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1. Introduction

The stochastic nonlinear Schrodinger (NLS) equation is widely used to model the propagation of nonlinear dispersive waves
in non-homogeneous or random media, and has important applications in various fields such as quantum physics, plasma physics,
optical fiber communications and nonlinear optics (see e.g. [1,9,27] and references therein). In this paper, we focus on the numerical
study of the following one-dimensional stochastic NLS equation driven by multiplicative noise of Stratonovich type

du = (idu + iAlu2u)dt — iy/euodW (1), in (0,T]x O 1.1

with the initial datum u(0) = u, € L*(©;C) =: H and the homogeneous Dirichlet boundary condition, where T > 0, © = (0, 1),
e > 0 denotes the intensity of the noise, and 4 = 1 or —1 corresponds to the focusing or defocusing case, respectively. Here,
(W) : t € [0,T]} is a L?>(O;R)-valued Q-Wiener process on a filtered probability space (2, F, {F:}iero.r)- P)- There exists an
orthonormal basis {e } keN, of L*(O;R) and a sequence of mutually independent, real-valued Brownian motions {f,} keN, such that

ZOED Q%ekpk(t), t€1[0,T].

Numerical analysis of the stochastic NLS equation (1.1) has been studied in recent decades, for instance, we refer to [10] for
the #-scheme, [17] for the Crank-Nicolson scheme, [15] for the splitting Crank-Nicolson scheme, [11] for the modified implicit
Euler scheme, and [25] for the multi-symplectic scheme. These works are drift-implicit type schemes, while their implementation
requires solving an algebraic equation at each iteration step, which needs additional computational efforts. In this regard, it is worth
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investigating explicit schemes, which are simple to implement and have lower complexity. However, the explicit, the exponential and
the linear-implicit Euler type schemes with a uniform timestep fail to converge for a stochastic partial differential equation (SPDE)
with superlinearly growing drift; see [13] for the stochastic NLS equation and [2] for the parabolic SPDE. To our knowledge, there
are only a few works on the convergence analysis of the explicit scheme for the stochastic NLS equation (1.1). For instance, in [26],
the author constructs an explicit splitting scheme in the temporal direction and obtains the convergence order in the probability
sense. The author in [13] proposes a new kind of explicit splitting scheme, whose strong convergence orders are %— and s— in

the temporal and spatial direction with Q% [S E; (in this case the solution has H*-regularity), respectively. In order to construct a
drift-explicit scheme, whose strong convergence order is optimal, we apply the adaptive timestep skill to adapt the timestep size at
each iteration. We refer to e.g. [7,8] for adaptive schemes for parabolic SPDEs with superlinearly growing drift. To our knowledge,
there has been no work on the study of the adaptive time-stepping scheme for the stochastic NLS equation. The main purpose of
this paper is twofold:

(i) Propose a drift-explicit, adaptive time-stepping fully discrete scheme for (1.1), whose strong convergence order is optimal.
(ii) Investigate the numerical asymptotic behavior of the proposed scheme as ¢ — 0 via the large deviation principle (LDP).

To be specific, in this work we propose an adaptive time-stepping fully discrete scheme, whose spatial direction is using the
spectral Galerkin method, and temporal direction is based on the adaptive splitting exponential Euler scheme. A key ingredient to
derive the strong convergence order is the H'-exponential integrability of both the exact and numerical solutions. It is studied in [15]
that the exact solution and the drift-implicit type scheme of the stochastic NLS equation can have this exponential integrability due
to the preservation of the mass of the solutions. The author in [13] uses the splitting skill to split the stochastic NLS equation into
a Hamiltonian subsystem and a mass-decaying linear subsystem, so that the exponential integrability of the numerical solution is
still possessed. We remark that this type of exponential integrability also has important applications in other problems, for instance
the large deviation-type result (see e.g [14, Corollary 3.2]). To obtain the exponential integrability of the drift-explicit, adaptive
time-stepping fully discrete scheme, we combine the splitting skill and the adaptive strategy for the proposed scheme to derive the
a.s.-uniform boundedness of the mass of the numerical solution. Based on this H!-exponential integrability and the H/ (j = 1,2)-
regularity estimates, it is shown that this fully discrete scheme is convergent with strong orders % in time and 2 in space, which are
optimal in the sense that the orders coincide with the optimal temporal Holder regularity and spatial Sobolev regularity, respectively.

Another aim of this paper is to further study the asymptotic behavior of the proposed adaptive time-stepping fully discrete
scheme, by presenting the LDP for the numerical solution. The LDP for the SPDE with small noise is also called the Freidlin-Wentzell
LDP, which characterizes the exponential decay probabilities that sample paths of the SPDE deviate from that of the corresponding
deterministic equation as the intensity of the noise tends to zero. The study on the LDP and its relative topic for the stochastic NLS
equation has received much attention in recent years (see e.g. [20,22-24,29,30]). To be specific, the LDP for the stochastic NLS
equation has been well studied, see [22,24] for the additive type noise case and [20,23] for the multiplicative type noise case; in
addition, the support result in the space of Holder continuous functions is also derived (see [22,24] for the additive type noise case).
For both the stochastic inhomogeneous dispersive equations and the stochastic NLS equation with variable coefficients, the author
in [29] derives the LDP for the small noise asymptotics. Furthermore, the support result for the multiplicative type noise case is
presented in [30], where the Stroock-Varadhan type theorem is obtained for the topological support of the probability distribution
induced by global solutions in the Strichartz and local smoothing spaces. By contrast, less result is known for the case of numerical
methods for the stochastic NLS equation.

A well-known approach proposed in [18] to establishing the LDP is the weak convergence method, which is by means of the
equivalence to the Laplace principle. To apply this approach, the main difficulty lies in proving the compactness of solutions of
the skeleton equation and the stochastic controlled equation in the space C([0,T]; Hy). In this regard, by analyzing the conditional
moment estimation of the solution of the stochastic controlled equation, we prove that the solution of the proposed fully discrete
scheme satisfies the LDP on C([0,T]; H) with the rate function given by the corresponding skeleton equation. To our knowledge,
this is the first work on the study of the LDP for the numerical scheme of SPDEs with superlinearly growing drift. As a byproduct,
the error of the masses between the numerical and exact solutions of (1.1) is finally obtained.

The outline of this paper is as follows. In the next section, we propose the adaptive time-stepping fully discrete scheme, and
prove the a.s.-uniform boundedness of the mass, the IV (j = 1,2)-regularity estimates and the H!-exponential integrability of the
numerical solution. In Section 3, we derive the optimal strong convergence order of the fully discrete scheme. Section 4 is devoted
to establishing the LDP for the solution of the fully discrete scheme.

To close this section, we introduce some frequently used notations. The norm and the inner product of H = L?(©; C) are denoted
by || - || and (u,v) := Re[/,u(x)d(x)dx|, respectively. Denote L?(®) := LP(®;C), 1 < p < oo, H := L*(O;R). Let H® := H*(O)
and H* := H*(O), s € R denote the real-valued and complex-valued Sobolev spaces, respectively. Then the domain of the Dirichlet
Laplacian operator is ]HI(I) N H2. We denote the interpolation space of the Dirichlet negative Laplacian operator by H°, s € R. It
is known that H* and H* are equivalent for s = 1,2. Throughout the paper, we assume that the initial datum u, € ]H[(‘) n H?

1 1 1
is a deterministic function, and that the operator Q2 € L2 := L,(H;H?), i.e., ||Q§||i2 = Y0, o2 ek||2H2 < o0. And hence
2

1 1
1021l g2y < 1O21lp2 < oco. In sequel, C is a constant which may change from one line to another, and sometimes we write

)
C(a, b, c...) to emphasize the dependence on parameters a, b, c, ...
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2. The adaptive time-stepping fully discrete scheme

In this section, we first introduce the adaptive time-stepping fully discrete scheme of (1.1). Then we prove the a.s.-uniform
boundedness of the mass, the H/ (j = 1,2)-regularity estimates and the H'-exponential integrability of the numerical solution, which
are important in the estimate of the strong convergence order of this fully discrete scheme. We remark that ¢ is a fixed positive
parameter in this section and the next section, and we do not emphasize the dependence on ¢ of solutions of the stochastic NLS
equation and its discretizations.

It is known that (1.1) has the following equivalent It6 formulation

du = (idu +iAul’u - %FQu)dt —iveudw (), in(0,T]x0, 2.1

1 .
where Fy := ZZ":l(QE e,)?. The well-posedness and TV (j = 1,2)-regularity estimates for (2.1) have been studied; see e.g. [9,14,16,
17,211.

It is known that the splitting skill can be used to construct convergent explicit numerical schemes for stochastic NLS equation;
see e.g. [4,13,26]. Introduce a partition 0 =1y < t; < -+ <t,, < - <1y, =T with some M € N,. As is shown in [15], one can split
(2.1) in the time interval T,, := [¢,,,?,,,) into a deterministic NLS equation with random initial datum and a linear SPDE. Precisely,
forteT,,

dul (1) = il (n)dr + l/1|uD(t)| uP@yde, ub(t,) =w3_ (@t,), (@
dus (1) = =5 Fous (dt — iy/eus (DdW (1), () (2.2)
uS(t,) = ub(tyy);
especially, for t € Ty, the initial datum of (2.2)(a) is u(I)) 0) = ug.

Let N € N, and let H, be the subspace of H consisting of the first N eigenvectors of the Dirichlet Laplacian operator. Denote
by PN : H — Hy the spectral Galerkin projection, which is defined by (PNu,v) := (u,v) for u € H,v € Hy. Applying the spectral
Galerkin method to (2.2) in the spatial direction, we derive the semi-discrete scheme: For t € T,,,,

AN (1) = a2 (0)de +iAPN 2N @0 BN (o, (@
up N (t,) =N (1),
du>N ) = - GPN FQuSvN (t)dt—i\/_ PN N(dw (), (b)
Nt = uly (t,,,+1)

(2.3)

where the initial datum is u

To present the adaptive time-stepping scheme, the timestep at each iteration must be adapted with some adaptive timestep
function = : H — R, to control the numerical solution from divergence. Thus the partition {z,, : m = 0,..., M} of the split
equation (2.2) and the semi-discrete scheme (2.3) is chosen the same as the one that will be used in the fully discrete scheme (2.4).
In this case, to emphasize the dependence on T, we use M, instead of M in the sequel. By further applying the adaptive exponential
Euler scheme in the temporal direction of (2.3)(a), we obtain the fully discrete scheme, whose differential form reads as:

DN PNy,

dulsV =idulN e +iASN (1 -1, )PNluNl uldr, uf""{)’n =ul, (a)

m?

dume =- PNFQuS Ndt —iy/ePNuXNdw (1), (b) (2.4)
SN _ DN '
U m Tpg1.m’
where t € T,,, and t,,, = i + T with 7, := r(u®). Here, SN(I). = PNelid, yN = ”i,ﬁ,m’ and the initial datum is u)’ = P"u,. By
(2.4)(a), we have the explicit one-step scheme for the deterministic part:
. 2
= SN @) +idlu) ) 7,,). (2.5)

If we denote the flows of (2.4)(a) and (2.4)(b) by <Dm it and d)m 1t
scheme (2.4) can be expressed as

S.N DN
=1 H@,T‘D

We remark that if the existing time span is longer than T after adding the last timestep, then we take a smaller timestep such that the
existing time span just attains T after adding it. Namely, if 1}, _; +7y,_; > T, then we enforce the last timestep 7y, _; =T —tp;,_;.
In the sequel, we give some assumptions on the timestep function so that the numerical solution can attain 7" with finite many
timesteps (see Remark 2.2). Without loss of generality, we take 1/0 = co.

respectively for ¢t € T,,, then the solution of the fully discrete

Assumption 1. Let 7,, satisfy

N
e

7 < min{ L [l ||{|u]Y .Ts} a.s., (2.6)

L%(©)’
T2 CIN P +87'  as. 2.7)

with constants L,{, §,& > 0 and a small constant § € (0, 1).
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Below, we give the estimate of the mass ||u,]:1] I?> of the solution of (2.4). Hereafter, we use the notation ¢ := max{m : t,, <t} to
represent the maximal timestep number not exceeding 7.
Lemma 2.1. Under Assumption 1 (2.6), it holds that
D.N SN
sup (2N 1PV SN 1) < T 1P as.
refo,r] - -
Proof. By the property |.SN ()| carm = 1 and Assumption 1 (2.6), it follows from (2.5) that
DN 2 _ N2 2 _ N2 N
e, ll™ = ) + Al 17y 7, 12 = ) 1 + o5 )y ”LG(@)
<A+ Lig)luy|* as.
By the It6 formula, for t € T,
SN |2 DN 2
NSV 1% = PN
4 1
=2/ <ume,——PNFQu >dr+€ lePNuf;nNQiekllzdr
Im k=1
1
= —e/ Z Iad = PMyuSNQze |?dr <0 as. (2.8)

Hence, combining the above two inequalities gives that

m
N 2 D,N 2 N2 N2
e 1P < Ml 1P < (1 Lyzllap 1P < [T+ Zyzpliad i
j=0
<elim |y 2 < M7 2 s,

Moreover, we derive that for t € T,

D.N N2 N 2 L N2
N 11 = Ny 1% + )y IIL(,(O)(I—I,,,) S+ Lyzy)e i lug |
SeL‘Tllu(I)Vll2 a.s.
and
SN DN 2 o LTy, N2
HaSV I < PN P < M T 1P as.

The proof is finished. []

Remark 2.2. It follows from Lemma 2.1 and Assumption 1 (2.7) that
1 _
T 2 Cllal 117+ 8716 2 e M T 1 + 6716 =t 7,6,
which implies that under Assumption 1, the final time 7T is always attainable, i.e.,

My <T( inf <1 l57 as.
r= (rmg[lo,T]T"') = i

2.1. Regularity analysis

In this subsection, we give regularity analysis of the solution of the fully discrete scheme, including the I/ (j = 1,2)-regularity
estimates and the H'-exponential integrability. To this end, we make the following assumption on adaptive timesteps. Let the
o 1 2 1
Hamiltonian be H(u) := 2||Vu|| ||u||L4(O) ue H'.
Assumption 2. Let 7,, satisfy
1

r,ziyAN <L, as., (2.9)
THWN)< Ly as. (2.10)

for some y € (0, %) and constants L,, L; > 0, where Ay = N2z is the Nth eigenvalue of the Dirichlet negative Laplacian operator.

Remark 2.3. Note that the Gagliardo-Nirenberg inequality ||u|| < 2|ul|®||Vul|, the inverse inequality || PNu||ys < /1]7\, |PNul|, and

LA((‘))
Lemma 2.1 lead to H(u) < C(||Vul ||> + 1) < CAy. If both Tm AN < L, and 7},Ay < L; hold, then Assumption 2 is satisfied.
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Proposition 2.4. Under Assumptions 1 and 2, for p > 2, there exists a constant C := C(p,e, T H(ué" )) > 0 such that

E slup ||u H1]+E[ sup u,,’Nllﬁll] <C
(0. -

t€[0,T]

Proof. Direct calculation leads to
DH(u)(v) = (Vu, Vo) — A{|ul*u, v),
D>H(u)(v, w) = (Vw, Vv) — A{|u|*v, w) —

It follows from the chain rule that

t,m

Imt1
HWPN )= HY) = /, DHEPN PN

m
m

Imt1 2
D,N DN .. DN
_/1/ (D Culy idufyY Yar
1

m

t,m

m+1
:/ <Vu,m V(SN (= 1) | uN)>dt
1

2 (uRe(av), w).

1 2
—,1/ <|uf,;1N| WP AN (¢ = 1) u >dz
f

m

-

m

AMDN

. 2 2
+APN (U Ul — uN

[ty |
Tm+1 DN 2
-/ (12
1,

m

DmN)>dt

s 2pN N2 N DN 2
+ 1A PY (luy, uyy — lu |

ul) ).

By properties [|(S(¢) — Id)u|| < Ct2 llellggrs SOl 2 = 1 and the Gagliardo-Nirenberg inequality [lull?

that forr €T,

D.N
I

N N, N2 N
o AASN (= 1,) = T PN [l | ul

2.¢N N, N2
ul N 2SNt —1,) — 1PN uN | ul

< 2
L5(0) C|IVull||lu||*, we have

. 2
U = un || < NS = t,) = Iyl || + 1SC = t,)idlu)) |"ul) (¢ = 1,)]]

N
< =12 N g+ I

<Cl—1,)? e -

Therefore, combining the cubic difference formula lu|?u—|v)?v = (Jul? + |v|®)(u — v) + uv(@ = D) and the inverse inequality || PN ul| s

A3 1PN ul|, we obtain that

HuPN ) —HwY)

x+]m

m

DN
+ PYuNulN N — P )”Hl+||u,m ||L6(@)

+ luf; ||36(@)|)PN<|uN| 1PN Pyl -

m

—1,)

(2.11)

tm
s/ [ivad; Mg 1PN P g+ 192 I[PV Q1+ 2 Pt — a2
1,

1
N N2 N
2PN [ [l |l g

0

Im
N N
<c / [nw e Ao B o+ 1Vl A Y 12w+ 12 e o)X

N
llafy —ulM |+ Il

D,N
(e ||wa)+||u,,,, I ol = upi 1| dr.

Applying the Gagliardo-Nirenberg inequalities ||u||3
yields

H(ufn’:\]l )= HwY)

2
WO o2 AL Y g +

t,m ||L6(O)X

< C|Vullllull?, ||u||L°°((‘)) < C||Vul|||ull, the inverse inequality, and Lemma 2.1

sC/ (172N e I W P+ 192 A2 (17
1

m

N D.N N
1 = PN gl —

fo )1y

1
2 2
M 121 IVl Il 117 + [V,

DN
=t |l

+IVupi N ),

Yl 117
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NN DN _ N N _ DN N _ DN
(Ve Wl 1+ et = ) IIHIIIM =t Il —u II]dl

t,m m t.m
m+ 11
sc/ [iwads NIV (e A+ 23 43) + V8 T — a2V I
Im
3 N 3 N D,N 2
(/112\/(||Vum 4+ A2 =l ))]dz.
11
Noticing that ||Vu N < IVuN| + ||V(u —u)ll £ A+ Crp A2Vl || due to (2.11) and the inverse inequality, we arrive at

Hu)N )= Hw))
[ 111 111

sc/ ((1+TZ/12)Tz/lN+(1+T2/12)T2(/1N+T 2 ))||VuN|| dr
1

m

mel 1
sc/ <T,§AN+TAZ+T ,12+T AN)||Vu [12dt
I

1 N2
< CLyz, ||V, |

under (2.9). Since the Gagliardo-Nirenberg inequality ||u||L wo < 2[|Vull]jull® and the Young inequality lead to H(u®) > (||VuN 1z -

||u 1®), which implies that ||Vu 1% < C(H(uN) + ||u 1), we obtain

H@PN ) < H@h) + Col (@) + 1), (212)

Tmg1.m

Applying the Itd formula yields

H) = MY )
/ (VuY.~5 V(Fqus, )>dr—/ (VuSN ivJeuS N V@AW ()
—,1/ (SN ume,—EPNFQuf;der—i\/ZPNuf;,deW(r))

1 2 5
+§/ lewNuf;n”Qzekuzdr—?e/ Z(l SNPAPYuSN 02 ey),
m k=1
1
—iPNuf;nNQiek)dr—/le/ Z(”SNRe(u (=iPNUSN ey,
1
—iPNuf;nNQiek>d"'

Taking the expectation, using inequalities ||ul| ;o < Cllu|l; and [l < C||Vul||lu||* for u € H!, (1 Foll Loy V IVl < ||Qz ||£],

L5(©O)
and applying Lemma 2.1 lead to

E[H(;, )] = E[HG " )]

sc/ VS NN Folllla N | oo ) + 1 Foll oo ey 1 Ve 1Ddr
t 1
SN SN S,N 12 3112
+C/ 5 1 6y P ll Lo 15 ||dr+C/ IV 1102 I, dr

+C/ S B S 2 ZquekuM,)

<clodiE, /<||Vu”||2+ D,
which together with (2.12) and the assumption (2.10) gives that for r € T,,,,
E[H @),

It 4
5]E[H(u$’)]+c/ I]E[T;(H(Mg)+ 1)]dr+C/ E[H (V) + 11dr

1, 1

m m

1
<E[H@))]+CE / (H@N) + 1)dr + CEz,,.

Im

By iteration, we have

1
E[H;™)] < E[Hu))]+C / E[H@SN)ldr + CT,
' A -
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which implies

sup. E[H(u M1 < EIH@ + C)e"

te(0

due to the Grénwall inequality. Hence, one derives sup,c( (]E[||u || v E[llu || D<c
Moreover, by utilizing the Burkholder-Davis—-Gundy 1nequahty, we can also obtaln the following supremum type inequality

IEJH sup / (Vs iyerVusivaw )| ]

1€[0,T)
2
sup / (luSNl uSN 1\/EPNu;9;"NdW(r)>‘ ]
te[OT] ’
1
SCE[ /0 IV 1103 12, ds)- 2.13)
- 2

Applying the above inequalities, one can finish the proof for the case of p = 2. For the case of p > 2, it can be proved similarly by
means of the It6 formula, we omit the proof. []

Below, we prove the H!-exponential integrability for the solution of the fully discrete scheme. To this end, we first present a
useful exponential integrability lemma, which is a variant of [14, Lemma 3.1] or [15, Lemma 2.1], and we refer to them for the
proofs and more details.

Lemma 2.5. Let X be an H-valued adapted stochastic process with continuous sample paths satisfying ft' uX)I + lle(X)H2dt <
o as. Vt € [0,T], and X, = X, + /,’ u(X,)dr + ft’ o(X,)dW (r). If there are two functionals V, V € C*(H;R) and a constant a > 0
such that T -

DV (X u(X,)+ = Tr(DZV(X )6(X)o(X,)*) + ——[lo(X,)* DV (X)|I*

a(s 1)
+ V(XS) <aV(X;) as. Vselt),
then for t € [0,T],

V(X,) "V(X,)
E[CXP{ e+ / a0

Especially, when ¢ = 0,

exp{ Vx,) +/ V(Xr)dr} <exp(V(Xp} as. (2.15)

ea(t—g) ea(r—l)

dr}] <E[exp{V(X))}]- 2.14)

Proposition 2.6. Under Assumptions 1 and 2, there exist constants a,,C > 0 such that

S,N
H(ut,t ) N
S exp{ — }] < CElexp{H@))1.

Proof. Let 141(14 Ny = lAuD N AN - t)luly |2uf:,’ for t € T,,. Similar to the proof of Proposition 2.4, we have
DHD @) < Car Va2
< (IVup M P + 2z, lul 1% < Co + el Hwh,Y).

Applying Lemma 2.5 (2.15) witht =¢t,, py =y, 6 =0,V = H, V= -Cy and a = C; 7}, letting t = LN and taking the limit, we
obtain

Hw) ™ ) -
m+1-M 1 N
BXP{ e%Tm - C0</tm ea(r 1, )dr} < CXP{H(M )}
Using the fact that /"' a(r e dr = sz <1, yields
HwPN
exp{ % } < exp{H@Y) + o,

which gives
exp{HwX™ )} < exp{(H(u}) + Cor,)e"™)
< exp{(H@) + Cyr,)(1 +2C, 747)} (2.16)

for z,, < T6 with 6 being small.
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We claim that

Hwy,) LB D.N
m ) < .
217!’)” E [exp{ T /tm g dr} < ]E[exp{H(uth’m)}], (2.17)
1 1
where a; = C(e”‘lTllu(’)VII6 + 1)||Q§||i2 and g, = C(e(’LlTllu(’)VII12 + 1)||Q§||22. In fact, by letting u,(u) = —%PNFQu and o,(u) =
2 2

1
—iy/ePNuQ?, we obtain
DHN yup M) + Tr[DzH(utm )os N oy (e )]

1
W”"z(” Ny DH( )||2

=e(vuN V(——PNFQu V)Y = ae(luyy ume,—%PNFQuf,;,N

tm
€ N SN 2
+5;uw iPNuSN oz
[s+]
A
-5 DA TN 0t Y 0ty

S,N SN NSN N €
—AeZ(u Re@SN (—iPVusN 02 ), -iPNuSN 07 e, ) + =i

=]

Z((Vu,m SN (V0T e - A{lu; ,—iPN SNQZek>)
k=1

sawu;?;,”uan%nz + Cllis 1 g oyl N E om0y + CIVa, [P
|IQ2I|21(1+|Iu P+ s f KU N O ||2||Q%||i§
gy 1 ol 17 ||Q2|I

< ClIvu,l ||Q2||22(||u ||6+1)+C||u ||6||Q%||2,

<c@h fluy I|6+1)I|Q2||2 Hug) + €17 flug! I|12+1)IIQ2|I£2,

where the second inequality uses the Gagliardo—Nirenberg inequality ||u||? < C||Vul|||u||? for u € H!, and in the last step we use the

LSO) ~
inequality ||VuS N2 < 4H(uS Ny + ||uS N6, € T, and Lemma 2.1. Applying Lemma 2.5 (2.14) with g = yy. 6 = 6,. V = H, V = —§,
and a = a, leads to (2.17).

Hence, it follows from (2.17) and the assumption z,, < T'§ that

H(,,") Hay,') g,
- 2 — ﬂ/l(’_tm)
E[CXP{ =ty }] < ]E[eXP{ =i /,m eaw—rm)d’}e ]

< E[exp{H(u,‘;ﬁ e <Elexp{(Hw)) + Cyz,)(1 +2C,7,7)}] P30,

where in the last step we use (2.16). By considering e~%'»H instead of H, we can obtain
M) HuY)
E[exp{ el }] < E[exp{( el
H uN
< IE[exp{ ) 20,2 HWY) + Cx,, }]eTW

LR

under the assumption that ;7 (u) < L,. By iteration and using Remark 2.2, we have

{ Hw>:N)

el

+Cot,) (1 + 2clf,1n+r)}]e”»5

IE[CXP }] < Elexp{H(u})}1e™*D < Blexp{H(u) )} 1eCT in.

The proof is finished. [J

In order to derive the H?-regularity of the solution of the fully discrete scheme, we introduce the functional f(u) = ||4ul|*> +
A Au, |u|2u), u e H2.

Proposition 2.7. Under Assumptions 1 and 2, for p > 2, there exists a constant C := C(p,¢,T, f (ué" )) > 0 such that

D.N SN
B[ sup 12, ] + B[ sup V2] <
e[o,r] - efo,r] -



C. Chen et al. Stochastic Processes and their Applications 173 (2024) 104373
Proof. Simple calculations give that

Dfw)(v) = 2(Au, Av) + 2A{Au, uRe(@v)) + A{Au, |u|>v) + A{Av, |u|*u),
D? f(u)(v, w) = 2{Av, Aw) + 2A(Au, wRe(@v)) + 2A{Aw, uRe(iv))
+ 24{Au, uRe(5w)) + 2A{Au, vRe(@w)) + A{Aw, |u|*v)
+ 24{Av, uRe(@w)) + A{Av, [u|>w).

Step 1. By the chain rule, we obtain that for r € T,

Iy
FGPN )~ rud) = / D@2y a2

’m

Tm+1
=/ [ 2(aul;¥ a4 (5™ @ = 1 lul 1))
1,

m

+ 21<AuD’N uPNRe [u

DN P Y (iaulN 412N @ - 1)l Pu )] )

t,m

D.N 2., oN N2 N
|u IAST (1 = t,)|u,, |u,

|

+,1<| PN 2PN 42PN iM(SN(t—zm)|u1mV|2ug)>]dt

t,m

tm

n /1<Au

Utilizing the fact that 2Re(iv) = ud + av yields
J@X™ = fwy)

It
=/ [2(aufyY 24105 ™ ¢ = 1,) = 101} Pul1)
1,

m

4PN iaaqul | uN)> <Autm ,

1/12|uDN| SN(t—tm)|uN| u >

DN 2 oN N2 . D.N,2 DN
AP AN SN (= 1) Pl ) (Au,m AN u )>

t,m

t,m

(

n /1<Au[DN —iu2N Y Aul >+ A(Au,m =A@V 2SN (1 = 1, ) |2ﬁ>
(
(

AP PPN ASN (¢ = 1)) P ) ]dz

Noticing that A(|u|?u) = 2|u|?>Au + 4u|Vu|? + 2a(Vu)? + u? Ai, we arrive at
L+1,+1

g 1,

2
<Au,m ,1AA(|uN| u, ulb:N uD’N)> <Autm ,1)»(2|uN| Au +4uN|VuN|

+ 2N (Vul)? + @V )Mﬁ» - <Au AU2N P auP >

tm
It follows from the inverse inequality, the Sobolev embedding inequality |||y < Cllullg,u € H!, and the Young inequality that

2
<AuDN llA(luleuN - |uD’N| uD’N)>

tm tm tm
N N DN
< Cllau?; ||AN<||u B oy + N 2 ol =l |

<Clau) N iy (IIuNII + M 12 Dl llg

2 8
< CUlAu M P + llul) [ Y 1%

1
where we use the assumption (2.9) so that Ay, < co. Similar techniques, combining the fact that (u,ilv)?u) = 0 give

2<AutDmN,1/1|uN|ZAuN> = 2<Auf’mN,ul|uN| (au - AuDN)>
< C||414 ||||u ”Lm(@)AN”um || < C(||Au N2 + Jlu N||6
And it can be shown that
(8l a (P duly = @D P aulyY) )
= (4, ,./1((1/")2 (uD’N)2)AuN> (Au,”mN AP A Y - ) )
< ||Au ||||u ||(||M [l + ||u ||H1)||Au,m Il Lo (o)
+ 4N (1l ||2 A — 2]

t,m
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<Cllau ||1Nr2[||uN||H1||u M sz Qe e+ Nt lsz) + Naed) g Dle 2 12, ]
< CUAuDN I+ N 1S, + Ny 18,
and
(@l a1Vl |+ 2y (V)
N

< Clldu, " ey Nezt Ve 1174
< Cllaul N g 14 112 VY |13

2 1
SCIIAM,D,’,,NIIIIMNIIZ(IIAM ||z+||A<u N —uM)2)
< CUAuDY I+ lup 111 + 1.

Moreover, the remaining terms can be estimated as follows:

I, < CllAup, “}‘NTZHMN” < ClAau NP+ Cllup IS,

I+ Is + I < Cllduf); [ 7

t,m ”””rm LS(O)

<C||Au ||2+C||MN|| +C||M,,,, ||
and
I =—/1<V(|uD’N|2u3;,N),i/1SN(t—t )V(|uN|2uN)>

3, N3
< ClluM | 1ot W < Cllu)Y 1%, +Cllup IS,
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where we use the integration by parts formula and the fact that H* is an algebra for s > %, i.e., |luvllgs < Cllullgs lollgs for u, v € HE.

Combining estimates of terms I;,i = 1, ..., 8, we derive

FEPN S rwhy<c / "B+ W1, + NN, + 1

Im

Since the Gagliardo-Nirenberg inequality and the Young inequality give

2 2 1 2 2 4
S 2 14l = Al ) 2 S04 = S ) > 3 14uIP = Clall, all,
we obtain
J@lN ) fuyy<c [ G+l 1+ a1, + D,

m

which implies

T+l
raPN o< (ra+c / a1, + Nl 1S, + e )e€n,
'm
Step 2. Applying the Itd formula yields
t
SN S.N € pN SN . N_ SN
£y = N '”)_/t 2<Aurm S PN FouSiVdr —i/ePus) dW(r))>

m

rm >

t
+ 2/1/ <AuSN WSV Re(uS, V(=5 PN FouliNdr —iv/ePVu SNdW(r)))>
1

m

t
+ ,1/ (QuSN SN PE PN Fouliar —in/e PN SN aw ()
1

m

+ ,1/ (S PusY . -5 PN Fousiar —in/ePVusY aw ()
! 1 1
+ /162/ <APN(iuf;nNQEek),iluf;nN|2PNuf;nNQ§ek>dr

1
/ Aume, uSN | PNy SNQZekI dr+e/ 14PN @SN Q2 ey)||2dr
Im k=1 Im k=1

+ 24e Z[ AuSN (=iPVuSN 07 e Res;Y (i PV SNQZek))>
Im k=1

+ e<A( iPNu SNQZek) uS-NRe(u ,mN(—iPNuf;nNQ%ek)»]dr

10

(2.18)

(2.19)
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By taking expectation and combmmg (2.19) and the fact that ¢ < 1+ 2Cr,, for 7,, < Té with § being small, it follows from the
fact that H is an algebra for s > 5 that

ELf )]

Iy
< B + 2051+ CE[+ 205, ( [ A1 + 101G, + ar)|
Im
CIE[/ AASN P+ SN NG, + 1)dr]
It
gJE[f(uj;’)(1+2cT,,,)]+CE[(1+2cfm)(/ l(||ujj||‘ + 1PN 08, +1)dr)]
t”l

+CIE/(f(u5N)+||uSN|| +1)dr],

where we use (2.18) in the last step. By iteration, we derive

ELf )]
sE[f(u3V>]+CIE[Z Fye] +CE[Z / % ar]
+CIE[/ f(uSN)dr +C]E / A 129, + 12N, + 1

s

S
+Z/k (SN +1)dr]+CE/(I|uSN|| + 1dr]-
k=0 71k *

We claim that for r € T,

E[é}f(u,’])rk] < C(/()tE[f(uf’KN)]dr+ 1), (2.20)

In fact, noticing that for k = 1,2,....m,

Tk k
SN
g 12, 7 S2/ || |I2 dr+2/ Il |I
ke - —1 - rk—1 tkk 1

and 2% < I8 < C, we obtain
Th-1 Timin®

m m

N2 N 12 N2
Dl 1,7 < Ml 12,70+ C Y N 12,7y
k=0 k=1

o T 1
N2 SN 12 S.N 2
<l e+ € X[ [ S a0+ / S, =S 2] 221)
k-1 k=1

k=1"7Tk-

Utilizing the property of the conditional expectation and the fact that 7, = #,_, + 7,_, is 7,  -measurable, one arrives at that for

reT_,
/t" PNuS"i dW(S)“Z] :E[]EH /Ik PNuiﬁldW(s)”qka_,”

&l

=E[E[||/ PNu kaldW(s)Hz“ o

YEI20=U L ke

N S
<IE [/ ZHP ¥ 01e)] ds]‘y:tk,z(J:us'N

te—1 k=1

]

< CE[Tk_l ]7

where uS k’il s € T_, is the solution of (2.4)(b) with initial datum z; at ¢,_;. The above inequality yields

Elllayy, =y, I
SCEH /t PN FoutiY s ]+01EH|/ PYuSN aw )| ] < CElz,_,].
r r

Thus, IE[lluS’ ut e l|| ,] < CA%Elr,_]1 < C for r € T,_;, which together with (2.18) and (2.21) gives (2.20).
Hence, we derlve

t T
EL/ @S] < CELf )]+ C / BLF SN ldr + / E [ 112
- 0 - 0

11



C. Chen et al. Stochastic Processes and their Applications 173 (2024) 104373

D.N
1%

+ llupy + ||uSN|| +1]dr,

which implies

sup ]E[f(uf,N)] < CELf )]+ DeT
1€[0,T]

due to the Gronwall inequality.
Moreover, by utilizing the supremum type inequalities as in (2.13), one can finish the proof for the case of p = 2. For the case
of p > 2, the proof is similar by the use of the Itd6 formula and thus is omitted. []

Remark 2.8. The conclusions in Propositions 2.6 and 2.7 still hold for the solution {uP o), uts (1)} of the split equation (2.2) and

the solution {utD‘N(t), u,S’N(t)} of the semi-discrete scheme (2.3) for t € [0,T], i.e.,
H(wS (1) Hw> N @)
an o) oo M <

1€[0,T]

D N p D.N p S.N P
[,S[‘ép (I, + NS N, + PN OI2, + N @7, )| < €.
The proofs are similar as before by considering Hu” (1)), Hw?® (), fwP(®)), fu? (1)) and those of u, u N, u N (1) instead, and hence
are omitted. h h B h

3. Optimal strong convergence order

In this section, based on the a.s.-uniform boundedness of the mass, the H/(j = 1,2)-regularity estimates, and the H!-
exponential integrability of the numerical solution given in Section 2, we show the optimal strong convergence order of the adaptive
time-stepping scheme (2.4).

Theorem 3.1. Under Assumptions 1 and 2, for p > 2, there exists a constant C > 0 such that

1 _
sup lutt,) = u Il oy < €67 + N72).
0<m<Mp

Proof. Noting that u(z,,) - ul = (uj‘ﬁ(tm) —ul)+ ( () = u (t )) + (u(t,) — ”ifl(tm))’ we split the estimate of the strong error
into three steps.

Step 1. We first estimate the strong error between the semi-discrete scheme and the fully discrete scheme, i.e. Hui _A][ ) —

N

L = * N Epll Loy~ Similar to the proof of (2.8), the differential form

ey ™ @) = upp)
= —EPNFQ(uSN(t)—u Mydr —in/ePN @SN (1) — u N )dw (1),

)= uPN

L m||2 Since

combining the Itd formula yields that |3 () — ||2 < NN

t
ulN@y—ulN = E, + / AN (r) = ulNydr

I

+ / uPN(|u3N(r)|2u3N(r) SN = 1)l ulD‘Z)dr, 3.1)
1

m

we have
2
1Eppill

Tm+1
<2V ) = 2 I = NEE 4 2( By [ 8GN 0 = b )
1,

+ 2B, / "R O RN 0 = SN~ 1)l Pl e
+ ”/ 1AW (1) — w2V ydi

Tmt1 2 2
+i/1/ pN<|uf;-N(z)| ubN (1) = SN @ = )P uﬁ’ﬁ)dr”
t

m

= E >+ 11 + 11, + IT5.

12
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For the term I1,, using (3.1) and the integration by parts formula, and combining the Gagliardo-Nirenberg inequality |u||>

C||Vullllull?, u € H give that

Dl 4
11, =2(4E,, - / / AN () = uPN ydrdr
m+1
—/1/ / PN |uDN(r)| ulN () = SN —1,)lulN | uDN)drdt>

< Ul | sup a0 =l s + 530 12 O

+ 500 13

< a3 [sup BV @I, + sup 1D 12, +1].
€T, teT,
1
For the term I1,, it follows from the property ||(.S(t) — Id)u|| < Ct2 ||ul|yn that
N DN a2 D.N 2\, DN D.N
1, = 2<Em,1/1 P <(|um’ OF + >N D@EN @) - ulh)
’m
+up ™ (Ouy PN @) = uPNy + 1d = SN = 1,)|u u) m| ”m)dt>
< CIE, / <||uD”<r>||Lm(@) + a1 @™ (0 =l |

1
M E: ]dt
By the inverse inequality ||PN Mllms <
5PN |uP (s)| ubN(s)ds|| < €@t -1, )z SUprer,, e

II

2
< CIE,l / e A N ] [ AR o A [ O
t€T,,

n

Tmt1
2 2y, DN
X(T,ﬁ SUP llup ™ @l + IIEmII)dt+C||Em||/ o lluy 5 11 dr
tm
<Cr,lE, || 22N U2 i) + TN ) + 1)

D.N s
+CTm(ISEL;P ”um (I)“Hl + “utm,m”Hl + 1)

For the term I/, it can be estimated as
TTy < Cop(sup lluy ™ Ol + sup N 15)-
teT,

Hence,
IEi I* < NE, 17 + Corp(1 + g™ 1)l ooy + Nty 1 oo @) Enall®

DN
+CT’”(,Sequ llup™ ON,, +SUP llup 1%, + 1.

Applying the Gronwall inequality leads to

m
||Em+1||ZSCZT?(Su1P llu) ™ 0115, +sup||u",”|| +1)x

e

J=

m
exp{C Z (1PN DI w0y + 1Y ) -

Note that
Myp—1 Mp—1
[exo{e X eVl i} g <[l 2 w(o1e i+ o) 0
j=0

j—()

<[4 z rexp{ (o191 + )}

~.
I\

( [CXP{4.DT<P||Vu§V||2+C(p)>}]>$

'*]I'—
||'M~!

13

(t)||H| , the Minkowskii inequality, and the Young inequality, we derive

ANPNullw € Hy Nup™ @) = ug M@l < NSNE = 1) = 1N @)l + 0L SN -

(3.2)
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where in the second inequality we use the convexity of ¢?,a € R, and in the last inequality we use the assumption 7; < T'6. Taking

— 1 ini 2 6 1 i ;
P = et T]’ and combining ||Vu||* < 4H(u) + ||u||®, u € H' and Proposition 2.6 give

Elexp{4pT (plIVu I + C(0)) }] < E[exp{ ) rcpl|<c,

o)

which together with the Gagliardo-Nirenberg inequality ||u||iw © S C||Vul|||u|| for u € H' implies

m
[exe{ € T ola) I }]

(3.3)

<
L4(Q)

Similarly, combining Remark 2.8, one can show that

|exe{c i N )l o |

3.4

L4P(Q) s¢C
Hence, taking the pth power and expectation on both sides of (3.2) and using the assumption 7,, < T'§ lead to
ELll Eppi 177]
» < D.N /116 D,N 16 2\1
<oy (| 2, ™ Ol + s 1 U + ") x

P m
2 N2
s (€ N e }|

4
2
L4(Q2)

m
I exp{c 2% ||“f’N(’f>”2L°°<<9>}|
=0

< Cé°.

s _ SN
uS_ (1) um_l(tm)‘

Step 2. We estimate the strong error between the split equation (2.2) and the semi-discrete scheme, i.e., ) o)

=: | E,ll .oco.:;)- APplying the chain rule yields
N4 @) = 42N @y DIP = 2 (,) — w2V @)1

Il ) 2
+2 / <u,‘j(s) — 4PN (5),iA(|uP () uP(s) = PN DN ()| uﬁ’N(s))>ds,
t

m

and applying the It6 formula gives
Nt ) = g™ Wy DI = My (1) = g™ @)1

Im+1 1 1
n 2e/ <u‘:(s) —uSN(5). =3 Fous(s) + EPNFQui’N(s)>ds
1
+ 2\/2/
tm

tmy1 & 1
+ e/ Z @S (s) = PNuSN (5)Q7 e ||*ds.
I k=1

m+1

(S5 = SN (), =S (5) = PMuS™N (5)dW ()

Therefore, we derive
£ 2
1Ep1

= I1E, I +2 / " B PN (B D)

m

= PM BN ) Ul () Vs

Tl 1 1
+ 25/ <uj(s) —uSN (), =3 Fou(s) + EPNFQui’N(s)>ds

Tm

I
n 2\/2/ I <uj(s) —uSN (5), —i(uS (s) - PNujN(s))dW(s))
t"l

Imi1 & 1
+ e/ Dl (s) = PNusN ()07 ¢y |2ds
Im k=1
= E >+ TI1 +TTL + TT1;+ I11,.
For the term 111, combining the cubic difference formula gives
\1114]

Tm+1
<c / 1) = 2N [ (e o + T2V G )%
1

m

14
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lul(s) — ulN ()] + 1 (0d - PN)|u3’N(s>|2u,Z~N(s>||]ds

Tmt1
<c / 12 () = a2 (12 + 12N ()] + 1)l
1

m

In+1
+c,1;f/ ||u,g’N(s)||§H2ds.
1

m

By the properties [[uD(s) — ul(1,)|? < ch||ug(zm)||§ﬂl, lu®(s) - ug(tm)n;ﬂl < Cr,,,||ug(z,,,)||]12412 of u2(s), and those of u™ (s) for s € T,,,
we arrive at

Tl ~
lnl<c / WEL I + zllup @)+ wlley™ @l D )l o )

m

D,N 2 D 2 D,N 2
+ 16BN IR ) + Tl )2 + 212N I, + 1)

Tl
+CAY / ||ufn)’N(s)||§H2ds
1

m

< Cr I E, P Alup @), + TN @)l2, + 1

Im+1
D 4 DN 4 -2y, D.N 6
+C/t T ety @)y + Ml ™ Ell) + Ay Nl ™ (911, ds.

m

Terms I11, and I11, can be estimated respectively as

Tm+1
i <e [ (156 - Y O el e + 1)
1,

+ AR SN (9112, )ds

and

Im+1 1 1
) <c /, (Iluﬁ(s)—uﬁ”"(s)llzlleIli; +TN2||MZ’N(S)||§H2||Q2||i§)ds.

m

By the Holder continuity and the triangle inequality, we obtain

|IT1,| + |IT1,]

Tm1 .
<€ [ IR + S = S0P + WS ) = a5 1R as
1

m

Imt1
=-211,,5.N 2
+ C/r Ay N, (s)lleds.

m

Combining estimates of terms I11;, j = 1,2,4 yields that
£, 117
SNEL P + Cr I E 1Pl @3, + Nup ™ @I, + 1)

It
0 [T (eI + I ) + 1S = )1
1,

m

1SN (5) = SN 1) + ARAEN G, + SN (I ds + 11T,

By iteration, we have

m
IEpii 12 < NEI? +C Y e N E PPl + ) N pI%, + 1)
Jj=0

Imt1
+ € [T N 1+ I, + IV O

S () = uS @I + 1™ () = uSN a2 ds
It
+ 2/ ] (ad = PY)wS () = uSN (59, ~iC1d = PNy (5)aW ()
A 5 ()~ s

m
= NEG I +C Y I E Pl I, + lu) N GpIIZ, + D+ Ty + )y,
Jj=0
which implies
m

1Bt I < G2 W + 9+ By exp{ € X wy P I, + )™ @12, + 1.

j=0

15
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Taking L?(£2)-norm, and using the Holder continuity of uS uS N and the Burkholder-Davis-Gundy inequality give

17 + T2l 20

+ 1N () =l N DI ) A5

L4 (Q;H)

T
< C(‘S“L’IRZ)“LC/ (||uS(s)—uS(r N2 w(gm
0

T
+CIE[(/O A OIZ, + 1SN OIS N I, 107 12, ds)]
<CE+ D).

Moreover, one can show that

<C
L2(Q)

m

[exe { € 3 LI, + IV e pI2, + 1) ,
j=0

whose proof is similar to that of (3.3)-(3.4) and is omitted. Hence, we arrive at ]E[llEm +l 121 < C(/l]‘v2 + )P,

Step 3. For the strong error between the original stochastic Schrodinger equation (2.1) and the split equation (2.2), i.e., ||u(t,,) —

1
<Cé2.
LP(2:H)

, it follows from [15, Theorem 2.2] that “u(t ) — u @ )‘
Comblmng Steps 1-3 finishes the proof. []

Remark 3.2. In practice, instead of verifying whether a timestep function satisfies the low bound in Assumption 1 (2.7), people
usually introduce a backstop scheme with a uniform timestep and couple it with (2.4) to ensure that a simulation over the interval
[0,T] can be completed in a finite number of timesteps; see e.g. [8] and references therein for more details.

4. Numerical asymptotics

In this section, we study the asymptotic behavior of the adaptive time-stepping fully discrete scheme (2.4) for the stochastic NLS
equation (1.1) as the noise intensity ¢ tends to zero. Note that the dependence on ¢ of solutions is emphasized in this section, for

D,Ne SN,

example, solutions of (1.1) and (2.4) are denoted by {u¢(t) : t € [0,T]} and {u,, cup e [0,TH, respectively. The tool for

this study is the theory of large deviation, which describes precisely the weak convergénce of the law of the family {u5V<}
towards the Dirac measure on the solution of the corresponding skeleton equation as ¢ — 0. )
1 1 1
Set H, := QZH. Then H, is a Hilbert space with the inner product (u,v)y, = (Q 2u,Q 2v)y and the induced norm
1 1
I - ||2H0 = (- -)g,» where 077 is the pseudo inverse of Q2. Denote S, := {v e L2([0,T];H0)|/0T ||v(s)||2HOds < M} and
= {v : @x[0,T] - Hy|v is F,-predictable and v € Sj, a.s.} for each M € (0, ). It can be checked that S, is a compact
Polish space endowed with the weak topology d(g1,8) = X zlkl fOT(gl(s) —gz(s),gk(s»HUdsl, where {£,},>; is an orthogonal
d

basis of L2([0,T1; H,); see e.g. [6, Section 4] and [20, Section 2]. In the sequel, we denote by — the convergence in distribution.

In order to establish the LDP for the solution of (2.4), we consider the following stochastic controlled equation

dugy (1) = muDNf(z)desN(t — 1, PN |u | ull d,
) W) = S, 4.1
e = PNFQuS ’; ‘(o - 1PN S E(t)vf(t)dt

—1\/—PN SNde(z) uSNe(t )—u N 1)
and the skeleton equation
dwlN (1) = idw?;] (t)dt+1ASN(t—tm)PN|wN | wymdt,
w2N@,) = wN (4.2)

vm’

dwS Ny = =iPNwi N ovids,  win () = wliY )

for ¢ € T,, with v¢,v € L?([0,T1; H,). Here, the initial data both are ué\’ . Define measurable maps ¢¢,¢° : C([0,T]; H) — C([0,T];Hy)
by G (VW + [ ve(s)ds) := uS]_VE( ) and G°( f; v(s)ds) :=w}:" (). And denote uiifnﬂ = uifn’e(l‘mﬂ) and w), | = Wy (Epy)-
Similar assumptions to Assumptions 1 and 2 are given as follows.
Assumption 3. Let 7, satisfy
N N,
7, < min{ L, [lw], I llwvmllLG(@) Lylluys, 17 llue mllLﬁ(@) T5}

7 > max{C 4 1P + 675, ¢l 1P +67'8)  as.

with constants L, ¢, #,¢ > 0 and small constant 6 € (0, 1) independent of e.
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Assumption 4. Let 7,, satisfy
l_}'
72 Ay <L, as.,
54 max{H(uCﬁ:jn ), Hw) )} < Ly as.

for some y € (0, %) and constants L,, L; > 0 independent of ¢.

The main result of this section is stated as follows.
Theorem 4.1. Under Assumptions 3 and 4, the family {ufj” “}ee(,1) Of solutions of (2.4) satisfies the LDP on C([0,T];Hy), Le.,

(D for each closed subset F of C([0,T];Hy),

lim supelogIF’(uSN6 eEF)< - 1n§c 1(x);

e—=0
(i) for each open subset G of C([0,T]; Hy),
liminf e log PS> N€ € G) > — inf I(x),
e—0 " xeG

where the good rate function I : C([0,T];Hy) — [0, o] is defined by

T

) 1 )

I(f)= inf —/ [lv(s)|I%, ds.
(veL2(0,TT;Hy): f=¢7(f; v} 2 Jo Ho

Below we give the a.s.-uniform boundedness of the masses, and the H!-regularity estimates of solutions of (4.1) and (4.2), which
are similar to those of the fully discrete scheme (2.4), i.e., Lemma 2.1 and Proposition 2.4.

Proposition 4.2. Let M >0, and let {v*}.¢ 1) C Py Under Assumptions 3 and 4,

S.N,
sup sup ()P v SN <IR) < M T 1P as, 4.3)
€€(0,1) t€[0,T] =

and for p > 2,
sup B sup 130l | < as, (4.4)

e€(0,1) hrel0,T]

where the constant L, is given in Assumption 3 and C := C(p,T, M, H(ué" ) > 0.

Proof. For the proof of (4.3), we note that (uS N, “(s), —iPNu S N, e(s)ve(s)) = 0. A similar proof to that of Lemma 2.1 leads to (4.3).
For the proof of (4.4), similar to the proof of (2.12), we have

HDN (t01) S H@YS) + Cont (H@lCS) + 1) S H@S ) + Cr,
under Assumption 4. Applying the It6 formula to H(ufg"v *“()), and noticing that

(v Ne(s) iV (u Nf(s)v ())) = (Vu Nf(s) i’ Ne(s)Vv ).
we derive

E[H (e ()] = BIH @ ()]
<CE / 1V <O [ IV Ol ol + 14 )l s o IV Fol
1SN IVl oy | ds + CE / (O O FS
(I1Foll w0y + 1V (9l s(0y)ds + CE / SN2, ds
< CIE/ Va1 + 1)ds+CE/ —(||Vv€(s)||Lm(@)+ IV 17 o0, (4.5)

m

where in the second inequality we use the Young inequality. By iteration and combining H(ufgiv “@1) > %(HVuf;i’ ‘02 - ||uf;f£’ <19,
we obtain

Vet

t
E[HuSY ()] < E[H@) )] + CE / H@N<(s)ds + CT

t
+CB [ AV gy + IO

17
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1 1 1
It follows from |[v]l g2 < Q2 |l w2y IO 20l < |02 ||£§||U||HU for v € H,, that

i
/0 VSR gy + IV )

T T
< c/ ||ve(s)||§12ds < c/ VeI ds <CM  as.
0 0 0
This leads to
t
B[H@SY )] < EH@y) +C(E / H@EN“(s)ds +1).
i o s

Hence,

sup E[H@SY ()] < (]E[H(uév N +C)ecr‘
t€[0,T] -

The remaining proof is similar to that of Proposition 2.4 and hence is omitted. []

Proposition 4.3. Let M >0, and let v € S),. Under Assumptions 3 and 4,

N 12 T N2
sup Iyl < Tl I
bl

S.N
sup [lw, N OIZ, <C  as,
te[0, t€[0,T] -

H!

where the constant L, is given in Assumption 3 and C := C(T, M, H(ué" ) > 0.

Proof. It is clear that

SN 2 _ SN 2 _ D,N 2
1SN i DIP = 105N U1 = 1P @I,

N

which combining [|w.; (7, )II? < (1 + Lyz,)llw!, ||? implies that

N 2 < LTy, N |2
{72 | | 172N [

m

Similar to the proof of (2.12), we have

H@w? N (t01) < H@w), )+ CTI P (MW ) + 1) < Hw), ) + Cx,,

under Assumption 4. Applying the chain rule and the Young inequality gives
t
HwS N (@) = HwS N 1,) = / <Vw§;,{] (), V(=iPNwdN (s)v(s))>ds
tm
! 2
- /1/ <|wi;,’,v(s)| wSN(s), —iPNwi;’]:](s)v(s)>ds
tm
t
<c / 1VS Y SV 2.

Hence,

t
H@SN @) < H@PN (1) + C / VWS Y IR + I, )ds

1
<SHwWY,)+ c/ (HwSY () + ||v(s)||fq2 + 1)ds,
tm
which together with the iteration and the fact that
! 2 g 2
€ €
/0 VIR, ds < C/() VIR, ds < CM
yields
t
H@w3 N @0) < Hw!) + c/ HwSN(s))ds + CT + CM.
: X 0 :
Applying the Gronwall inequality finishes the proof. []

Proposition 4.4. Let M > 0. Under Assumptions 3 and 4, the set Ky, := {G°(f, v(5)ds) : v € Sy, } is a compact subset in C([0, T1; Hy).

Proof. It suffices to prove that K,, is sequentially compact in C([0,T]; Hy). Let {v¢,v} C S,, with v¢ — v in S),. The property
1SN Ol ¢z = 1 and Proposition 4.3 imply

DN D,N 2
||wve’,,, (1) — w0, (Gl

18
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N N |2 N N N 2
= [lwk , —wl, | +2‘rm<w5 -w M(lwve’mlw |w | ))

v,m’
|2

N N 2 N N 12 N 2 N 2
<lwl = w17+ Cryllelt = wll 1P [l 1, + e, 1,

ol ]

N N 12 N
<, - wh P+ Cr, Y, -

2y,,N 2
S [ R Sy T

N 4
+ ol I, +

N 2
oo as.

Note that for t € T,,,

d

5 Wi @ = w0 @) = =iPY Wl v @ + PN w Y v,
By the chain rule, we have that for 1 € T,

e @) = wN @l

= w2 i) = w2 DI

t
+2 / (w5 (9) = SN ), 1PN W (51 (9) = wSN (50 Y

2 wN 112
<llwll,, = w17 + Cryllwll, —w), |

S.N S.N +pN . SN
+2 / <wv€‘m(s) —wSN (), PN wSN () (s) - v(s))>ds
which together with the iteration yields that for r € T,,,,
lwlh @ = wSNoI> <€ sup [lwl, - wlII?
te[0,t),] -

t
+2 / (w5 = w51, =P wN ()0 (5) = v )ds.
0 S »S sS

Denote y, (1) := /0 iPNw S N (s)(v —v)(s)ds. Applying the integration by parts formula and combining Proposition 4.3 give that

/ (wf’j ) = wS N s), PV WS (5)¢ (s)—v(s)))ds
L\ s
= (Wil 0 = w0, w )
- / < PN SN (v () + 1PV SN (v(s), WE(S)>ds
0

1
< Zlwpif @ = wi N O +C sup Jly IF +C sup w5l
= SE[0,1] s€[0,1]
Hence,
e @) = wsN ol

<C sup [lwl, —w [P +C sup [y ()I* +C sup [l (o).
tel0,t,,] - s€[0,T] s€[0,T]

. . . N
We use the induction method to prove the compactness. Suppose that supe(,, | llewye. W

SUPye(0,1,,, ] ||w0’€’£ - wyzllz — 0 as e — 0. Then it suffices to show that

sup [ly. (9> + sup [ly.(s)l > 0ase— 0.
s€[0,T] s€[0,T]

In fact, for h € S, it follows from Proposition 4.3 that

/0 lliQu;: (s)PNh(s)ll2 ds<cC / 10311 zanllwyey O, 1A, ds

otu
T
<c [ o, <
0

which together with v¢ — v in S, yields

T
lim / (PN Wl (5)(v () = V(). h(s))ds =

e=0 Jo

N2 > 0 as € — 0, then we show that

(4.6)

This means that —iPV wfeN (v¢ — v)(-) converges to 0 as ¢ — 0 in L?([0,T]; H) with respect to the weak topology. Moreover, one
can show that the set {y, }ee(o’]) is a compact subset in C([0,T];H ) by the Ascoli theorem (see [28, Theorem 47.1]). In fact, the
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equicontinuous of {w,}.cq,) can be deduced by

| [ - oo
f B

tp 1
< s ey OV =al( [ 0= vl )
n

s€[0,T

1 1
< s[%pﬂ||w;"}§<s>|wlt2—n|(/ VIR, + IV, ds)* < VI =1TM.
s€ll, -

51

Since

sup H/ —ipN SN(s)(v —v)(s)dsH
e€(0,1)

<C sup WS )l sup / 10 = v)(5)ll s < C,
s€[0,T] e€(0,1) JO

the compact Sobolev embedding H' < H implies that {y,(1)}.c(,) is compact in H for each fixed 1 > 0. Thus {w,} ., is compact
in C([0,T1]; Hy), which combining [12, Proposition 3.3, Section VI] shows that y,. — 0 in C([0,T]; H). Thus (4.6) is proved.
Note that (4.6) also implies that

sup [wSND —wSN@OI? > 0ase -0 as.
1€[0,t,41] ’ ’

holds for the case of m = 0. Combining the induction hypothesis, we finally obtain

sup ||wf€’]:]n(t) - wf”fy(z)”z —»0ase—0 a.s.,
1€[0,t411 ’ ’

and thus sup,¢o 7 ||wvﬁ | 1) - wf,;N(t)H2 — 0 as € - 0 a.s. The proof is finished. []

The following proposition shows that the solution of the stochastic controlled equation (4.1) converges to that of the skeleton
equation (4.2) in distribution in C([0,T]; Hy ) under certain conditions.

d
Proposition 4.5. Let M > 0, Assumptions 3 and 4 hold, and let {v¢}.¢ 1) C Py satisfy that vf‘—()» v as Sy,-valued random variables.
€

Then uf;ﬁ""c)ﬁ» wyN () in C([0. T]: Hy).

Proof. The proof is split into two steps.
Step 1: Show that { ( M ee,1) is weakly relatively compact in C([0,T1; Hy).
Following from [19 Theorem 8.6, Chapter 3], it suffices to prove that

0 (u

(ii) There exists a family {y.(8,T) : 6,¢ € (0,1)} of nonnegative random variables satisfying

(t)}ee«) 1) is tight for every r € [0, T;

vft

E[1A NS @+ molzy OIF|F | [T Il <ol o - ml?]

<Elr.(6.DIF]

for0<7r<T,0<#n <6,and 0 <#, <6 At; in addition,

lim sup IE[}/E(H ) = 4.7)
6—-0 e€(0

and
lim sup E[||ufj§f(9) fjgf(omz] =0. (4.8)
0-0 ce(0,1)

For the proof of (i), for arbitrary p >0 and t € [0,T], let I',, := {x eHy : llxllg < R(p)} with R(p) being determined later. The
compact Sobolev embedding H' < H implies that I',, is compact in H. Since the Chebyshev inequality and (4.4) give that

P(ufY 0 € ) =PIl Ol < R))

S.N,
SUPee(o,1) SUPrero,r) ElllU,C €Olgn 1

>1-
R(p)
C
>l-——=11-p
R(p)
S.N.e S.N.e . .
with R(p) = =, we obtain inf ¢ ]P’( Uy e FN) > 1 —p. Hence, {u)., (D} e, 1s tight.
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For the proof of (ii), noting that a;a, < a;I4 + a,I 4 for 0 < a;,a, <1 and a measurable set A, where I is the indicator function,
we first prove the existence of {y.(6,T)}.¢q,) such that

S,N, S,N,
o R R AR O] T

O =N =P [ < Bl TR

for0<r<T,0<nm <0<(1A %rml-,,) and 0 <n, <t A0, where 7 := min{r,, : 1,, > t}. Recall that 7, is given in Remark 2.2.
Note that forr € {t €[0,T] : T—1 > %rm,.”},

S,N, S,N,
lluye @ m) = w1

= “ / —%PNFQuifiv’e(s) - iPNuiff’e(s)ve(s)ds
ty , )
- / i\/ZPNuf;ftV"(s)dW(s)”
. '
. ,
e .
< C9/ lluse O] NG ”FQ”Loo(@) + IV (ll5,)ds
2
+ Ce sup ”/ pN fft\' €(s)ch(s)” =
m<o

andforre {t€[0,T] : T—t< 11,,,,-,,},

S,N.e S,N, S.N,
SN0 SV = Il < Co / SN DI Fo gy + VI, s
- 0

t
2
+ Ce sup / PNuS;];]’e(S)dW(s)H =
1y <tAO —np Vil
The random variable y.(9,T) is chosen as y,(0,T) = T ]I{t. 2L ) + IZJI(E Lo for each ¢ € (0,1) and 6 < (1 A r,m,,) And we

remark that if 1 37

min =

<0 <1, then we let y.(0,T) = 1. Then it follows from the Burkholder—Dav1s—Gundy inequality and (4.3) that

t+6 1
sup E[y.(0.T)] < sup {C9262 +CO+ CeE[/ 1SN < )12l ||21ds]
¢€(0.1) e€(0,1) ' = L

t
wee] [ SN OIrIotE, o

< sup [c9(9e2 + 1)+ CeG] <CO-0ash—0,
e€(0,1)

which proves (4.7). Finally, it is deduced from

lim sup JE[”ui’g’f(e) - usg’g‘(O)llz] <lim sup [ca(ee FD+ Ceﬁ] =0
60 c(0,1) v Ve =0¢g(0,1)
that (4.8) is satisfied, which finishes the proof that {uv;' ‘e(-)} ec(0.1) is weakly relatively compact in C([0,T]; Hy).

S.N.e SN()

d d
Step 2: Show that u.; ()—>w 1fv‘—>v

Since {v¢} is tlght and SM is a compact Polish space, {v¢} is weakly relatively compact based on the Prohorov theorem
(see e.g. [18, Theorem A.3.15]). Thus {(uS N (), V “)}ee,1) is weakly relatively compact in C([0,T];Hy) x Sj,. Hence, there exists

a subsequence ¢, — 0 (asn — o0) such that {(ui’nN’e”() V)¢, e,1) converges in distribution to an element taking values in

C([0, T]; Hy )X Sy, It follows from the Skorohod representation theorem (see e.g. [18, Theorem A.3.9]) that there exists a probability
space (2, F,P) on which a C([0,T];Hy) x S,,-valued random variable (ufv N(.), V) is such that {(uSNE”() Vi)le,e,1) converges to

vén .

(uS-N (), 7) in distribution. Denote by Ej the expectation with respect to P. We need to show that «S-N(-) satisfies that for t € T,

duDN(z)—muDN(t)dt+msN(z—z )PNluNl uNdr, uDN(t )—uSN(t )

n_y m=1 (4.9)
u,ﬁ N =-ipN ui Nowedr, uﬁ Nt = ubN ).

To this end, for ¢ € T,,, define the map Y; : C([0,T];Hy) X Sy, — [0,1] by
Y,(/.9)
= LA [0 = SV @) (£ +IAPN )P F (1)5) + / iPY f(s)p(s)ds -

We claim that Y, is continuous and bounded. In fact, noting that C([0, T]; H!) is dense in C([0, T']; H), we let f,, = f in C([0, T']; H) with
SUp,en, I £l VI Nl < o0 and let ¢, — ¢ in Sy, with respect to the weak topology. By |1/\||x, [[=TAllx ]l < TAllx; =%, < llx—=%5]l,
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we arrive at
DAV SESACRD]
t t
< IS = Flleqoran (1 + / Iu()lzrds) + | / iPN £(5)(,(5) = pls))ds |- (4.10)
t ty

Similar to the proof of the convergence of {w,}.(q,) in Proposition 4.4, the last term in the right hand of (4.10) converges to 0
uniformly with respect to ¢.
Hence,

lim E[Y, @5 " ()| = Bp @SV (), 9l
n—oo " -
see e.g. [18, Page 375, Appendix A.3]. Since forr € T,

B[y, @ 0,v0)]
t t
1 S.N.e, . S.N.e,
e [ 5 PV iy (s)ds + /&, / PNV (s)dW(s)H]

T t 1

6 S.N.€ S.N.€ 2\2

Z / I Foll ool ()1ds + /& (E]| / Pru e saw )| )?
0 ’ [ ’

<Ce¢,—>0asn— oo,

IAE[

we obtain Ep [Y,(us N, \7)] = 0. It follows from the definition of Y; that

WSN() = g“(/o O(s)ds) Poas.

d —— d . . d . d
Moreover, due to (ui‘;v.’e”(‘), Vven) — SN (-),v), we have v&» —— 7, which together with v¢ — yields that v = ¥ and
b €, -

€,—0 e

consequently wf&N ) 4 uS:N(.). Therefore,

S.N.e,

(O

OV — @SN,

Repeating the above procedure, we derive that for any subsequence 9, — 0, there exists some subsubsequence 9, — 0, such that

S,N.9, S.N.e

d d
@y, ‘"k o, \/‘%)—»lg = (wf,’;N('), v), which finally implies that (u,; (), VI— (wi;N(~), v); see e.g. [3, Theorem 2.6].

C(’)imbining Steps 1-2, we finish the proof. []

Proof of Theorem 4.1. Following [5, Theorem 4.4] or [6, Theorem 5], it suffices to prove that

@) for any fixed M < oo,

Ky = {g()(/oAv(s)ds),vESM}

is a compact subset of C([0,7]; Hy);

d
(ii) for M < oo and {v¢},gq,1) C Py such that v¢*— v as S),-valued random variables,

€—

QE(\/EW+/0‘ ve(s)ds)—:—(; QO(/O'V(s)ds>,

which are given in Propositions 4.4 and 4.5, respectively. []

Recall that the mass conservation law ||u(r)||> = ||uy||> V¢ € [0,T] holds for both the stochastic NLS equation (1.1) and the split
equation (2.2). Even though the mass cannot be preserved exactly by the adaptive fully discrete scheme (2.4), the error of the masses
between solutions of (1.1) and (2.4) can be given by means of the LDP for the numerical solution.

Corollary 4.6. Under assumptions in Theorem 4.1, for any p > 0, there is some €, > 0 such that for € < ¢,

exp{—l inf I(x)} +exp{—l inf I(x)}
€ xeG) € xeG?

<P(| sup VIR = ugll?] 2 )
t€[0,T] -
1. . 1.
Sexp{—— inf I(x)}+exp{—— inf I(x)},
! € xEF/%

€ xeF,

where G; = {x € C([0, T}; Hy) : sup,cpory X1 > llugl*+p+£}, Gg = {x € C((0, T}; Hy) : sup,cpory IxOI* < llugl*—p—£} with & > 0
being a small number, F) = {x € C(10, T1;Hy) : sup,cor) x> = lugll® + p}, F) = {x € CAO, T Hy) : sup,eory IXOI* < llugll* = p},
and [ is given in Theorem 4.1.
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Proof. It is straightforward that

. 1 C e
Note that {w : uf*N’e(w) € Gp} C {a) * sup,epo7 llu

S,N,
P(| sup 1% I = llg 12| 2 )
te[0,T] -

S,N.e2 2
=P sup 1% > gl + 5 ) +
t€[0,T] -

=: 11, + 11,

S,N.e 2 2
sup ;NI < lluoll® = p)
t€[0,T] -

S,N.,e

s @I 2 Nlugll? + p) and (o = uSN€(@) € G2} € {o : supeqor lluy, (@) <

1t

lluoll? — p}. Teljms: 11; can be estimated by the LDP upper bound (resp. the LDP lower bound) with the closed subset Fg (resp. the
open subset G) for j =1,2. O
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