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Abstract

This paper studies densities for solutions of the stochastic functional differential equation (SFDE) and of
its Euler-type discretizations. First, by means of the Malliavin calculus, we prove the existence of densities
for the exact solution and its discretizations. Then we establish the L' (Rd)-convergence for the density of
discretizations by implementing a dimensionality reduction argument and a localization argument. Further,
we prove that the pointwise convergence rate of the density is 1 when the noise is of additive type. The
convergence results indicate that the total variation distance between laws of solutions for the SFDE and
its discretizations vanishes to zero as the discretization parameter diminishes, while that between laws of
functional solutions fails to vanish due to the high degeneracy of the equation. This finding highlights one
of the main distinctions in asymptotic behaviors of the corresponding discretized systems when compared
to stochastic ordinary (partial) differential equations.
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1. Introduction

Stochastic functional differential equations (SFDEs) serve as essential mathematical models
for capturing the intricate dynamics of systems influenced by both randomness and time delays.
They have wide applications in various fields including finance, biology, and engineering. Under-
standing the intrinsic behaviors of solutions of SFDEs is of great importance in both theoretical
and practical contexts. It is known that the density of a solution process at a given time, describ-
ing the probability law, is one of the most essential characteristics that reveals behaviors of the
solution; see [1,2] and references therein. However, the research on densities for solutions of
SFDEs remains underexplored, and the existing works mainly focus on the globally Lipschitz
drift case. For instance, authors in [3,4] study the existence and smoothness for the density of
exact solution of SFDEs; Authors in [5] investigate the asymptotic behavior for the perturbed
densities for SFDEs with small noise.

In this paper, we consider the following SFDE

E@)=£@), te[-1,0], (1)

{ dxé (1) = b(x3)dt + o (xH)YAW (), te(0,T],
where T > 0, the delay t > 0, the initial datum & € C([—7,0]; RY), {(W(t)}t>0 is an m-
dimensional standard Brownian motion defined on a filtered complete probability space
(2, F, {Fili=0.P), and for t > 0, x% : 7 > x5 (¢ + r) is the C([—7, 0]; R9)-valued functional
solution. Here, the drift coefficient b : C([—‘L’,O];Rd) — R? and the diffusion coefficient
o:C(—1,0]; Rd) — R9*™ are continuous and measurable functions; see Section 2 for con-
crete assumptions. The aim of this paper is twofold:

(i) to investigate the existence of densities for solutions of (1) and its discretized systems when
the drift grows superlinearly;

(i1) to study the convergence of the density for solutions of discretized systems, with the hope
of revealing the distinction in corresponding asymptotic behaviors between SFDEs and
stochastic ordinary (partial) differential equations.

For the first aim, we establish that the exact solution of (1) with superlinearly growing drift
admits a density, by analyzing the invertibility of the Malliavin covariance matrix of the exact
solution. Next, we introduce a class of Euler-type discretizations, namely the 6-Euler—Maruyama
(6-EM) discretization with 6 € (%, 1] for (1), to obtain the discretized systems. Then we inves-
tigate the properties of the corresponding density. Due to the time-lag effect, the SFDE and its
discretizations exhibit high degeneracy, characterized as infinite-dimensional Markov processes
influenced by finite-dimensional noises, presenting challenges in analyzing their densities. To
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deal with this challenge, we implement a dimensionality reduction argument by constructing
basis functions of interpolation in C([—t, 0]; ]Rd). This argument enables us to demonstrate the
invertibility of the Malliavin covariance matrix of the discretization and further establish the
existence of its density when the drift grows superlinearly.

For the second aim, we study the convergence of the density for the 6-EM discretization, by
employing a localization argument to overcome the obstacle caused by the superlinear growth
of coefficients. We show that the density of the discretization converges to the exact density in
L'(R¥) over a finite time horizon. Especially, in the case of linearly growing drift and additive
noise, we analyze the error between densities and obtain the pointwise convergence rate 1, based
on the test-functional-independent weak convergence analysis of the discretization. A key in-
gredient in this analysis lies in the full use of the Malliavin integration by parts formula. This
requires negative moment estimates of the determinant for the corresponding Malliavin covari-
ance matrix of the discretization, which is derived by presenting a discrete comparison principle
for the SFDE with additive noise. The convergence result for densities yields that the total varia-
tion distance between laws of the solutions for the SFDE and its discretizations vanishes to zero
as the discretization parameter diminishes. In contrast, we find that the total variation distance
between laws of functional solutions does not vanish, highlighting the distinctive behaviors for
solutions of SFDEs that come from the time-lag effect. This phenomenon introduces more com-
plexity to the system, leading to a rich interaction between historical influences and stochastic
perturbations.

At last, in order to illustrate the distinctions in asymptotic behaviors between the discretized
systems of SFDEs and those of stochastic ordinary or partial differential equations, we men-
tion some related results regarding the convergence of discretizations in total variation distance.
Building on existing studies concerning the convergence of densities for discretizations, one can
derive convergence results in total variation distance for solutions of these discretizations. For
stochastic ordinary differential equations, the convergence in total variation distance for laws
of Ito—Taylor-type discretizations can be obtained from the corresponding density convergence
results studied in [6—11]. By further leveraging properties of densities, one can also derive the
convergence rate in total variation distance; see e.g. [12—14]. For stochastic partial differential
equations, the solution can be understood as the real-valued random field or the Hilbert-valued
stochastic process. The convergence in total variation distance differs between these two types
of solutions. Utilizing the density convergence of discretizations, one can establish the conver-
gence in total variation distance for random field solutions of discretizations at fixed spatial and
temporal variables; see e.g. [15,16]. The convergence behavior in total variation distance for the
Hilbert-valued solutions of temporal semi-discretizations depends on the choice of discretiza-
tions, with some choices failing to converge; see e.g. [17,18].

The outline of this paper is as follows. In Section 2, we focus on the SFDE (1) with su-
perlinearly growing drift coefficient and the corresponding 6-EM discretization, and obtain the
existence of densities for both the exact solution and its discretization. In Section 3, we inves-
tigate the convergence of densities of discretizations. Section 4 is devoted to proofs of moment
estimates for the exact solution and its discretizations.

2. Densities of exact solution and its discretization
In this section, we focus on the SFDE (1) with superlinearly growing drift coefficient and

the corresponding 6-EM discretization, and investigate the existence of densities for both the
exact solution and its discretizations, based on the technique of the Malliavin calculus. We first
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present some preliminaries, including some notation used in this paper, a brief introduction to
the Malliavin calculus, and precise assumptions on coefficients.

2.1. Preliminaries

Throughout this paper, the following notation is used. Let N and N, denote the sets of the
non-negative integers and the positive integers, respectively. We use | - | to denote both the Eu-
clidean norm in R? and the trace norm in R?*™ and use (x, y) to denote the inner product of x, y
in R¥. Let 14(-) be the indicator function of the set A, i.e., 14(x) =1 for x € A and 14(x) =0
for x € A°. Denote by D (resp. Z) the Gateaux (resp. Fréchet) derivative operator and by D¢ the
Gateaux derivative operator of order o € N . Denote by D the Malliavin derivative operator and
by D“ the Malliavin derivative operator of order & € N_ . To simplify the notation, we denote by
C4:= (C([—1,0; RY), || - ||) the space of all continuous functions ¢ : [—7,0] — R4 equipped
with the norm ||¢|| = sup,¢[_; o) [#(s)|. For an integer k > 2, the space £((Cd)®k; Rd) denotes
the collection of all bounded k-linear operators from (C4)®* to R?. Namely, for every operator
B: (CH®* - R? with B € L((C")®F; RY),

BOuX1, .o  Aexx) = A1 Ag B(x1,....xx) VA eR, x; €CY,

and there exists a constant K > O such that |B(xq,...,x;)| < K]_[i-;] lx;llca for x; € ce.
Throughout this paper, K denotes a generic positive constant independent of the step size, whose
value may vary at different occurrences.

Now we give a brief introduction to the Malliavin calculus. Let T := [0, T] with T > 0. Let H
be the Hilbert space L%(T; R™) endowed with the inner product (g, h)py := fT g(t)Th(t)dt for
g,h € H, and Cy(T; R™) be the space of all continuous functions u : T — R with u(0) = 0.
By identifying W (¢, w) with the value w(r) at time ¢ of an element w € Co(T; R™), we take
Q =Co(T; R™) as the Wiener space and PP as the Wiener measure. For g= (gl, e, g’”)T e H,
we set W(g) 1= Y 1 Jp §°)dWk (1), where W(t) = (W!(t),..., W"(1))". Denote by S the
class of smooth random variables such that G € S has the form G = f(W(g1),..., W(gn)),
where f € C;‘;[ R™;R),gi € H,i =1,...,n. Here, C;‘;[ (R™; R) is the space of all real-valued
smooth functions on R” whose partial derivatives have at most polynomial growth. The Malli-
avin derivative of a smooth random variable G is an H-valued random variable given by
DG = Z?:l g-—g(W(gl),..., W (gn))gi, which is also an m-dimensional stochastic process
DG ={D,G,r € T} with D,G =Y _"_,0; f(W(g1), ..., W(gn))gi(r). For any p > 1, we de-
note the domain of D in LP(R2) by DLP(R), meaning that D7 (R) is the closure of S with

1
respect to the norm || G|y, := (E[|G|? + ||DG||Z])F.
For o € N, the iterated derivative D“G is a random variable with value in H ®  For
any p > 1 and « € N, denote by D*”(R) the completion of S with respect to the norm

] 1
1Glla,p = (IE[IGI” + Z‘;zl ||D-/G||I;]®j])P. Define D**°(R) := N> D*P(R), DPR) :=
Np>1Ng=1D*P(R), L7 (2; R) :=Np>1 LP(R2; R). Similarly, let V be a real separable Banach

space and define the space D7 (V) as the completion of V -valued smooth random variables with

. 1
respect to the norm |G|k, p,v = (IE[IIGII(), + Zf‘:l IIDJG||1;1®]-®V])F. In this case, the corre-
sponding spaces are denoted by D%>°(V), D> (V), and L>~($2; V) respectively. For simplicity
of notation, when V = R?, we abbreviate them as D*?, Dk Do, [~ ().
We introduce the one-sided Lipschitz condition on the drift coefficient b; see e.g. [19-21] for

such conditions on SFDEs.
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Assumption 2.1. There exist a constant L1 > 0 and a probability measure vi on [—t,0] such
that for any ¢1, ¢ € C,

0
(b(@1) = b(@2), $1(0) = 92(0)) = L1 (161 (0) — $2(0) > + / 610) = 62) Py (1))
-7
In addition, assume that b has continuous Gdteaux derivative, and that there exists a constant
B = 0 such that |Db(¢1) 2| < K(1+ ¢111P)lg2]l, where ¢1, ¢ € C? and K > 0.

We impose the globally Lipschitz condition and the uniform non-degeneracy condition on the
diffusion coefficient o .

Assumption 2.2. There exist a constant Ly > 0 and a probability measure vy on [—1,0] such
that for any ¢1, ¢ € C?,

0
(@) =0 @I = La(161(0) — $2(0) 2 + / 610 = 621) Pdva () ).

In addition, assume that o has continuous Gdteaux derivative, and that there exists some og > 0
such that

inf min  u'o(@)o(@) u>op.
¢eCd ueRd |u|=1

Remark 2.1. Once coefficients b and o have continuous Gateaux derivatives, it follows from
Assumptions 2.1 and 2.2 that for any ¢, ¢; € cd,

0
(Db(dp1)$, $(0)) < L1(1¢(0)]* + / ¢ (r)[*dvi (1)), )
0
Do (¢1)¢1* < Lo (19 (0)* + / ¢ (r)[*dva(r)). 3)

We also remark that the classical example

0
b(®) = —1¢(0) ¢ (0) + / P(r)dvi(r), ¢eC? )

for the superlinearly growing drift coefficient is included, and in this case,

0
Db(p1)¢ =/¢(S)dV1(S) —2¢1(0)" $(0)¢1 (0) — |1 (0) [ (0).

5
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2.2. Density of exact solution

In this subsection, we present that the exact solution of (1) admits a density. Under Assump-
tions 2.1 and 2.2, the existence and uniqueness of the solution of (1) can be obtained by using [22,
Theorem 2]. In addition, the functional solution of (1) has the following moment boundedness,
whose proof is given in Section 4.

Lemma 2.1. Let Assumptions 2.1 and 2.2 hold. Then for any p > 2,

E[ swp Ixf17]<kr.  sup E[ sup DS 17| <K
tel0,T] rel0,T] te[r,T]

Based on Lemma 2.1 and D,x¢ () = 0 for r > ¢, we derive that x¢(r) e D7 for all p > 1.
Hence, according to [1, Theorem 2.1.2], in order to obtain the existence of the density of the
solution of (1), it suffices to show the a.s. invertibility of the Malliavin covariance matrix yE (1)
of x£(¢), where

t
vE@) ::/D,xs(t)(D,xs(t))Tdr, t €0, T].
0

To this end, by virtue of [23, Section 3.3], we first prove that for some g > 0, there exists a small
number gp(g) such that for any ¢ < go(q), SUPy R, ju|=1 IP’(uTyE(t)u <e)<Krel, te[0,T].
This is stated as follows with ¢ = 1.

Proposition 2.1. Under Assumptions 2.1 and 2.2, for any € € (0, 1), it holds that

sup Pu'yE(u<e)<Kre 1€[0,T].

ueR4, |u|=1

Proof. For any r <1, by the chain rule of the Malliavin derivative (see e.g. [5]),

t t
D,x5 (1) =be(xf)D,xfds+/Da(x§)D,x§dW(s)+o(x§)1[0,,](r).
r r

2¢e

Fixing € € (0, 1) and letting &1 := o We obtain

t t
uT)/E(t)u > / uTDrxé(t)(Drxé(t))Tudrz / uTU(xf)(o(xf))Tudr
t—eq t—¢&1

t

t t
+2 / uT< / Db(x§)D,xéds + / Da(xﬁ)D,xde(s))(o(xf))Tudr.

1—&1

It follows from Assumption 2.2 that
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t
/ uTG(xf)a(xf)Tudr > g100 = 2e.

1—&1

This, along with the Chebyshev inequality, the Holder inequality, and the Burkholder—
Davis—Gundy inequality implies that for u € R? with |u| = 1,

P yE(u<e)

5]?(2’ / uT</tDb(x§)D,x§ds+/tDa(xf)D,xde(s))(a(xf))Tudr‘ 28)
1—¢; r r

t t
2
<8: 77| / uT/Db(xE)Drxfds(a(xf))Tudr‘ |
t r

]

§K82< sup IE[ sup |Db(xf)Drxf|4])%( sup E[|U(X§)|4])%

0<r<T r<s<T 0<r<T

t t
+8s7E]| f u' f Do (x) Dy xfdW (s)(0 (7)) " udr
t r

—£

1

+Ke( sup ]E[ sup |Do(x§)Drx§|4]>%( sup ]E[|ov(x§)|“])7 <eKr,

0<r<T r<s<T 0<r<T

where in the last inequality we used (2), (3) and Lemma 2.1. The proof is finished. O
The existence of a density for the solution of (1) is stated as follows.

Theorem 2.1. Under conditions in Proposition 2.1, for any t € (0, T, the law of x¢ (t) admits a
density, denoted by y(t, -).

Proof. Based on Proposition 2.1, we have

sup Pu'yEF@mu=0< sup Pu'yF@u<e)<Kre Vee(0,1),

ueRd Ju|=1 ueRd Ju|=1

which shows the a.s. invertibility of y£(¢) due to the arbitrariness of e. This, together with
x8(t) e D7 and [1, Theorem 2.1.2] completes the proof. [

2.3. Density of 0-EM discretization

In this subsection, we introduce the -EM discretization with 6 € (%, 1] for the SFDE (1), and
present the existence of its density. Without loss of generality, it is assumed that t is a multiple
of the step size A, and that T is a multiple of 7. Then there exist two numbers N, N € N such
that t=NA € (0,11 and T = N®A. Let fy = kA for k € {—N, ..., N*}. Introduce the 6-EM
discretization as follows: for any & € C¢,
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oA ) =£m), —N<k<O0,
YR (1) = yE 2 (0) + (1 — 0)b(yE ) A +0b(yi D

Tk+1

A+ 0 (M)W, 0<k <NA -1,
®)

&A
73

where 0 € (3,11, §Wx = W (tx41) — W (#), and y
the linear interpolation

is a C?-valued random variable defined by

A t‘_;,_] — S s —1t;
v (s) = Ly A g )+ Ly Aty 1) ©6)
A A
fors € [1j,1j41], j € {=N,..., —1}. We call {y52 ()}, the §-EM solution and {y; *}2,

the 6-EM functional solution. Under Assumptions 2.1 and 2.2, the solution of (5) exists uniquely
for any A € (0, zel—Ll)’ whose proof is similar to that of [21, Lemma 3.2] and thus is omitted.

Note that the 8-EM functional solution depends on the past state, causing the main difficulty
in the analysis of the density for discretizations. To deal with this difficulty, we implement a
dimensionality reduction argument of the interpolation. To this end, we introduce an (N + 1)-
dimensional linear interpolation space C™, which consists of piecewise linear functions from
[—7, 0] to R, with basis functions given as follows:

_ N
17N 5) = — (v = 9)1ay (),
ooy N N :
IYi(s) = —(s—tj—)1la; () + —(Wj+1 —)1a; (), j=—N+1.....-1,. (D
T T :
N
10(s) := G —D1a ),
where A :=[tj,tj41) for j=—N,...,—2,and A_; :=[t_1, 0]. Then by (6), the §-EM func-

tional solution yfk’A can be represented as

-1
N N
A=Y 1O =6 =)+ ) = =)

j=—N
0 .
= > 1Y)y s y), sel-1,0l. ®)
j=—N

Thus, the C%-valued random variable yi’A is transformed into a /" @ R¥-valued random vari-
able. We call it the dimensionality reduction. Here, C!™ ® R? denotes the tensor product space of
¢! and R4, An element u: [—7, 0] — R in this space is of the form Z(J).:_N I[j](-)uj, where
Il e and uj € R,

The following lemma shows the moment boundedness of the 6-EM functional solution, whose
proof is postponed to Section 4.

Lemma 2.2. Let Assumptions 2.1 and 2.2 hold. Then for A € (0, Ag) with some Ag € (0, 1),
p>2,and T >0,
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A A
E[ sw bS] <kr sup E[ sup 1D 007] < K
1€[0,T] rel0,7] telrT]

As a consequence, we obtain y&2 (1) e D7, Below we show the existence of the density of
discretizations.

Theorem 2.2. Under Assumptions 2.1 and 2.2, for A € (0, Ag) with some Ag € (0,1) and k €
{1,..., NA}, the law ofyg’A(tk) admits a density, denoted by pA(tk, ).

Proof. Similar to the proof of Theorem 2.1, it suffices to show that the Malliavin covariance
matrix of y&2(#), defined by

Tk

Vi 1= f Dy y® A (i) (D y* (1)) T dr,

0

is a.s. invertible.
Taking the Malliavin derivatives on both sides of (5), we derive from D,éWj = 1y 1. 11(7)
and the chain rule of the Malliavin derivative that for any r € [0, T'],

Dry* 2 (t41) = DyyS 2 (1) + (1 = O)Db (3, ) ey * A +6Db(y; ) Dry 5 A

+Do (yi; ) Dryp YW+ 0 (35 g1 ().

hbmwﬂmm@ﬂmuLfA—D&Ewal mﬂm»+ixﬁﬁmﬂﬂmihmq

eyl
YR (tig1) — ODb (g DDy A () 110 A

= DpyE (1) + (1 - Db ) Dy > ) ))& +6DbGi D IID, 48 ) A
j=—N

+0Db(yE2) Z 19D, 8 )8 + Do () D, Z 10155 1) ) s Wi
j=—N j=—N

A
+ 0 M1 ().

Denote by Id; .4 the (d x d)-dimensional identity operator. It is straightforward to see that

(aa = 6P UM a) A) Dy o2 (1)

0
= > Akt oG M (), ©)

j=—N

where
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Aok s = (1daxa + (1 = ODbGE ) (I Mdya) A
+6Db(y;; ! ”Iddxdm) D,y5 2 (1) + Do (v ) (O D, 52 (1)) S Wi,
Ao = (1= 0DbOL I i) A) Dy 2 (t-w)
+ Do (3 ) INDyE A (6 n)) 8 Wi,
and
A= (1= 0DbGE YU Mdgxa) A+ 0Db(yE )T M) A) Dy (1)
+ Do ()T D, Y52 (114) Wi

for j=—1,...,—N + 1. Here, IVNdy g, j = — ,0 are elements of C([—1,0]; R¥*d) =~
¢t @R? and thus can be acted upon by the operators Db(y,k ) Db(ytHl) It follows from (2)
that for any u € R? with u # 0, one has

0
W DbOL D g = Ly (jul? + / |11 qu2dvi ()

-7

s—1_1 2
=i+ [ [P 0 Wlan ) <221,
-7

where we used 7% (0) = 1. Then for A € (0, 40L1)
1T (aa = 6DLOE D T Ndge) A ) = (1 =20 L1 ) uf > 0,

which implies that Idgxqg — 9Db(Ytk+1)(l 0] Idgxq)A is invertible. Denoting A x := (Iddxd —
GDb(ylHl)(I[0 Iddxd)A) ! , we derive |[A1kllgRd:Rray € (O, m). According to (9), we

arrive at

Tk+1
Ver1 = f Dy 1) (D, v& (1)) Tdr
0
0 0

fAlk > A Y a) aoTar
0

j=—N j=—N

Tk41
+ f Ao (e GEMT (A0 Tdr, (10)

73

10



C. Chen, T. Dang, J. Hong et al. Journal of Differential Equations 459 (2026) 114104

where we used D, yg A(ty) =0 for r > 1. Since o (x)o (x) T is positive definite (see Assump-
tion 2.2), we deduce

LA LA
w yipru = u" Ao 0 Do i H T (AL TuA >0 as.

Moreover, utilizing again the invertibility of oo |, we have that y, is also a.s. invertible. This
finishes the proof. O

Remark 2.2. Under conditions in Theorem 2.2, if in addition assume that coefficients b and o are
smooth with bounded derivatives of arbitrary orders, then for each k € N, the law of y52 (1)
admits a smooth density.

3. Convergence of density for discretizations

In this section, we investigate the convergence of the density of the -EM discretization. We
first give the convergence of the density in L'(R?) when SFDE (1) has superlinearly growing
drift coefficient and multiplicative noise. Then we show that for the case of linearly growing drift
coefficient and the additive noise, the convergence rate of the density is 1.

3.1. Convergence of density

In this subsection, we focus on the SFDE (1) with superlinearly growing drift coefficient and
the multiplicative noise, and investigate the convergence of the corresponding density for the
6-EM discretization. We present the following assumptions on the second-order derivatives of
coefficients and on the Holder continuity of the initial value.

Assumption 3.1. The coefficients b and o have continuous Gdteaux derivatives up to order 2
satisfying

ID*b(¢1) (b2, $3)] < K (1 + 1P~ DY) a3,
1D?0 (¢1)(¢2. 93)| < K21l 3],
where ¢1, ¢, P3 € ¢l K >0, and B is given in Assumption 2.1.
We note that the example given in (4) satisfies Assumption 3.1 with 8 =2.

Assumption 3.2. There exist constants K > 0 and p > 1/2 such that

|E(s1) —E(s2)| < K|s1 — 521”,  s1,82 € [—7,0].

The main result on the convergence of the density concerned in this subsection is stated as
follows.

Theorem 3.1. Let Assumptions 2.1, 2.2, 3.1 and 3.2 hold. Then we have

lim sup /|pA(tk,x) — p(tg, x)|dx = 0.
A*)00<tk§TRd

11
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Proof. The proof is based on the localization argument and is divided into three steps.

Step 1. Introduce the smooth cut-off functional Og : cd - [0, 1] with continuous derivatives
and compact support. For R > ||£]|,let ®r(x) =1 for ||x|| < R and Or(x) =0 for || x|| > R+ 1.
Then we consider the truncated version of (1) on [0, T],

A8 R (1) = bR Fydt + o REFYdW (@), 1€, T,

XR@y=£, te[-1,0], (11)

where bR (-) := @g(-)b(-) and o R (-) := O (-)o () are globally Lipschitz continuous for each R.
Moreover, the coefficients »® and o R satisfy

0

D6" @02l < K (102000F + [ 16201701 (). (12)
0

D0 @628 = Ku(1020007 + [ 162 Pa(r) (13)

where @1, ¢ € C?. In addition, the §-EM solution and §-EM functional solution for (11) are de-
noted by { yE AR (i)} pe_y and { y;’i’A’R},‘zO:O, respectively. We need to estimate the error between
x5 R(2) and y52R(¢) in || - ||1.2. Here we recall the norm ||G||1» = (E[|G|> + ||DG||§,])% for
an R¥-valued random variable G (see Section 2). For the strong convergence errors of the -EM
solution and its truncated version, similar to the proof of [21, Theorem 5.3], using Lemmas 2.1
and 2.2, we deduce from Assumptions 2.1, 2.2 and 3.2 that

E[ sup_ (@) -y 2 @l*] = kra® (14)
0<t<T
and
E[ sup () -y Ral*] < Ky g 1)
0<tx<T

Now we estimate the term
T
E[lI Dx5R(5) — DyS 2R @)13] = / E[1D,x* R (1) — Dry® 2R (1) ]dr.
0

Define the auxiliary process of the 6-EM discretization as follows:

AR = &), —N<k<-1,

AR
EARW) = Yo AR () — bR (3

A, 0<k<NA

Then for 1 <k < N2,

12
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AR AR
EAR@) = E8R o) +bROGES A + R G F)sWisr, 1<k < N2,

and the continuous version {z5%R(1)},>_, satisfies

AR £ AR

EAR@) = EAR ) 4 by Y — 1)+ o G MW @) = W),

for t € [tx, tir1), 0 <k < N2 with the initial datum

Tk — 1
ZE,A,RU) =X " EAR .

— lk
5AR
A

(Tr+1)

for t € [tx, tx—1), —N < k < —1. Then by the Holder inequality and Burkholder—Davis—Gundy
inequality, we have

E[Dpx®*(0) = D2t SR (1))

t
<K(i— r)IE[/ DR (x5 F) Do xR — DR (35 R D,y 1 R|2ds]

R A,R
+ KE| /|DUR(x§R)D xER = Do R D,y M s

+ KE[lo® ()10, 0) = o F 05, D0, . (16)

where we used the notation [s | :=# for s € [#, tx+1). It follows from the Taylor formula that

AR AR
‘DbR(xf’R)Drxf’R—DbR(yiJ YD yEt ‘

AR
< / DR (cx5:FK 4 (1 — )y S 2 R) (bR — (SR ybRygc

£,AR
Yis)

£,AR

‘DbR( (DrXE’R - Drym )‘

A,R
< KgllxE R — g5 MR D Ry + KR(|Drx§’R(s> — D, ys R (s

0
1
+ / DR ) = D @) Pan )

where in the last inequality we used the boundedness of operators Db () (see (12)) and D2pR ()
on their compact support {x € ce: x|l < R + 1}. Similar to the proof of [24, Lemma 3.3], we
obtain sup, , 7 ]E[||Dryf”A R _ D252 < K7 g A. Then

13



C. Chen, T. Dang, J. Hong et al. Journal of Differential Equations 459 (2026) 114104

AR AR |2
E[[Db" 8 F)Dycf R — DBR G Dy ]

AR
< KrE[IIx&F — y[; PRI Dex R 2] + KRE[wer’R(s) — D, 2R

0
+ f D5 R () = DyE AR Pduy ()] + K g (17
—T

Similarly, by using (13), we deduce

2
AR AR
IEH'DO’R(XSS’R)D,»XSS’R—DO‘R(nyJ )D,yiJ ’ ]

AR
< KRE[x5 R — y5 MR D,xf R 2]+ KRE[wrxé’R(s) — D, 28R ()

0
+ / D5 R () — DyE AR ()P ()| + K g (18)

-7

Inserting (17) and (18) into (16), and then using Assumption 2.2, Lemmas 2.1 and 2.2, and (15),
we obtain that for A € (0, A;] with some A; € (0, 1),

E[1Dx5R (@) = D252 R 0]

T T
R AR i R i
sKT,RA+1<T,Rf(JE[||xf;J —yup ||“])2ds+1r<r,1e/(IE[nxf;J — x5 K )147)2ds
r r
T
,R
+K1.R f E[|D,x% R (s) — D252k (5)Plds + Kr.g sup B[l — x5 K2
0<s<T
/
T

< Kr.na+ Kr [ E[IDx(s) = D24 R (o) Pas.

r

Applying the Gronwall inequality, we arrive at E [|D,x5’R(t) — Drzf’A'R(t)|2] < Kr1.RrA, which
implies for #; € [0, T'],

T
[ B[P0 = D35 MR ar < K (19
0

It follows from (15) and (19) that

1
sup [ly5 AR5 — x5 R (@)1l 2 < K rA2.
0<t<T

14
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Step 2. In this step, we aim to apply [16, Lemma A.1] to estimate the error in L' (R?) between
densities of x5-%(-) and yé'A’R(-). To this end, we first claim that for o € (0, 1),

T
-0
B[ ( [ 105 0Par) ] < Krre. 20)
0
In fact, by means of Proposition 2.1 with u = é(l,...,l) € RY, one has that

IF’([OT |Dx5R(1)?dr < &) < K7 ge for any ¢ € (0, 1). Hence for any ¢ € (0, 1), we derive
that

e¢]

T
ZnQ_IP((/ IDxSR () dr) ™ = n)
0

n=1

o0
<1+Krr) n®'n"' <Kr g, @21)
n=2

Then for any o € (0, 1),
T
E[(/|Drx5~R(t)|2dr)‘Q]
0

00 T
<14+ (n+ 1)9]P<n < (/ IDxER)Pdr) ™ <0+ 1)
0

n=1

n=1

00 T
<24 3 (@ ¢ = n0B(( [ 105K Par) ™ =)
0

T

o0
< 2+Qan_1P((/ 1D xER () Pdr) ™ > n) <K7Ron
n=1 0

where in the last step we used (21). This proves the claim (20).

Furthermore, similar to the proof of Lemma 2.1, it follows from Assumptions 2.1, 2.2 and 3.1
that x¥ (1) e D>* for all t € [0, T]. Then, by [16, Eq. (6.1) and Lemma A.1], we arrive at

sup / PR (e, x) — pR (e, 0)ldx = sup dry OF 2R (1), x5 R (1)

O<t <T O<n <T
Rd
£,AR &R _22i2 B
<Krr sup [Iy*55 () — x> @)l < Kr A%, (22)
0<u<T

15
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where d7y (X, Y) denotes the total variation distance between two R9-valued random variables
X and Y, and pR(tk, ), pA’R(tk, -) are densities of x5-%(#,) and yg’A’R(tk), respectively.
Step 3. Denoting two sequences of events by

Qri={weQ: sup |x*(t)| <R},
1€[0,T}

Qryi={weQ: sup [y"2w)| <R},
1.€[0,T]

we have limg_, 0 P(Qr) = P(Q) = limg_.00o P(Rg,,) = 1. According to [16, Eq. (6.1)], we
derive

sup / P2 (16, X) — p(te, ©)|dx = sup dry (™5 (1), x5 (1))

0<tk<T O<t <T

<AP(Q%_ ) +2P( sup [x5(t) — y5 2 ) = D4 sup dry (5 AR (@), x5 R (1))

0<t <T 0= =T
E[supy< x5 ()] 2+2
<40zt WOTD o sup (x5 — 352 (0P + K7, 5%
(R-1) 0<# <T
Kt
= ®-17

+ KrA+Kr, RAZL’Jr2

where we used Lemma 2.1, (14), and (22). Letting A — 0, R — oo, we obtain the desired
argument. O

Remark 3.1. It follows from the proof of Theorem 3.1 that when the coefficients b and o are
globally Lipschitz continuous, the convergence rate of the density of discretizations is almost
1/4 in L' (R?). We will show that for the additive noise case, the convergence rate could attain 1
in the pointwise sense (see Theorem 3.2).

It is known that the estimate between densities of random variables is closely related to the
total variation distance of random variables. Let

dry (X, Y):= sup [E[®(X)] = E[®M)]]
DBy (H).[|Plloo=]

denote the total variation distance of two H-valued random variables X, Y, where X = R or
H =C4, By(H) is the set of bounded and measurable mappings from H to R, and || ®| s =

sup, e [P (x)]. As a result of Theorem 3.1, we obtain the convergence in the total variation
distance

lim drvoﬁ(zn) YA () = (23)

While for the 6-EM functional solution, as a C¢-valued random variable, the law does not con-
verge in total variation distance, namely,

16
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limsupdzy (x; , yi™) > 0. (24)
A—0

In order to illustrate (24), we consider the test function 1“'"”(: « <oc0}» Where
12—

4.0 RY)

2

Ci 2([—é, 01; Rd) is the space of all continuous functions f : [—é, 0] — R¥ that is 1 _Holder
/ 2 P 2 2

continuous, equipped with the norm 1%llc, (-4 01 RY) = SUPr (-4 01525 % On the

one hand, the 8-EM functional solution satisfies

1
A |t —s|2
A S LA IR A (0]
t,s€[—5 0,15

<Cw)A™2 <00, wEe L,

due to the definition (6). On the other hand, by the Kolmogorov continuous theorem, there is a
modification of the exact solution such that the path is almost surely (% — €)-Holder continuous

with any small constant € € (0, %). This leads to

Pt + 1) = Xt + )] _

§ _
”xt,, ”Cl/z([—%,O];]Rd) = sup 00, a.s.

I
t,5€[—5 01,155 |t —s|2

Hence, recalling the definition of the total variation distance, we arrive at

A A
dry (s v ™) 2 [PUE N,y oy < 00) = PAYE e, -8 oprey <0 =1,
which shows (24) by taking the upper limit.
3.2. Convergence rate for linearly growing drift and additive noise case

In this subsection, we consider the additive noise case and study the convergence rate for the
density of the -EM discretization, based on the test-functional-independent weak convergence
analysis of the discretization. Assumptions on the coefficients considered in this subsection are
given below.

Assumption 3.3. The noise of (1) is of additive type, i.e., d = m, and there exists some constant
& > 0 such that for any ¢ € C¢, o (¢) = 61dgxq.

Since {—W (t)};>0 is also a Brownian motion whenever {W(¢)};>¢ is a Brownian motion,
we only consider the case ¢ > 0. The next assumption imposes higher-order regularity on the
coefficients, which is needed to obtain estimates for the higher-order Malliavin derivatives of the
solutions. Recall that the definition of £((C%)®*; R?) is given in Section 2.

Assumption 3.4. The coefficient b has continuous and bounded derivatives up to order 4 satisfy-
ing SUPyccd ||Dkb(¢)”£((cd)®k;Rd) < K fork € Ny with k < 4. In addition, there exist a constant

np € Ny and probability measures vé on [—1,0] fori e {l,...,np}, such that the coefficient b
satisfies that for any ¢1, ¢ € C%,

17
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0

np
D@2 =Y / Ky (@12 (5)dvi (s), (25)

i=1";
where k; :C4 — RY4% gatisfies

sup sup sup ||leé(¢)||£((Cd)®l;Rd><d) 4+ sup sup |kzi7(¢)| <K.
ie{l,...,np}le{1,2,3} peCd iefl,...np} peCd

We give an example of coefficient b that satisfies (25). Let b have the form: b(¢) =
l;(fi)r ¢(r)dv31 (r)) for ¢ € C¢ with some function b : R — R<. Then for ¢, ¢» € C?, we have

0 0
Dbgner = [ Db( [ 010wk paord o)

The convergence rate of the density for the 6-EM discretization is stated as follows.

Theorem 3.2. Let Assumption 2.1, Assumption 3.2 with p =1, Assumptions 3.3 and 3.4 hold.
Then there exists A > 0 such that for A € (0, Aland T > Ty,

sup [p(T,z) —p™(T,2)| < K7 A,
zeR4

In(3) . j
where To := sy with Ly == 8up; (1 ) SUPgecd 1Ky, (#)] < 00.

Remark 3.2. Under conditions in Theorem 3.2, we can also obtain (23). In fact, it follows from
the Scheffé lemma and [15, Section 3.1] that for T > Ty,

/ [p(T, 2) = p™(T, 2)ldz — O as A — 0.
R4

The proof of Theorem 3.2 is based on a weak convergence analysis of the -EM discretization.
We would like to mention that there have been some works devoted to the weak convergence of
the EM discretization for SFDEs. For instance, weak error estimates have been obtained with
the upper bound depending on a given test functional; see e.g. [25,26]. When analyzing the
convergence rate of the density of discretizations, an effective approach is to apply the Malliavin
integration by parts formula to derive a test-functional-independent weak convergence analysis;
see [15] for the relevant study of the stochastic heat equation. For SFDEs, the high degeneracy of
coefficients makes the derivation of the Malliavin integration by parts formula challenging. In this
subsection, we will fully utilize the dimensionality reduction argument presented in Section 2 to
establish the negative moment estimates of the determinant for the Malliavin covariance matrix,
which allows us to derive the integration by parts formula; see Lemmas 3.3 and 3.4 for details.
Then combining a priori estimates of both the exact solution and the discretization, we obtain
the test-functional-independent weak convergence analysis for the -EM discretizations.

18
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We begin with presenting the relation between the error of densities and the weak error of
discretizations. According to [10,15], we have the following approximation of densities for both
the exact solution and discretizations: for fixed T > 0 and z € R¥,

p(T,z) = nli)rgo / &1y —2)p(T, y)dy = nl_i)rgolE[gn—l (5(T) - 2)],

R4
p2(T.2) = lim f g1 (y = D™ (T. y)dy = lim E[g,—1 (5**(T) — 2],
R4

where g, denotes the Gaussian density with mean 0 and covariance matrix ¢Idgxq. This gives
that

Ip(T.2) = p2(T, )| = lim |E[g,-1(:*(T) = )] = Elg,1 52T =2l (26)
Noting that for any n > 1, the function g,-1(- —z),z € R4 belongs to

‘5::{f:Rd—>R‘feC%l(Rd;R),EIF:RdaRwithOsF§lsuchthat

X1 Xd
Fov = [ [ fonsodan) @
we have
Ip(T,2) — pA(T, 2)| < ;u% IELf (5 (T)] = ELF OS2 (T (28)

Hence, to obtain the convergence rate of the density, it suffices to estimate the error
[ELf (x5 (T)] — ELF 52T

To this end, we give some frequently used notation hereafter. Let ¢(z;#;, n) and ¢ (¢, n)
denote the solution and functional solution of (1) at time ¢ with initial value n € C% at t;,
D (1 t;,m) and Py (¢, n) denote the 6-EM solution and 6-EM functional solution at time #
with initial value n at #;. For Y € C([—1, T]; RY), we can define Y™ () as the linear interpo-
lation with respect to {(z, Y(tk))},i\’:A_N, whose segment process YrI"’(~) eC? forr €[0,T] is
defined by Y,I"’(s) =Y +5),5 € [—1,0]. In addition, for ¥ € C([—7, T]; RY), we know
that Y, is C?-valued for r € [0, T]. In particular, when Y is a C([—7, T]; R9)-valued ran-
dom variable, Y, is a C?-valued random variable for r € [0, T]. We always use the relation
" (15 t), @1 (0, 1)) = @™ (11,0, 1) = @(1;; 0, £1™) for I > j > 0 in the decomposition
of the weak error.

Let f € €. By relation ¢(T’; 0, &) = ¢!™ (0, £)(0) = ®(T; tya, 9™ (0, £)), we have

tNA INA

E[f (5 (T)] = ELf 52 (TN] = ELf (9(T5 0, )] — E[f (S(T;0,£))]
=E[f(®(T:tys,¢, " 0.ON] —ELf(D(T:1ya,¢[" (0.6))]

+ELf (@(T: tya, ¢!} (0.6"))] = ELf(@(T:0,6)]. (29)
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We split E[ f (®(T; tya, gol’” (0, M) — E[f(D(T; 0, £111))] further as

ELf(P(T: tya, 9" (0,61 —ELF(P(T30,5))]

NA
=" [ @5 1, 0" O.6™ )] = ELF (@(T: i1, 0] 0.6 ™)1}
i=1
NA
=Y E[E[£(@(T:1.9{" (-1, 01, (0.6™))))
i=1

— F(@(T: t;, @y, (ti—1, 9™ (0,E"™))))

al

I
™Mz

1
f (T 1, YO )DI(T; 7, Y7)
0

(e i1, @1, 0.67) = @y i1, 01 0,6 |d (30)
where we used goé”’(t,-_l L r_ (0,E1M)) = (p,’i”l(O, g1, and
Y=o (o1, @, (0,6 + (1= )@y, (11, 0™ (0, €7)). 31
It follows from gpl'”(tj; 0,&nty = @(tj; 0, g1nty that
o (i1, 9, (0.67) = @y, (i1, 9" (0.6)

0
= 2 1V st 0,6 = @G 15 i1, 9] (0,67
j=—N

=1t 11 9, 0.6) = D3 -1, 0" (0,6"))), (32)

where I1/1(.), j € {=N, ..., 0} are basis functions given in (7). Note that forany i =1, ..., N2,

ot ti—1, @1, (0, 1)) — Dt 11, wlnt (0, &)

t; t
= / b(‘Pr (t;—1, @i (0, &-1”’)))(11’ — / [(1 — Q)b((ptlift] 0, %-Int))
ti—1 fi—1
+ 0Dy (11,91 0.6 ) |ar =T} + T; . (33)

where
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ti

I, = / [b(@r (tim1, @1, (0,E"))) — b(g/[™ (0,£""))]dr,
ti—1
t
I, ::9/[b(¢t{f§ (0, ™)) = b(®y, (ti—1, ¢[™ (0,&"")))]dr.

ti

According to (29)—(33), we derive the decomposition of the weak error

E[f S (T)]—E[fO52(T)]
=E[f(D(T; tya, ¢{" 0, )] = ELf (D(T: tya, /% (0,£)))]

NA 1
+ / E[(f/@(Ts 1, Y DDO(Ts 11, YE), 10T + Tj ) |ds
i=1}

=To+Zp +Ipy, (34)

where

Ty :=ELf(D(T:tya. ¢y (0.5))] = ELf (@(T: 138, 97" (0.6))],

na ]
i=1Y

NA 1
Tpo=Y / E[<f/(<b(T; 1 YENDO(T: 17, Y5, I[O]I,iﬁ>]dg.

i=1 0

Based on this decomposition of the weak error, we will prove that the test-functional-
independent weak convergence rate is 1 (see Theorem 3.3). Then the proof of Theorem 3.2
follows from (28). To proceed, we make some preparations in the following subsection.

3.2.1. A priori estimates

This subsection gives some moment estimates for derivatives of the exact solution and dis-
cretizations. In addition, we also present the negative moment estimates of the determinant of
the Malliavin covariance matrix for discretizations. We begin by showing that the moments of
high-order derivatives of the exact solution and discretizations are bounded, which are stated in
Lemmas 3.1 and 3.2. The proofs are omitted since they are similar to those of Lemmas 2.1 and
2.2; see also [15] for related results.

Lemma 3.1. Let o € {1, 2}. Under Assumptions 2.1, 3.3 and 3.4, we have that for any fixed p > 2,
there exist p > p such that for any n € C¢,

sup E[IDx} - )% < KrlInl*” (1 + E[E]>]),
te(0,T]
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sup E[|Dgsy....ryDxs - 0| *]

te(0,T]

.....

o
<Kl (140 3 ElDg, . rEIP71), 71 re €10,T0,

k=01<ij<--<iy<a

2
sup  E[|Dry.ryyxs 1271
te(rivr,T]

<KT(1+Z > E[uD(r,.l,...,rik)é||2ﬁ]), ri.r €[0, T,
k=0 1<ij<--<ix <2

where é(r) e D2? forr € [—t, 0] and we adopt the convention that D(,l.1 ,_._,,l.k)é = éfor k=0.

Lemma 3.2. Let « € {1, 2,3} and a € {2, 3,4}. Under Assumptions 2.1, 3.3 and 3.4, for p > 2,
there exist p > p and A := A(p) > 0 such that for any A € (0, Al and n € C¢,

sup E[[Dy; ™ - nlI?’1 < Krllnll*” (1 + E[IE >,
t€(0,T]

E A
sup E[I| Dy, Dyi ™ - 2P
t,€(0,T]

o
<kl (143 Y ElDg,rpEIP71), r1re €10,70,

k=01<ii<--<i) <«

sup  E[|Dg,,... mytk 212

txe(rV-vrg, T]

a
<kr(14Y > ElDwnp€IP). rieira €0.71,

k=0 1<iy <~’~<ik§&

where §(r) e D*2P forr € [—t, 0] and we adopt the convention that D(r,-] ""’rik)%- = éfor k=0.

The following lemma shows the negative moment estimates of the determinant of the Malli-
avin covariance matrix for the discretizations.

Lemma 3.3. Let Assumptions 3.3 and 3.4 hold. Then for any u € R? with |u| =1 and A €

1
(07 2Lbnb9 ])

1 P
" Vo, youl = 7T ATHE?, j=1,...,N%, 35)

where L and Ty are given in Theorem 3.2, and Y jg is given in (31). In particular, we have
det(V@(T;tj,yf))fl € L® ().
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Proof. We first prove (35) for the case of d = 1. For r € (f, tx4+1] with j <k <i — 1, we have

i—1
D, ® (i t), ng) = Z [(1 — 0)Db(®,, (t;, ng))D,CID,n t;, YJS)A
n=k

+ODb(®;,,, (1, YD,y (1, YA 4+ 6

It follows from (8) that D, &, (¢}, Yf ) =30 1D, (s 1, ng ), which together with As-

sumption 3.4 implies that

D, ®(1;; 1, ng)

i—1
:Z[a —0)2 Z /kb(CD,”(tj,Y.g))I[”(s)dvf(s)Drd>(tn+1;tj,ng)A

n=k {=11=—N

s Z / K@y, (1, YDA 6Dy Btnsa 1517, YA 46, (36)

t=11=—N",

Step 1. To derive a lower bound of D, ®(%;; t;, Yl.g ), we need to present a discrete comparison
principle. Define a two-parameter nonnegative sequence {Af.‘ Yo<k.i<nya as follows: when i <k,
define Af.‘ =0; when 0 <k <i — 1, define

i—1 nyp

Ak _LbAZZ Z Vi(AI-1+ AD((L—0)AY,, +0A% ) +6,
n=k t=11=—N

where we let vf(A_ N—1) = vf(Ao) = 0. It follows from the definition that when i; — k| =
in —ky >0, Afll = Afczz =: A, —,. Then

np 0
Aisg=AN=L,A Z Z VE(A_1 + A (1 = 0)Aim 11—k + 0 Air1—k)
t=11=—N
i—2 np 0
+ LpA Z Z Z V(A1 + AN =) Apgi—k + 0 Angipi—k) + 0
n=k t=11=—N
np 0
=LpAY " Y vi(A 4+ AN (1= O Ai ik +0Aia) + Ak
l=11=—N

This gives that for any A € (0, ng,,b)
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np np 0
-1
Aicg= (1= L0 Y i A-)) Ao + LoA[ A =0) Y 37 vi(Ar + Anx
(=1 {=11=—N
np
Aiciii+6) Z V3(A12 4+ A Ai kg 1]]
{=11=—N+1

Lp0 Any,

By the relation (1 — Ly AOnp)~ =1+ = and the iteration, we obtain

Ly AbOny,
Ly6Any m 0
Aig <4+ —L7200 3 pe i+ (= LyAOny)~'L A[l—e
zk_(+1_LbA9nb)1kl+( pAOR) T LAl (1=6)) "
t=11=—N
np 0
VAL ADA k0 D V(Ao + Alfl)Aikafl]
t=11=—N+1
i—k—1 np i—k—1
L6 Any 1
< 1 — LyA6np) "' LyA [ 1-6
At Y — LanbAnJr( p20np) 'Ly > 3 [ (1 - 0)x
n=1 =1 n=1
0 0
Z V(A1 + ADAns +6 Z vf(A1—2+A1—1)An+1]~
I=—N I=—N+1
Noting that
i—k—=1 0 0 i—k—1
DD A+ AD A=) D V(AL + ADAny
n=1 [=—N I=—N n=1
i—k—1 i—k—1
< Z Z V(A1 + AD Ay <2 Z Ay
—Nm=—

and A; = (1 — Ly Y 32 vi(A_1)AO) 716 < (1 — Ly AOny)~'G, we arrive at

i—k—1

1~ Lbnb(9+2)
ik < (1 — LpAOnp)~"
Al k= ( b np)” 0+ LbA@I’lb nX:; An

Applying the discrete Gronwall inequality, we deduce

Lynp(0 +2)AG —k—1) }
1— LyAbOny
Lynp(@+2)AG —k —1) }
1 — Ly ABny,

Air<(1— LbAan)q& exp{

=: Kpexp { (37)

When j <iy < ki and r € (%, tx,+1], we have D,@(lil;tj,ng) =0= Afll. This gives
|D, @15 t), Yj.5)| = AZ‘ fori; —ky <0and r € (#, tx+1]. Now we claim that
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1Dy @851, Y]] < Af, foranyr € (. teq1l, j <k <i—1. (38)
We prove the claim by the induction argument on i — k. Suppose that (38) holds for integers k, i

satisfying 0 <i —k <i — k' — 1. Then we show that (38) holds for i —k =i — k’. By (36) and
the induction assumption, we have | D, ®(t,; ¢;, ng)| < Aﬁ/ holds for all n <i — 1, which yields

1D @551, Y7

i—2 np
<y > Z Lyvi(Ar—1+ AD((1 =) AL A+04Y, A)+6
n=k' {=11=—N
np 0
H (=0 > Lyvi(Ai + ADAL A
{=11=—N
np —1 np
+03 3 LA+ ADAY A+ LAY vi(A_DID (11, V).
{=11=—N =1
Thus we derive
np np 0
1D, @517, YOI = (1= LpAd Y vi(a-)) ' [Al + LA =0) Y > viar
=1 {=11=—N
np —1
+ADAY L+ Lea0 Y 3 v +A,)A{.<+,] =AY re il
{=11=—N

This finishes the proof of the claim (38).
Step 2. From (36) and (37), we obtain

1D @835, Y7

i—1 np 0
25— LAl D30 30 (=05 (Arr + AN AL +6v5(Am1 + ADAL, )|
n=k {=11=—N

Lynp(0+2)A(i—k)
_ Lpnp6+2)A exp{—} —1
2 —2Lm (1 =0)Koe TR 40K )=y Gy

exp{ =7, Adn,

- 2 Lpnp(0 +2)AG — k) .
>0 — ——|( ex —1)o
0+2 1— Ly ABny,
- Lynp(0 +2)AG — k) .
>0 — ( exp —1)o,
1 — LyABny

where we used ¢* > x + 1, x > 0. Then |D,CI>(t,-;t],Y§)| > a when A < 2L19 0 andi —k <

n(3)

ST, OFA - Lhus,
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T
YoTvs) ::/ Dy ®(T; 1}, Y7 ) (D (T 1), Yf))Tdr
0
T
> [ Dy vHRar = AT,
(T'-To)VO

3
where Ty := %. This finishes the proof of (35) ford = 1.

For the case of d > 2, by replacing D, ® with u ' D, ® in the above argument, one can also
obtain (35).
Moreover, it follows from (35) that

1
. _ - T 1 ~2
)me()/@(T;;_i,ng)) = ueRI?,IE\:l u Vcb(T;tj,yj?)“ = 4(T ANTp)o”,

which implies

-1 1 ~2]7¢
|det(Vary,vs) ' <[ T A TG
Thus the proof is completed. O
With Lemmas 3.2 and 3.3 in hand, we present the following Malliavin integration by parts
formula, which plays an important role in the test-functional-independent weak convergence

analysis.

Lemma 3.4. Let o = (a1, ...,aq) be the multi-index with aj € N, j =1,...,d and |a| :=
Z?:l ;<2 fe¥ and G| e D+ Then under conditions in Lemmas 3.2 and 3.3, there
exist a constant Ay € (0, 1] and an element H\y |11 such that for A € (0, Az], i e Nwithi < N&,

E[8u f(®(T: 11, Y))G1] = E[F(Q(T: 1, Y) Hia 41 (P(T: 11, ¥,), G1)], (39)
where F is an antiderivative of f given in the definition of ¢ (see (27)). Moreover, for T > Ty,
|E[0e f(D(T: 1, Y )G 11l < KIIG1ljaf 1.2 (40)
where Ty is given in Theorem 3.2, and Yf is given in (31).

Proof. According to the definition of €, we apply [1, Proposition 2.1.4, (2.29)—(2.32)] to obtain
(39). Moreover, for g > g1 > 1, there exist constants 11, 72 > 0 and integers n1, no > 0 such that

< K (g1 )l ety ye) I IDOT: 6 YOI L 1G a1.-

It follows from Lemmas 3.2 and 3.3 that for any A € (0, Az] with Aj := AN m,
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S 1 o] dm
| Hiag1 (@(T 11, ¥5). G)llgy = K[ 3T AT0)6” | 1G 1 lat1.4-

where A := A(n) is given in Lemma 3.2. Taking ¢; = 1 and g = 2, we finish the proof. O

3.2.2. Weak convergence analysis
In this subsection, we present the test-functional-independent weak convergence rate of the
6-EM discretization.

Theorem 3.3. Let conditions in Theorem 3.2 hold. Then there exists A > 0 such that for A €
O,Aland T > Ty,

sup [E[f (5 (T)] —E[LFOS2(T)]] < K7 A,
fe€

where Ty is given in Theorem 3.2.

Proof. Without loss of generality, we take the parameter np, in Assumption 3.4 to be np = 1. The
case of np > 1 can be proved similarly. In order to obtain the test-functional-independent weak
convergence rate, we need to estimate terms Zo, Z,,, and Zj ¢ in (34) by means of the Malliavin

integration by parts formula (39) and the inequality (40).
Estimate of term Zy. Recalling

To=ELf(®(T:tya, 9"y 0.ON] —ELf(@(T:1ya, 9" (0.6))],
it follows from (40), Lemma 3.1, and ||§ — £/"|| < K A that

1Zol = [ELf (9" (tya30,6)] — ELf (0 (tya; 0, 6]

1
< [[E[£/@™ tnai0. 58 4+ (1= 6D tysi 0. 58 + (1 = ™€ — £ ]|
0

1
<K / 1D (1ya: 0. & + (1 — ™) (E — E1M)hade < Ky A

Estimate of term 7. Recalling the definition of 7}, we have that

Ib—Z/ I @T5 1, YEND(T: 13, Y ), 10 //Db(zﬁl

i=1yp ti-1

((pr (li_l, o (O, glnt)) (lem (0 é[!ll))dﬁldr>:|d§,

where Z‘le = B1g (ti—1, @1, (0, 1)) + (1 — ,31)(,0[1’”’ (0, €1, To estimate Z;,, we need to split

go,(tl_l,goti_l (0, &1ntyy — (p,l’”l (0, &) for r € [ti_1,1;), based on the definitions of the exact
functional solution and its linear interpolation. For s € [¢;, ;1] C [—7, 0], we have
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tivy1—S

s —1t;
9" (0,67 (s) = Q(tiyj—1;0,6"") + TNRALE 0,&M). 1)

We also have r + s € [tj1j_1,t+j+1), which leads to the following two cases. For notational
simplicity and to illustrate the main idea of the proof, we suppose #; 1 j_1 > 0. The case t;j_1 <
0, which involves contributions from the initial values on [—7, 0], can be treated similarly.

Case 1: 7 +s € [tjyj—1,ti+;). In this case, by the integral form of the exact solution of (1),
we have

or i1, 04, (0,EM)(s) = (r + 550, &™)

r+s r+s
=@(tirj—1; 0, + f b(py(0,E™))dv + / &AW (v).
litj—1 fitj—1

Hence, combining this with (41) yields

Or(ti—1. 1, (0,E™))(s) — 9" (0,67 (s)

ti—3S
=L (tiy:0,6") — @(tigj—150,E™))

A

r+s r+s
+ f b(py(0,&"))dv + f FdW (v).
litj—1 litj—1

Case 2: ¥ + s € [ti1j, ti+j+1). In this case, by the integral form of the exact solution of (1)
again, we have

r+s r-+s
0r(tim1s ¢, (0.E™))(5) = (1143 0, E17) + f b(o (0, £ ))dv + / &AW ().
litj litj

This, together with (41) leads to

@r(ti—1, 91, (0, €M) (5) — 9" (0, ") (s)

tivy1 —S
= ’*A @iy 30, €M) — @(ti4j—1; 0, 1))

r+s r+s

+fb(qov(O,%””))var/&dW(u).

litj litj

Combining Case 1 and Case 2, we deduce

Or(ti—1, 1, (0, E")) — [ (0, £
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1 litj
= 3 i O 2 f b(u(0, £™))dv
j==N litj-1
fitj r- 4
+ f &dW(v)>+ f b(@y (0, £M))dv + / &dW(v)]
livj—1 fitj—1 fitj—1
litj titj
im0 O L5 ( f blgu(0,€"))dv + f AW ()
litj—1 fitj—1
4 rt-
+/b(<pv(0,$1m))dv+/5dW(v)]}.
liyj lit+j

Inserting the above equality into Zj, we are in the position to estimate Z;. We only estimate the
sub-term

va 1 i 1
Ig;:Z/IERf’(d)(T;ti,Yf))DdD(T;ti,Yig),I[O] / /Db(zfi)
i=1 0 ti—-1 0
. litj
tj - Int
> Nirra 0O [ bu(©, 6 dvapiar) Jas,
j:—N ti+_/—1
the sub-term
ya 1 ti 1
7] ;=ZfE[<f’(¢(T;z,-,Yf))D@(T;ri,Yf),I[O]/ Db(zf})
i=1 0 ti-1 0
1 , litj
Z Loy ymrtis = () JA / &dW(v)d,Bldr>]d§,
j=—N litj—1

and the sub-term

]

nNa ] ]
=% / E[{ £/ @ yo Do, v, 10 / / Db(Z}})

i=1y li-1 0
1 r+-
Z l[t,-+j,1—r,t,-+j—r)(') / &dW(U)dﬁldr>:|d§’
J==N ligj-1

since other sub-terms in Z;, can be estimated similarly.
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For the term Il(,) , it follows from (39) and (40) that

-1
|ZO| <KZ/ HDQ)(T tl’Yg I / /Db(zﬁ;) Z l[li+j—1—r,ti+j—r)(')x
=N

i=lp fim1
litj
lj—- Int
blgv(0.§7))dvdpdr | ds. (42)
litj—1

According to Lemma 3.2 and supy, cca |Db(¢1)¢2| < K||¢2]|, we have

]

1
HD@(T;n,Yf)I[O]//Db(zﬁ‘) Z Vi 1y 0%

li-1 0
litj
t; — -
L5 [ e aapiar| < krat @3)
litj—1

In addition, using the chain rule of the Malliavin derivative, Lemma 3.2, and Assumption 3.4, we
derive that for some p > 2,

T 1
(/ |:”Dr1|:D¢)(T ttaY ) O]//Db(z ) Z 1[t1+; - rt,+,'—r)()x
I fi-1 0 j==N
; litj ) .
j— Int 2
= [ seosmadpa]| o)
Liyj—1
<KT{/ Hl‘”//@b(z ) Z Vi) oy ()
ti—1
litj 5
t; — - ~
L[ b g | (14 10,7517
Liyj—1

I

! —1
]E[”DQJ(T;”’Yig)I[O]//Dzb(zzﬁ,lr)(D Zzﬂlr’ Z 1[;,-+,~_1—r,z[+_,~—r)(')><

ti-1 0 j=-N
]
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I

+E[|[ Do) [ f D3R T

ti-1 0 J==N
o litj N 1
Lo [ Db D, g0 M advapiar| J)an ) < kra?
tipj—1
Similarly,

T T ti
([ [E[|onn[poain. i ‘”fbe(z ) Z Wy vy (%

ti ot ti—1 0

, litj 5 1

fA / b(<pv(0,g’"’))dvdﬂ1dr] H ]drldrg}z < Ky A2
Lipj—1

Inserting (43)—(45) into (42), one has |Ig| < KrA.
For the sub-term I,l, we have

NA 1 4 1 -1
1 —

II;ZZ/// Z l[ti+j—l—hti+j—r)(')

=g 4y 0 J==N

litj

[((ﬂolpb(zf;))*f’@(r; G YENDO(T: 17, YF), / &dW(v)>]dﬂ1drdg

litj—1
1 litj

SN

1= 1]_ N0t110t:+11

E[{D[(1 Do) £ (T3 11, Y)DO(T: 1, ¥0)], 51a) [dvdrdrds

1 litj

NA 1 ]
=Z Z /f/ / f(<I>(T L, YONDO(T; 1, Y7,
i=1j==Nj

lj -N 10t1+/1

ti—-.
1D(Z0) (Do 2L V-0 (O —60) ]

+E[(/@T: 1, Y DDOT; 11, Y9, 10Db(Z)

—-.
DO(T: 1;, Y5), I[O]Db(zf;)l[,w_l,,,,I.H,r)(-)’TaId)] }dvdﬂldrdg,

31

ti—- .
W1y -0 61a) |+ E[ { £/(@(T: 10, YO D, @(T: 11, ¥)

(44)
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where I; is the d-dimensional all-ones vector. Similarly, together with (39) and (40), we can
derive that |I;| < KrA.
For the sub-term I,f, based on Assumption 3.4, we have

IZ_Z/ F@T: 1, YO)D(T; 17, Y7 ), 11 / //kb(zf”l

1= 10 ti-1 0 —7
r+s

S L) | saweaieasar)los

j=-N Liyj—1

t (ti+j—1INO  pgs

1
[ [ elfpaaesaty
0

ti—1 7rv(ti+_,~,17r)fi+j—1

2/

F(@(T: 15, YO)DO(T: 17, )], &Id>]dvdv31 (s)dB1drde

i 1 Girj—IAN0 g

NZI_ZIOfI// [ [ Elfredir

10 —tV(tigj—1—r)ti+j-1

DO(T: 13, Y1), 10Dk (ZI)51a) | + B[ £/(@(T: 1, Y D DO(T: 11, Y),
1%} Z0)614)| + B[ £/(@(T: 11, YOI DL O(T s 11, YOD(T s 11, Y5,
1%} (Z)514) || dvdvd (5)dgy drds.

Combining (39), (40), and Lemma 3.2, we deduce

i 1 (i j—rINO g

|I§|§Ké_ioj// / /

-1 0 —‘[\/(t,+_/ 1—7) titj—1

{HDCD(T; i, Yf)I[O]Dng(Zf‘r)&Id’

+HD DO(T: tl,Yg)I[O kb(Z )aIdH

+ | Dy®(T; 11, YEDO(T; tl,Yg)I[O]kb(Z )51a] , Jdvav} ($)didrds
=KrA,

where we used the assumption

sup  sup (||le,1(¢)|| L(ChyeRixd) + |k,1(¢)|) <K
le{1,2,3}¢ecd

Hence, we have |Z,| < K7 A.
Estimate of 7}, g. Similar to proof of Zj,, we derive that |Z, g| < KT A.
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Combining estimates of terms Zy, 7, and 7 ¢, we complete the proof. O
4. Proofs of Lemmas 2.1 and 2.2

Proof of Lemma 2.1. Similar to the proof of [22, Theorem 2], we can obtain the first inequality
in Lemma 2.1. For the second inequality in Lemma 2.1, when v <1, D,,xs (1) satisfies

t t
Dyx* (1) =/Db(x§)DUx§ds+/Da(x§)Dvx§dW(s)+a(x§)1[0,t](u).
v v

By the It6 formula, (2), (3), the Burkholder—Davis—Gundy inequality, and the Young inequality,
we deduce

E[ sup |Dyxt (t)|2p]

v<t<T

T 0
<Ello ()1 + K / E[1Dux ()7 + / | Dy§ ()P dvi ()

v

0 T 1
+/|D,,x§(r)|21’du2(r)]ds+KIE[(/ |Dvx5(s)|4P*2|Da(x§)Dvx§|2ds)7]

-7
T
£ 02 1 Eop2
<K +K IEI[ sup |Dox ()] P]ds—i—EE[ sup | Dyxf (1)) P].

V=r=<s v<t<T
v

Using the Gronwall inequality finishes the proof. O

Proof of Lemma 2.2. We first show that E [ SUPo<y <7 |l y,sk’A |7 ] < K. Introduce the auxiliary
process

Fhm) = EWm), —N<k=-1,
M) = yEA ) — by A, 0<k <N

Then for 1 <k < N2,
FAM) =5 () + b(yi'_Al)A + G(yi’_A,)Squ-

For k e Nand A € (0, ﬁ), it follows from Assumption 2.1 that

1252 ()
=152 )P + by PAT + 1o (5 )SWil? + 2052 (0) — 0b(v; ™) A, by ™)) A
F2(5 010, 0 (5 MSWi) +2(b(e™), o (v S)sWi) A
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<152 @R + (1= 20)bO5 P A+ o G Wil + K A(1+ [y52 @)

0
+ [ 05 0rPan ) + My

0
=152 @R + lo G oW + KA(1+ 152 a0 +/ A ) Pdv (1)) + M,

-7

where { M }reN 1s a martingale defined by

2 2
M= @ = (A 00,0 0 D8We) + 2052 @), 0 (0 )W),

Then for any p € N4,

p
_ A
22 W) PP < 1282 @017 4+ )0 Chlat A w2 (jo (0 s Wil
I=1

0
1
+KA(L+ 1 2@l +/ lye 2 () Pdvy () +Mk> ,

-7

where C é is the binomial coefficient. This implies

E[ sup [FA ]
0<(k+1D)A<T

k

=E[ sip (RGP — 1A @) |+ A O
A<(k+DA=T ;2

k

p
— LA
Slzé’A(O)I2p+E[ sup Y Y ChIEA )PP ’>(|a(y§. )SW; |2
A<(+DAST ;2512

0
+KA(1+ |y5’A(t,~)|2+/|y§.’A(r)|2dv1(r)) +Mi)l]

p
=152 O + ) Cyl,
=1
where
k
I = E[ sup 3 [ g 20D <|U(y§’A)5Wi 2

A=<(k+DA<T ;2
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l
+ KA+ 5 @)l + / S )P () + M, ) .

-7

For the term 11, using the property of the conditional expectation and applying the Burkholder—
Davis—Gundy inequality, we arrive at

NA—1
n=ka Y [P (o 0F D+ 1+ 1A )P
i=0
N&—1 1
/|yf OPavi )]+ KE[( Y 152 VoY Pa )

g i=0

NA-1 1
+KE[( 2 12O 2w Rle 6E M)

i=0
By Assumptions 2.1 and 2.2, and the Young inequality, we derive that for ¢ € (0, 1),
NA_] 0

I <Kr+Kr@©A ) E[le*%)FM|yE'A<ti>|2P+f|y§’A<r)|2Pdv1(r>
i=0

0
+ / SO Ave)| +eE[ sup 1252 w0l @47

0<kA<T

It follows from (6) and the convex property of | - |27 that

NA—1 0 NA—1 -1 i
fjiy1 —
> f PACELTCEDD Z ( f T o)y A i) P
7 i=0 j=—N i
U+:‘—t~ NA_]
+/ A’dvz<r>|yf'A<ri+j+1)|2P)sN||s||2P+ Do SR (48)
f./ i=0

for £ =1, 2, which combining (47) leads to

NA—1
IS Kr(L+ 1§17 + K@ A Y B[54 @)+ 1y52 )]
i=0
+81E[ sup Izg’A(tk)IZP]. 49)

0<kA<T

Similarly, we derive that for/ =2, ..., p,
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NA—1
I < Kr(L+ 18179 + Kr @A Y B[4 @ P + [y 2 @) |
i=0

n aIE[ sup IZS’A(tk)IZP]. (50)
0<kA<T

Inserting (49) and (50) into (46) yields
E[ sup 12527 ] < Kr(L+ €I + 6@
0<kA<T

NA—1

+Kr@A Y B[22 + 154 1) ]
i=0

+e@ =D sup (2], (51)
0<kA<T

where we used Zle Cﬁ, =2P — 1. It follows from z5-2 (1) = y52 (1) — Qb(yti’A)A, Assump-
tion 2.1, and (a, b) < (la|*> + |b?), a, b € RY that

5RO < 1255 )P + 20054 (10, 067 ) A)
0
<A 2981 (1 @ + [ O + (). b0)

-7

5 1
<10 +20ALi (5 swp YL@l + 1617 + 3 1bO))

0<kA<T
< sup [FC@WIP+50AL sup  [YSL )P+ KA. (52)
0<kA<T 0<kA<T

Byl —-50AL; > % for A < ﬁ, we obtain

sup [y 2@) PP < K(1+ sup 2520 *P).
0<kA<T 0<kA<T

Combining (51) and letting & > 0 be sufficiently small, we conclude
B[ sup (IF2@0P + 12w
0<kA<T

NA—1
< Kr(L+ 6177 + @) + Kr A Y B[54 @) P + 14 @) ]
i=0

Applying the discrete Gronwall inequality, and noticing the relation

E[ sup 117 <E[ sup 1y 2 @ol] + 117,

0<n <T 0<t<T
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we finish the proof of E[“PngkgT ||y;‘;;(’A ||”] <Kr.

Next, we prove that supy., <7 E[ sup,, <7 IDyy; 2 11”] < K. Similarly, for any k € N with
0<kA<T,vel0,T],and p > 2, we have

p kK p
D252 ey )PP <ID SR @I + ) CLla <Y Y Chliy,
=1 i=0 I=1
where
I = 1Dy )P (1D () Doy Wil + 10 (0 sy (0
; 200 —1)
A _
+KA(|Dvy5’A<z,-)|2+f|Dvyi (NPdvi (1) +(=—5— Do (1)
-7
2 EA §,A ~\
2Dy (0. 0 0 ) () + M)
with

My = 2Dy (0) + Dby ) Doy A + 0 (v )i e,11(0), Do (i) Doy, S Wi,
The remaining proof is similar as before, and thus is omitted. O
Data availability

No data was used for the research described in the article.
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