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Abstract

This paper studies densities for solutions of the stochastic functional differential equation (SFDE) and of 
its Euler-type discretizations. First, by means of the Malliavin calculus, we prove the existence of densities 
for the exact solution and its discretizations. Then we establish the L1(Rd)-convergence for the density of 
discretizations by implementing a dimensionality reduction argument and a localization argument. Further, 
we prove that the pointwise convergence rate of the density is 1 when the noise is of additive type. The 
convergence results indicate that the total variation distance between laws of solutions for the SFDE and 
its discretizations vanishes to zero as the discretization parameter diminishes, while that between laws of 
functional solutions fails to vanish due to the high degeneracy of the equation. This finding highlights one 
of the main distinctions in asymptotic behaviors of the corresponding discretized systems when compared 
to stochastic ordinary (partial) differential equations.
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1. Introduction

Stochastic functional differential equations (SFDEs) serve as essential mathematical models 
for capturing the intricate dynamics of systems influenced by both randomness and time delays. 
They have wide applications in various fields including finance, biology, and engineering. Under
standing the intrinsic behaviors of solutions of SFDEs is of great importance in both theoretical 
and practical contexts. It is known that the density of a solution process at a given time, describ
ing the probability law, is one of the most essential characteristics that reveals behaviors of the 
solution; see [1,2] and references therein. However, the research on densities for solutions of 
SFDEs remains underexplored, and the existing works mainly focus on the globally Lipschitz 
drift case. For instance, authors in [3,4] study the existence and smoothness for the density of 
exact solution of SFDEs; Authors in [5] investigate the asymptotic behavior for the perturbed 
densities for SFDEs with small noise.

In this paper, we consider the following SFDE

{︃
dxξ (t) = b(x

ξ
t )dt + σ(x

ξ
t )dW(t), t ∈ (0, T ],

xξ (t) = ξ(t), t ∈ [−τ,0], (1)

where T > 0, the delay τ > 0, the initial datum ξ ∈ 𝒞([−τ,0];Rd), {W(t)}t≥0 is an m
dimensional standard Brownian motion defined on a filtered complete probability space 
(Ω,ℱ , {ℱt }t≥0,P ), and for t ≥ 0, xξ

t : r ↦→ xξ (t + r) is the 𝒞([−τ,0];Rd)-valued functional 
solution. Here, the drift coefficient b : 𝒞([−τ,0];Rd) → Rd and the diffusion coefficient 
σ : 𝒞([−τ,0];Rd) → Rd×m are continuous and measurable functions; see Section 2 for con
crete assumptions. The aim of this paper is twofold:

(i) to investigate the existence of densities for solutions of (1) and its discretized systems when 
the drift grows superlinearly;

(ii) to study the convergence of the density for solutions of discretized systems, with the hope 
of revealing the distinction in corresponding asymptotic behaviors between SFDEs and 
stochastic ordinary (partial) differential equations.

For the first aim, we establish that the exact solution of (1) with superlinearly growing drift 
admits a density, by analyzing the invertibility of the Malliavin covariance matrix of the exact 
solution. Next, we introduce a class of Euler-type discretizations, namely the θ -Euler--Maruyama 
(θ -EM) discretization with θ ∈ ( 1

2 ,1] for (1), to obtain the discretized systems. Then we inves
tigate the properties of the corresponding density. Due to the time-lag effect, the SFDE and its 
discretizations exhibit high degeneracy, characterized as infinite-dimensional Markov processes 
influenced by finite-dimensional noises, presenting challenges in analyzing their densities. To 
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deal with this challenge, we implement a dimensionality reduction argument by constructing 
basis functions of interpolation in 𝒞([−τ,0];Rd). This argument enables us to demonstrate the 
invertibility of the Malliavin covariance matrix of the discretization and further establish the 
existence of its density when the drift grows superlinearly.

For the second aim, we study the convergence of the density for the θ -EM discretization, by 
employing a localization argument to overcome the obstacle caused by the superlinear growth 
of coefficients. We show that the density of the discretization converges to the exact density in 
L1(Rd) over a finite time horizon. Especially, in the case of linearly growing drift and additive 
noise, we analyze the error between densities and obtain the pointwise convergence rate 1, based 
on the test-functional-independent weak convergence analysis of the discretization. A key in
gredient in this analysis lies in the full use of the Malliavin integration by parts formula. This 
requires negative moment estimates of the determinant for the corresponding Malliavin covari
ance matrix of the discretization, which is derived by presenting a discrete comparison principle 
for the SFDE with additive noise. The convergence result for densities yields that the total varia
tion distance between laws of the solutions for the SFDE and its discretizations vanishes to zero 
as the discretization parameter diminishes. In contrast, we find that the total variation distance 
between laws of functional solutions does not vanish, highlighting the distinctive behaviors for 
solutions of SFDEs that come from the time-lag effect. This phenomenon introduces more com
plexity to the system, leading to a rich interaction between historical influences and stochastic 
perturbations.

At last, in order to illustrate the distinctions in asymptotic behaviors between the discretized 
systems of SFDEs and those of stochastic ordinary or partial differential equations, we men
tion some related results regarding the convergence of discretizations in total variation distance. 
Building on existing studies concerning the convergence of densities for discretizations, one can 
derive convergence results in total variation distance for solutions of these discretizations. For 
stochastic ordinary differential equations, the convergence in total variation distance for laws 
of Itô–Taylor-type discretizations can be obtained from the corresponding density convergence 
results studied in [6--11]. By further leveraging properties of densities, one can also derive the 
convergence rate in total variation distance; see e.g. [12--14]. For stochastic partial differential 
equations, the solution can be understood as the real-valued random field or the Hilbert-valued 
stochastic process. The convergence in total variation distance differs between these two types 
of solutions. Utilizing the density convergence of discretizations, one can establish the conver
gence in total variation distance for random field solutions of discretizations at fixed spatial and 
temporal variables; see e.g. [15,16]. The convergence behavior in total variation distance for the 
Hilbert-valued solutions of temporal semi-discretizations depends on the choice of discretiza
tions, with some choices failing to converge; see e.g. [17,18].

The outline of this paper is as follows. In Section 2, we focus on the SFDE (1) with su
perlinearly growing drift coefficient and the corresponding θ -EM discretization, and obtain the 
existence of densities for both the exact solution and its discretization. In Section 3, we inves
tigate the convergence of densities of discretizations. Section 4 is devoted to proofs of moment 
estimates for the exact solution and its discretizations.

2. Densities of exact solution and its discretization

In this section, we focus on the SFDE (1) with superlinearly growing drift coefficient and 
the corresponding θ -EM discretization, and investigate the existence of densities for both the 
exact solution and its discretizations, based on the technique of the Malliavin calculus. We first 
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present some preliminaries, including some notation used in this paper, a brief introduction to 
the Malliavin calculus, and precise assumptions on coefficients.

2.1. Preliminaries

Throughout this paper, the following notation is used. Let N and N+ denote the sets of the 
non-negative integers and the positive integers, respectively. We use | · | to denote both the Eu
clidean norm in Rd and the trace norm in Rd×m, and use ⟨x, y⟩ to denote the inner product of x, y

in Rd . Let 1A(·) be the indicator function of the set A, i.e., 1A(x) = 1 for x ∈ A and 1A(x) = 0
for x ∈ Ac . Denote by 𝒟 (resp. D ) the Gâteaux (resp. Fréchet) derivative operator and by 𝒟α the 
Gâteaux derivative operator of order α ∈N+. Denote by D the Malliavin derivative operator and 
by Dα the Malliavin derivative operator of order α ∈ N+. To simplify the notation, we denote by 
𝒞d := (𝒞([−τ,0];Rd),∥ · ∥) the space of all continuous functions ϕ : [−τ,0] → Rd equipped 
with the norm ∥ϕ∥ = sups∈[−τ,0] |ϕ(s)|. For an integer k ≥ 2, the space ℒ

(︁
(𝒞d)⊗k;Rd

)︁
denotes 

the collection of all bounded k-linear operators from (𝒞d)⊗k to Rd . Namely, for every operator 
B : (𝒞d)⊗k →Rd with B ∈ ℒ

(︁
(𝒞d)⊗k;Rd

)︁
,

B(λ1x1, . . . , λkxk) = λ1 · · ·λk B(x1, . . . , xk) ∀ λi ∈R, xi ∈ 𝒞d ,

and there exists a constant K > 0 such that |B(x1, . . . , xk)| ≤ K
∏︁k

i=1 ∥xi∥𝒞d for xi ∈ 𝒞d . 
Throughout this paper, K denotes a generic positive constant independent of the step size, whose 
value may vary at different occurrences.

Now we give a brief introduction to the Malliavin calculus. Let T := [0, T ] with T > 0. Let H
be the Hilbert space L2(T ;Rm) endowed with the inner product ⟨g,h⟩H := ∫︁

T g(t)⊤h(t)dt for 
g,h ∈ H , and 𝒞0(T ;Rm) be the space of all continuous functions u : T → Rm with u(0) = 0. 
By identifying W(t,ω) with the value ω(t) at time t of an element ω ∈ 𝒞0(T ;Rm), we take 
Ω = 𝒞0(T ;Rm) as the Wiener space and P̃ as the Wiener measure. For g = (g1, . . . , gm)⊤ ∈ H , 
we set W(g) := ∑︁m

k=1

∫︁
T gk(t)dWk(t), where W(t) = (W 1(t), . . . ,Wm(t))⊤. Denote by 𝒮 the 

class of smooth random variables such that G ∈ 𝒮 has the form G = f (W(g1), . . . ,W(gn)), 
where f ∈ 𝒞∞

pol(R
n;R), gi ∈ H, i = 1, . . . , n. Here, 𝒞∞

pol(R
n;R) is the space of all real-valued 

smooth functions on Rn whose partial derivatives have at most polynomial growth. The Malli
avin derivative of a smooth random variable G is an H -valued random variable given by 
DG = ∑︁n

i=1
∂f 
∂xi

(W(g1), . . . ,W(gn))gi , which is also an m-dimensional stochastic process 
DG = {DrG, r ∈ T } with DrG = ∑︁n

i=1 ∂if (W(g1), . . . ,W(gn))gi(r). For any p ≥ 1, we de
note the domain of D in Lp(Ω) by D1,p(R), meaning that D1,p(R) is the closure of 𝒮 with 

respect to the norm ∥G∥1,p := (E[|G|p + ∥DG∥p
H ]) 1 

p .
For α ∈ N+, the iterated derivative DαG is a random variable with value in H⊗α . For 

any p ≥ 1 and α ∈ N+, denote by Dα,p(R) the completion of 𝒮 with respect to the norm 

∥G∥α,p := (︁
E

[︁|G|p + ∑︁α
j=1 ∥DjG∥p

H⊗j

]︁)︁ 1 
p . Define Dα,∞(R) := ∩p≥1Dα,p(R), D∞(R) :=

∩p≥1 ∩α≥1Dα,p(R),L∞−(Ω;R) := ∩p≥1L
p(Ω;R). Similarly, let V be a real separable Banach 

space and define the space Dk,p(V ) as the completion of V -valued smooth random variables with 

respect to the norm ∥G∥k,p,V = (E[∥G∥p
V + ∑︁k

j=1 ∥DjG∥p

H⊗j ⊗V
]) 1 

p . In this case, the corre

sponding spaces are denoted by Dk,∞(V ), D∞(V ), and L∞−(Ω;V ) respectively. For simplicity 
of notation, when V = Rd , we abbreviate them as Dα,p,Dk,∞,D∞,L∞−(Ω).

We introduce the one-sided Lipschitz condition on the drift coefficient b; see e.g. [19--21] for 
such conditions on SFDEs.
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Assumption 2.1. There exist a constant L1 > 0 and a probability measure ν1 on [−τ,0] such 
that for any ϕ1, ϕ2 ∈ 𝒞d ,

⟨b(ϕ1) − b(ϕ2),ϕ1(0) − ϕ2(0)⟩ ≤ L1

(︂
|ϕ1(0) − ϕ2(0)|2 +

0 ∫︂
−τ

|ϕ1(r) − ϕ2(r)|2dν1(r)
)︂
.

In addition, assume that b has continuous Gâteaux derivative, and that there exists a constant 
β ≥ 0 such that |𝒟b(ϕ1)ϕ2| ≤ K(1 + ∥ϕ1∥β)∥ϕ2∥, where ϕ1, ϕ2 ∈ 𝒞d and K > 0.

We impose the globally Lipschitz condition and the uniform non-degeneracy condition on the 
diffusion coefficient σ .

Assumption 2.2. There exist a constant L2 > 0 and a probability measure ν2 on [−τ,0] such 
that for any ϕ1, ϕ2 ∈ 𝒞d ,

|σ(ϕ1) − σ(ϕ2)|2 ≤ L2

(︂
|ϕ1(0) − ϕ2(0)|2 +

0 ∫︂
−τ

|ϕ1(r) − ϕ2(r)|2dν2(r)
)︂
.

In addition, assume that σ has continuous Gâteaux derivative, and that there exists some σ0 > 0
such that

inf 
ϕ∈𝒞d

min 
u∈Rd ,|u|=1

u⊤σ(ϕ)σ (ϕ)⊤u ≥ σ0.

Remark 2.1. Once coefficients b and σ have continuous Gâteaux derivatives, it follows from 
Assumptions 2.1 and 2.2 that for any ϕ,ϕ1 ∈ 𝒞d ,

⟨𝒟b(ϕ1)ϕ,ϕ(0)⟩ ≤ L1
(︁|ϕ(0)|2 +

0 ∫︂
−τ

|ϕ(r)|2dν1(r)
)︁
, (2)

|𝒟σ(ϕ1)ϕ|2 ≤ L2
(︁|ϕ(0)|2 +

0 ∫︂
−τ

|ϕ(r)|2dν2(r)
)︁
. (3)

We also remark that the classical example

b(ϕ) = −|ϕ(0)|2ϕ(0) +
0 ∫︂

−τ

ϕ(r)dν1(r), ϕ ∈ 𝒞d (4)

for the superlinearly growing drift coefficient is included, and in this case,

𝒟b(ϕ1)ϕ =
0 ∫︂

−τ

ϕ(s)dν1(s) − 2ϕ1(0)⊤ϕ(0)ϕ1(0) − |ϕ1(0)|2ϕ(0).

5 
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2.2. Density of exact solution

In this subsection, we present that the exact solution of (1) admits a density. Under Assump
tions 2.1 and 2.2, the existence and uniqueness of the solution of (1) can be obtained by using [22, 
Theorem 2]. In addition, the functional solution of (1) has the following moment boundedness, 
whose proof is given in Section 4.

Lemma 2.1. Let Assumptions 2.1 and 2.2 hold. Then for any p ≥ 2,

E
[︂

sup 
t∈[0,T ]

∥xξ
t ∥p

]︂
≤ KT , sup 

r∈[0,T ]
E

[︂
sup 

t∈[r,T ]
∥Drx

ξ
t ∥p

]︂
≤ KT .

Based on Lemma 2.1 and Drx
ξ (t) = 0 for r > t , we derive that xξ (t) ∈ D1,p for all p ≥ 1. 

Hence, according to [1, Theorem 2.1.2], in order to obtain the existence of the density of the 
solution of (1), it suffices to show the a.s. invertibility of the Malliavin covariance matrix γ E(t)

of xξ (t), where

γ E(t) :=
t∫︂

0 

Drx
ξ (t)(Drx

ξ (t))⊤dr, t ∈ [0, T ].

To this end, by virtue of [23, Section 3.3], we first prove that for some q > 0, there exists a small 
number ε0(q) such that for any ε < ε0(q), supu∈Rd ,|u|=1 P (u⊤γ E(t)u ≤ ε) ≤ KT εq, t ∈ [0, T ]. 
This is stated as follows with q = 1.

Proposition 2.1. Under Assumptions 2.1 and 2.2, for any ε ∈ (0,1), it holds that

sup 
u∈Rd ,|u|=1

P (u⊤γ E(t)u ≤ ε) ≤ KT ε, t ∈ [0, T ].

Proof. For any r ≤ t , by the chain rule of the Malliavin derivative (see e.g. [5]),

Drx
ξ (t) =

t∫︂
r

𝒟b(xξ
s )Drx

ξ
s ds +

t∫︂
r

𝒟σ(xξ
s )Drx

ξ
s dW(s) + σ(xξ

r )1[0,t](r).

Fixing ε ∈ (0,1) and letting ε1 := 2ε 
σ0

, we obtain

u⊤γ E(t)u ≥
t∫︂

t−ε1

u⊤Drx
ξ (t)(Drx

ξ (t))⊤udr ≥
t∫︂

t−ε1

u⊤σ(xξ
r )(σ (xξ

r ))⊤udr

+ 2

t∫︂
t−ε1

u⊤(︂ t∫︂
r

𝒟b(xξ
s )Drx

ξ
s ds +

t∫︂
r

𝒟σ(xξ
s )Drx

ξ
s dW(s)

)︂
(σ (xξ

r ))⊤udr.

It follows from Assumption 2.2 that
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t∫︂
t−ε1

u⊤σ(xξ
r )σ (xξ

r )⊤udr ≥ ε1σ0 = 2ε.

This, along with the Chebyshev inequality, the Hölder inequality, and the Burkholder--
Davis--Gundy inequality implies that for u ∈Rd with |u| = 1,

P (u⊤γ E(t)u ≤ ε)

≤ P
(︂

2
⃓⃓⃓ t∫︂
t−ε1

u⊤(︂ t∫︂
r

𝒟b(xξ
s )Drx

ξ
s ds +

t∫︂
r

𝒟σ(xξ
s )Drx

ξ
s dW(s)

)︂
(σ (xξ

r ))⊤udr

⃓⃓⃓
≥ ε

)︂

≤ 8ε−2E
[︂⃓⃓⃓ t∫︂

t−ε1

u⊤
t∫︂

r

𝒟b(xξ
s )Drx

ξ
s ds(σ (xξ

r ))⊤udr

⃓⃓⃓2]︂

+ 8ε−2E
[︂⃓⃓⃓ t∫︂

t−ε1

u⊤
t∫︂

r

𝒟σ(xξ
s )Drx

ξ
s dW(s)(σ (xξ

r ))⊤udr

⃓⃓⃓2]︂

≤ Kε2
(︂

sup 
0≤r≤T

E
[︂

sup 
r≤s≤T

|𝒟b(xξ
s )Drx

ξ
s |4

]︂)︂ 1
2
(︂

sup 
0≤r≤T

E[|σ(xξ
r )|4]

)︂ 1
2

+ Kε
(︂

sup 
0≤r≤T

E
[︂

sup 
r≤s≤T

|𝒟σ(xξ
s )Drx

ξ
s |4

]︂)︂ 1
2
(︂

sup 
0≤r≤T

E[|σ(xξ
r )|4]

)︂ 1
2 ≤ εKT ,

where in the last inequality we used (2), (3) and Lemma 2.1. The proof is finished. □
The existence of a density for the solution of (1) is stated as follows.

Theorem 2.1. Under conditions in Proposition 2.1, for any t ∈ (0, T ], the law of xξ (t) admits a 
density, denoted by 𝔭(t, ·).

Proof. Based on Proposition 2.1, we have

sup 
u∈Rd ,|u|=1

P (u⊤γ E(t)u = 0) ≤ sup 
u∈Rd ,|u|=1

P (u⊤γ E(t)u ≤ ε) ≤ KT ε ∀ ε ∈ (0,1),

which shows the a.s. invertibility of γ E(t) due to the arbitrariness of ε. This, together with 
xξ (t) ∈ D1,p and [1, Theorem 2.1.2] completes the proof. □
2.3. Density of θ -EM discretization

In this subsection, we introduce the θ -EM discretization with θ ∈ ( 1
2 ,1] for the SFDE (1), and 

present the existence of its density. Without loss of generality, it is assumed that τ is a multiple 
of the step size Δ, and that T is a multiple of τ . Then there exist two numbers N,NΔ ∈ N+ such 
that τ = NΔ ∈ (0,1] and T = NΔΔ. Let tk = kΔ for k ∈ {−N, . . . ,NΔ}. Introduce the θ -EM 
discretization as follows: for any ξ ∈ 𝒞d ,
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{︄
yξ,Δ(tk) = ξ(tk), −N ≤ k ≤ 0,

yξ,Δ(tk+1) = yξ,Δ(tk) + (1 − θ)b(y
ξ,Δ
tk

)Δ + θb(y
ξ,Δ
tk+1

)Δ + σ(y
ξ,Δ
tk

)δWk, 0 ≤ k ≤ NΔ − 1,

(5)

where θ ∈ ( 1
2 ,1], δWk = W(tk+1) − W(tk), and yξ,Δ

tk
is a 𝒞d -valued random variable defined by 

the linear interpolation

y
ξ,Δ
tk

(s) = tj+1 − s

Δ 
yξ,Δ(tk+j ) + s − tj

Δ 
yξ,Δ(tk+j+1) (6)

for s ∈ [tj , tj+1], j ∈ {−N, . . . ,−1}. We call {yξ,Δ(tk)}∞k=−N the θ -EM solution and {yξ,Δ
tk

}∞k=0
the θ -EM functional solution. Under Assumptions 2.1 and 2.2, the solution of (5) exists uniquely 
for any Δ ∈ (0, 1 

2θL1
), whose proof is similar to that of [21, Lemma 3.2] and thus is omitted.

Note that the θ -EM functional solution depends on the past state, causing the main difficulty 
in the analysis of the density for discretizations. To deal with this difficulty, we implement a 
dimensionality reduction argument of the interpolation. To this end, we introduce an (N + 1)
dimensional linear interpolation space 𝒞Int , which consists of piecewise linear functions from 
[−τ,0] to R, with basis functions given as follows:

I [−N ](s) := N

τ
(t−N+1 − s)1Δ−N

(s),

I [j ](s) := N

τ
(s − tj−1)1Δj−1(s) + N

τ
(tj+1 − s)1Δj

(s), j = −N + 1, . . . ,−1, (7)

I [0](s) := N

τ
(s − t−1)1Δ−1(s),

where Δj := [tj , tj+1) for j = −N, . . . ,−2, and Δ−1 := [t−1,0]. Then by (6), the θ -EM func

tional solution yξ,Δ
tk

can be represented as

y
ξ,Δ
tk

(s) =
−1 ∑︂

j=−N

1Δj
(s)

[︂
y

ξ,Δ
tk

(tj+1)
N

τ
(s − tj ) + y

ξ,Δ
tk

(tj )
N

τ
(tj+1 − s)

]︂

=
0 ∑︂

j=−N

I [j ](s)yξ,Δ(tk+j ), s ∈ [−τ,0]. (8)

Thus, the 𝒞d -valued random variable yξ,Δ
tk

is transformed into a 𝒞Int ⊗Rd -valued random vari
able. We call it the dimensionality reduction. Here, 𝒞Int ⊗Rd denotes the tensor product space of 
𝒞Int and Rd . An element 𝔲 : [−τ,0] → Rd in this space is of the form 

∑︁0
j=−N I [j ](·)𝔲j , where 

I [j ] ∈ 𝒞Int and 𝔲j ∈Rd .
The following lemma shows the moment boundedness of the θ -EM functional solution, whose 

proof is postponed to Section 4.

Lemma 2.2. Let Assumptions 2.1 and 2.2 hold. Then for Δ ∈ (0,Δ0) with some Δ0 ∈ (0,1), 
p ≥ 2, and T > 0,

8 
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E
[︂

sup 
tk∈[0,T ]

∥yξ,Δ
tk

∥p
]︂

≤ KT , sup 
r∈[0,T ]

E
[︂

sup 
tk∈[r,T ]

∥Dry
ξ,Δ
tk

∥p
]︂

≤ KT .

As a consequence, we obtain yξ,Δ(tk) ∈ D1,p . Below we show the existence of the density of 
discretizations.

Theorem 2.2. Under Assumptions 2.1 and 2.2, for Δ ∈ (0,Δ0) with some Δ0 ∈ (0,1) and k ∈
{1, . . . ,NΔ}, the law of yξ,Δ(tk) admits a density, denoted by 𝔭Δ(tk, ·).

Proof. Similar to the proof of Theorem 2.1, it suffices to show that the Malliavin covariance 
matrix of yξ,Δ(tk), defined by

γk :=
tk∫︂

0 

Dry
ξ,Δ(tk)(Dry

ξ,Δ(tk))
⊤dr,

is a.s. invertible.
Taking the Malliavin derivatives on both sides of (5), we derive from DrδWk = 1[tk,tk+1](r)

and the chain rule of the Malliavin derivative that for any r ∈ [0, T ],

Dry
ξ,Δ(tk+1) = Dry

ξ,Δ(tk) + (1 − θ)𝒟b(y
ξ,Δ
tk

)Dry
ξ,Δ
tk

Δ + θ𝒟b(y
ξ,Δ
tk+1

)Dry
ξ,Δ
tk+1

Δ

+𝒟σ(y
ξ,Δ
tk

)Dry
ξ,Δ
tk

δWk + σ(y
ξ,Δ
tk

)1[tk,tk+1](r).

It follows from (8) that Dry
ξ,Δ
tk+1

= Dr

(︂∑︁−1
j=−N I [j ]yξ,Δ

tk+1
(tj )

)︂
+ Dry

ξ,Δ(tk+1)I
[0]. Hence,

Dry
ξ,Δ(tk+1) − θ𝒟b(y

ξ,Δ
tk+1

)Dry
ξ,Δ(tk+1)I

[0]Δ

= Dry
ξ,Δ(tk) + (1 − θ)𝒟b(y

ξ,Δ
tk

)Dr

(︂ 0 ∑︂
j=−N

I [j ]yξ,Δ
tk

(tj )
)︂
Δ + θ𝒟b(y

ξ,Δ
tk+1

)I [−1]Dry
ξ,Δ(tk)Δ

+ θ𝒟b(y
ξ,Δ
tk+1

)

−2 ∑︂
j=−N

I [j ]Dry
ξ,Δ
tk+1

(tj )Δ +𝒟σ(y
ξ,Δ
tk

)Dr

(︂ 0 ∑︂
j=−N

I [j ]yξ,Δ
tk

(tj )
)︂
δWk

+ σ(y
ξ,Δ
tk

)1[tk,tk+1](r).

Denote by Idd×d the (d × d)-dimensional identity operator. It is straightforward to see that

(︂
Idd×d − θ𝒟b(y

ξ,Δ
tk+1

)(I [0]Idd×d)Δ
)︂
Dry

ξ,Δ(tk+1)

=
0 ∑︂

j=−N

Aj,k + σ(y
ξ,Δ
tk

)1[tk ,tk+1](r), (9)

where

9 
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A0,k : =
(︂

Idd×d + (1 − θ)𝒟b(y
ξ,Δ
tk

)(I [0]Idd×d)Δ

+ θ𝒟b(y
ξ,Δ
tk+1

)(I [−1]Idd×d)Δ
)︂
Dry

ξ,Δ(tk) +𝒟σ(y
ξ,Δ
tk

)(I [0]Dry
ξ,Δ(tk))δWk,

A−N,k : =
(︂
(1 − θ)𝒟b(y

ξ,Δ
tk

)(I [−N ]Idd×d)Δ
)︂
Dry

ξ,Δ(tk−N)

+𝒟σ(y
ξ,Δ
tk

)(I [−N ]Dry
ξ,Δ(tk−N))δWk,

and

Aj,k :=
(︂
(1 − θ)𝒟b(y

ξ,Δ
tk

)(I [j ]Idd×d)Δ + θ𝒟b(y
ξ,Δ
tk+1

)(I [j−1]Idd×d)Δ
)︂
Dry

ξ,Δ(tk+j )

+𝒟σ(y
ξ,Δ
tk

)(I [j ]Dry
ξ,Δ(tk+j ))δWk

for j = −1, . . . ,−N + 1. Here, I [j ]Idd×d, j = −N, . . . ,0 are elements of 𝒞([−τ,0];Rd×d) ∼ = 
𝒞d ⊗ Rd and thus can be acted upon by the operators 𝒟b(y

ξ,Δ
tk

),𝒟b(y
ξ,Δ
tk+1

). It follows from (2)
that for any u ∈ Rd with u ≠ 0, one has

u⊤𝒟b(y
ξ,Δ
tk+1

)(I [0]Idd×d)u ≤ L1

(︂
|u|2 +

0 ∫︂
−τ

|I [0]Idd×du|2dν1(r)
)︂

≤ L1

(︂
|u|2 +

0 ∫︂
−τ

⃓⃓⃓
s − t−1

Δ 
1Δ−1(s)

⃓⃓⃓2|u|2dν1(r)
)︂

≤ 2L1|u|2,

where we used I [0](0) = 1. Then for Δ ∈ (0, 1 
4θL1

),

u⊤(︂
Idd×d − θ𝒟b(y

ξ,Δ
tk+1

)(I [0]Idd×d)Δ
)︂
u ≥ (1 − 2θL1Δ)|u|2 > 0,

which implies that Idd×d − θ𝒟b(y
ξ,Δ
tk+1

)(I [0]Idd×d)Δ is invertible. Denoting A1,k := (︁
Idd×d −

θ𝒟b(y
ξ,Δ
tk+1

)(I [0]Idd×d)Δ
)︁−1, we derive ∥A1,k∥ℒ(Rd ;Rd ) ∈ (0, 1 

1−2θL1Δ
). According to (9), we 

arrive at

γk+1 =
tk+1∫︂
0 

Dry
ξ,Δ(tk+1)(Dry

ξ,Δ(tk+1))
⊤dr

=
tk∫︂

0 

A1,k

0 ∑︂
j=−N

Aj,k

(︂ 0 ∑︂
j=−N

Aj,k

)︂⊤
(A1,k)

⊤dr

+
tk+1∫︂
tk

A1,kσ (y
ξ,Δ
tk

)σ (y
ξ,Δ
tk

)⊤(A1,k)
⊤dr, (10)

10 



C. Chen, T. Dang, J. Hong et al. Journal of Differential Equations 459 (2026) 114104 

where we used Dry
ξ,Δ(tk) = 0 for r > tk . Since σ(x)σ (x)⊤ is positive definite (see Assump

tion 2.2), we deduce

u⊤γk+1u ≥ u⊤A1,kσ (y
ξ,Δ
tk

)σ (y
ξ,Δ
tk

)⊤(A1,k)
⊤uΔ > 0 a.s.

Moreover, utilizing again the invertibility of σσ⊤, we have that γ1 is also a.s. invertible. This 
finishes the proof. □
Remark 2.2. Under conditions in Theorem 2.2, if in addition assume that coefficients b and σ are 
smooth with bounded derivatives of arbitrary orders, then for each k ∈ N+, the law of yξ,Δ(tk)

admits a smooth density.

3. Convergence of density for discretizations

In this section, we investigate the convergence of the density of the θ -EM discretization. We 
first give the convergence of the density in L1(Rd) when SFDE (1) has superlinearly growing 
drift coefficient and multiplicative noise. Then we show that for the case of linearly growing drift 
coefficient and the additive noise, the convergence rate of the density is 1.

3.1. Convergence of density

In this subsection, we focus on the SFDE (1) with superlinearly growing drift coefficient and 
the multiplicative noise, and investigate the convergence of the corresponding density for the 
θ -EM discretization. We present the following assumptions on the second-order derivatives of 
coefficients and on the Hölder continuity of the initial value.

Assumption 3.1. The coefficients b and σ have continuous Gâteaux derivatives up to order 2 
satisfying

|𝒟2b(ϕ1)(ϕ2, ϕ3)| ≤ K(1 + ∥ϕ1∥(β−1)∨0)∥ϕ2∥∥ϕ3∥,
|𝒟2σ(ϕ1)(ϕ2, ϕ3)| ≤ K∥ϕ2∥∥ϕ3∥,

where ϕ1, ϕ2, ϕ3 ∈ 𝒞d , K > 0, and β is given in Assumption 2.1.

We note that the example given in (4) satisfies Assumption 3.1 with β = 2.

Assumption 3.2. There exist constants K > 0 and ρ ≥ 1/2 such that

|ξ(s1) − ξ(s2)| ≤ K|s1 − s2|ρ, s1, s2 ∈ [−τ,0].
The main result on the convergence of the density concerned in this subsection is stated as 

follows.

Theorem 3.1. Let Assumptions 2.1, 2.2, 3.1 and 3.2 hold. Then we have

lim 
Δ→0

sup 
0<tk≤T

∫︂
Rd

|𝔭Δ(tk, x) − 𝔭(tk, x)|dx = 0.

11 
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Proof. The proof is based on the localization argument and is divided into three steps.
Step 1. Introduce the smooth cut-off functional ΘR : 𝒞d → [0,1] with continuous derivatives 

and compact support. For R > ∥ξ∥, let ΘR(x) = 1 for ∥x∥ ≤ R and ΘR(x) = 0 for ∥x∥ > R + 1. 
Then we consider the truncated version of (1) on [0, T ],

{︄
dxξ,R(t) = bR(x

ξ,R
t )dt + σR(x

ξ,R
t )dW(t), t ∈ (0, T ],

xξ,R(t) = ξ, t ∈ [−τ,0], (11)

where bR(·) := ΘR(·)b(·) and σR(·) := ΘR(·)σ (·) are globally Lipschitz continuous for each R. 
Moreover, the coefficients bR and σR satisfy

|𝒟bR(ϕ1)ϕ2|2 ≤ KR

(︂
|ϕ2(0)|2 +

0 ∫︂
−τ

|ϕ2(r)|2dν1(r)
)︂
, (12)

|𝒟σR(ϕ1)ϕ2|2 ≤ KR

(︂
|ϕ2(0)|2 +

0 ∫︂
−τ

|ϕ2(r)|2dν2(r)
)︂
, (13)

where ϕ1, ϕ2 ∈ 𝒞d . In addition, the θ -EM solution and θ -EM functional solution for (11) are de
noted by {yξ,Δ,R(tk)}∞k=−N and {yξ,Δ,R

tk
}∞k=0, respectively. We need to estimate the error between 

xξ,R(t) and yξ,Δ,R(t) in ∥ · ∥1,2. Here we recall the norm ∥G∥1,2 = (E[|G|2 + ∥DG∥2
H ]) 1

2 for 
an Rd -valued random variable G (see Section 2). For the strong convergence errors of the θ -EM 
solution and its truncated version, similar to the proof of [21, Theorem 5.3], using Lemmas 2.1
and 2.2, we deduce from Assumptions 2.1, 2.2 and 3.2 that

E
[︂

sup 
0≤tk≤T

|xξ (tk) − yξ,Δ(tk)|4
]︂

≤ KT Δ2 (14)

and

E
[︂

sup 
0≤tk≤T

|xξ,R(tk) − yξ,Δ,R(tk)|4
]︂

≤ KT,RΔ2. (15)

Now we estimate the term

E
[︁∥Dxξ,R(tk) − Dyξ,Δ,R(tk)∥2

H

]︁ =
T∫︂

0 

E
[︁|Drx

ξ,R(tk) − Dry
ξ,Δ,R(tk)|2

]︁
dr.

Define the auxiliary process of the θ -EM discretization as follows:

{︄
zξ,Δ,R(tk) = ξ(tk), −N ≤ k ≤ −1,

zξ,Δ,R(tk) = yξ,Δ,R(tk) − θbR(y
ξ,Δ,R
tk

)Δ, 0 ≤ k ≤ NΔ.

Then for 1 ≤ k ≤ NΔ,

12 
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zξ,Δ,R(tk) = zξ,Δ,R(tk−1) + bR(y
ξ,Δ,R
tk−1

)Δ + σR(y
ξ,Δ,R
tk−1

)δWk−1, 1 ≤ k ≤ NΔ,

and the continuous version {zξ,Δ,R(t)}t≥−τ satisfies

zξ,Δ,R(t) = zξ,Δ,R(tk) + b(y
ξ,Δ,R
tk

)(t − tk) + σ(y
ξ,Δ,R
tk

)(W(t) − W(tk)),

for t ∈ [tk, tk+1), 0 ≤ k ≤ NΔ with the initial datum

zξ,Δ,R(t) = tk+1 − t

Δ 
zξ,Δ,R(tk) + t − tk

Δ 
zξ,Δ,R(tk+1)

for t ∈ [tk, tk−1),−N ≤ k ≤ −1. Then by the Hölder inequality and Burkholder–Davis--Gundy 
inequality, we have

E[|Drx
ξ,R(t) − Drz

ξ,Δ,R(t)|2]

≤ K(t − r)E
[︂ t∫︂

r

⃓⃓
𝒟bR(xξ,R

s )Drx
ξ,R
s −𝒟bR(y

ξ,Δ,R
⌊s⌋ )Dry

ξ,Δ,R
⌊s⌋ |2ds

]︂

+ KE
[︂ t∫︂

r

⃓⃓
𝒟σR(xξ,R

s )Drx
ξ,R
s −𝒟σR(y

ξ,Δ,R
⌊s⌋ )Dry

ξ,Δ,R
⌊s⌋ |2ds

]︂

+ KE
[︂
|σR(xξ,R

r )1[0,t](r) − σR(y
ξ,Δ,R
⌊r⌋ )1[0,t](r)|2

]︂
, (16)

where we used the notation ⌊s⌋ := tk for s ∈ [tk, tk+1). It follows from the Taylor formula that

⃓⃓⃓
𝒟bR(xξ,R

s )Drx
ξ,R
s −𝒟bR(y

ξ,Δ,R
⌊s⌋ )Dry

ξ,Δ,R
⌊s⌋

⃓⃓⃓

≤
⃓⃓⃓ 1 ∫︂

0 

𝒟2bR
(︁
ςx

ξ,R
⌊s⌋ + (1 − ς)yξ,Δ,R

s

)︁
(xξ,R

s − y
ξ,Δ,R
⌊s⌋ ,Drx

ξ,R
s )dς

⃓⃓⃓

+
⃓⃓⃓
𝒟bR(y

ξ,Δ,R
⌊s⌋ )(Drx

ξ,R
s − Dry

ξ,Δ,R
⌊s⌋ )

⃓⃓⃓
≤ KR∥xξ,R

s − y
ξ,Δ,R
⌊s⌋ ∥∥Drx

ξ,R
s ∥ + KR

(︂
|Drx

ξ,R(s) − Dry
ξ,Δ,R(⌊s⌋)|2

+
0 ∫︂

−τ

|Drx
ξ,R
s (v) − Dry

ξ,Δ,R
⌊s⌋ (v)|2dν1(v)

)︂ 1
2
,

where in the last inequality we used the boundedness of operators 𝒟bR(·) (see (12)) and 𝒟2bR(·)
on their compact support {x ∈ 𝒞d : ∥x∥ ≤ R + 1}. Similar to the proof of [24, Lemma 3.3], we 
obtain supr≤t≤T E[∥Dry

ξ,Δ,R
⌊t⌋ − Drz

ξ,Δ,R
t ∥2] ≤ KT,RΔ. Then

13 
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E
[︂⃓⃓
𝒟bR(xξ,R

s )Drx
ξ,R
s −𝒟bR(y

ξ,Δ,R
⌊s⌋ )Dry

ξ,Δ,R
⌊s⌋

⃓⃓2
]︂

≤ KRE
[︁∥xξ,R

s − y
ξ,Δ,R
⌊s⌋ ∥2∥Drx

ξ,R
s ∥2]︁ + KRE

[︂
|Drx

ξ,R(s) − Drz
ξ,Δ,R(s)|2

+
0 ∫︂

−τ

|Drx
ξ,R
s (r) − Drz

ξ,Δ,R
s (r)|2dν1(r)

]︂
+ KT,RΔ. (17)

Similarly, by using (13), we deduce

E
[︂⃓⃓⃓
𝒟σR(xξ,R

s )Drx
ξ,R
s −𝒟σR(y

ξ,Δ,R
⌊s⌋ )Dry

ξ,Δ,R
⌊s⌋

⃓⃓⃓2]︂
≤ KRE

[︁∥xξ,R
s − y

ξ,Δ,R
⌊s⌋ ∥2∥Drx

ξ,R
s ∥2]︁ + KRE

[︂
|Drx

ξ,R(s) − Drz
ξ,Δ,R(s)|2

+
0 ∫︂

−τ

|Drx
ξ,R
s (r) − Drz

ξ,Δ,R
s (r)|2dν2(r)

]︂
+ KT,RΔ. (18)

Inserting (17) and (18) into (16), and then using Assumption 2.2, Lemmas 2.1 and 2.2, and (15), 
we obtain that for Δ ∈ (0,Δ1] with some Δ1 ∈ (0,1),

E
[︂
|Drx

ξ,R(t) − Drz
ξ,Δ,R(t)|2

]︂

≤ KT,RΔ + KT,R

T∫︂
r

(︁
E[∥xξ,R

⌊s⌋ − y
ξ,Δ,R
⌊s⌋ ∥4])︁ 1

2 ds + KT,R

T∫︂
r

(︁
E[∥xξ,R

⌊s⌋ − xξ,R
s ∥4])︁ 1

2 ds

+ KT,R

T∫︂
r

E
[︁|Drx

ξ,R(s) − Drz
ξ,Δ,R(s)|2]︁ds + KT,R sup 

0≤s≤T

E[∥xξ,R
⌊s⌋ − xξ,R

s ∥2]

≤ KT,RΔ + KT,R

T∫︂
r

E
[︁|Drx

ξ,R(s) − Drz
ξ,Δ,R(s)|2]︁ds.

Applying the Grönwall inequality, we arrive at E
[︂
|Drx

ξ,R(t)−Drz
ξ,Δ,R(t)|2

]︂
≤ KT,RΔ, which 

implies for tk ∈ [0, T ],

T∫︂
0 

E
[︂
|Drx

ξ,R(tk) − Dry
ξ,Δ,R(tk)|2

]︂
dr ≤ KT,RΔ. (19)

It follows from (15) and (19) that

sup 
0≤tk≤T

∥yξ,Δ,R(tk) − xξ,R(tk)∥1,2 ≤ KT,RΔ
1
2 .

14 
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Step 2. In this step, we aim to apply [16, Lemma A.1] to estimate the error in L1(Rd) between 
densities of xξ,R(·) and yξ,Δ,R(·). To this end, we first claim that for ϱ ∈ (0,1),

E
[︂(︂ T∫︂

0 

|Drx
ξ,R(t)|2dr

)︂−ϱ]︂
≤ KT,R,ϱ. (20)

In fact, by means of Proposition 2.1 with u = 1 
d
(1, . . . ,1) ∈ Rd , one has that 

P
(︁ ∫︁ T

0 |Drx
ξ,R(t)|2dr ≤ ε

)︁ ≤ KT,Rε for any ε ∈ (0,1). Hence for any ϱ ∈ (0,1), we derive 
that

∞ ∑︂
n=1 

nϱ−1P
(︂(︁ T∫︂

0 

|Drx
ξ,R(t)|2dr

)︁−1 ≥ n
)︂

≤ 1 + KT,R

∞ ∑︂
n=2 

nϱ−1n−1 ≤ KT,R,ϱ. (21)

Then for any ϱ ∈ (0,1),

E
[︂(︁ T∫︂

0 

|Drx
ξ,R(t)|2dr

)︁−ϱ
]︂

≤ 1 +
∞ ∑︂

n=1 
(n + 1)ϱP

(︂
n ≤ (︁ T∫︂

0 

|Drx
ξ,R(t)|2dr

)︁−1 ≤ n + 1
)︂

≤ 2 +
∞ ∑︂

n=1 
((n + 1)ϱ − nϱ)P

(︂(︁ T∫︂
0 

|Drx
ξ,R(t)|2dr

)︁−1 ≥ n
)︂

≤ 2 + ϱ

∞ ∑︂
n=1 

nϱ−1P
(︂(︁ T∫︂

0 

|Drx
ξ,R(t)|2dr

)︁−1 ≥ n
)︂

≤ KT,R,ϱ,

where in the last step we used (21). This proves the claim (20).
Furthermore, similar to the proof of Lemma 2.1, it follows from Assumptions 2.1, 2.2 and 3.1

that xξ (t) ∈D2,4 for all t ∈ [0, T ]. Then, by [16, Eq. (6.1) and Lemma A.1], we arrive at

sup 
0<tk≤T

∫︂
Rd

|𝔭Δ,R(tk, x) − 𝔭R(tk, x)|dx = sup 
0<tk≤T

dT V (yξ,Δ,R(tk), x
ξ,R(tk))

≤ KT,R sup 
0≤tk≤T

∥yξ,Δ,R(tk) − xξ,R(tk)∥
2ϱ 

2ϱ+2
1,2 ≤ KT,RΔ

ϱ
2ϱ+2 , (22)

15 
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where dT V (X,Y ) denotes the total variation distance between two Rd-valued random variables 
X and Y , and 𝔭R(tk, ·), 𝔭Δ,R(tk, ·) are densities of xξ,R(tk) and yξ,Δ,R(tk), respectively.

Step 3. Denoting two sequences of events by

ΩR := {ω ∈ Ω : sup 
t∈[0,T ]

|xξ (t)| ≤ R},

ΩR,y := {ω ∈ Ω : sup 
tk∈[0,T ]

|yξ,Δ(tk)| ≤ R},

we have limR→∞ P (ΩR) = P (Ω) = limR→∞ P (ΩR,y) = 1. According to [16, Eq. (6.1)], we 
derive

sup 
0<tk≤T

∫︂
Rd

|𝔭Δ(tk, x) − 𝔭(tk, x)|dx = sup 
0<tk≤T

dT V (yΔ,ξ (tk), x
ξ (tk))

≤ 4P (Ωc
R−1) + 2P ( sup 

0≤tk≤T

|xξ (tk) − yξ,Δ(tk)| ≥ 1) + sup 
0≤tk≤T

dT V (yξ,Δ,R(tk), x
ξ,R(tk))

≤ 4
E[sup0≤t≤T |xξ (t)|2]

(R − 1)2 + 2E[ sup 
0≤tk≤T

|xξ (tk) − yξ,Δ(tk)|2] + KT,RΔ
ϱ

2ϱ+2

≤ KT

(R − 1)2 + KT Δ + KT,RΔ
ϱ

2ϱ+2 ,

where we used Lemma 2.1, (14), and (22). Letting Δ → 0, R → ∞, we obtain the desired 
argument. □
Remark 3.1. It follows from the proof of Theorem 3.1 that when the coefficients b and σ are 
globally Lipschitz continuous, the convergence rate of the density of discretizations is almost 
1/4 in L1(Rd). We will show that for the additive noise case, the convergence rate could attain 1 
in the pointwise sense (see Theorem 3.2).

It is known that the estimate between densities of random variables is closely related to the 
total variation distance of random variables. Let

dT V (X,Y ) := sup 
Φ∈ℬb(ℋ),∥Φ∥∞≤1

|E[Φ(X)] −E[Φ(Y)]|

denote the total variation distance of two ℋ-valued random variables X,Y , where ℋ = Rd or 
ℋ = 𝒞d , ℬb(ℋ) is the set of bounded and measurable mappings from ℋ to R, and ∥Φ∥∞ :=
supx∈ℋ |Φ(x)|. As a result of Theorem 3.1, we obtain the convergence in the total variation 
distance

lim 
Δ→0

dT V (xξ (tn), y
ξ,Δ(tn)) = 0. (23)

While for the θ -EM functional solution, as a 𝒞d -valued random variable, the law does not con
verge in total variation distance, namely,
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lim sup
Δ→0 

dT V (x
ξ
tn
, y

ξ,Δ
tn

) > 0. (24)

In order to illustrate (24), we consider the test function 1{∥x∥𝒞1/2([− Δ
2 ,0];Rd )

<∞}, where 

𝒞1/2([−Δ
2 ,0];Rd) is the space of all continuous functions f : [−Δ

2 ,0] → Rd that is 1
2 -Hölder 

continuous, equipped with the norm ∥x∥𝒞1/2([− Δ
2 ,0];Rd ) := supt,s∈[− Δ

2 ,0],t≠s
|x(t)−x(s)|

|t−s| 1
2

. On the 

one hand, the θ -EM functional solution satisfies

∥yξ,Δ
tn

∥𝒞1/2([− Δ
2 ,0];Rd ) ≤ sup 

t,s∈[− Δ
2 ,0],t≠s

|t − s| 1
2

Δ 
(|yξ,Δ(tn−1)| + |yξ,Δ(tn)|)

≤ C(ω)Δ− 1
2 < ∞, ω ∈ Ω,

due to the definition (6). On the other hand, by the Kolmogorov continuous theorem, there is a 
modification of the exact solution such that the path is almost surely ( 1

2 − ϵ)-Hölder continuous 
with any small constant ϵ ∈ (0, 1

2 ). This leads to

∥xξ
tn
∥𝒞1/2([− Δ

2 ,0];Rd ) = sup 
t,s∈[− Δ

2 ,0],t≠s

|x(tn + t) − x(tn + s)|
|t − s| 1

2

= ∞, a.s.

Hence, recalling the definition of the total variation distance, we arrive at

dT V (x
ξ
tn
, y

ξ,Δ
tn

) ≥ |P (∥xξ
tn
∥𝒞1/2([− Δ

2 ,0];Rd ) < ∞) − P (∥yξ,Δ
tn

∥𝒞1/2([− Δ
2 ,0];Rd ) < ∞)| = 1,

which shows (24) by taking the upper limit.

3.2. Convergence rate for linearly growing drift and additive noise case

In this subsection, we consider the additive noise case and study the convergence rate for the 
density of the θ -EM discretization, based on the test-functional-independent weak convergence 
analysis of the discretization. Assumptions on the coefficients considered in this subsection are 
given below.

Assumption 3.3. The noise of (1) is of additive type, i.e., d = m, and there exists some constant 
σ̃ > 0 such that for any ϕ ∈ 𝒞d , σ(ϕ) ≡ σ̃ Idd×d .

Since {−W(t)}t≥0 is also a Brownian motion whenever {W(t)}t≥0 is a Brownian motion, 
we only consider the case σ̃ > 0. The next assumption imposes higher-order regularity on the 
coefficients, which is needed to obtain estimates for the higher-order Malliavin derivatives of the 
solutions. Recall that the definition of ℒ((𝒞d)⊗k;Rd) is given in Section 2.

Assumption 3.4. The coefficient b has continuous and bounded derivatives up to order 4 satisfy
ing supϕ∈𝒞d ∥𝒟kb(ϕ)∥ℒ((𝒞d )⊗k;Rd ) ≤ K for k ∈ N+ with k ≤ 4. In addition, there exist a constant 
nb ∈ N+ and probability measures νi

3 on [−τ,0] for i ∈ {1, . . . , nb}, such that the coefficient b
satisfies that for any ϕ1, ϕ2 ∈ 𝒞d ,

17 
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𝒟b(ϕ1)ϕ2 =
nb∑︂
i=1 

0 ∫︂
−τ

ki
b(ϕ1)ϕ2(s)dνi

3(s), (25)

where ki
b : 𝒞d → Rd×d satisfies

sup 
i∈{1,...,nb}

sup 
l∈{1,2,3}

sup 
ϕ∈𝒞d

∥𝒟lki
b(ϕ)∥ℒ((𝒞d )⊗l;Rd×d ) + sup 

i∈{1,...,nb}
sup 
ϕ∈𝒞d

|ki
b(ϕ)| ≤ K.

We give an example of coefficient b that satisfies (25). Let b have the form: b(ϕ) =
b̃(

∫︁ 0
−τ

ϕ(r)dν1
3 (r)) for ϕ ∈ 𝒞d with some function b̃ :Rd →Rd . Then for ϕ1, ϕ2 ∈ 𝒞d , we have

𝒟b(ϕ1)ϕ2 =
0 ∫︂

−τ

𝒟b̃
(︂ 0 ∫︂
−τ

ϕ1(r)dν1
3(r)

)︂
ϕ2(s)dν1

3(s).

The convergence rate of the density for the θ -EM discretization is stated as follows.

Theorem 3.2. Let Assumption 2.1, Assumption 3.2 with ρ = 1, Assumptions 3.3 and 3.4 hold. 
Then there exists Δ̃ > 0 such that for Δ ∈ (0, Δ̃] and T ≥ T0,

sup 
z∈Rd

|𝔭(T , z) − 𝔭Δ(T , z)| ≤ KT Δ,

where T0 := ln( 3
2 ) 

2Lbnb(θ+2)
with Lb := supi∈{1,...,nb} supϕ∈𝒞d |ki

b(ϕ)| < ∞.

Remark 3.2. Under conditions in Theorem 3.2, we can also obtain (23). In fact, it follows from 
the Scheffé lemma and [15, Section 3.1] that for T ≥ T0,

∫︂
Rd

|𝔭(T , z) − 𝔭Δ(T , z)|dz → 0 as Δ → 0.

The proof of Theorem 3.2 is based on a weak convergence analysis of the θ -EM discretization. 
We would like to mention that there have been some works devoted to the weak convergence of 
the EM discretization for SFDEs. For instance, weak error estimates have been obtained with 
the upper bound depending on a given test functional; see e.g. [25,26]. When analyzing the 
convergence rate of the density of discretizations, an effective approach is to apply the Malliavin 
integration by parts formula to derive a test-functional-independent weak convergence analysis; 
see [15] for the relevant study of the stochastic heat equation. For SFDEs, the high degeneracy of 
coefficients makes the derivation of the Malliavin integration by parts formula challenging. In this 
subsection, we will fully utilize the dimensionality reduction argument presented in Section 2 to 
establish the negative moment estimates of the determinant for the Malliavin covariance matrix, 
which allows us to derive the integration by parts formula; see Lemmas 3.3 and 3.4 for details. 
Then combining a priori estimates of both the exact solution and the discretization, we obtain 
the test-functional-independent weak convergence analysis for the θ -EM discretizations.

18 
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We begin with presenting the relation between the error of densities and the weak error of 
discretizations. According to [10,15], we have the following approximation of densities for both 
the exact solution and discretizations: for fixed T > 0 and z ∈ Rd ,

𝔭(T , z) = lim 
n→∞

∫︂
Rd

gn−1(y − z)𝔭(T , y)dy = lim 
n→∞E[gn−1(x

ξ (T ) − z)],

𝔭Δ(T , z) = lim 
n→∞

∫︂
Rd

gn−1(y − z)𝔭Δ(T , y)dy = lim 
n→∞E[gn−1(y

ξ,Δ(T ) − z)],

where gζ denotes the Gaussian density with mean 0 and covariance matrix ζ Idd×d . This gives 
that

|𝔭(T , z) − 𝔭Δ(T , z)| = lim 
n→∞|E[gn−1(x

ξ (T ) − z)] −E[gn−1(y
ξ,Δ(T ) − z)]|. (26)

Noting that for any n ≥ 1, the function gn−1(· − z), z ∈Rd belongs to

C :=
{︂
f : Rd → R ⃓⃓⃓ f ∈ 𝒞∞

pol(R
d ;R),∃F :Rd → R with 0 ≤ F ≤ 1 such that 

F(x1, . . . , xd) =
x1∫︂

−∞
· · ·

xd∫︂
−∞

f (y1, . . . , yd)dyd · · ·dy1

}︂
, (27)

we have

|𝔭(T , z) − 𝔭Δ(T , z)| ≤ sup 
f ∈C

|E[f (xξ (T ))] −E[f (yξ,Δ(T ))]|. (28)

Hence, to obtain the convergence rate of the density, it suffices to estimate the error 
|E[f (xξ (T ))] −E[f (yξ,Δ(T ))]|.

To this end, we give some frequently used notation hereafter. Let φ(t; ti, η) and φt (ti , η)

denote the solution and functional solution of (1) at time t with initial value η ∈ 𝒞d at ti , 
Φ(tk; ti , η) and Φtk (ti , η) denote the θ -EM solution and θ -EM functional solution at time tk
with initial value η at ti . For Y ∈ 𝒞([−τ, T ];Rd), we can define Y Int (·) as the linear interpo
lation with respect to {(tk, Y (tk))}NΔ

k=−N , whose segment process Y Int
r (·) ∈ 𝒞d for r ∈ [0, T ] is 

defined by Y Int
r (s) := Y Int (r + s), s ∈ [−τ,0]. In addition, for Y ∈ 𝒞([−τ, T ];Rd), we know 

that Yr is 𝒞d -valued for r ∈ [0, T ]. In particular, when Y is a 𝒞([−τ, T ];Rd)-valued ran
dom variable, Yr is a 𝒞d -valued random variable for r ∈ [0, T ]. We always use the relation 
φInt (tl; tj , φtj (0, ξ Int )) = φInt (tl;0, ξ Int ) = φ(tl;0, ξ Int ) for l ≥ j ≥ 0 in the decomposition 
of the weak error.

Let f ∈ C . By relation φ(T ;0, ξ) = φInt
t
NΔ

(0, ξ)(0) = Φ(T ; tNΔ,φInt
t
NΔ

(0, ξ)), we have

E[f (xξ (T ))] −E[f (yξ,Δ(T ))] = E[f (φ(T ;0, ξ))] −E[f (Φ(T ;0, ξ Int ))]
= E[f (Φ(T ; tNΔ,φInt

t
NΔ

(0, ξ)))] −E[f (Φ(T ; tNΔ,φInt
t
NΔ

(0, ξ Int )))]
+E[f (Φ(T ; tNΔ,φInt

t
NΔ

(0, ξ Int )))] −E[f (Φ(T ;0, ξ Int ))]. (29)
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We split E[f (Φ(T ; tNΔ,φInt
t
NΔ

(0, ξ Int )))] −E[f (Φ(T ;0, ξ Int ))] further as

E[f (Φ(T ; tNΔ,φInt
t
NΔ

(0, ξ Int )))] −E[f (Φ(T ;0, ξ Int ))]

=
NΔ∑︂
i=1 

{︂
E[f (Φ(T ; ti , φInt

ti
(0, ξ Int )))] −E[f (Φ(T ; ti−1, φ

Int
ti−1

(0, ξ Int )))]
}︂

=
NΔ∑︂
i=1 

E
[︂
E

[︂
f (Φ(T ; ti , φInt

ti
(ti−1, φti−1(0, ξ Int ))))

− f (Φ(T ; ti ,Φti (ti−1, φ
Int
ti−1

(0, ξ Int ))))

⃓⃓⃓
ℱti

]︂]︂

=
NΔ∑︂
i=1 

1 ∫︂
0 

E
[︂
f ′(Φ(T ; ti , Y ς

i ))𝒟Φ(T ; ti , Y ς
i )

(︂
φInt

ti
(ti−1, φti−1(0, ξ Int )) − Φti (ti−1, φ

Int
ti−1

(0, ξ Int ))
)︂]︂

dς, (30)

where we used φInt
ti

(ti−1, φti−1(0, ξ Int )) = φInt
ti

(0, ξ Int ), and

Y
ς
i := ςφInt

ti
(ti−1, φti−1(0, ξ Int )) + (1 − ς)Φti (ti−1, φ

Int
ti−1

(0, ξ Int )). (31)

It follows from φInt (tj ;0, ξ Int ) = φ(tj ;0, ξ Int ) that

φInt
ti

(ti−1, φti−1(0, ξ Int )) − Φti (ti−1, φ
Int
ti−1

(0, ξ Int ))

=
0 ∑︂

j=−N

I [j ](︂φInt (ti + tj ; ti−1, φti−1(0, ξ Int )) − Φ(ti + tj ; ti−1, φ
Int
ti−1

(0, ξ Int ))
)︂

= I [0](︂φ(ti; ti−1, φti−1(0, ξ Int )) − Φ(ti; ti−1, φ
Int
ti−1

(0, ξ Int ))
)︂
, (32)

where I [j ](·), j ∈ {−N, . . . ,0} are basis functions given in (7). Note that for any i = 1, . . . ,NΔ,

φ(ti; ti−1, φti−1(0, ξ Int )) − Φ(ti; ti−1, φ
Int
ti−1

(0, ξ Int ))

=
ti∫︂

ti−1

b(φr(ti−1, φti−1(0, ξ Int )))dr −
ti∫︂

ti−1

[︂
(1 − θ)b(φInt

ti−1
(0, ξ Int ))

+ θb(Φti (ti−1, φ
Int
ti−1

(0, ξ Int )))
]︂
dr = ℐ i

b + ℐ i
b,θ , (33)

where
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ℐ i
b :=

ti∫︂
ti−1

[︁
b(φr(ti−1, φti−1(0, ξ Int ))) − b(φInt

ti−1
(0, ξ Int ))

]︁
dr,

ℐ i
b,θ := θ

ti∫︂
ti−1

[︁
b(φInt

ti−1
(0, ξ Int )) − b(Φti (ti−1, φ

Int
ti−1

(0, ξ Int )))
]︁
dr.

According to (29)--(33), we derive the decomposition of the weak error

E[f (xξ (T ))] −E[f (yξ,Δ(T ))]
= E[f (Φ(T ; tNΔ,φInt

t
NΔ

(0, ξ)))] −E[f (Φ(T ; tNΔ,φInt
t
NΔ

(0, ξ Int )))]

+
NΔ∑︂
i=1 

1 ∫︂
0 

E
[︂
⟨f ′(Φ(T ; ti , Y ς

i ))𝒟Φ(T ; ti , Y ς
i ), I [0](ℐ i

b + ℐ i
b,θ )⟩

]︂
dς

= ℐ0 + ℐb + ℐb,θ , (34)

where

ℐ0 := E[f (Φ(T ; tNΔ,φInt
t
NΔ

(0, ξ)))] −E[f (Φ(T ; tNΔ,φInt
t
NΔ

(0, ξ Int )))],

ℐb :=
NΔ∑︂
i=1 

1 ∫︂
0 

E
[︂⟨︂

f ′(Φ(T ; ti , Y ς
i ))𝒟Φ(T ; ti , Y ς

i ), I [0]ℐ i
b

⟩︂]︂
dς,

ℐb,θ :=
NΔ∑︂
i=1 

1 ∫︂
0 

E
[︂⟨︂

f ′(Φ(T ; ti , Y ς
i ))𝒟Φ(T ; ti , Y ς

i ), I [0]ℐ i
b,θ

⟩︂]︂
dς.

Based on this decomposition of the weak error, we will prove that the test-functional
independent weak convergence rate is 1 (see Theorem 3.3). Then the proof of Theorem 3.2
follows from (28). To proceed, we make some preparations in the following subsection.

3.2.1. A priori estimates
This subsection gives some moment estimates for derivatives of the exact solution and dis

cretizations. In addition, we also present the negative moment estimates of the determinant of 
the Malliavin covariance matrix for discretizations. We begin by showing that the moments of 
high-order derivatives of the exact solution and discretizations are bounded, which are stated in 
Lemmas 3.1 and 3.2. The proofs are omitted since they are similar to those of Lemmas 2.1 and 
2.2; see also [15] for related results.

Lemma 3.1. Let α ∈ {1,2}. Under Assumptions 2.1, 3.3 and 3.4, we have that for any fixed p ≥ 2, 
there exist p̃ ≥ p such that for any η ∈ 𝒞d ,

sup 
t∈(0,T ]

E[∥𝒟x
ξ̃
t · η∥2p] ≤ KT ∥η∥2p(1 +E[∥ξ̃∥2p̃]),
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sup 
t∈(0,T ]

E[∥D(r1,...,rα)𝒟x
ξ̃
t · η∥2p]

≤ KT ∥η∥2p
(︂

1 +
α∑︂

k=0 

∑︂
1≤i1<···<ik≤α

E[∥D(ri1 ,...,rik )ξ̃∥2p̃]
)︂
, r1, . . . , rα ∈ [0, T ],

sup 
t∈(r1∨r2,T ]

E[∥D(r1,r2)x
ξ̃
t ∥2p]

≤ KT

(︂
1 +

2 ∑︂
k=0 

∑︂
1≤i1<···<ik≤2

E[∥D(ri1 ,...,rik )ξ̃∥2p̃]
)︂
, r1, r2 ∈ [0, T ],

where ξ̃ (r) ∈D2,2p̃ for r ∈ [−τ,0] and we adopt the convention that D(ri1 ,...,rik )ξ̃ := ξ̃ for k = 0.

Lemma 3.2. Let α ∈ {1,2,3} and α̃ ∈ {2,3,4}. Under Assumptions 2.1, 3.3 and 3.4, for p ≥ 2, 
there exist p̃ ≥ p and Δ̃ := Δ̃(p) > 0 such that for any Δ ∈ (0, Δ̃] and η ∈ 𝒞d ,

sup 
tk∈(0,T ]

E[∥𝒟y
ξ̃,Δ
tk

· η∥2p] ≤ KT ∥η∥2p(1 +E[∥ξ̃∥2p̃]),

sup 
tk∈(0,T ]

E[∥D(r1,...,rα)𝒟y
ξ̃,Δ
tk

· η∥2p]

≤ KT ∥η∥2p
(︂

1 +
α∑︂

k=0 

∑︂
1≤i1<···<ik≤α

E[∥D(ri1 ,...,rik )ξ̃∥2p̃]
)︂
, r1, . . . , rα ∈ [0, T ],

sup 
tk∈(r1∨···∨rα̃ ,T ]

E[∥D(r1,...,rα̃)y
ξ̃ ,Δ
tk

∥2p]

≤ KT

(︂
1 +

α̃∑︂
k=0 

∑︂
1≤i1<···<ik≤α̃

E[∥D(ri1 ,...,rik )ξ̃∥2p̃]
)︂
, r1, . . . , rα̃ ∈ [0, T ],

where ξ̃ (r) ∈D4,2p̃ for r ∈ [−τ,0] and we adopt the convention that D(ri1 ,...,rik )ξ̃ := ξ̃ for k = 0.

The following lemma shows the negative moment estimates of the determinant of the Malli
avin covariance matrix for the discretizations.

Lemma 3.3. Let Assumptions 3.3 and 3.4 hold. Then for any u ∈ Rd with |u| = 1 and Δ ∈
(0, 1 

2Lbnbθ
],

|u⊤γΦ(T ;tj ,Y
ς
j )u| ≥ 1

4
(T ∧ T0)σ̃

2, j = 1, . . . ,NΔ, (35)

where Lb and T0 are given in Theorem 3.2, and Yς
j is given in (31). In particular, we have 

det(γΦ(T ;tj ,Y
ς
j ))

−1 ∈ L∞−(Ω).
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Proof. We first prove (35) for the case of d = 1. For r ∈ (tk, tk+1] with j ≤ k ≤ i − 1, we have

DrΦ(ti; tj , Y ς
j ) =

i−1 ∑︂
n=k 

[︂
(1 − θ)𝒟b(Φtn(tj , Y

ς
j ))DrΦtn(tj , Y

ς
j )Δ

+ θ𝒟b(Φtn+1(tj , Y
ς
j ))DrΦtn+1(tj , Y

ς
j )Δ

]︂
+ σ̃ .

It follows from (8) that DrΦtn(tj , Y
ς
j ) = ∑︁0

l=−N I [l]DrΦ(tn+l; tj , Y ς
j ), which together with As

sumption 3.4 implies that

DrΦ(ti; tj , Y ς
j )

=
i−1 ∑︂
n=k 

[︂
(1 − θ)

nb∑︂
ℓ=1 

0 ∑︂
l=−N

0 ∫︂
−τ

kℓ
b(Φtn(tj , Y

ς
j ))I [l](s)dνℓ

3(s)DrΦ(tn+l; tj , Y ς
j )Δ

+ θ

nb∑︂
ℓ=1 

0 ∑︂
l=−N

0 ∫︂
−τ

kℓ
b(Φtn+1(tj , Y

ς
j ))I [l](s)dνℓ

3(s)DrΦ(tn+l+1; tj , Y ς
j )Δ

]︂
+ σ̃ . (36)

Step 1. To derive a lower bound of DrΦ(ti; tj , Y ς
j ), we need to present a discrete comparison 

principle. Define a two-parameter nonnegative sequence {Ak
i }0≤k,i≤NΔ as follows: when i ≤ k, 

define Ak
i = 0; when 0 ≤ k ≤ i − 1, define

Ak
i = LbΔ

i−1 ∑︂
n=k 

nb∑︂
ℓ=1 

0 ∑︂
l=−N

νℓ
3(Δl−1 + Δl)

(︁
(1 − θ)Ak

n+l + θAk
n+l+1

)︁ + σ̃ ,

where we let νℓ
3(Δ−N−1) = νℓ

3(Δ0) = 0. It follows from the definition that when i1 − k1 =
i2 − k2 > 0, Ak1

i1
= A

k2
i2

=:𝒜i1−k1 . Then

𝒜i−k = Ak
i = LbΔ

nb∑︂
ℓ=1 

0 ∑︂
l=−N

νℓ
3(Δl−1 + Δl)

(︁
(1 − θ)𝒜i−1+l−k + θ𝒜i+l−k

)︁

+ LbΔ

i−2 ∑︂
n=k 

nb∑︂
ℓ=1 

0 ∑︂
l=−N

νℓ
3(Δl−1 + Δl)

(︁
(1 − θ)𝒜n+l−k + θ𝒜n+1+l−k

)︁ + σ̃

= LbΔ

nb∑︂
ℓ=1 

0 ∑︂
l=−N

νℓ
3(Δl−1 + Δl)

(︁
(1 − θ)𝒜i−1+l−k + θ𝒜i+l−k

)︁ +𝒜i−k−1.

This gives that for any Δ ∈ (0, 1 
Lbθnb

),
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𝒜i−k = (︁
1 − LbΔθ

nb∑︂
ℓ=1 

νℓ
3(Δ−1)

)︁−1
{︂
𝒜i−k−1 + LbΔ

[︂
(1 − θ)

nb∑︂
ℓ=1 

0 ∑︂
l=−N

νℓ
3(Δl−1 + Δl)×

𝒜i−1−k+l + θ

nb∑︂
ℓ=1 

0 ∑︂
l=−N+1

νℓ
3(Δl−2 + Δl−1)𝒜i−k+l−1

]︂}︂
.

By the relation (1 − LbΔθnb)
−1 = 1 + LbθΔnb

1−LbΔθnb
and the iteration, we obtain

𝒜i−k ≤ (1 + LbθΔnb

1 − LbΔθnb

)𝒜i−k−1 + (1 − LbΔθnb)
−1LbΔ

[︂
(1 − θ)

nb∑︂
ℓ=1 

0 ∑︂
l=−N

νℓ
3(Δl−1 + Δl)𝒜i−1−k+l + θ

nb∑︂
ℓ=1 

0 ∑︂
l=−N+1

νℓ
3(Δl−2 + Δl−1)𝒜i−k+l−1

]︂

≤ 𝒜1 +
i−k−1∑︂
n=1 

LbθΔnb

1 − LbΔθnb

𝒜n + (1 − LbΔθnb)
−1LbΔ

nb∑︂
ℓ=1 

i−k−1∑︂
n=1 

[︂
(1 − θ)×

0 ∑︂
l=−N

νℓ
3(Δl−1 + Δl)𝒜n+l + θ

0 ∑︂
l=−N+1

νℓ
3(Δl−2 + Δl−1)𝒜n+l

]︂
.

Noting that

i−k−1∑︂
n=1 

0 ∑︂
l=−N

νℓ
3(Δl−1 + Δl)𝒜n+l =

0 ∑︂
l=−N

i−k−1∑︂
n=1 

νℓ
3(Δl−1 + Δl)𝒜n+l

≤
0 ∑︂

l=−N

i−k−1 ∑︂
m=−N

νℓ
3(Δl−1 + Δl)𝒜m ≤ 2

i−k−1∑︂
n=1 

𝒜n

and 𝒜1 = (1 − Lb

∑︁nb

ℓ=1 νℓ
3(Δ−1)Δθ)−1σ̃ ≤ (1 − LbΔθnb)

−1σ̃ , we arrive at

𝒜i−k ≤ (1 − LbΔθnb)
−1σ̃ + Lbnb(θ + 2) 

1 − LbΔθnb

i−k−1∑︂
n=1 

𝒜nΔ.

Applying the discrete Grönwall inequality, we deduce

𝒜i−k ≤ (1 − LbΔθnb)
−1σ̃ exp

{︂Lbnb(θ + 2)Δ(i − k − 1)

1 − LbΔθnb

}︂

=: K0 exp
{︂Lbnb(θ + 2)Δ(i − k − 1)

1 − LbΔθnb

}︂
. (37)

When j ≤ i1 ≤ k1 and r ∈ (tk1 , tk1+1], we have DrΦ(ti1; tj , Y ς
j ) = 0 = A

k1
i1

. This gives 

|DrΦ(ti1; tj , Y ς
j )| = A

k1
i1

for i1 − k1 ≤ 0 and r ∈ (tk, tk+1]. Now we claim that
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|DrΦ(ti; tj , Y ς
j )| ≤ Ak

i , for any r ∈ (tk, tk+1], j ≤ k ≤ i − 1. (38)

We prove the claim by the induction argument on i − k. Suppose that (38) holds for integers k, i

satisfying 0 ≤ i − k ≤ i − k′ − 1. Then we show that (38) holds for i − k = i − k′. By (36) and 
the induction assumption, we have |DrΦ(tn; tj , Y ς

j )| ≤ Ak′
n holds for all n ≤ i − 1, which yields

|DrΦ(ti; tj , Y ς
j )|

≤
i−2 ∑︂
n=k′

nb∑︂
ℓ=1 

0 ∑︂
l=−N

Lbν
ℓ
3(Δl−1 + Δl)

(︁
(1 − θ)Ak′

n+lΔ + θAk′
n+l+1Δ

)︁ + σ̃

+ (1 − θ)

nb∑︂
ℓ=1 

0 ∑︂
l=−N

Lbν
ℓ
3(Δl−1 + Δl)A

k′
i−1+lΔ

+ θ

nb∑︂
ℓ=1 

−1 ∑︂
l=−N

Lbν
ℓ
3(Δl−1 + Δl)A

k′
i+lΔ + LbθΔ

nb∑︂
ℓ=1 

νℓ
3(Δ−1)|DrΦ(ti; tj , Y ς

j )|.

Thus we derive

|DrΦ(ti; tj , Y ς
j )| ≤ (1 − LbΔθ

nb∑︂
ℓ=1 

νℓ
3(Δ−1))

−1
[︂
Ak′

i−1 + LbΔ(1 − θ)

nb∑︂
ℓ=1 

0 ∑︂
l=−N

νℓ
3(Δl−1

+ Δl)A
k′
i−1+l + LbΔθ

nb∑︂
ℓ=1 

−1 ∑︂
l=−N

νℓ
3(Δl−1 + Δl)A

k′
i+l

]︂
= Ak′

i , r ∈ (tk′ , tk′+1].

This finishes the proof of the claim (38).
Step 2. From (36) and (37), we obtain

|DrΦ(ti; tj , Y ς
j )|

≥ σ̃ − LbΔ
[︂ i−1 ∑︂

n=k 

nb∑︂
ℓ=1 

0 ∑︂
l=−N

(︂
(1 − θ)νℓ

3(Δl−1 + Δl)A
k
n+l + θνℓ

3(Δl−1 + Δl)A
k
n+l+1

)︂]︂

≥ σ̃ − 2LbnbΔ
(︂
(1 − θ)K0e

− Lbnb(θ+2)Δ

1−LbΔθnb + θK0

)︂exp{Lbnb(θ+2)Δ(i−k)
1−LbΔθnb

} − 1

exp{Lbnb(θ+2)Δ
1−LbΔθnb

} − 1 

≥ σ̃ − 2 
θ + 2

(︂
exp

{︂Lbnb(θ + 2)Δ(i − k)

1 − LbΔθnb

}︂
− 1

)︂
σ̃

≥ σ̃ −
(︂

exp
{︂Lbnb(θ + 2)Δ(i − k)

1 − LbΔθnb

}︂
− 1

)︂
σ̃ ,

where we used ex ≥ x + 1, x ≥ 0. Then |DrΦ(ti; tj , Y ς
j )| ≥ 1

2 σ̃ , when Δ ≤ 1 
2Lbθnb

and i − k ≤
ln( 3

2 ) 
2Lbnb(θ+2)Δ

. Thus,
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γΦ(T ;tj ,Y
ς
j ) :=

T∫︂
0 

DrΦ(T ; tj , Y ς
j )(DrΦ(T ; tj , Y ς

j ))⊤dr

≥
T∫︂

(T −T0)∨0

|DrΦ(T ; tj , Y ς
j )|2dr ≥ 1

4
(T ∧ T0)σ̃

2,

where T0 := ln( 3
2 ) 

2Lbnb(θ+2)
. This finishes the proof of (35) for d = 1.

For the case of d ≥ 2, by replacing DrΦ with u⊤DrΦ in the above argument, one can also 
obtain (35).

Moreover, it follows from (35) that

λmin(γΦ(T ;tj ,Y
ς
j )) = min 

u∈Rd ,|u|=1
u⊤γΦ(T ;tj ,Y

ς
j )u ≥ 1

4
(T ∧ T0)σ̃

2,

which implies

|det(γΦ(T ;tj ,Y
ς
j ))

−1| ≤
[︂1

4
(T ∧ T0)σ̃

2
]︂−d

.

Thus the proof is completed. □
With Lemmas 3.2 and 3.3 in hand, we present the following Malliavin integration by parts 

formula, which plays an important role in the test-functional-independent weak convergence 
analysis.

Lemma 3.4. Let α = (α1, . . . , αd) be the multi-index with αj ∈ N, j = 1, . . . , d and |α| :=∑︁d
j=1 αj ≤ 2, f ∈ C , and G1 ∈ D|α|+1,∞. Then under conditions in Lemmas 3.2 and 3.3, there 

exist a constant Δ2 ∈ (0,1] and an element H|α|+1 such that for Δ ∈ (0,Δ2], i ∈ N with i ≤ NΔ,

E[∂αf (Φ(T ; ti , Y ς
i ))G1] = E[F(Φ(T ; ti , Y ς

i ))H|α|+1(Φ(T ; ti , Y ς
i ),G1)], (39)

where F is an antiderivative of f given in the definition of C (see (27)). Moreover, for T ≥ T0,

|E[∂αf (Φ(T ; ti , Y ς
i ))G1]| ≤ K∥G1∥|α|+1,2, (40)

where T0 is given in Theorem 3.2, and Yς
i is given in (31).

Proof. According to the definition of C , we apply [1, Proposition 2.1.4, (2.29)--(2.32)] to obtain 
(39). Moreover, for q > q1 ≥ 1, there exist constants η1, η2 > 0 and integers n1, n2 > 0 such that

∥H|α|+1(Φ(T ; ti , Y ς
i ),G1)∥q1

≤ K(q1, q)∥det(γΦ(T ;ti ,Y ς
i ))

−1∥n1
0,η1

∥DΦ(T ; ti , Y ς
i )∥n2|α|+1,η2

∥G1∥|α|+1,q .

It follows from Lemmas 3.2 and 3.3 that for any Δ ∈ (0,Δ2] with Δ2 := Δ̃ ∧ 1 
2Lbnbθ

,
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∥H|α|+1(Φ(T ; ti , Y ς
i ),G1)∥q1 ≤ K

[︂1

4
(T ∧ T0)σ̃

2
]︂−dn1∥G1∥|α|+1,q ,

where Δ̃ := Δ̃(η2) is given in Lemma 3.2. Taking q1 = 1 and q = 2, we finish the proof. □
3.2.2. Weak convergence analysis

In this subsection, we present the test-functional-independent weak convergence rate of the 
θ -EM discretization.

Theorem 3.3. Let conditions in Theorem 3.2 hold. Then there exists Δ̃ > 0 such that for Δ ∈
(0, Δ̃] and T ≥ T0,

sup 
f ∈C

⃓⃓
E[f (xξ (T ))] −E[f (yξ,Δ(T ))]⃓⃓ ≤ KT Δ,

where T0 is given in Theorem 3.2.

Proof. Without loss of generality, we take the parameter nb in Assumption 3.4 to be nb = 1. The 
case of nb > 1 can be proved similarly. In order to obtain the test-functional-independent weak 
convergence rate, we need to estimate terms ℐ0,ℐb , and ℐb,θ in (34) by means of the Malliavin 
integration by parts formula (39) and the inequality (40).

Estimate of term ℐ0. Recalling

ℐ0 = E[f (Φ(T ; tNΔ,φInt
t
NΔ

(0, ξ)))] −E[f (Φ(T ; tNΔ,φInt
t
NΔ

(0, ξ Int )))],

it follows from (40), Lemma 3.1, and ∥ξ − ξInt∥ ≤ KΔ that

|ℐ0| =
⃓⃓
E[f (φInt (tNΔ;0, ξ)] −E[f (φInt (tNΔ;0, ξ Int ))]⃓⃓

≤
1 ∫︂

0 

⃓⃓⃓
E

[︂
f ′(φInt (tNΔ;0, ςξ + (1 − ς)ξInt ))𝒟φInt (tNΔ;0, ςξ + (1 − ς)ξInt )(ξ − ξInt )

]︂⃓⃓⃓
dς

≤ K

1 ∫︂
0 

∥𝒟φInt (tNΔ;0, ςξ + (1 − ς)ξInt )(ξ − ξInt )∥2,2dς ≤ KT Δ.

Estimate of term ℐb. Recalling the definition of ℐb, we have that

ℐb =
NΔ∑︂
i=1 

1 ∫︂
0 

E
[︂⟨︂

f ′(Φ(T ; ti , Y ς
i ))𝒟Φ(T ; ti , Y ς

i ), I [0]
ti∫︂

ti−1

1 ∫︂
0 

𝒟b(Z
β1
i,r )

(︁
φr(ti−1, φti−1(0, ξ Int )) − φInt

ti−1
(0, ξ Int )

)︁
dβ1dr

⟩︂]︂
dς,

where Zβ1
i,r := β1φr(ti−1, φti−1(0, ξ Int ))+ (1−β1)φ

Int
ti−1

(0, ξ Int ). To estimate ℐb, we need to split 
φr(ti−1, φti−1(0, ξ Int )) − φInt

ti−1
(0, ξ Int ) for r ∈ [ti−1, ti ), based on the definitions of the exact 

functional solution and its linear interpolation. For s ∈ [tj , tj+1] ⊂ [−τ,0], we have
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φInt
ti−1

(0, ξ Int )(s) = tj+1 − s

Δ 
φ(ti+j−1;0, ξ Int ) + s − tj

Δ 
φ(ti+j ;0, ξ Int ). (41)

We also have r + s ∈ [ti+j−1, ti+j+1), which leads to the following two cases. For notational 
simplicity and to illustrate the main idea of the proof, we suppose ti+j−1 ≥ 0. The case ti+j−1 <

0, which involves contributions from the initial values on [−τ,0], can be treated similarly.
Case 1: r + s ∈ [ti+j−1, ti+j ). In this case, by the integral form of the exact solution of (1), 

we have

φr(ti−1, φti−1(0, ξ Int ))(s) = φ(r + s;0, ξ Int )

= φ(ti+j−1;0, ξ Int ) +
r+s ∫︂

ti+j−1

b(φv(0, ξ Int ))dv +
r+s ∫︂

ti+j−1

σ̃dW(v).

Hence, combining this with (41) yields

φr(ti−1, φti−1(0, ξ Int ))(s) − φInt
ti−1

(0, ξ Int )(s)

= tj − s

Δ 
(φ(ti+j ;0, ξ Int ) − φ(ti+j−1;0, ξ Int ))

+
r+s ∫︂

ti+j−1

b(φv(0, ξ Int ))dv +
r+s ∫︂

ti+j−1

σ̃dW(v).

Case 2: r + s ∈ [ti+j , ti+j+1). In this case, by the integral form of the exact solution of (1)
again, we have

φr(ti−1, φti−1(0, ξ Int ))(s) = φ(ti+j ;0, ξ Int ) +
r+s∫︂

ti+j

b(φv(0, ξ Int ))dv +
r+s∫︂

ti+j

σ̃dW(v).

This, together with (41) leads to

φr(ti−1, φti−1(0, ξ Int ))(s) − φInt
ti−1

(0, ξ Int )(s)

= tj+1 − s

Δ 
(φ(ti+j ;0, ξ Int ) − φ(ti+j−1;0, ξ Int ))

+
r+s∫︂

ti+j

b(φv(0, ξ Int ))dv +
r+s∫︂

ti+j

σ̃dW(v).

Combining Case 1 and Case 2, we deduce

φr(ti−1, φti−1(0, ξ Int )) − φInt
ti−1

(0, ξ Int )
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=
−1 ∑︂

j=−N

{︂
1[ti+j−1−r,ti+j −r)(·)

[︂ tj − ·
Δ 

(︂ ti+j∫︂
ti+j−1

b(φv(0, ξ Int ))dv

+
ti+j∫︂

ti+j−1

σ̃dW(v)
)︂

+
r+· ∫︂

ti+j−1

b(φv(0, ξ Int ))dv +
r+· ∫︂

ti+j−1

σ̃dW(v)
]︂

+ 1[ti+j −r,ti+j+1−r)(·)
[︂ tj+1 − ·

Δ 

(︂ ti+j∫︂
ti+j−1

b(φv(0, ξ Int ))dv +
ti+j∫︂

ti+j−1

σ̃dW(v)
)︂

+
r+· ∫︂

ti+j

b(φv(0, ξ Int ))dv +
r+· ∫︂

ti+j

σ̃dW(v)
]︂}︂

.

Inserting the above equality into ℐb, we are in the position to estimate ℐb. We only estimate the 
sub-term

ℐ0
b :=

NΔ∑︂
i=1 

1 ∫︂
0 

E
[︂⟨︂

f ′(Φ(T ; ti , Y ς
i ))𝒟Φ(T ; ti , Y ς

i ), I [0]
ti∫︂

ti−1

1 ∫︂
0 

𝒟b(Z
β1
i,r )

−1 ∑︂
j=−N

1[ti+j−1−r,ti+j −r)(·) tj − ·
Δ 

ti+j∫︂
ti+j−1

b(φv(0, ξ Int ))dvdβ1dr
⟩︂]︂

dς,

the sub-term

ℐ1
b :=

NΔ∑︂
i=1 

1 ∫︂
0 

E
[︂⟨︂

f ′(Φ(T ; ti , Y ς
i ))𝒟Φ(T ; ti , Y ς

i ), I [0]
ti∫︂

ti−1

1 ∫︂
0 

𝒟b(Z
β1
i,r )

−1 ∑︂
j=−N

1[ti+j−1−r,ti+j −r)(·) tj − ·
Δ 

ti+j∫︂
ti+j−1

σ̃dW(v)dβ1dr
⟩︂]︂

dς,

and the sub-term

ℐ2
b :=

NΔ∑︂
i=1 

1 ∫︂
0 

E
[︂⟨︂

f ′(Φ(T ; ti , Y ς
i ))𝒟Φ(T ; ti , Y ς

i ), I [0]
ti∫︂

ti−1

1 ∫︂
0 

𝒟b(Z
β1
i,r )

−1 ∑︂
j=−N

1[ti+j−1−r,ti+j −r)(·)
r+· ∫︂

ti+j−1

σ̃dW(v)dβ1dr
⟩︂]︂

dς,

since other sub-terms in ℐb can be estimated similarly.
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For the term ℐ0
b , it follows from (39) and (40) that

|ℐ0
b | ≤ K

NΔ∑︂
i=1 

1 ∫︂
0 

⃦⃦⃦
𝒟Φ(T ; ti , Y ς

i )I [0]
ti∫︂

ti−1

1 ∫︂
0 

𝒟b(Z
β1
i,r )

−1 ∑︂
j=−N

1[ti+j−1−r ,ti+j −r)(·)×

tj − ·
Δ 

ti+j∫︂
ti+j−1

b(φv(0, ξ Int ))dvdβ1dr

⃦⃦⃦
2,2

dς. (42)

According to Lemma 3.2 and supϕ1∈𝒞d |𝒟b(ϕ1)ϕ2| ≤ K∥ϕ2∥, we have

⃦⃦⃦
𝒟Φ(T ; ti , Y ς

i )I [0]
ti∫︂

ti−1

1 ∫︂
0 

𝒟b(Z
β1
i,r )

−1 ∑︂
j=−N

1[ti+j−1−r,ti+j −r)(·)×

tj − ·
Δ 

ti+j∫︂
ti+j−1

b(φv(0, ξ Int ))dvdβ1dr

⃦⃦⃦
0,2

≤ KT Δ2. (43)

In addition, using the chain rule of the Malliavin derivative, Lemma 3.2, and Assumption 3.4, we 
derive that for some p̃ ≥ 2,

(︂ T∫︂
ti

E
[︂⃦⃦⃦

Dr1

[︂
𝒟Φ(T ; ti , Y ς

i )I [0]
ti∫︂

ti−1

1 ∫︂
0 

𝒟b(Z
β1
i,r )

−1 ∑︂
j=−N

1[ti+j−1−r,ti+j −r)(·)×

tj − ·
Δ 

ti+j∫︂
ti+j−1

b(φv(0, ξ Int ))dvdβ1dr
]︂⃦⃦⃦2]︂

dr1

)︂ 1
2

≤ KT

{︂ T∫︂
ti

(︂
E

[︂⃦⃦⃦
I [0]

ti∫︂
ti−1

1 ∫︂
0 

𝒟b(Z
β1
i,r )

−1 ∑︂
j=−N

1[ti+j−1−r,ti+j −r)(·)×

tj − ·
Δ 

ti+j∫︂
ti+j−1

b(φv(0, ξ Int ))dvdβ1dr

⃦⃦⃦2(︁
1 + ∥Dr1Y

ς
i ∥p̃

)︁]︂

+E
[︂⃦⃦⃦

𝒟Φ(T ; ti , Y ς
i )I [0]

ti∫︂
ti−1

1 ∫︂
0 

𝒟2b(Z
β1
i,r )

(︂
Dr1Z

β1
i,r ,

−1 ∑︂
j=−N

1[ti+j−1−r,ti+j −r)(·)×

tj − ·
Δ 

ti+j∫︂
ti+j−1

b(φv(0, ξ Int ))dv
)︂

dβ1dr

⃦⃦⃦2]︂
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+E
[︂⃦⃦⃦

𝒟Φ(T ; ti , Y ς
i )I [0]

ti∫︂
ti−1

1 ∫︂
0 

𝒟b(Z
β1
i,r )

−1 ∑︂
j=−N

1[ti+j−1−r,ti+j −r)(·)×

tj − ·
Δ 

ti+j∫︂
ti+j−1

𝒟b(φv(0, ξ Int ))Dr1φv(0, ξ Int )dvdβ1dr

⃦⃦⃦2]︂)︂
dr1

}︂ 1
2 ≤ KT Δ2. (44)

Similarly,

{︂ T∫︂
ti

T∫︂
ti

E
[︂⃦⃦⃦

Dr1,r2

[︂
𝒟Φ(T ; ti , Y ς

i )I [0]
ti∫︂

ti−1

1 ∫︂
0 

𝒟b(Z
β1
i,r )

−1 ∑︂
j=−N

1[ti+j−1−r,ti+j −r)(·)×

tj − ·
Δ 

ti+j∫︂
ti+j−1

b(φv(0, ξ Int ))dvdβ1dr
]︂⃦⃦⃦2]︂

dr1dr2

}︂ 1
2 ≤ KT Δ2. (45)

Inserting (43)--(45) into (42), one has |ℐ0
b | ≤ KT Δ.

For the sub-term ℐ1
b , we have

ℐ1
b =

NΔ∑︂
i=1 

1 ∫︂
0 

ti∫︂
ti−1

1 ∫︂
0 

−1 ∑︂
j=−N

1[ti+j−1−r,ti+j −r )(·) tj − ·
Δ 

×

E
[︂⟨︂

(I [0]𝒟b(Z
β1
i,r ))

∗f ′(Φ(T ; ti , Y ς
i ))𝒟Φ(T ; ti , Y ς

i ),

ti+j∫︂
ti+j−1

σ̃dW(v)
⟩︂]︂

dβ1drdς

=
NΔ∑︂
i=1 

−1 ∑︂
j=−N

1 ∫︂
0 

ti∫︂
ti−1

1 ∫︂
0 

ti+j∫︂
ti+j−1

1[ti+j−1−r,ti+j −r)(·) tj − ·
Δ 

×

E
[︂⟨︂

Dv

[︁
(I [0]𝒟b(Z

β1
i,r ))

∗f ′(Φ(T ; ti , Y ς
i ))𝒟Φ(T ; ti , Y ς

i )
]︁
, σ̃ Id

⟩︂]︂
dvdβ1drdς

=
NΔ∑︂
i=1 

−1 ∑︂
j=−N

1 ∫︂
0 

ti∫︂
ti−1

1 ∫︂
0 

ti+j∫︂
ti+j−1

{︂
E

[︂⟨︂
f ′(Φ(T ; ti , Y ς

i ))𝒟Φ(T ; ti , Y ς
i ),

I [0]𝒟2b(Z
β1
i,r )

(︂
DvZ

β1
i,r ,1[ti+j−1−r,ti+j −r)(·) tj − ·

Δ 
σ̃ Id

)︂⟩︂]︂
+E

[︂⟨︂
f ′(Φ(T ; ti , Y ς

i ))Dv𝒟Φ(T ; ti , Y ς
i ), I [0]𝒟b(Z

β1
i,r )

1[ti+j−1−r,ti+j −r)(·) tj − ·
Δ 

σ̃ Id
⟩︂]︂

+E
[︂⟨︂

f ′′(Φ(T ; ti , Y ς
i ))DvΦ(T ; ti , Y ς

i )

𝒟Φ(T ; ti , Y ς
i ), I [0]𝒟b(Z

β1
i,r )1[ti+j−1−r,ti+j −r)(·) tj − ·

Δ 
σ̃ Id

⟩︂]︂}︂
dvdβ1drdς,

31 



C. Chen, T. Dang, J. Hong et al. Journal of Differential Equations 459 (2026) 114104 

where Id is the d-dimensional all-ones vector. Similarly, together with (39) and (40), we can 
derive that |ℐ1

b | ≤ KT Δ.
For the sub-term ℐ2

b , based on Assumption 3.4, we have

ℐ2
b =

NΔ∑︂
i=1 

1 ∫︂
0 

E
[︂⟨︂

f ′(Φ(T ; ti , Y ς
i ))𝒟Φ(T ; ti , Y ς

i ), I [0]
ti∫︂

ti−1

1 ∫︂
0 

0 ∫︂
−τ

k1
b(Z

β1
i,r )

−1 ∑︂
j=−N

1[ti+j−1−r,ti+j −r)(s)

r+s ∫︂
ti+j−1

σ̃dW(v)dν1
3(s)dβ1dr

⟩︂]︂
dς

=
NΔ∑︂
i=1 

−1 ∑︂
j=−N

1 ∫︂
0 

ti∫︂
ti−1

1 ∫︂
0 

(ti+j −r)∧0 ∫︂
−τ∨(ti+j−1−r)

r+s ∫︂
ti+j−1

E
[︂⟨︂

Dv[(I [0]k1
b(Z

β1
i,r ))

∗

f ′(Φ(T ; ti , Y ς
i ))𝒟Φ(T ; ti , Y ς

i )], σ̃ Id
⟩︂]︂

dvdν1
3(s)dβ1drdς

=
NΔ∑︂
i=1 

−1 ∑︂
j=−N

1 ∫︂
0 

ti∫︂
ti−1

1 ∫︂
0 

(ti+j −r)∧0 ∫︂
−τ∨(ti+j−1−r)

r+s ∫︂
ti+j−1

{︂
E

[︂⟨︂
f ′(Φ(T ; ti , Y ς

i ))

𝒟Φ(T ; ti , Y ς
i ), I [0]Dvk

1
b(Z

β1
i,r )σ̃ Id

⟩︂]︂
+E

[︂⟨︂
f ′(Φ(T ; ti , Y ς

i ))Dv𝒟Φ(T ; ti , Y ς
i ),

I [0]k1
b(Z

β1
i,r )σ̃ Id

⟩︂]︂
+E

[︂⟨︂
f ′′(Φ(T ; ti , Y ς

i ))DvΦ(T ; ti , Y ς
i )𝒟Φ(T ; ti , Y ς

i ),

I [0]k1
b(Z

β1
i,r )σ̃ Id

⟩︂]︂}︂
dvdν1

3(s)dβ1drdς.

Combining (39), (40), and Lemma 3.2, we deduce

|ℐ2
b | ≤ K

NΔ∑︂
i=1 

−1 ∑︂
j=−N

1 ∫︂
0 

ti∫︂
ti−1

1 ∫︂
0 

(ti+j −r)∧0 ∫︂
−τ∨(ti+j−1−r)

r+s ∫︂
ti+j−1{︂⃦⃦⃦

𝒟Φ(T ; ti , Y ς
i )I [0]Dvk

1
b(Z

β1
i,r )σ̃ Id

⃦⃦⃦
2,2

+
⃦⃦⃦
Dv𝒟Φ(T ; ti , Y ς

i )I [0]k1
b(Z

β1
i,r )σ̃ Id

⃦⃦⃦
2,2

+ ⃦⃦
DvΦ(T ; ti , Y ς

i )𝒟Φ(T ; ti , Y ς
i )I [0]k1

b(Z
β1
i,r )σ̃ Id

⃦⃦
3,2

}︂
dvdν1

3(s)dβ1drdς

≤ KT Δ,

where we used the assumption

sup 
l∈{1,2,3}

sup 
ϕ∈𝒞d

(︂
∥𝒟lk1

b(ϕ)∥ℒ((𝒞d )⊗l;Rd×d ) + |k1
b(ϕ)|

)︂
≤ K.

Hence, we have |ℐb| ≤ KT Δ.
Estimate of ℐb,θ . Similar to proof of ℐb, we derive that |ℐb,θ | ≤ KT Δ.
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Combining estimates of terms ℐ0,ℐb and ℐb,θ , we complete the proof. □
4. Proofs of Lemmas 2.1 and 2.2

Proof of Lemma 2.1. Similar to the proof of [22, Theorem 2], we can obtain the first inequality 
in Lemma 2.1. For the second inequality in Lemma 2.1, when v ≤ t , Dvx

ξ (t) satisfies

Dvx
ξ (t) =

t∫︂
v

𝒟b(xξ
s )Dvx

ξ
s ds +

t∫︂
v

𝒟σ(xξ
s )Dvx

ξ
s dW(s) + σ(xξ

v )1[0,t](v).

By the Itô formula, (2), (3), the Burkholder–Davis--Gundy inequality, and the Young inequality, 
we deduce

E
[︂

sup 
v≤t≤T

|Dvx
ξ (t)|2p

]︂

≤E[|σ(xξ
v )|2p] + K

T∫︂
v

E
[︂
|Dvx

ξ (s)|2p +
0 ∫︂

−τ

|Dvx
ξ
s (r)|2pdν1(r)

+
0 ∫︂

−τ

|Dvx
ξ
s (r)|2pdν2(r)

]︂
ds + KE

[︂(︂ T∫︂
v

|Dvx
ξ (s)|4p−2|𝒟σ(xξ

s )Dvx
ξ
s |2ds

)︂ 1
2
]︂

≤ KT + K

T∫︂
v

E
[︂

sup 
v≤r≤s

|Dvx
ξ (r)|2p

]︂
ds + 1

2
E

[︂
sup 

v≤t≤T

|Dvx
ξ (t)|2p

]︂
.

Using the Grönwall inequality finishes the proof. □
Proof of Lemma 2.2. We first show that E

[︂
sup0≤tk≤T ∥yξ,Δ

tk
∥p

]︂
≤ KT . Introduce the auxiliary 

process

{︄
zξ,Δ(tk) = ξ(tk), −N ≤ k ≤ −1,

zξ,Δ(tk) = yξ,Δ(tk) − θb(y
ξ,Δ
tk

)Δ, 0 ≤ k ≤ NΔ.

Then for 1 ≤ k ≤ NΔ,

zξ,Δ(tk) = zξ,Δ(tk−1) + b(y
ξ,Δ
tk−1

)Δ + σ(y
ξ,Δ
tk−1

)δWk−1.

For k ∈ N and Δ ∈ (0, 1 
2θL1

), it follows from Assumption 2.1 that

|zξ,Δ(tk+1)|2
= |zξ,Δ(tk)|2 + |b(y

ξ,Δ
tk

)|2Δ2 + |σ(y
ξ,Δ
tk

)δWk|2 + 2⟨yξ,Δ(tk) − θb(y
ξ,Δ
tk

)Δ,b(y
ξ,Δ
tk

)⟩Δ
+ 2⟨zξ,Δ(tk), σ (y

ξ,Δ
tk

)δWk⟩ + 2⟨b(y
ξ,Δ
tk

), σ (y
ξ,Δ
tk

)δWk⟩Δ
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≤ |zξ,Δ(tk)|2 + (1 − 2θ)|b(y
ξ,Δ
tk

)|2Δ2 + |σ(y
ξ,Δ
tk

)δWk|2 + KΔ
(︂

1 + |yξ,Δ(tk)|2

+
0 ∫︂

−τ

|yξ,Δ
tk

(r)|2dν1(r)
)︂

+ℳk

≤ |zξ,Δ(tk)|2 + |σ(y
ξ,Δ
tk

)δWk|2 + KΔ
(︂

1 + |yξ,Δ(tk)|2 +
0 ∫︂

−τ

|yξ,Δ
tk

(r)|2dν1(r)
)︂

+ℳk,

where {ℳk}k∈N is a martingale defined by

ℳk := (2 − 2 
θ
)⟨zξ,Δ(tk), σ (y

ξ,Δ
tk

)δWk⟩ + 2 
θ
⟨yξ,Δ(tk), σ (y

ξ,Δ
tk

)δWk⟩.

Then for any p ∈N+,

|zξ,Δ(tk+1)|2p ≤ |zξ,Δ(tk)|2p +
p∑︂

l=1 
Cl

p|zξ,Δ(tk)|2(p−l)
(︂
|σ(y

ξ,Δ
tk

)δWk|2

+ KΔ
(︁
1 + |yξ,Δ(tk)|2 +

0 ∫︂
−τ

|yξ,Δ
tk

(r)|2dν1(r)
)︁ +ℳk

)︂l

,

where Cl
p is the binomial coefficient. This implies

E
[︂

sup 
0≤(k+1)Δ≤T

|zξ,Δ(tk+1)|2p
]︂

= E
[︂

sup 
Δ≤(k+1)Δ≤T

k∑︂
i=0 

(︁|zξ,Δ(ti+1)|2p − |zξ,Δ(ti)|2p
)︁]︂ + |zξ,Δ(0)|2p

≤ |zξ,Δ(0)|2p +E
[︂

sup 
Δ≤(k+1)Δ≤T

k∑︂
i=0 

p∑︂
l=1 

Cl
p|zξ,Δ(ti)|2(p−l)

(︂
|σ(y

ξ,Δ
ti

)δWi |2

+ KΔ
(︁
1 + |yξ,Δ(ti)|2 +

0 ∫︂
−τ

|yξ,Δ
ti

(r)|2dν1(r)
)︁ +ℳi

)︂l]︂

= |zξ,Δ(0)|2p +
p∑︂

l=1 
Cl

pIl, (46)

where

Il := E
[︂

sup 
Δ≤(k+1)Δ≤T

k∑︂
i=0 

|zξ,Δ(ti)|2(p−l)
(︂
|σ(y

ξ,Δ
ti

)δWi |2
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+ KΔ
(︁
1 + |yξ,Δ(ti)|2 +

0 ∫︂
−τ

|yξ,Δ
ti

(r)|2dν1(r)
)︁ +ℳi

)︂l]︂
.

For the term I1, using the property of the conditional expectation and applying the Burkholder--
Davis--Gundy inequality, we arrive at

I1 ≤ KΔ

NΔ−1∑︂
i=0 

E
[︂
|zξ,Δ(ti)|2(p−1)

(︂
|σ(y

ξ,Δ
ti

)|2 + 1 + |yξ,Δ(ti)|2

+
0 ∫︂

−τ

|yξ,Δ
ti

(r)|2dν1(r)
)︂]︂

+ KE
[︂(︂NΔ−1∑︂

i=0 
|zξ,Δ(ti)|2(2p−1)|σ(y

ξ,Δ
ti

)|2Δ
)︂ 1

2
]︂

+ KE
[︂(︂NΔ−1∑︂

i=0 
|zξ,Δ(ti)|4(p−1)|yξ,Δ(ti)|2|σ(y

ξ,Δ
ti

)|2Δ
)︂ 1

2
]︂
.

By Assumptions 2.1 and 2.2, and the Young inequality, we derive that for ε ∈ (0,1),

I1 ≤ KT + KT (ε)Δ

NΔ−1∑︂
i=0 

E
[︂
|zξ,Δ(ti)|2p + |yξ,Δ(ti)|2p +

0 ∫︂
−τ

|yξ,Δ
ti

(r)|2pdν1(r)

+
0 ∫︂

−τ

|yξ,Δ
ti

(r)|2pdν2(r)
]︂

+ εE
[︂

sup 
0≤kΔ≤T

|zξ,Δ(tk)|2p
]︂
. (47)

It follows from (6) and the convex property of | · |2p that

NΔ−1∑︂
i=0 

0 ∫︂
−τ

|yξ,Δ
ti

(r)|2pdνℓ(r) ≤
NΔ−1∑︂
i=0 

−1 ∑︂
j=−N

(︂ tj+1∫︂
tj

tj+1 − r

Δ 
dνℓ(r)|yξ,Δ(ti+j )|2p

+
tj+1∫︂
tj

r − tj

Δ 
dνℓ(r)|yξ,Δ(ti+j+1)|2p

)︂
≤ N∥ξ∥2p +

NΔ−1∑︂
i=0 

|yξ,Δ(ti)|2p (48)

for ℓ = 1,2, which combining (47) leads to

I1 ≤ KT (1 + ∥ξ∥2p) + KT (ε)Δ

NΔ−1∑︂
i=0 

E
[︂
|zξ,Δ(ti)|2p + |yξ,Δ(ti)|2p

]︂

+ εE
[︂

sup 
0≤kΔ≤T

|zξ,Δ(tk)|2p
]︂
. (49)

Similarly, we derive that for l = 2, . . . , p,
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Il ≤ KT (1 + ∥ξ∥2p) + KT (ε)Δ

NΔ−1∑︂
i=0 

E
[︂
|zξ,Δ(ti)|2p + |yξ,Δ(ti)|2p

]︂

+ εE
[︂

sup 
0≤kΔ≤T

|zξ,Δ(tk)|2p
]︂
. (50)

Inserting (49) and (50) into (46) yields

E
[︂

sup 
0≤kΔ≤T

|zξ,Δ(tk)|2p
]︂

≤ KT (1 + ∥ξ∥2p + |b(ξ)|2p)

+ KT (ε)Δ

NΔ−1∑︂
i=0 

E
[︂
|zξ,Δ(ti)|2p + |yξ,Δ(ti)|2p

]︂

+ ε(2p − 1)
[︂

sup 
0≤kΔ≤T

|zξ,Δ(tk)|2p
]︂
, (51)

where we used 
∑︁p

l=1 Cl
p = 2p − 1. It follows from zξ,Δ(tk) = yξ,Δ(tk) − θb(y

ξ,Δ
tk

)Δ, Assump

tion 2.1, and ⟨a, b⟩ ≤ 1
2 (|a|2 + |b|2), a, b ∈ Rd that

|yξ,Δ(tk)|2 ≤ |zξ,Δ(tk)|2 + 2
⟨︁
yξ,Δ(tk), θb(y

ξ,Δ
tk

)Δ
⟩︁

≤ |zξ,Δ(tk)|2 + 2θΔL1

(︂
|yξ,Δ(tk)|2 +

0 ∫︂
−τ

|yξ,Δ
tk

(r)|2dν1(r) + ⟨y(tk), b(0)⟩
)︂

≤ |zξ,Δ(tk)|2 + 2θΔL1

(︂5

2
sup 

0≤kΔ≤T

|yξ,Δ(tk)|2 + ∥ξ∥2 + 1

2
|b(0)|2

)︂
≤ sup 

0≤kΔ≤T

|zξ,Δ(tk)|2 + 5θΔL1 sup 
0≤kΔ≤T

|yξ,Δ(tk)|2 + KΔ. (52)

By 1 − 5θΔL1 > 1
6 for Δ < 1 

6θL1
, we obtain

sup 
0≤kΔ≤T

|yξ,Δ(tk)|2p ≤ K
(︁
1 + sup 

0≤kΔ≤T

|zξ,Δ(tk)|2p
)︁
.

Combining (51) and letting ε > 0 be sufficiently small, we conclude

E
[︂

sup 
0≤kΔ≤T

(︂
|zξ,Δ(tk)|2p + |yξ,Δ(tk)|2p

)︂]︂

≤ KT (1 + ∥ξ∥2p + |b(ξ)|2p) + KT Δ

NΔ−1∑︂
i=0 

E
[︂
|zξ,Δ(ti)|2p + |yξ,Δ(ti)|2p

]︂
.

Applying the discrete Grönwall inequality, and noticing the relation

E
[︂

sup 
0≤tk≤T

∥yξ,Δ
tk

∥p
]︂

≤ E
[︂

sup 
0≤tk≤T

|yξ,Δ(tk)|p
]︂
+ ∥ξ∥p,
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we finish the proof of E
[︁

sup0≤tk≤T ∥yξ,Δ
tk

∥p
]︁ ≤ KT .

Next, we prove that sup0≤v≤T E
[︁

supv≤tk≤T ∥Dvy
ξ,Δ
tk

∥p
]︁ ≤ KT . Similarly, for any k ∈N with 

0 ≤ kΔ ≤ T , v ∈ [0, T ], and p ≥ 2, we have

|Dvz
ξ,Δ(tk+1)|2p ≤|Dvz

ξ,Δ(tk)|2p +
p∑︂

l=1 
Cl

pIk,l ≤
k∑︂

i=0 

p∑︂
l=1 

Cl
pIi,l ,

where

Ii,l := |Dvz
ξ,Δ(ti)|2(p−l)

(︂
|𝒟σ(y

ξ,Δ
ti

)Dvy
ξ,Δ
ti

δWi |2 + |σ(y
ξ,Δ
ti

)1[ti ,ti+1](v)|2

+ KΔ
(︁|Dvy

ξ,Δ(ti)|2 +
0 ∫︂

−τ

|Dvy
ξ,Δ
ti

(r)|2dν1(r)
)︁ + ⟨︁2(θ − 1)

θ
Dvz

ξ,Δ(ti)

+ 2 
θ
Dvy

ξ,Δ(ti), σ (y
ξ,Δ
ti

)1[ti ,ti+1](v)
⟩︁ + ℳ̃i

)︂l

with

ℳ̃k := 2
⟨︁
Dvz

ξ,Δ(tk) +𝒟b(y
ξ,Δ
tk

)Dvy
ξ,Δ
tk

Δ + σ(y
ξ,Δ
tk

)1[tk,tk+1](v),𝒟σ(y
ξ,Δ
tk

)Dvy
ξ,Δ
tk

δWk

⟩︁
.

The remaining proof is similar as before, and thus is omitted. □
Data availability

No data was used for the research described in the article.
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