wong—Zakai approximation of the original equation.

REMARK 3.6 The framework in this article about constructing the stochastic modified equation is also
applicable for numerical methods with adaptive time step sizes.
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10 C. CHEN ET AL.

ExampLE 3.7 Let d = 1. The modified Milstein scheme (see, e.g., Deya et al., 2012) reads

Yo =Ye4+Vo(YDh+Vi(WHX, ,  + = V1 ¥Yhvihe!, 2

Int1 n>ln+1

which implies
d(l,o)()’) = Vo()’), d(o,l)()’) = V1 »,

1.,
d0) ) =dq ) =0, dgyO) = §V1 MV,
d,» =0, |«|=3

According to (3.7), the coefficients of the associated stochastic modified equations are
lal =11 [0 =d1n0) =V,
f((),1)(J’) = d(o,l)(Y) = V1(Y);

@=2: a0 = dap®) ~ 3:(P0fi0)) = ~5 %OV,
Jan® =dan) = [(Da ofion)0) + Pnfin)0)]
=—HW®%@+%@W@}
Sy =doyO) = (D(o won)»

1
= SVIOVI0) — VIV, 0) = 0;

la| =3

THEOREM 3.8 Suppose that y is the solution of the stochastic modified equation (3.5) associated with a
numerical method with numerical solution Y”. Then we have

5, =Y! n=0,--- N

Proof. Considert € (¢,,1,,]. Due to Definition 3.3, the stochastic modified equation can be written as

dyt Z f (yt)hao 1(th anrl)Ot1 o ( In, tn+l)0td dt

=1
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Using the Taylor expansion and the chain rule, we have

S}tn+l
0 k k
- dae . h

=Y F Z @(yt) t:z,,ﬁ
k=1

= ytn + Z f (yt )hao( In, tn+l)al T (Xglsthrl)ad
oe|=1
1

+§ 3_(Zf MK X, tntn+1) (X tntn+1) ) B
Y=V

l|=1

X Z f (y[ h‘XO( taot, +1)a] T (Xgl,thrl)ad

loe|=1

[ (om0

P
Y =1
y=5’tn}

SN DIV ACB LI D LYo P LN S

lr|=1

(DD f o), T (x tm)"‘d))

la|=1

—~

3

o0

= ytn Z ‘]7‘ @ hao( In, [n+1)al o (ngsthrl )ad’

la|=1

where

L =£0), lel=1,

||

Je® f(y)+z Y. D Duiifud ), el =2,
=2 (k

i1 B k”)EOO‘

Together with (3.7), we have
L) =d,(») YaeNt |of>1.

Therefore, we obtain y, = Yt forn=0,---,N

11

(3.8)
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12 C. CHEN ET AL.

3.2 Stochastic modified equation of stochastic symplectic method for stochastic Hamiltonian system

We consider the stochastic Hamiltonian system in the rough path sense (rough Hamiltonian system for
short):

d
dP, = — 3P Q1) g, > 3P Q1) dx!, Py=peR™
90, =
(3.9)
d
E N 0H(P,0) . -
dQ, = 9P, e+ 9. dx!,  Q,=qeR"

=1

One characteristic property of the rough Hamiltonian system is that its phase flow preserves the
symplectic structure. Namely, the differential 2-form dP A dQ is invariant under the phase flow. Here
the differential is made with respect to the initial value (p, g), which is different from the formal time
derivative in (3.9).

LeEmmMmA 3.9 (Hong et al., 2018, Theorem 3.1) The phase flow of the rough Hamiltonian system (3.9)
preserves the symplectic structure, that is,

dP AdQ =dp Andg, a.s.

Denote by J,,, = ( —(])I ]I(’)" ) the standard symplectic matrix. Letting ¥ := (PT,0")7, z :=

m
(»",q") 7" and Vi(y) = Jz_ni VA#(y),l =0, ,d, we obtain acompact form as (2.2). Thus the stochastic
modified equations in Definition 3.3 of numerical methods satisfying (3.1) for (3.9) are constructed.
Moreover, based on Lemma 3.9, it is natural to perform symplectic methods which inherit the symplectic
structure of the original rough Hamiltonian system, such as the symplectic RK methods in the next

lemma.

LeEMMA 3.10 (Hong et al., 2018, Theorem 4.1) The s-stage RK method (3.3) inherits the symplectic
structure of a rough Hamiltonian system, if the coefficients satisfy

aubl-l—a/,b/ =blbj Vl,]: 1, , 8.

The following theorem reveals that the stochastic modified equation associated to a stochastic
symplectic method is still a Hamiltonian system, which gives a positive answer to Problem 1.1 in the
introduction. In the proof, since the vector field of the stochastic modified equation is a sum of random
coefficients, we make use of the Hermite polynomial to separate each coefficient and then obtain the
Hamiltonian formulation.

THEOREM 3.11 Assume that V is bounded with bounded derivatives up to any order, and that there exist
a constant ¢ > 1/2 and a function L : [0, T] — (0, 4+-00) such that

. — 2
lim /1 VSE|X, — X, 0|~ = L. (3.10)
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STOCHASTIC MODIFIED EQUATIONS 13

IfY {' (2), the one-step numerical solution, is given by applying a symplectic method satisfying Assump-
tion 3.1 to (3.9), then the associated stochastic modified equation (3.5) is a Hamiltonian system. More
precisely, for any £, : R?" — R in (3.5), there exists a Hamiltonian .7, : R*" — R such that

[, ) = 15 VH,®). G.11)

Proof. By ¢ > 1/2, we have 1/2¢ < 1. For a € N*! define () := o, + % Define a set

S={x:x=m+ zi,m, k € N}. We sequence the elements in S and denote them by 6,,0;,6,, - - - , such
that 0, < 6, . Then for any o, there exits an integer n such that 6 (a) = 6,,.

From condition (3.2), we have immediately that (3.11) holds for o with 6(«) = 6,. For r € N,
assume by induction that for any « such that 6 () < 6,, (3.11) holds. By Assumption 3.1, the expansion
of the one-step numerical solution is

oo
YI@) =z+ D dy@h“Xy )" - (X5 )%
la|=1

Consider the following equation:

o
dij = D fODEOTIXG, )N (X, )M =2 e 0]

tstnt1
0(a)=6,

Denote by 7”(z), the flow of the above equation. By the Taylor expansion and the chain rule, similar
approach to calculating (3.8) leads to

00
nr(Z)h =z+ Z f(:(z)hao(leo,tl ) Xtcz),ll)ad’
|a]=1

where f, is determined by f,, with |o’| < |o|. Comparing the above expansion with (3.1), we have from
the recursion (3.7) that for all & such that 6 () < 6,,

dg (2) — f(2) = 0;

for all & such that 6(a) =6, |,

d, (@) — fo(2) = £,

Based on the assumption that V and its derivatives are bounded, we have | Y](2) | i S Clorp > 1.

Moreover, since the coefficients {f,} and {f]} are determined by V and its derivatives, we obtain the
boundedness of {f,} and {f}}, which yields ”n’(z)IH 2y S C. Then there exists a random variable
R, 5 such that

V@ =m" @+ D, fu@hOX )" (XS )M+ R, . as.,
0(0)=6,4
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14 C. CHEN ET AL.

where the leading term of R, , involves A% (X,lo’tl)"‘1 ‘. (Xg)’,l)o‘Gl with o + %;“d = 6,,,, which

gives IR, sl ) < ChPr+2. Taking the derivatives of 7" (z), and Y {’(z) with respect to z, we deduce
that the Jacobians satisfy

87Tr(z)h
oz =L, +R,, as.,
YN an'(2) 9R .,
E;z > h 4 Z o @R (X, totl)m (X totl)adJra—r;’ as.,
0(0)=b,+1
where f,(z) : 3f"(Z) . Since the leading term of R, involves h% (X t e (xd tl)ad with « +

at-ie — g, and the leading term of 282 involves /%0 (X} , )1 -+ (X3 , )% with a + ut i -

6,42, we get [Ryllpiay < Cp)A? and Hd’;—;? < C(p)h®+. The definition of the symplectic

LP(£2)
method means

_(OYP@NT 0V
JZm_( 9z )J2m 9z ’

Substituting the expressions of the Jacobians into the above equality, we obtain

or’(z) o’ (z)
Do =(T5 ) Doy TP S Ly f @R 6] ) (6 )
0(a)=0,11
+ > @ Dy, X, DM (X )M R, as,
6(@)=0,11

where [|R[l;po) < C(p)h+2, due to the leading term of R involving A% (tho’,l)o“ (X, tl)"‘d with

o + % = 0,,,. The induction assumption implies

b (2 Ty,
2m — 9z 2m 9z > ey
which provides
/ / T W oc1+é--+ ay | oq __ _h79r+1R
Z szfa(z) +fo[(z) JZm < ( 10, [1) ( 10, [1) == . a.s.
0(a)=0+1
The assumption (3.10) implies that for [ = 1,--- ,d, there exists a function M : [0,T] x (0, +00) —
(0, 4+00) such that
I ~ .
Xigsy = h? Z(IO,h)éh 2 hh_r)r(l)M(t, h) = L(1),
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STOCHASTIC MODIFIED EQUATIONS 15

where Sh,l, l=1,---,d, are independent and identically distributed standard normal random variables.
Letting /4 tend to 0 and using the fact L(r) > 0 and

}liﬂ% \|h79r+1RHL2(9) =0,

we have that

> (Tnfe @+, )& 64 =0, as, (3.12)
0(0)=0y+1
where &,/ = 1,--- ,d, are independent and identically distributed standard normal random variables.

In Theorem 1.6 of Gautschi (2004), it is proved that there exists a unique monic orthogonal polynomial
sequence {p; (x)}72 ; with respect to the measure induced by £, i.e., the Hermite polynomials. This means
that for any k € N, , we have

K =p )+ ap).
j<k
Then we rewrite (3.12) as

0= > (i@ +70 1)

0(c)=b6+1

% (Poy €0 + X by @) - (Pay&) + X @iy 6)-

k<o kq<og

Recall that 6() = oy + %;r“d We denote G the integer part of 266, ;. We decomposite the
summation above by

0= > (AL,

0(@)=0p+1,01++ag=G

% (P &0 + D tp €) - (Peg €D + D @iy &)

ky<ay kg <eag

+ Z (Jmeo/é (@ +1, (Z)Teﬂzm)

O(a)=0,11.01++og<G—1

X (Pa &)+ X ap @) (Pg G + D i, €)

k1 <oy k<t
N z (szf"/‘ @ +/a (Z)TJZm) Poy 1) -+ Py (59)
0(a)=0,41,01++og=G
+ Z 8y kg @Pr (€1 P (89),  as.,

0(a)=0,41.k1++kg<G—1

where the last line in the above equality collects the polynomials with degree lower than G. For any «
satisfying 6, ; and o) + - - - + a4 = G, multiplying the above equation by p, (&) - - - py, (§4) and taking
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16 C. CHEN ET AL.

the expectation, we deduce from the independence of &, - - - , &4 and the orthogonality of {p; (x)}7° | that
o (@) + £, "Iy, = 0.

Plugging it into (3.12) and rewriting it as before, we have

0= > (T i @ £ T ) Py )Py B
0(c)=0r41,01++0g=G—1
+ > By s P €D P €, as.

0()=0y+1.k1++ka<G-2

Similarly, we have for any o satisfying 6, and o + -+ + g = G — 1, I, £2(2) + £,(2) ' J,,, = 0.
Repeatedly using previous arguments, we have J,,, 1, (z) + f, (z)TJZm = 0 for any « satisfying 6, ;.

Combining with the fact J} = —J,,, we obtain J,,, f2(2) — (I, foa@) T = 0, ie., J,,, fo(2) is
symmetric. Then the statement (3.11) follows from the integrability lemma (Hairer ef al., 2006, Lemma
2.7 in Chap. VI). 0

REMARK 3.12 Based on Assumption 2.1, we have ”th,tn+1 ||L2(_Q) < Kh'/?20 1 < p < 2, which is an
upper bound for the regularity of the noise. In the proof of Theorem 3.11, we use the assumption (3.10)
to characterize the regularity of the noise more precisely, which is satisfied by a large class of Gaussian
processes used in the rough path theory. For example, for the fractional Brownian motion, the constant
¢ = ﬁ and L(f) = 1 in (3.10). In particular, ¢ = 1 and L(f) = 1 when the noise is the standard
Brownian motion.

REMARK 3.13 For the weak convergent symplectic method which approximates X’,lm,n+ , by gln\/E with
the random variable ¢, defined through P(g;, = +1) = %, such as the method studied in Anton (2019),

one can construct the stochastic modified equation by regarding thn’,nﬂ as ¢;,+/h. Further, since the
formulation of the coefficients {f,,} of the stochastic modified equation does not rely on the simulation

of the noise, the proof above also leads to f,,(y) = J;niV%’jx(y).

REMARK 3.14 Theorems 3.8—3.11 show that the numerical solution given by a rough symplectic method
applied to a rough Hamiltonian system exactly solves another rough Hamiltonian system. For non-
symplectic methods, the associated modified equations are not Hamiltonian systems in general. This
explains the superiority of rough symplectic methods over long time computation to non-symplectic
ones in numerical simulations presented in Section 5.

4. Convergence analysis
In this section, we consider the N-truncated modified equation (N > 1)

d 1<]e|<N

Y N _ h,l .
A =D D LGRS e (Ot
=0 i(a)=l

&8’ =z
“.1)
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STOCHASTIC MODIFIED EQUATIONS 17

wheref, isgivenby (3.7), |a| =1, - -, N. We remark that Theorem 3.11 also implies the symplecticity of
the N-truncated modified equation associated with a symplectic method applied to a rough Hamiltonian
system. Therefore, taking N as an index, we obtain a family of stochastic modified equations with
Hamiltonian formulations.

In subsection 4.1, we give the convergence analysis on the error between Yh and y y, for the case that
X is a general Gaussian rough path satisfying Assumption 2.1, which answers Problem 1.2. Here the
rough path theory is essential since

h
SUP I 1 sargo 1) = 001 SUP IS &) psargorry < 000 P > 2.

As for Problem 1.3, we focus on the case that X is the standard Brownian motion and the increments are
simulated by bounded Gaussian random variables. We optimize N such that the error is exponentially
small with respect to A, in subsection 4.2.

REMARK 4.1 For the forward error analysis, that is, the estimate for the difference between the numerical
solution ¥” and the exact solution Y, of the original stochastic equation (2.1), we refer to Hong et al.
(2018), Bayer et al. (2016) and Friz & Riedel (2014), and the references therein.

4.1 The general rough case

THEOREM 4.2 Under Assumption 2.1, if V is bounded with bounded derivatives up order N, then for any
p > 2p, there exists a random variable C(w) = C(w, p, ”V”Lipr’N) such that

5y - YPI < < Ch' T, as.

where ?N is the solution of (4.1) and Y {’ is defined by a numerical method satisfying (3.1).

Proof. Consider the expansion

)’h =z+ ZfN( YA (X ton)a1 (X totl)ad'

|or=1

Fix p > 2p > 2. Since the recursion (3.7) implies fN f =d, with1 < |o| < < N, and Assumption 2.1
produces [|X]1 Shlto.n] < 00> We deduce from the Taylor expansion that the leading term of the error
P 10>

between y{f and Yf is involved with A% (X}O’,l)“l (X, tl)"‘d, where ¢y = 0and &) - - - + g = N + 1.
Hence,

h
IIy,l Yill < C(w,p, IIVIILPN,N)h s
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18 C. CHEN ET AL.

THEOREM 4.3 Under Assumption 2.1,if V € LipN_HV with y > 2p and N > 2p — 1, then for any

p € (2p, y), there exists a random variable C(w) = C(w, p, y, ”V”Lipﬂ’*lﬂ“ﬁ’ T) such that

sup ||yN Y < C(a))h i *, as.,
1<n<N

where )71(’ is the solution of (4.1) and Y,}[ is defined by a numerical method satisfying (3.1).

Proof. Denoting by 7 (¢, yo,xh) ; the flow of (4.1), which initiates from y, at time #,, we have

1YE = )1 = Il (1 Y M), — (89, Y56, I
k

<D Nl Yoy, =y, Vi, L 1<k <.

Due to the Lipschitz continuity of the It6—Lyons map (Friz & Victoir, 2010, Theorem 10.26), we get

||7T(tsa 5 S 1° S 1°

oy, — Al
= ||7T(tk_1,7T(tS, Y_g axh)[kila-x )tk _n(tk_lvn(ts_[vY‘:lfl,xh)[kilaxh)[k”

< Cexp{CV 1S, (YD g g I s Y = (e, Y2,

where C:= C(p.y) and b := D(IX| 1 tgz00,77(@): 1Vl -1, V). From

1511 YO s ey + ISt @O tars < I Ot

it yields that

h h h
I (15, Y2, = 0ty Y,

s s

< Cexp{CT 1)y (V@) 1Ly a7 1 YA, — (e Y 6, ]

§27s?

< Cexp{Ci Sy, () (@)1 HYE— e YE L, )l 1<s<k

p-var;[0,T

It follows from Theorem 15.33 in Friz & Victoir (2010) that

. h
%g% ||S[p] (x )(w)”p.var;[oﬂ = ||X(w)||p.var;[o,r], a.s.,
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STOCHASTIC MODIFIED EQUATIONS 19

which yields
sup |1 YOI arpor) < 00 @s.
>

According to Assumption 2.1 and Definition 2.3, V € LipN —147 with y > 2p > 1 leads to that V is
bounded with bounded derivatives up order N. Then we derive by Theorem 4.2 that

k
17 =501 < D CexplCaP IS, MY @) Iy egor IV — 7t Y6, |

s=1
N 25
< C(a)’p’ V, ”V”Lipﬂl—l+y9N’ T)h p

duetoy > 2p > 2. (I

In the case of additive noises, the terms satisfying |a| > 2 and oy = 0 will include the derivatives
of the diffusion coefficients, which are zero. Then (3.1) in Assumption 3.1 on the numerical method
degenerates to

Y n+l — Yh + z d (Yh hao( In, tn-H)al T (ng’tn+l)ad

la|=1

o0
DL DR, )T X, ) (4.2)
loe| 22,0221

Consequently, the convergence rate of the error between Y,}l' and }Z increases, which is stated in the
following theorem.

THEOREM 4.4 Let Assumption 2.1 hold and V;(y) = 0; e R", i =1,--- ,d. If V, € LipN_HV with
y > 2p, then for any p € (2p, y), there exists a random variable C(w) = C(w, p, ||V||L!.p,;,,IV) such that
h &
sup ||y,1 =Y, < Cw)hr,

1<n<N

a.s.,

where S)N is the solution of (4.1) and Y’ ,’,‘ is defined by a numerical method satisfying (4.2).

Proof. Combining (4.2) with (3.7), we have that the leading term of the local error between }ff and Y{’
is involved with A%0 (tho,,1 )ot... (X%’tl)"‘d, where g =land o - - + oy = N. Then

1
15y — Y2l < Chr ™', as,

from which we conclude the result by using the same arguments as in the proof of Theorem 4.3. O

4.2 The standard Brownian case

In the previous subsection, we prove that the error between the numerical solution and the exact solution
of the truncated modified equation is bounded by a polynomial function with respect to the time step
size h by fixing the truncation number N. To further study the convergence analysis, we show in this
subsection that by fixing the time step size h, there exists a truncation number N such that the error
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20 C. CHEN ET AL.

can be made exponentially small. In this sense, we call it the best truncation number. We deal with the

case that X/, [ = 1,---,d are independent standard Brownian motions. In this case, we simulate the
increments Xl tns1 DY

Apiry =L Vh 43)
with

En-i—l Al |§n+1 l| Ah’
Copr0 =1 A Sugrg > A
Ay &1 < —Ap

Here §n+1,l’ n=0,1,---,N—1,l=1,---,d, are independent Gaussian normal random variables, and
Ay, = «/4|In h|. Similar to Assumption 3.1, we assume that the expansion of the numerical solution is

h h a o
Vi =Yy + Z dy VDB ALy A% g
lx|=1

For convenience, we illustrate our idea by the RK method

h
Yhi=Yi+ Z% (Vo( o ph+ Z Vi( n+l,/')An+1,l)’

= (4.4)

Y, = Yh+2b (Vo( n+1,)h+ZV1( 1) A, 1)
i=1

We also stress that the procedure does not rely on the special structure of RK methods and is available
for a large class of numerical methods.

To fit this case into the previous analysis, it suffices to prove that the process ¥ = (1, .., ¥*%)
defined by

r—t
'“._;‘cﬁ”+T"An+u Vi€ (tytyl [=1,---,d, n=0,--- ,N—1,

can be lifted to a p-rough path with [p] = 2 almost surely, as a counterpart of the process (3.4).

ProrosiTION 4.5 Let 2 < p < 3. Then it holds that there exists some random variable C(w) :=
C(w, p, T) independent of & such that

HS2(xh(a))) H < Cw), as.

p-var;[0,T]
Proof. Lett,_y <s < ; <1, <t < 1. Since for any m € N, E[A%j*;] < @m — DA™ and

'
E [Ai”f*]] =0, we have

2m 2m
o[ o] | (50) ] < (55 elat] < cnor
[l ] (50 e e

dxhl

uj

t
hl
.

7

=
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STOCHASTIC MODIFIED EQUATIONS 21

2m

J
Zm] -k Z Ak,l

k=i+1
_ Bi+1 ~Bita B Bi+1 B
= >, Com Com—pry, "‘Czﬁn—ﬁ,-ﬂ—m—ﬁj,lE[Aiﬁ,z‘“Aj,jl]
Bix1+-+Bj=2m, Bir1, - ,Bj are even
< > @m) B[4l E]al]]
Biv1+-+Bj=2m, i1, ,B; are even
<#{ i1 B) s Byt ok By =2m, By By are even) 2m)! @m — DA™

<G —"@m)! @m— DI < Clij — 4™

Here, C;}! denotes the combinatorial number and #& gives the number of elements in the set 0.
Combining the above estimates, we obtain

t 1 t
E [/ d)'c’;’ll / d)"cZ’ll 2’"} +E |:/ d)'cﬁ’ll
s s t

For an iterated integral, let; | <s <1t <t; <t <t and [}, 1, € {1,---,d}. If [} # I,, then the
definition of X and the independence of A; ; and A, , lead to

lj ! h,l _hl 2’71
E dﬂf ’ld)f 512
i i

t
2m]+1E /d%’;{ < Cle—s|™.
"

7

J o k-1 j
1
— 2m
=E Z Z Ay A, + Z 58k Ak,
k=i+1I=i+1 k=i+1
Bi+1 ~Bit2 Bj Bit+1 B
S Z Com sz*ﬂiﬂ sz*ﬂiﬂf"'*ﬁj—lE Ai+1,11 Aj,ll
Bix1+-+B=2m, Biy1,.p; are even
Yi+l ~Vit2 Yj Yiel Vi
x Z Com CZ’”*VHI sz*ViJrl*'“*Vj—lE[Ai+l,lz Aj,lz]

Yit1t+yj=2m, Yit1,,yj are even

2 2,
< ((j— D" 2m)! 2m — 1) !h’”) < Clty — 1.

UO JosSn saoUsIng JO AWBpEoY 8SauIy)) ‘SeoUsIos WaISAS ¥ sonewsyiely Jo Awepedy Jo Ateiqi] eyl Ag 2089/9//61 08Ip/wnuew/S60 L 01 /10p/alo1e-soueApe/eulewi/wod dno olwspeose)/:sdyy wolj



22 C. CHEN ET AL.

If ll - 12, then
E [ 2mi|
J

=E[| >, Z A Ay + Z Aku 2'"

k=i+1I=i+1 l+1

,Bt+1 ,31+2 'B/
< > Cam Cam—prr " Cam—pror——py
Biv1++Bj=4m, Biy1, B are even

#{(ﬁm,--. B): Bipr e+ B=dm BBy areeven}(4m)zE[Af’f;l] E[Afgl]

< (= D" @m)! (4m — DR < Clt; — 1"

uj
~h,li 33h.l>
el di
ti

Bi B
]EIZAH?Lllll A],Jll]

Besides,

|: / dxh lldxh |2
|: / dxh lldxh |2

Similarly, it holds that

U

=)

] <(45) "ela] H/ &
)" (=) < cu—st

2
’"] < Clt; — s|m|tj —1|",

|_|

—
ot
=
[}

/ dxh lldxh 1)

2’"] < Clt = ™ |t; = s|" + Clt — ™.

Therefore, we obtain

Ml 4=kl
T 47102
il il
s

2mi| g Clt_ s|2m'

|

For any p such that 2 <p<3ie, l <, < l , choose g = 4m sufficiently large withm € N__ such

that (— — 5) — 5 > - By the Besov—Holder embeddmg theorem (Friz & Victoir, 2010, Corollary A.2),
we get

il |d(s2<x”) S,
HSZ(X)H((%—f)—f)ﬁoz[or] ()// B l+q( D dsd.
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where
d(S, (@), (M), < Cmax[ dx’“ ' / / dif-h gl %]
o 1
< c( x|+ dxh d z).
) S

Taking the expectation on both sides, we obtain

N TE[|d(S,() S, (), 4
E[Hsz(xh) O i| )/ / [| 2 s g2 t | ]dsdt
(7—5—*) -Ho.[0,71] |t—s|2
T T]E[ St —Z’ a4 u1 hl]dxhlz %:I
< C(q)/ / 7 dsdt
0 Jo |t—s|2

< C@T>.

This yields that ¥ can be lifted to a p-rough path almost surely, and that there exists some random
variable C(w) independent of 4 such that

s,y s

< C(w,p,T), a.s.

p-var;[0,T] f—Hol ;[0,7]

With the help of Proposition 4.5, the associated modified equation here is

d
- -1 hi )
dy, = Z Z JaGOR ALy A A g 48 1€ (a1
1=0 i(a)=l 4.5

5)0:Z»

and the N-truncated modified equation is

d 1<[o|<N
-1 _nl .
dyN Z Z fo (yN)haoArkH] A A B 1€ Uty ]
=0 i(a)=! (4.6)
W =z

We obtain that there exists some truncated number N = N(h) such that the local error is exponentially
small with respect to the time step size h, which answers Problem 1.3. Included in the appendix, the proof
combines estimates for coefficients of the truncated increments, the numerical solution, the modified
equation and the truncated modified equation such that the temporal regularity of increments of the
Brownian motion is unfolded in the result (4.7). O
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THEOREM 4.6 Assume that there exist positive constants R, M such that V;, | = 0,1, -- - ,d are analytic
on a neighbourhood of the closed ball

Byr(2) == {y eC":|ly—zl < 2R}

with

VIO <M Vy e Byy().

Then for any € € (0, %), there exist constants C = C(¢,R,M), T = ©(€,R, M) and hy = hy(R, M) such
that for any & € (0, 7), there exists a truncation number N=N (e, R, M, h) satisfying

- 1_,
I — Y}l < Che™M0/"? 4.7

where }fl’ is the solution of (4.6) and Y{’ is defined by the one-step numerical method (4.4).

REMARK 4.7 We remark that in the backward error analysis of the deterministic Hamiltonian system, the
result that the error between the numerical solution and the exact solution of the corresponding modified
equation is exponentially small leads to the near conservation of the energy of the original Hamiltonian
system with symplectic methods over an exponentially long time interval. The key lies in the conservation
of the energy (resp. modified energy) of the original Hamiltonian system (resp. the modified equation);
see Hairer ef al. (2006). However, in the stochastic case, the stochastic Hamiltonian system does not
have the energy conservation law in general, not to mention the stochastic modified equation. Even for
a special case (e.g., V; = C;V,; with C; a constant, / = 1, - - - ,d in (2.1)) where the stochastic system has
the energy conservation law, the modified equation associated to a symplectic method does not have the
energy conservation law in general. Therefore, the long-term conservation of the energy by the stochastic
symplectic methods is still an open problem.

5. Numerical experiments

Numerical experiments are carried out based on three rough Hamiltonian systems in this section. Based
on Examples 5.1-5.2, we verify the convergence orders proved in Theorems 4.3—4.4 for multiplicative
and additive cases, accordingly. In Example 5.3, which is a linear system with the energy conservation
law, we present the long time behavior of several numerical methods and the corresponding modified
equations.

EXAMPLE 5.1
[ dP, = sin(P,) sin(Q,) dr — cos(Q,) dX?, P, =p,
dQ, = cos(P,) cos(Q,) dt —sin(P) dX!, Q= ¢,

where X! and X? are independent fractional Brownian motions with Hurst parameter H € (1/4,1/2].
The Hamiltonians are

(P, Q) = sin(P)) cos(Q)),  H(P,, Q) = cos(P), 5P, Q) =sin(Q)).
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ExaMPLE 5.2 (flow driven by the Taylor—Green velocity field (Wang et al., 2018, Corollary 4.3))
dP, = —sin(Q,) dt + V20 dX!, P, =p,
dQ, =sin(P) dt + v20 dX>,  Qy=q.

where X! and X? are independent fractional Brownian motions with Hurst parameter H € (1/4,1/2].
The Hamiltonians are

H(P,,Q,) = —cos(P,) — cos(Q,), (P, Q) =200, H(P,,0,)=~20P,.

We consider the midpoint scheme
+
h h +1
Yn+1 - Yn + V( 2 - )th»[n+l’ (5‘1)

whose 2-truncated and 4-truncated modified equations are defined via the following formulas for the
coefficients:

lef =1: f,0) =V,
laf =2: f,()=0;

ol =3: 0= > [——V”(y) L0V, (y>+—v’ O\ (y)Val(w];

o) tartoz=o

lof =4: £, =0.

To investigate the error between the numerical solution and the exact solution of the associated
N-truncated modified equation, we apply the midpoint scheme to Example 5.1 with the initial datum
(v, q) = (1,0) and the time interval [0, T] = [0, 1]. Figure 1 plots the mean-square error || YI}\’, — 5/}' [I 12(2)>
where N = 2,4, the time step sizes are h = 27 = 4,5,6,7,8, and the Hurst parameters are
H = 0.4,0.45,0.5. For each time step size &, the ‘exact’ solution of a truncated modified equation is
simulated by using the midpoint scheme to this modified equation with a tiny step size § = 27!2. The
increments of the fractional Brownian motions are simulated by the method introduced in Wood & Chan
(1994), which exploits the efficiency of the fast Fourier transform. The expectation is approximated by
200 sample trajectories. The convergence orders are showed to be 3H — 1 and SH — 1 for the cases N=2
and N = 4, respectively. According to Proposition 15.5 in Friz & Victoir (2010), the fractional Brownian
motion satisfies Assumption 2.1 with p = # For a sufficiently small € > 0, we take p = % +e>2p
and y = % + 2¢ > p in Theorem 4.3 and then the theoretical estimate for the multiplicative case is
supported by the numerical result. In Example 5.2, we takep = 1,g = 0,0 =2 and T = 1, and choose
H = 0.3,0.4,0.5. Figure 2 presents that the convergence orders for the cases N =2and N = 4 are 2H
and 4H, respectively. With p = % +eandy = Ili + 2¢, the estimate for the additive case in Theorem 4.4
is verified. Furthermore, one can find out that the numerical solution is closer to the exact solution of the
4-truncated modified equation than that of the 2-truncated modified equation.
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FiG. 1. Mean-square error vs. Step size for Example 5.1.
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FiG. 2. Mean-square error vs. Step size for Example 5.2.

ExampLE 5.3 (Kubo oscillator in Hong et al. (2018))

2
dP, = —aQ,dt — 0 > 0Q,dX], Py=p,

i=1

2
dQ, =aP,dt + o ZPt dXi, 0y =9,
i=1

where X! and X? are independent standard Brownian motions. The Hamiltonians satisfy

2 2 2
~Ho(Py Q) = ~ (P Q) = ~H5(P, Q) = P+ Q7.
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Note that 77 (P,, Q,) = Pt2 + Qt2 is an invariant. The exact solution reads

2 2
P, =pcos(at+UZXf)—qsin(at—i—oZX;),

i=1 i=1

2 2
0, = qcos(at—l—oZX;)—i—psin(at—i—oZXf).

i=1 i=1

We compare the midpoint scheme (5.1), which is symplectic and energy-preserving, with the
following two numerical methods. One is an explicit RK method defined by

Y, =Y +V (Yh + VDX, ,M) X, i (5.2)

which is neither symplectic nor energy-preserving. The associated 2-truncated and 4-truncated modified
equations are defined through the formulas for the coefficients:

lal=1: f,0)=V,0); lal=2: [f,0) =0;
1
el =3: f,00= D, [——V” MV, 0V, 0) = gVé,}(y)V&z(y)Val(y)];

a1 t+aytaz=a

1
laf =4: f,0)= > [ o Ve Vay 0V, )V, (y)+ Vo, Vg, (y)Vé,z(y)Val(y)]

o] +oyto3tas=a

Another one is a symplectic partitioned RK method which is not energy-preserving. Applying it to
Example 5.3 leads to

(5.3)

2
Qn+] Q +aP h+02th+U ZPZ+1Xlann+l;
i=1

see also Section 5.1 in Milstein ef al. (2002a). The coefficients of the associated modified equations for
1 < || < 3 are calculated as follows. Denote y = (yl,yz)T € R?, then

| =1: f(l,0,0)(y):( 6(17 Ug)(iz)’

_ 1
J01.00 =J001H0) = (a OU)(iz);

ot & 2 1

= + = ao y
| | - : f (y) - 2 2 ( ) )
o 2 (2,0,0) 2 524 azz y2
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(a) The midpoint scheme (5.1)

C.CHEN ET AL.
i 4
— Midpoint ExpRK
||~ Exact 3 Exact
- - 2-modified - - 2-modified
|- 4-modified ol 4-modified
n=0 n=0
1 L
ol //\
1 _1 L \/ /X
=100
" @ 1=100 < L
} n=180
n=180 3l
n=75 ) n=75
L L L 4 L L L
2 0 2 4 -4 2 0 2

(b) The explicit RK method (5.2)

4
SPRK
3t — Exact
- - 2-modified
- - 3-modified
2 L
n=0
1t "
PR
oo § \;; -
4 R AT
2 B )
n=75
3t
4 . \ \
-4 2 0 2 4

(c) The symplectic partitioned RK method (5.3)

FiG. 3. Evolution of domains in the phase plane.

Jo.1,H0)

-(5 ) ()

3 1
f(1,1,0)(Y) =f(1,0,1)(Y) = ( _aga _Gao ) (iz )

J0200) =002 =

50,
0 -5

~
/4N
< <
N =
N—
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- 15 -
04 ‘ Original ‘ ‘ 5 %10 ‘ ‘ Midpoint ‘
0.2r M
0 : ‘ ‘ 0 ‘ ‘
0 10 20 30 40 50 0 10 20 30 40 50
2-modified 10713 2-modified
0.4 ; ; ; 5 1 ; ; ;
. &
So2f MMV’ 205+ ]
) 2 M
{=
0 1 L L [ITRY L L L L
0 10 20 30 40 50 0 10 20 30 40 50
s %107 4-modified . <1014 4-modified
ol j
0 . ‘ ‘ ‘ 0 ‘ ‘ ‘ ‘
0 10 20 30 40 50 0 10 20 30 40 50
T T
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FiG. 4. The midpoint scheme (5.1).

_ 0% 2d%6% _ 5a0* & yl
el =31 fe00®M =\ st , & o8O 26 ( 2)’
6 Te 31T73 Y
404 2 1
——5 —ao
]0(1,1,1)(}’) = 32 40t (yz ),
ao 3 y

_o4 _2a0? y!
Ja200) =f1020 =\ 202 af ( 2)»

0 —-% y!
Jo2)O =120 =\ . v )

_4ao? 500 _ do y!
fero® =foon® =\ 55 *20 a0’ (2)

0 -2 \/
f0300 =foo M =\ 6 ( ) )
6

Weseta=1,0 =09, T =20, N = 10 x 2° (.e., h = 1% = 0.0313). We present the evolution
of domains under the flow of Y,ﬁ‘ (2), Y,n (z) and }Z (z) with n = 0,75, 100, 180, for one realization of
Example 5.3 in Figure 3. For the methods (5.1)-(5.2), the truncation numbers are N = 2,4. For the
method (5.3), N = 2,3. The ‘exact’ solution of a truncated modified equation is taken as the numerical
solution given by applying the midpoint scheme to this modified equation with a tiny step size § =
W% = 2714, Notice the fact that the preservation of the symplectic structure is equivalent to the
preservation of the area of domains in two-dimensional case. The areas of domains remain unchanged
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F1G. 5. The explicit RK method (5.2).
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FiG. 6. The symplectic partitioned RK method (5.3).

under symplectic methods (5.1) and (5.3), as well as those given by the flows of associated truncated
modified equations. However, the corresponding areas for the method (5.2) and its 4-truncated modified
equation increase. In particular, we point out that the 2-truncated modified equation of the method (5.2)
possesses the symplectic conservation law, since it coincides with the Wong—Zakai approximation of the
original system and shares the same formula as the 2-truncated modified equation of the method (5.1).
These numerical results confirm Theorem 3.11.

In Figures 4-6, we perform simulations for a trajectory witha = 1,0 = 1,p=1,4 =0, T = 50,
N=10x28 (e, h= ]% = 0.0195) by the three methods, successively. The errors || Y,},’ =Y, lland | Y,’Z -

}Z || are given in Figures 4(a)-6(a). The ‘exact’ solution of a truncated modified equation is simulated by

applying the midpoint scheme to this modified equation with a tiny step size § = ﬁ. As expected,
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we see that the error decreases as N becomes larger for a numerical method. Besides, the energy errors
|(Y,’11)TY,}1' —p*>—¢*|and |(§zﬁ{ )szfi — p? — ¢?| are presented in Figures 4(b)-6(b). Noting that the energy-
preserving method (5.1) is also a symmetry method, we have that f, (y) = O for any |o| = 2k, k € N,.
Therefore, what we observe is that the energy error is almost zero for the method (5.1) and its truncated
modified equations. As to the other two methods, the energy is not preserved, but the energy error is
generally controlled better by the symplectic method (5.3) than by the non-symplectic method (5.2).
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Appendix

In this section, we prove Theorem 4.6. Before that, we recall Cauchy’s estimate for analytic functions,
and give four lemmas about estimates for the truncated increments, the numerical solution, the modified
equation and the truncated modified equation, respectively.

LeEMMA A.1 (Cauchy’s estimate) Suppose that f is analytic on a neighbourhood of the closed ball By (y*)
and My = max{|[f(y)| : y € BR(y*)} < o0, then

'M
70 < SR,

Rn
Proof. By Cauchy’s integral formula,
! ' M 'M
2mi ly—y*|=R (y — y*)n+ 2w Rt R"

O

LEmMMA A2 (estimate for A, ) Let0 <€ < % and k > 1. Then there exists a constant C = C(e, k)
such that

[Apirl SHTC Yh<C. (A.1)

Proof. Consider the function v, (h) = klnh + h~2€. Since lim;,_, 4 v;(h) = +o00, we obtain that there
exists a constant C = C(e, k) such that

vi(h) =0 Vh<C.

Then we have

6pi1sl <A, = VAkIInh| <h™¢ Vh<C,

which implies (A.1). O
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LEMMA A3 (estimate for d,) Denote k := max,_; . {Z;le |aij|} and p := >, |b;]. Under
assumptions as in Theorem 4.6, if
R

hs A [ A N a7 1~
max{h. Ayl 14l < S T 7

(A2)

then it holds that

2uM(d + 1)/s

| —1
VyeB R
R i| y R(Z)

ld, W < pud + I)M[
where the coefficient d,, is defined by the expansion

(0.¢]
Y@ =z+ D d, QAL - ALY @ = (g, Lay) € NOTL

|or|=1

Proof. Foranyy € B%R(z) and || Ay|| < 1, define v(9) := V,(y+60Ay), 0] < 1%. Then Cauchy’s estimate
shows

IV Ayl = [[v'©)],_] <

)

x| &

2M
R

which implies

oM
Vi)l = sup [ViAyl < — Vy € B3i(2). (A3)
lAayl<1 R 2

For any y € Bp(z), define a map F : C"** — C"** by

F.g=(g - ,8) > F(@=FQ@ . F@,,

K d

Fg),=y+ Y ay |:V0(gj)h +> Vl(gj)AlJ:| . Q=15
j=1 I=1

We claim that F'is a contraction on the closed set B := {(gl, g g =yl < §

y € Bg(z). Indeed, forany 0 < y < 1 and

=1, ,s}with

¥R

h’A ,...’A <—:
maX{| | | 1’1| | 1,d|} 2KM(d+1)\/§

1 CL(y),
we have

s d

R

IF@; =51 < Xl [h+ > |Au|} <3 VgeB.
j= =
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34 C. CHEN ET AL.

Besides, (A.3) yields

Ay

K d
- 2M - 14 - -
1F(g); — F(&)ll < E |aU|_R |:h+ E |A1,1|:| g —&ll < ﬁﬂg—g” Vg geB,
j=1 =1

which leads to || F(g) —F(g)|| < v llg—gIl. Therefore, there exists a unique fixed point g* = (g7, - - ,&})
for F on the set B. Denote

s d
YEO) =y + Zbi(vo(g;‘)h + Zvl<g7>A1,z).

i=1 =1

Together with the analyticity of V, Y{’(y) —yisanalytic for ||, [A; 1], |4 4] < C;(y)andy € Bg(2).
In this case, due to g;“ € B3r (2), the boundedness of V implies
2

Y1 () — yll < p(d + HMC, ().

Repeatedly applying Cauchy’s estimate, we have

1 d%d d%o (Yh(y) ) ‘
aol-ayl | % Ldneo U1 ) i

UM(d + 1)4/s7*!
YR ] '

ld, Wl = ‘

A1,q=0

o u(d+ILTMC1(V) :pc(d+1)M|:
Cy ')

Letting y — 1, we obtain

2uM(d + 1)/5

lo|—1
R :| Yy e Bp(2).

lde Wl < p(d + 1)M[
0

REMARK A4 Let e = 4—1‘ and k = 4. Lemma A.2 shows that condition (A.2) holds if we simulate the
random variable A, ; in (4.3) by taking

(A.4)

) R R 4
ht < min [C(e’k)’ %M@+ )5 |:2/<M(d+ 1)\/5} ] '

LEMMA A.5 (estimate for f,,) Denote n := 2 max{k, u/(2In2 — 1)}. Under assumptions as in Theorem
4.6 and Lemmas A.2—A.3, then the coefficients of the associated stochastic modified equation (4.5)
satisfy

nM(d + 1)2/s]

J—1
R ) VyeB%R(z),J€N+.

>0 < (n2mMd + 1)2¢§(

lor|=J
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STOCHASTIC MODIFIED EQUATIONS 35

Proof. For J = 1, it follows from Lemma A.3 that fory € B ! (>

D WIS uMd+ 1D < n2)pM(d + 1)*s.

la|=1

Suppose J > 2. We consider @ € N¢*! such that 1 < |«| < J. The definitions of {d,} and {f, } imply that
{d,} and {f, } are composed by V and its derivatives in general, which are analytic on a neighbourhood
of B,(z). For any analytic function g on a neighbourhood of B,(z), we define

R
ligll,, := max [ lel:ye BR_(m_l),s(Z), s = 20— 1) ] VYme N+-

It holds that [[gll,,,, = llgll,;,, if m; < m,. Moreover, the function v(0) := g(y + 6, (v)) with |0] < ”fa
andy € Bg_(,,_1)5(2) is analytic. It follows from Cauchy’s estimate that
DM = llgWfe Wl
= VOl
SUP91 <5/ o e V(O]
8/ llm

1
= 5 Wellnligln—r.

which implies [|Dygll,, < 3 Ify Il llgll,u_y- Then given k41, - .- ki € Ne*1 such that [k; |, - - - , |k;
and [K"] + -+ + K] = |l i=1,-- -, |a|, we get

ll|

1
||Dk,"1 . e Dki,i—lfki,i “lal g E "fki,l || \01| ||Dki,2 “e Dki’i_]fki’i || |Ot|71

N

1
8_2 ”f}(i,l ” ex| ”fki,Z ” loe]—1 ||Dki,3 et Dki,i—lfki,i ” l|—2

N

N

1
(Si__lufki,l ||\a| |lfki,2|||a|_1 te |lfki.i|||a|_(i_1)

< 51 llv‘ktln‘ktll |lfki,i|||ki,i‘.

Combining with (3.7), we have

o]

1
i ) < Ny ||‘o,|+2 > s Wl Wl

= 2 (k’l k”)EO?
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36 C.CHEN ETAL.
By the notation Fj := Zlalzd 1fo ) and Gy := Z|a\=& lldy |l the above inequality yields
1
< Gy + z = Z (S-TIF,;,'J o Fli (A.0)
= 2 kl 1+ +k11_a

Lemma A.3 produces

2cM(d + 1)\/3}5'1 ol —a

|Mma<uu+nM[ -

@+@+bh-D! _ d+a)!

Together with #{a = (g, -+ ,ay) @ la| = a} = (@D-Dlar = aial > We have
d 2UM(d+ 1)/57* "
G, < ﬂ w(d+ DM M
da! R

2ucM(d + 1)\/3}5“
R

<w+n%w+nMﬁ[

(A7)

2M(d + 1)2¢§]&
R

= uM(d + 1)%5[

Forall @ € N+, we let

UM+ 125 (2eM(d + D25\
By = ( ) Z: >

G = 5 R Bit -+ Brii- (A.8)

i= 2 kzl+ i =g

Based on (A.5), we have that F; < 88; holds for & = 1. Moreover, assume by induction that F < 85
holds fora = 1,--- ,n. Then accordlng to (A.6)—(A.8), we know that fora =n + 1,

2Md+ D251 &l
Fy < uM(d+ 1)*/s [%)\/E} + Z il Z si—1 (S'Bk”) (%) = s
=2 il 4 fiiz=g

Therefore, we have that F; < §f; fora = 1,---,J. In order to estimate F, it suffices to estimate ;.
M(d+1)2 2 M (d+1)?
Let ¢, := %’ cy = %‘ For |£|

for & leads to

< 1/c¢,, multiplying (A.8) by & % and summarizing

=}

o]

a=1 a=1

a=1 i=2 kI]Jr =g

=c& Z:(cﬁ)di1 +Zl1—‘z z ,31}i,1 "',3;”{1,1'5&,
a=1

i=2 " @=i fl g iy
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STOCHASTIC MODIFIED EQUATIONS 37
which produces
c§
b =~ LA )
— ¢
with
w ~
bE) = > Bt (A9)
a=1
Consider the function
q(b,§) = il +e’—1-2p=0.

1—C2$

If %%S) = -2 # 0 (i.e., b # In2), the implicit function theorem shows that there exists a map
b : &€ — b(§) and the series in (A.9) is convergent. Since ¢;,c, > 0, we know that the range of the

increasing function £ 121525 for [§] € [0, 2In2 —1)/(c; +¢,(2In2 — 1))) is

(=224 14 (26,22 — 1)?)/(c; +2¢,(2In2 — 1)), 2In2 — 1).

Meanwhile, the range of the increasing function b — —e? + 1+ 2b for |b| € [0,1n2) is

(—2In2+1/2,2In2 — 1),

which includes the range of the function. Then we have that for any & satisfying || € [0, 2In2 —
/(c; +¢,(2In2 — l))), there exists b(§) € (—In2,1n2) such that g(b, &) = 0, which implies

b)) <In2 V& < 2In2—1)/(c; + ¢,(2In2 — 1)).

Since b(£) equals to a convergent polynomials series (A.9) of &, b(£) is analytic with respect to £. By
Cauchy’s estimate, we derive

In2 -
1Bal < . GeN,,
(QIn2—-1)/(c; + c,(2In2 — 1))
and then
2 J
F,<8p, < R In2 < (In2)R (M (d + 1)*/sJ ‘
20 -1 ((2In2—-1)/(c; +c,(2In2 — ) T 20-1 R
Therefore,

nM(d + 1)2/s]

J—1
R ) VyGB%R(Z).

STl < dn2nM(d + 1)%(

la|=J
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38 C. CHEN ET AL.

In order to estimate the exact solution of the N-truncated modified equation (4.6), we consider the
infinite expansion for its solution with respect to the initial value z:

o0
I =24 DS @EOAT - AT

la|=1

LEmMMA A.6 (estimate for foly )Let0 <€ < % Under assumptions as in Theorem 4.6 and Lemmas A.2—
A5, then there exis~t constants C = C(e,R,M) and T = 1(€,R, M) such that for any & € (0, 1), if the
truncation number N satisfies

~ R
1<NK —, (A.10)
nM(d + 1)2/sh~¢
then we have
; (In2)nM(d + 1)*/sC
1Y @1 < 1 .
R (1/27,5)|05|—1
[2(1n2)nM(d+1)2ﬁc]
Proof. For simplicity, we let € = %, as the proof is similar for € € (O, %)
According to Lemma A.5, as long as {}f’ 1<ty =h} C B§ (z), we have the estimate
N 2 J—1
Y 1 M(d + 1 sJ
15— 2l < T an2nM(d + D25 (%)
J=1
N 2 1\/-1
M(d+ 1 Jh3
< hi(n2)nMd + )25 1+Z('7 ( +R)“/E ) Vi<h
J=2
Since 1 < N < %, we know
nM(d+1)2/sh#
N 2 1N/~ N J—1
nM(d + 1)*/sJh4 J
1+ Z( - <1+ <) <G
J=2 J=2
Then a sufficient condition for {)"Jf’ :t<h}CB B (z) is
R 4
h < . A1l
(2<1n DnM(d + 1>2¢ECO) A1

In this case, it has

5 — 2l < hEn2)pMd + 1)>/5C, Vi< h.
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STOCHASTIC MODIFIED EQUATIONS 39

Moreover, since the coefficients {f,,} of (4.6) are generally composed by V and its derivatives, {f,} are
also analytic. Then {5{\’ :t<h}CB R (z) produces that %\ll — z is analytic for & satisfying (A.11).

Combining the conditions (A.4) and (A.11) on & together, we obtain that there exists a sufficiently
large C; such that

R 4
[2<ln 2nMd + 1)%/301]

< min [C(E,k), 2Md + )ofs’ |:2;<M(d + l)ﬁi| ’ |:2(1n2)77M(d+ 1)2\/§C0i| } '

4
R b 3
[2(ln2)nM(d+1)2ﬁC1 ] , we use Cauchy’s estimate to get

1 dotd doto 5
gl ay! [dA‘;‘de "'[dhao (yﬁ_z)] ’mo"}
1
C5 (In2)nM(d + 1)2/5C,

la
C2
(In2)nM(d + 1)%/sC,

Defining C, :=

Y @

A q=0

N

N

R 4|la|—1
[mn )M (d+1)2/5C ]

Now we can proceed to the proof of Theorem 4.6.

Proof of Theorem 4.6. We know that d, = fN with 1 < || < N, then it remains to estimate the terms
for |a| > N + 1. For simplicity, we let € = 4, since the proof is similar for 0 < € < %
For the numerical solution given by (4.4), Lemma A.3 yields that the sum of remainder terms is

bounded by

o0
> I, @A AT |- AT
loe|=N+1
o] 2 J—1
> MM(d—l—l)z\/E[—ZKM(d;_ D ﬁ] %
J=N+1
0 2 2 N+
2kM(d + 1 2kM(d + 1
CNhN+1
4
The last inequality holds if h% [w] < l,ie, h < [m] .
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40 C. CHEN ET AL.

For the exact solution of the N-truncated modified equation (4.6), Lemma A.6 leads to that the sum
of remainder terms is bounded by

o0
> I @Ik AT - AT
la|=N+1
S 2
In2ynM(d + 1)*C,/s s
<Z(d+1)]( M ( ) 14\1/:1}14
- R
J=NH [2<ln2>nM(d+1>zclﬁ]

. i hi(d+ 1y (1n2)nM(d+1)2c1«/§(d+1)fv+‘h%
X ~ [ R ]4.1—1 R A4N+1)
T L2n2)pMd+1)2Ci /s [2(1n2)nM(d+1)2c1¢§]

< cOVRE,

1
(d+Dh¥ 16

R
2(n2)yM(d+1)2C1 5

Define h := m. Then the condition (A.10) reads N < hoh’%. We choose N for the largest
integer under this condition and then

4
The last inequality holds if T <lie,h< ((ﬁ) [2(1n2)nM(§+1)201ﬁ]

P —n e - - - N-3
VR = cB3REN 3V = 3 (Ch%) .
Due to hoh_JT <N+ 1, we have
~ 1 N-3 ~ ~ 1 ~
(ChZ) < e~ N3 < ete~ (VD < ere/ht g < (Ce)_4.

Therefore, if the time step size & € (0, ) with

R 4 R 4 1 4 R 16 B
lll [ |- | [ @),
2(In2)nM(d + 1)2/5Cy 2cM(d + 1)2/s d+1 2(In2)nM(d + 1)2C1 /s
then the local error is

- 1
5 — Yl < Che ™Mo/
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