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Itis known from Beccari e al. (2019) that the standard explicit Euler-type scheme (such as the exponential
Euler and the linear-implicit Euler schemes) with a uniform timestep, though computationally efficient,
may diverge for the stochastic Allen—Cahn equation. To overcome the divergence, this paper proposes and
analyzes adaptive time-stepping schemes, which adapt the timestep at each iteration to control numerical
solutions from instability. The a priori estimates in €' (€)-norm and HP (O)-norm of numerical solutions
are established provided the adaptive timestep function is suitably bounded, which plays a key role in the

convergence analysis. We show that the adaptive time-stepping schemes converge strongly with order g

in time and g in space with d (d = 1,2, 3) being the dimension and 8 € (0,2]. Numerical experiments
show that the adaptive time-stepping schemes are simple to implement and at a lower computational cost
than a scheme with the uniform timestep.
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1. Introduction

Numerical approximations for stochastic partial differential equations (SPDEs) with globally Lipschitz
coefficients have been studied in recent decades (see e.g., the monograph, Lord ez al., 2014). In contrast,
numerical analysis of SPDEs with nonglobally Lipschitz coefficients, for example the stochastic Allen—
Cahn equation, has been considered (see e.g., Cui & Hong, 2019; Liu & Qiao, 2020; Cui et al., 2021,
and references therein) and is still not fully understood. It is pointed out in Beccari er al. (2019)
that the explicit Euler, the exponential Euler and the linear-implicit Euler schemes with the uniform
timestep fail to converge in the strong sense for SPDEs with superlinearly growing coefficients; see
also Jentzen & Pus$nik (2020). Implicit schemes like fully drift-implicit scheme (see e.g., Kovics et al.,
2018; Majee & Prohl, 2018; Qi & Wang, 2019; Liu & Qiao, 2020, 2021, and references therein) can be
strongly convergent in this setting. It is known that the implementation of the implicit scheme requires
solving an algebraic equation at each iteration step, which needs additional computational effort. These
reasons have led to the research on the construction of explicit schemes that can ensure convergence
under the nonglobally Lipschitz condition. For instance, Bréhier & Goudenege (2019) proposes the
splitting scheme and studies the convergence in strong, weak and probability senses. It is shown that
the mean-square convergence order is almost 1/4, localized on an event of arbitrarily large probability,
and that the convergence order in probability is almost 1/4 for the space-time white noise case; the
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2 C. CHEN ET AL.

authors in Bréhier e al. (2019) study the strong convergence order of the explicit temporal splitting
numerical scheme for the case of different noises with varying degrees of smoothness; Cai ef al. (2021)
proves that the weak convergence order of the tamed exponential Euler scheme is almost 8 for the
generalized Q-Wiener process case, and Wang (2020) shows that the strong convergence order of the
nonlinearity-tamed accelerated exponential Euler scheme is almost 1/2 for the space-time white noise
case; Becker & Jentzen (2019) studies the strong convergence order of the nonlinearity-truncated Euler-
type schemes, which is almost 1/4 for the cylindrical Wiener process case. The present work makes
further contributions on the numerical study of the explicit, adaptive time-stepping schemes for the
stochastic Allen—Cahn equation.

Adaptive time-stepping schemes, which adapt the timestep at each iteration to control the numerical
solution from divergence, have been deeply studied for stochastic ordinary differential equations
(SODEs) with nonglobally Lipschitz drift. As for the selection of adaptive timesteps, we refer to e.g.,
Kelly & Lord (2018); Fang & Giles (2020); Kelly & Lord (2022) for the admissible strategy, Lamba
(2003); Lemaire (2007) for the strategy based on the local error control and Merle & Prohl (2021) for
the strategy based on the a posteriori weak error estimate. Numerically, this adaptive scheme is simple
to implement and the complexity is similar to that of an Euler scheme, which is a big advantage for high
dimensional problems (see Lamba, 2003). It is also pointed out in Hoel ez al. (2012); Fang & Giles (2020)
that such an adaptive scheme can lead to better computational performance for multi-level Monte—Carlo
simulations. To our knowledge, there are few works on the study of the adaptive time-stepping scheme
for SPDEs. The first attempt to apply the adaptive time-stepping scheme to the simulation of SPDEs is
Campbell & Lord (2018), where the strong convergence rate is obtained under the assumption that the
Fréchet derivative of the drift coefficient is bounded polynomially in L2 (ID)-norm (see Campbell & Lord,
2018, Assumption 2.4), where D C R4,

Consider another important class of nonlinear SPDEs, including the stochastic Allen—Cahn equation
driven by additive noise

{dX(t) +AX(H)dt = F(X(1))dt + dW(n), t € (0,71, (1.1

X(0) = X,,

where —A := A : Dom(A) C H — H is the Laplacian operator with homogeneous Dirichlet boundary
condition with H := Lz(ﬁ ), 0 = |0, l]d, d = 1,2,3 endowed with the usual inner product (-, -) and
the norm || - ||, and the stochastic process {W(1)},c[0 1) is @ generalized Q-Wiener process on a filtered

probability space (£2,.%, {yf}0<t<T ,IP), subject to ||A%Q% | %@y < 00, B € (0,2]. The nonlinear
drift F is a Nemytskii operator defined by F(X)(x) = f(X(x)) for X € H and x € O, where f is a
polynomial and satisfies f(§) = Z?:o a;§ i a3 < 0, & e R. In this case, the Fréchet derivative of F
is bounded polynomially in E-norm (E := %(€)). The main contribution of this work is to present the
a priori estimates and rigorous strong convergence analysis of the adaptive time-stepping schemes for
(1.1).

To be specific, the adaptive time-stepping scheme for (1.1), whose spatial discretization is using
the spectral Galerkin method, and temporal direction is based on the adaptive exponential integrator,
is an explicit numerical scheme with adaptive timesteps. The prerequisite of the convergence analysis
is the a priori estimates in E-norm and HP -norm of the numerical solution, which are derived by a
bootstrap argument. We refer to Wang (2020) for the use of this argument for the nonlinearity-tamed
scheme with the uniform timestep. Based on the above a priori estimates, and combining the smoothing
effect of the analytic semigroup and regularity properties of the generalized Q-Wiener process, the strong
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STRONG CONVERGENCE OF ADAPTIVE TIME-STEPPING SCHEMES 3

convergence order of this fully discrete scheme for (1.1) is finally carefully analyzed, which is the same
as usual, i.e., order g in time and g in space. Moreover, we give the numerical analysis of the adaptive
time-stepping scheme for the multiplicative noise case, and show that the convergence order is 1/2 in
time and 1 in space whend = 1.

For the feasibility of an adaptive time-stepping scheme, some bounds for the adaptive timestep
function are proposed. We would like to mention that in practice, instead of verifying whether an adaptive
timestep function satisfies the given lower bound, one generally introduces a backstop scheme with a
uniform timestep and couples it with the adaptive time-stepping scheme to ensure that a simulation over
the interval [0, T can be completed in a finite number of timesteps (see Kelly & Lord, 2018, for the
case of SODESs). More precisely, when the lower bound is invalid for the adaptive timestep function, for
example, we perform a single step with the tamed exponential integrator with a uniform timestep instead.
It can be shown that the corresponding coupled scheme is strongly convergent with the order being the
same as the adaptive time-stepping scheme. Further, it can be observed from numerical experiments
in Section 7 that the coupled schemes are at a lower computational cost, measured in terms of the
CPU time.

The outline of this paper is as follows. In the next section, some preliminaries are listed. In Section 3,
we propose the adaptive time-stepping schemes, and present the main convergence theorem of this paper.
Section 4 presents the a priori estimates in E-norm and HP -norm of numerical solutions. In Section 5, we
give the proof of the main convergence theorem of the schemes. In Section 6, we give the discussion of the
numerical analysis for the multiplicative noise case. Section 7 is devoted to the numerical experiments,
which verify our theoretical results.

2. Preliminaries

In this section, we give assumptions on A, F, W(¢) and the initial datum, as well as the well-posedness of
(1.1), see e.g., Cerrai (2001); Cui et al. (2021) for details. Throughout this paper, C is a constant that may
change from one line to another, and sometimes we write C(a, b, c, . . .) to emphasize the dependence on
the parameters a, b, c, . . .

Let H® := H*(O) be the usual Sobolev space. Then the domain of the operator A is Dom(A) :=
H? N Hé, and there is a sequence of real numbers A; ~ i%,i € N_ (see Chen et al., 2022, Section
1), and an orthonormal basis {e;(x)};cy, such that Ae; = Ae;. It is known that A is positive, self-
adjoint and densely defined operator on H, and that —A generates an analytic semigroup {S(¢) :=
e ™.t > 0} on H. Define the Hilbert space HY := Dom(A%), y € R, equipped with the inner

1

product (-, ), = (A%~,A%-) and the norm | - ||, := (-,~))§. Furthermore, .2 (H, U) and .%,(H, U)
denote spaces of the usual bounded linear operators and Hilbert—Schmidt operators from a Hilbert
space H to another Hilbert space U, respectively. When H = U, we use notations . (H) and .%, (H)
for simplicity.

It is well-known (see e.g., Kruse, 2014, Lemma B.9) that there is a positive constant C such that

IAYSONl gy < Ct7, t>0,y >0, 2.1)
IA™Y (Id — SO)|| oy < €. t> 0,y €[0,1], (2.2)
4 2
/ ALS(t—ru| dr<Ct—s5)""ul® ueH 0<s<t yeloll] (2.3)
N
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4 C. CHEN ET AL.

and

<Ct—9""ull, ueH, 0<s<t, yel0,1]. (2.4)

AsSUMPTION 2.1 Let F : L9(0) — H be the Nemytskii operator defined by

t
AV/ S(t — rudr
N

FX)(X) =f(X(X) 1= a3X> () + a,X>(X) + a;X(x) + ag, a3 < 0, x € 0, ae.

It can be verified that there exist positive constants L, and L, such that for X,Y € E,

(X — Y, F(X) — F(Y)) < LylIX — Y%, 2.5

IFCO = FOOIl < Ly (14 IXIE + 1YI3) 1X = Y1l (2.6)
And for X, ¥, ¥y, ¥, € LS(0),

(DF(X)()) (x) = (3a3X2(x) +2a,X (x) + al) v(x), xed, 2.7

(D FOOWL¥2) ) = (60X + 248, (W), x € O, 2.8)
Moreover, there is a positive constant C such that for X € H 2

1FCOR = [atFoo | = [ |(3ax + 20,%) + o)) vx0o[” v = € (11 + 1) 1R
2.9

IFCO|2 = / ‘(6a3X(x) +2a,) [VX(0)2 + (3a3X2(x) +2a,X(x) + al) AX(x)‘ 2 dx
%
= c(Ixiz+1) (1X13 +1). (2.10)
where we have used the Gagliardo—Nirenberg inequality [[ul;+(s) < C 1Vul®ju))' =0 for u € H' with

0= % € (0, 1], see e.g., Liu & Rockner (2015, Eq. (5.71)).
We make the following assumption on the stochastic process {W(z, -)},¢(0.77-
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STRONG CONVERGENCE OF ADAPTIVE TIME-STEPPING SCHEMES 5
AsSUMPTION 2.2 Let {W(t,-)},c[0.1) be a generalized Q-Wiener process on a filtered probability space

(2,9, {ﬁt}0<t<T ,P), which can be represented as W(#,x) := > o, Q%en (0B,(1), where {B,(D},en,
is a sequence of independent real valued standard Brownian motions. Assume that for some 8 € (0, 2],

ol

< 00 @2.11)
L2 (H)

In the case 8 < %, we in addition assume that Q commutes with A.

There are two important cases included in (2.11): the trace-class noise case (i.e., tr(Q) < oo) for B €
[1,2], and the space-time white noise case (i.e., @ = Id) ford = 1 and 8 < % ‘We remark that the

condition that Q commutes with A for 8 < ‘71 is used to ensure

14
] <00 2.12)
E

t
sup EH/ St — s)dW(s)
0

te[0,T1]

f.or p > %, while for the case of 8 > %’, (2.12) can be proved directly by the Sobolev embedding
HP < E; see also Cui et al. (2021, Lemma 2).

AssUMPTION 2.3 The initial datum satisfies E[ exp{ 1 Xoll 76 E}] < 00, where B is given in Assumption
2.2. In addition, X, is %,/ % (H N E)-measurable.

With the above assumptions, we can obtain the existence, uniqueness and regularity estimates of the
mild solution of (1.1). The proofs can be found in e.g., Cerrai (2001, Proposition 6.2.2), Cai et al. (2021,
Theorem 2.1) and Wang (2020, Theorem 2.6).

THEOREM 2.4 Under Assumptions 2.1-2.3, the stochastic Allen—Cahn equation (1.1) has a unique mild
solution given by

t

t
X =SHX, + / St —s)F(X(s))ds + / S(t—s)dW(s) as.
0 0

For p > 2, we have

sup X0l pgsey + D IXO iy < Crs 2.13)
t€[0,T] te[0,T]
BAL
1X(®) _X(S)”U’(_Q;H) <CGt—-s)7, 0=<s<t=T, (2.14)

B—1
where constants C;, C, > 0 depend on X, p, T, ||ATQ% I % )

3. Adaptive schemes

In this section, we first introduce the adaptive time-stepping scheme, and assumptions to ensure that the
final time T can be attained in finite many steps. Then we present the coupled scheme for the practical
use. Finally, we show the strong convergence orders of these numerical schemes.
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6 C. CHEN ET AL.

3.1 Schemes

Introduce the adaptive timestep function  : H — R, . We consider the following adaptive time-stepping
scheme, whose spatial discretization is based on the spectral Galerkin method, and temporal direction is
the adaptive exponential integrator:

XN

Im+1

= V()XY + 5V (z,) FY (xﬁV ) v, + V@ )PV AW, XN =PVX,, (AE)

where 7, = T (X;lvn) stg =0, =t,+71, SN@) = PNS@) = e " with PN . H — Hy (=
spanfey, .. .,ey}) being the spectral projection operator and AV := PVA, FV := PNF and the increment
AW, = W(t, ) — W(,). If the existing time span is longer than T after adding the last timestep, then
we take a smaller timestep such that the existing time span just attains 7 after adding it. Namely, letting
M be the number of timesteps for a given timestep function 7, if 7y, | + 7)s,_; > T, then we enforce
the last timestep tj,,_; := T — )y, . In the sequel, we will give some assumptions on the timestep
function so that the numerical solution can attain 7 with finite many timesteps.
The continuous version of (AE) is given by

t t
XV = s¥(0)PVX, + /O SV (= t,,) FV (Xﬁ:’n) ds + /0 SV (= t,,) PN dW(s), 3.1

where m := max{m : ¢, <s}.
In order to bound the number of timesteps, we give the following assumption on the adaptive timestep
function with the uniform lower bound.

AssumPTION 3.1 The adaptive timestep function T : H — R, is continuous and satisfies that for
X(w) € H,

T (X (@) FX (@) < Ly, as, (3.2)
TX(w))>1 a.s. 3.3)

min>®

with positive constants L, and t,,;, independent of w.

Under the assumption (3.3), we have M, < TL < 00, a.s. That is to say, T is a.s. attainable in finite

many timesteps. The power 1 — % in (3.2) is for technical reason to derive the a priori estimate in E-norm
of the solution of (AE). Examples for adaptive timestep functions that satisty Assumption 3.1 are given
in Section 7.

REMARK 3.2 If the expected supremum of the pth moment of the numerical solution is finite, i.e.,
E [SUP0§t§T ”va HP ] < oo for some large p > 2, then the bounds of adaptive timestep function in
Assumption 3.1 can be weaken to the adaptive ones:

T(X(@) " FX ()] < Ly(), as., (3.4)

T(X(@) = (& 1X (@)1 + 42)_1, a.s. (3.5)
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STRONG CONVERGENCE OF ADAPTIVE TIME-STEPPING SCHEMES 7

with positive constants ¢, {, and ¢, independent of w, and g4 < p, [IL, ()| () < 0o.In this setting,
T is still a.s. attainable, i.e.,

X,
m

40 +§2)i| < 00.

Notice that for the trace-class noise case (i.e., tr(Q) < oo with 8 € [1,2] in Assumption 2.2), under
the assumption

1
EM;]<TE| sup — | <TE| sup (§ ‘
! |:0§tmsTT(XN) O<t<r V!

Im

1 -
(X(w), F(X(w))) + Er(X(w))IIF(X(w))II2 <LIX@)I*+L;, as. (3.6)

with positive constants I:z and L, independent of w, following the approach of Fang & Giles (2020,
Theorem 1) and combining with the contractivity of the semigroup {S(¢),# > 0} in H, we can get the
finiteness of the expected supremum of the pth moment of the numerical solution. However, for 8 €
(0, 1), we haven’t derived the finiteness of the expected supremum of the pth moment of the numerical
solution. Hence, the main result in this paper is still hold under assumptions (3.4)—(3.6) when g € [1,2].

In practice, instead of verifying whether a timestep function satisfies the lower bound in (3.3) or
(3.5), people usually introduce a backstop scheme with a uniform timestep and couple it with (AE) to
ensure that a simulation over the interval [0, T] can be completed in a finite number of timesteps (see
Kelly & Lord (2018) for the case of SODEs). More precisely, if 7,, < t,,;, at time ¢,,, then we apply a
single step of some convergent scheme ¥ : Hy x R, x H — Hy, which is called the backstop scheme
over a timestep of length 1,;, instead, i.e.,

X6 = @ (X0 1 AW, ) ey + ¥ (X T AW, ) (3.7)

tnt1 m °m’ tm ° “min® X{tm<Tmin}>

where the map @ : Hy x R, x H — Hy, (x,h,y) — SN (h)(x+ FN (x)h +y) denotes the scheme (AE).

The backstop scheme is usually chosen to be an explicit and convergent scheme, for instance, the
tamed exponential integrator (see Wang, 2020), the nonlinearity-truncated exponential integrator and the
linear-implicit nonlinearity-truncated scheme (see Becker & Jentzen, 2019). In the following, we take
the backstop scheme ¥ as the tamed exponential integrator:

FN(x)h
U (x,hy) =SV (x+ ————— ) 3.8
(x, h,y) ()( T 1FNGo [ y (3.8)

and give estimates of the corresponding coupled scheme
N,(1 N,(1 N,(1
Xtm-i(—l) = SN(‘L'm) I:Xtm( : + FN (Xtm( )) Tm + AW’"] X{Tmzfmin} (CAU 1)
N (yN.(1)
N N.(1) F (X’m ) Fmin
+ S (Tmin) Xfm + + AWm X{rm<fmin}'

e [P () o

Im
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8 C. CHEN ET AL.

Moreover, the adaptive timestep function that satisfies (3.2) can be chosen as, e.g., 7,, = 7 (Xﬁ:’n ) =

N
Xim

integral form by defining a new timestep function denoted by 7,,,,, with

i—d
(IF(Lﬁ) with some ¢ > 0. We can write the continuous versions of (CAU 1) into the compact

. [ t,, fort, >7,.,
new "
Tppins 10T T,y < T,

Thent,, =1, +7

ew> and the continuous versions of (CAU 1) is

t
N, (1 N, (1
xV 0 = sV PVX, + /O SN (=1, ) | FY (X,mf )) X{ g = T}

PN (XN,G))

timg

[P () e

g

+

t
X{tn, <t} | 45 + /0 SN (e —1,,) PN dW(s). 3.9)

3.2 Main result

In this subsection, we give strong convergence orders for the scheme (AE) as well as the coupled scheme
(CAU 1), whose proofs are postponed to Section 5 and Appendix B, respectively.

Since the timestep function 7 is determined by the numerical solution, we need to make a
modification when considering the convergence of adaptive time-stepping schemes (see Fang & Giles,
2020). Namely, for a given timestep function 7 that satisfies Assumption 3.1, we introduce the refined
timestep function 7° controlled by a scalar parameter 8 € (0, 1) and consider the convergence when
& — 0 as well as the order with respect to 8.

AsSUMPTION 3.3 The refined timestep function % satisfies that for X(w) € H,
Smin{T, 7(X(»)} < °(X(w)) < min{T8, 1(X(w))}, as.

Examples of 7 and 7° are given in Section 7. We also remark that in this setting, the lower bound
in (3.3) is defined as r,fu.n := 87,,;,- With this assumption in hand, in the following, we present strong
convergence orders of schemes (AE) and (CAU 1) with the timestep function 7%, Before that, we put
an additional assumption on the initial datum, which is used to get the a priori estimates of numerical

solutions in E-norm, see Section 4 for details.

AssUMPTION 3.4 The initial datum of (1.1) satisfies that supycy, E[ exp {|PVX,|,}] < oc.
Based on the Sobolev embedding theorem, Assumption 3.4 is fulfilled if for g >

SUPyen, E[ exp{lIXyll z6}] < oo

THEOREM 3.5 Under Assumptions 2.1-2.3, 3.1, 3.3, and 3.4, for p > 2,

T
sup me-xﬁVH < C(AN_7 +57),
0<t<T Lr($2;H)
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STRONG CONVERGENCE OF ADAPTIVE TIME-STEPPING SCHEMES 9

where Xﬁv is the numerical solution ng (or Xﬁv’(l)) of the scheme (AE) (or (CAU 1)), and C > 0 depends

p-1 1
OHp, T, T Lo, Ll’LZ’ XO al‘ld ||A 2 Q2 ||$2(H).

min>®

. _2 . .
Noting that Ay ~ N4, the convergence result in Theorem 3.5 can be rewritten as supg, 7 [ X(7) —

B
XN ) < CIN"d +6 g). Then we say that the spatial convergence order is g with respect to N.

REMARK 3.6 As stated in Remark 3.2, for the trace-class noise case (i.e., 8 € [1,2]), the bounds of the
adaptive timestep function in Assumption 3.1 can be weaken to (3.4) and (3.5). Similarly to the definition

— -1
of (3.7), when the critical parameter for the adaptive timestep size is ({ 1 HXZ’C ||q0 + {2) , the coupled
scheme can also be defined as

N.C N.C
leJrl =@ (le > T AWm) X{ >(§
Tm=|\ ¢1

I w(x{fn»c,fm,Awm) x (3.10)
Hz) } {rm<(§1

q0 -1]-
N,C
XM +zz) }

If we still choose ¥ to be (3.8), and denote the solution of the continuous version of the corresponding

N,
X, m

coupled scheme by Xﬁv’(l), then the similar proof as that of Theorem 3.5 yields that: under Assump-
tions 2.1-2.3, Assumptions 3.3-3.4 and Eq. 3.4-3.6, forp > 2,

where M7 s is the number of timesteps for the given timestep function %, and C > 0 depends on

. = -1 1
D, T,81,8,L;(i=0,...,3),L,, Xyand |[A 2 Q2 ||$2(H)-

X —x;""

[S1i=

sup
0<t<T

_B _B
<C (,\N2 +3’§) < c(xN2 + (B[My )~
1P(2:H)

REMARK 3.7 We remark that it is interesting to investigate if one can obtain the strong convergence
order for the coupled scheme directly from some error estimates of schemes @ and ¥ . For this problem,
a fundamental convergence theorem that characterizes the relation between the local error and the global
error might be helpful. For the study of such a theorem, we refer to Milstein & Tretyakov (2021) for the
case of SODEs with either the globally or locally Lipschitz drift, and to Chen & Hong (2016) for the
case of SPDEs with the globally Lipschitz drift. However, for SPDEs with the non-Lipschitz drift, there
has been no work on such theorem. We leave this as the future work.

4. Estimates of numerical solutions

In this section, we analyze the a priori estimates of numerical solutions (AE) and (CAU 1) in E-norm
and P -norm, respectively. Proofs of all the results in this section are given in Appendix A for readers’
convenience.

We give the following lemma on the properties of the semigroup {S(¢), t > 0}, which is important in
the a priori estimates of numerical solutions.

LiMMA 4.1 We have () supyey, 147PYS@ully < Clo.d) (70 + 17278 Jlul for p 2 0, 1> 0, u e

2p—d

H; (ii) supyep, IPNS@ully < Clp,d)t™ ||ull ,, for p € [0, Y, t>0,ueHr.
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10 C. CHEN ET AL.

Let vV, zV : [0, 7] — H, satisfy the perturbed differential equation

{dvﬁ" = (AN £ PN (N 4 2Y)) dr, 1€ (0,71,
vy = 0.
In what follows, we aim to show that the E-norm of the solution vf’ of (4.1) can be controlled by the

L"([0,]; E)-norm of the perturbation 7V with some n > 0, which plays a crucial role in deriving the
moment bounds in E-norm for the scheme (AE).

“.1

LEMMA 4.2 The solution of (4.1) satisfies
t
< c[l +/ ((z—sﬂf
E 0

With these preparations, we can establish the a priori estimates of the numerical solution of (AE) in
E-norm by the standard bootstrap argument; see Wang (2020) for the description of this approach for the
nonlinearity-tamed scheme with the uniform timestep.

3
N
Vi E+ Ziv

z

72
) ds}, te(0,7T]
E

with C > 0.

ProposiTION 4.3 Under conditions in Theorem 3.5, we have for p > 2,

sup sup C, 4.2)

N€N+ 0<t<T

X

<
LP(2E) —
where va is the numerical solution of (AE) with timestep function 7% for some § € (0,1),and C > 0
-1
depends on p, T, Ly, Ly, Tyins Xo and [IAT Q2 || 4, .

With the a priori estimate of the numerical solution of (AE) in E-norm in hand, we can obtain the
following a priori estimate in H#-norm directly by means of the mild form of the solution. A standard
argument gives the Holder continuity of the numerical solution; see also Becker & Jentzen (2019,
Lemma 4.3).

ProprosiTION 4.4 Under conditions in Proposition 4.3, for p > 2, 8 € (0,2] and y € (0, 8], we have

N
sup sup ”X H . <Cy, 4.3)
NeN, 0<t<T "l c2:i) !
(B=)AL
sup | XN =XV <Ct—s) 7, 0=s<t=T, 4.4)
NeNy LP($2;HY)

B=1 1
where constants C;, C, > O depend onp, T, Ly, L,, T, X and |A 2" Q2 || &, gy

With the above two propositions, combining regularity estimates of the tamed exponential integrator,
which can be proved similarly as Propositions 4.3—4.4 and Wang (2020), we get the following the a priori
estimates in H? and the Holder continuity for the numerical solution of (CAU 1).

COROLLARY 4.5 Under conditions in Proposition 4.3, for p > 2, B € (0,2] and y € (0, 8], we have

N,(1)
sup sup (X H o<,
NeN, 0<r<T ! LP(2:ENHP) 1
(B=p)Al
Sup Xiv,(l) - Xﬁv’(l) H . S Cz(t — S)#’ O S s <t S T,
NeNy ‘ LP($2:H7)

B—1
where constants C;, C, > Odepend on p,T,L,, L,, ,,,, X, and ||ATQ% I % )
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STRONG CONVERGENCE OF ADAPTIVE TIME-STEPPING SCHEMES 11

5. Proof of the main result

In this section, based on the a priori estimates of numerical solutions presented in Section 4, we show
the proof of the convergence order of the scheme (AE) in Theorem 3.5, and leave that of the coupled
scheme (CAU 1) to Appendix B.

Proof of Theorem 3.5. By introducing an auxiliary process,
1 t
YN =sV(PVX, + / SNt — )FN(X(s)) ds + / SV (1 —1,,) PN dW(s),
0 0

the error can be divided into the following terms:

Xt—XNH < IX() — PV X0 p o HPNXI—YN HYN—XN .
[xo =x¥| < 1XO = PXOIy o + PR =Y e kY]
The term || X (1) — PNX(¢) ||U,(9;H) can be estimated as
_8 £ -£
X = PYX @)l = |A7Fad = POATX Q| < OOt X Oy G

For the term ||[PV X (r) — YtN I 1p(2:1)> using the Burkholder—Davis—Gundy inequality (see e.g., Kruse,
2014, Proposition 2.12), (2.2)—(2.3), the Holder inequality and Assumption 3.3 gives that

p

P(Q2:H)

HPNX(I) _yV

<CpE _(/Ot

t
/ =9 (1 =8V (s=1,)) dW()
; ,
2 ’2’:|
ds)
25 (H)
2 5]
ds)
A0

. ‘

LP($2;H)

1

V-5 (=" (s—1,)) 03

- ([

A-h (Id — SN (s— tmx)) APSV (1 — AT 08

— P

t o B _ 2
< C()E / (s—1,)° HA%SN(t—s)ALzIQ%eJ.H ds
| 2 ) »
J=1

2

< C(p T) HA%Q% b A%Q%
- L5 (H)

5% fC(p,T,(

Bp
52. 5.2
fz(H)) (52)

For the estimate of the term || YN — XV|| 1p(s2:0)» combining the differential form

d (va - Y,N) — _AN (xﬁv _ Y,N) dr + (SN (t—1,,) F" (Xﬁfw) —FV (X(t))) dt,
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12 C. CHEN ET AL.
and applying the Taylor formula yield
2 t
=2/ XN —yN AN (XN —¥N)) ds
) (x =)

+ 2/0f<X§v — YN, SV (s — 1, ) FV (X,N) _ FN(X(S))> ds

X =y

_ 2/0t (= v —a¥ (x - vY)) ds+2/0t (XY — 18 (s = ) PV () =Y (X)) s
+2/’<X§V - Yév,FN (Xév) —FN (Y?’)> ds+2/t<X§\, B YiV,FN (Y;V) —FN(X(s))> ds
0 0

xN _yVN

<@L+ 1)/t 2 s+ /t HFN (Yj,V) — FN(X(s)) H2 ds+ 20,0 + 2.0, (5.3)
0 0

where we have used the condition (2.5) and the Young inequality, and

J11() = /Ot (XQ’ — YV, (SN (5—tmy) —Id) FY (Xf:/n)> ds, Jio(0) = /Ot <X§V — YN PN (Xf:/ns)—FN (Xﬁ")) ds.

Estimate of J, ;. For the case B = 1 or = 2, it follows from (2.2), (2.9)~(2.10) and the Young
inequality that
1 [ 2 1 [ 2
-/ ‘ ds—i——/ HA*Q (SN (s—1,) —Id)AgF(ng )H ds
2 Jo 2 Jo $ ms

1 /! 2 t 4 4
-/ ds+C/ (=) (12 ) ([, + 1)
2 0 0 5 ms || g mg B

This, combining Assumption 3.3 and Propositions 4.3 and 4.4 leads to

1 t
J 13 < =
|uﬂmmm_ZA

V0! xN _yN

IA

IA

X =y

2
xN —yN

A ds+ 8P, rel0,T].
L1 ($2:H)

For the case 8 € (0,1) U (1,2), we need to further split the term J 11 into three parts, which are
denoted by Ji,l, i=1,2,3, based on

xV—yN = /O (SN (s—1,) —SV(s — r)) Y (Xﬁi) dr+/0XSN(s —5 (FN (Xﬁi) —FY (XN)) dr

n /O N5 — ) (FN (Xﬁv) —FN (X(r))) dr. (5.4)

Namely,

T = /t </S SNs—r) (SN (r=1,,) = 1d) F¥ (XQ’”) dr, (¥ (s = 1,,) - Id) PN (Xg’n)> ds,
0 0

B0 = /t</s V= (F¥ (x2) = PV (X)) ar. (s¥ (s —1,,) — 1a) F¥ (Xﬁfn)> ds,
0 0

B0 = /Ot </0Y S5 — 1) (FN (Xﬁ") - FN(X(r))) dr, (SN (s = 1) — Id) FY (Xf’)> ds.
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STRONG CONVERGENCE OF ADAPTIVE TIME-STEPPING SCHEMES 13

For the term J! |, by the Young inequality, we obtain that for 8 € (0, 1),
L1

O _/t</ APSN(s— A~ T (SN (r—tm,) —1d) FV (X} ) ar, A~k (8 (s = tm,) — 1) P (Xﬁ)’n)> ds
<C/ / (s—r)" ﬂ|:r—t ﬂ HF( tmy )H + s—z‘m ﬁ HF(XN )H ] drds.
When g € (1,2), applying (2.1)—(2.2) and (2.9), the term J % | can be estimated as

U0 =/Ot</0SAﬂ_lSN(sfr)A_g (8™ (r = tmy) fld)A%FN (Xﬁ)’n) ar. A% (s (s = tmy) 7ld)A%FN (xgn)> ds

Sc/o"/ois_,)l—ﬂ[(,_tm) (1+H )H )H H]drds

Hence, we derive from Propositions 4.3 and 4.4 that for 8 € (0, 1) U (1, 2),

s—tms) (1+H g

[0 =cof retoT.
7(2)

For the term Jil, when g8 € (0, 1),
) = /[ </SA§SN(S = (FY (x) = PV (%)) ar, 472 (s¥ (s - 1,,) — 1) FY (Xf:’n)> ds
cof [t [l bel)

which gives ||J]2’1 Oy = €8P based on Proposition 4.4. And when 8 € (1,2), since the order of the

Holder continuity of Xﬁv is % in H-norm, hence the term J% | need to be further split, based on the Taylor
formula to F and the fact that

r r
XY= XN = sV (r=1,) —1d) X +/t SV (= 1,) F¥ (X)) du+/t SV (r—1,,) dW(w).

N
r Xtm,

Iy
mr r

Namely, we arrive at

112,1(t)=f‘/ot<./osA%SN(s7r)DF(Xf:/nr) (S (r = tm,) — 1) XJ¥_dr, A g(sN (sftms)fld)A%FN (X{:/nx)>ds

_/ot </05A”E‘SN<S_ PDF (xf,i)/t SV (= ) P (X, ) w475 (5" (5 = 1) 1) A3 Y (Xf’v”)> v

mr

—/(:</05Aﬁzls“’(s—r)DF(X{)’nr)/tr; SN (= ) AW dr, A5 (s¥ (A—tms)—Id)A2FN( )>ds

t
- SN(s— "R XN dr, (SN (s — twy) — 1d) FY (xN >d = I () + L + 150 + 11
/0</ (s = Re (Xf, XYY dry (Y (5 = tmy) = 10) Y (X]) ) ) ds = 110 + 1) + 130 + a0

‘4 (s—1,)" ”F (Xﬁis) Hz] drds,
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14 C. CHEN ET AL.

with the remainder

tmy?

Ry (XN XN) /OIDZF(Xﬁynr—i-(l—@)(XiV—Xf:’nr)) ((x;v_xgynr) (XN Xy )) (1—6)de.

Then we treat the four terms /1;,i = 1,2, 3,4 one by one. It follows from (2.1)—(2.2) and (2.7) that

1,1 < C/Ot/os(s - r)_% (1 + H fmy ) (r— tm.‘)g ( s )H ds,
moc [ fomn (v L) el ()] )l ()], o

which combining Propositions 4.3 and 4.4 gives ||II, Olp2y + HLON o) = CcsP, 1 € [0,T).
For the term II;, applying the stochastic Fubini theorem (see e.g., Kruse, 2014, Theorem 4.18) and

the Burkholder-Davis—Gundy inequality (see e.g., Kruse, 2014, Proposition 2.12), and combining
Propositions 4.3 and 4.4 yield

my Hﬁ dr (s — tms)g

3D lr (s2)

Lit1 flitl Bl N N v
/ / Xt W) X155 (DA 287 (s — r)DF (th_ ) SY(r—t;) dW(u) dr
i 15

N
(X’ms) ’1
tiv1  fligl Bl N N\ N
Z/ / Xt W) Xi11,5) (DA 287 (s — r)DF (X,i ) SY(r—t;) dr dW(u)
113 i
t s Iy, ‘Hmu N xN N ;
/ / / ity W) Xt ) (r)A e (s — r)DF( [mu) SY(r—tm,) Q2 dr
0 0 Ty
3
' (s=T8)V0 || Iy +fmu
<ot / > / "
0 0 i—1  Imy
= L (2)

1
2
(/ du) ds
—T8)v0
L’ (82)
1
(s—T8)VO0 2 s s %
s [ s} / (s—u—T& Pdu) + (/ / (s — B+ drdu) ds

0 JO (s—=T8)VvO0 J (s—2T5)Vv0

p—1

2 2

L2 (2:H)

x| s —m)?

L2 ()

[S1h=Y

<Cs ds

L1 ($2;H)

1
2 2

du | ds
L (2:5(H))

[STh=3

<Cs

?SN(s—r)DF( N )SN (r—tml)Qze,H dr

- 2
Z/ |a%" ¥ = noF (X, ) $¥ (r = t,) Q3¢ ar
(s—2T8)VO0 “

X sup HDF (XﬁV)A*? (5.5)

s€[0,T]

L2 (2L (H)) ” LH)
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STRONG CONVERGENCE OF ADAPTIVE TIME-STEPPING SCHEMES 15

It can be calculated that
1

t . (s—T8)VO0 2 s s %
/ 82 / (s—u—TH P du) + (/ / (s — 1)~ P+ drdu) ds
0 0 (s—=T8)Vv0 J (s—2T5)V0

o s—T$6 % TS
5/ 52(/ (s—u—Ta)—ﬁ“du) +/ (//(s—r) ﬁ+1dsdu) ds
Ts
2TS
/ (/ /(s—r) s drdu) ds+/ (/ / (s—r)" Bt drdu) ds
TS 278 \Js—T8 Js—2T¢

<c(az+a o )5057,

. 8 .
which leads to |[1I3(D) || ;p(o) < C8 %5, t € [0, T]. The term II, is treated separately for cases d = 1,2

and d = 3. When d = 1, 2, by the Sobolev embeddlngL (O) — H™ 260 with ) = Eﬂ B € (1,2)),
we deduce from (2. 1) (2 2) and (2.8) that

d+eo

ML, Dl 1p (o) <

d+eq
S0 =0 g |4 (30, 7)
(S r) ) F by

HA § (SN (s—1, )—Id)AzFN( ,)

L20($2;H)

120(2:H)
— d+e
<c //(s—r) - RF(XN X) drHF(X?’) ,
L22(2:L1(0) ms Ml 2 (i)
8 g1 d+e
< 7//(s—r)_2 = 1+ sup Xﬁv ‘Xﬁv— fv dr
0<r<T L4 (2:E) " || L8 (2:H)

ds < Cs'E,
2 @Q:HY

<Jr ()

where in the last step we use the regularity and the Hélder continuity of XV (see Propositions 4.3
and 4.4). And when d = 3, applying (2.1), (2.8), the Gagliardo—Nirenberg inequality [[ul;+s) =<

C||Vu||% ||u||%, ueH, Propositions 4.3 and 4.4 yields

14 l2r 2

Ol</OSA%SN(s—r)RF (Xf\n’, XN) dr, A7! (SN (s—tm)—Id)AZFN( [m)>ds

P (R2)

t s ' N
<C s—r)y 21 su X . dH — 1 ‘F( )‘ ds
- /0/0( ) * oo X e i | sigzscony 471 = s ez @)

ot ps . % % 2
< C8/ / (s—r)"2{ 1+ sup xN —xN xN - xN drds

o Jo ozr=r I o c2:E) (L b T

! g
< 3 N _ yN
C8/ / (s—r)? r fmr L0 (2:0) ‘ r iy L2 (2:61)

3=
<C5//(s—r) (r 1) N drds < 8P,

where in the last step we have used the fact that ‘1—‘ + @ > B —1for B € (1,2).

$202 dunr 90 uo 1sanb Aq 909%99//600884p/WNUBWI/SE0 | 01 /10P/3[0Ie-aoueApe/eulewl/wod dno olwapese//:sdiy Wolj papeojumo(



16 C. CHEN ET AL.

Hence, we deduce that for 8 € (0,1) U (1,2),

[20],,, =" rew.

For the term J13’1, when 8 € (0,2),
t s 8 B
0 :/0 </ ATSY(s =) (FY (xX) = FY X)) dr, 477 (8 (s — 1) — 1) Y (Xf:’n)> ds

<C//(s—r) I:‘X(r) XN

t
ds+ C
0

XN

1) ) s

+ (5= tw)” (1 XL+ (

—YN

s

+C/0t/05(s—r)§ (s = tm)” (1 + ||X(r)||4E+‘ ) HF( )H drds,

where in the last step we transform the integral domain and use the Minkowski inequality. This, together
with (5.1)—(5.2), implies that for 8 € (0, 2),

2
<c g —X(S)H ds
0

2
|50 =c N ds+ Cnyf + CsP.
’ LP(£2) L2 (2;H)
Altogether, we obtain that for 8 € (0, 2],
! N N2 -B B
111Dl 2y = C A X, —Y; [P ds+ Cry~ +C8”, te[0,T]. (5.6)

Estimate of J, ,. When B € (0, 1], the Holder continuity of ng and Assumption 3.3 give

2 t 4
ds+ C / ds
() 0 L8P ($2:E)

ds + CsP.

R P

1ot 2
120 57/ H I+ su
120l @2) = 5 0 L% ($2;H) se[o?r]

<3 )b

When g € (1, 2], by (5.4), we split J; , further as J; , = Jll’z + Jiz + Jiz with

Ty = /Ol </OS V(s — 1) (SN (r—1,) - Id) FY (Xf:’n) dr, FV (Xf:’n) —FV (XQ’)> ds,
Pyt) = /Ot </0g S —n (FY (X)) = F¥ (xY)) ar, PV (x) = FY (Xﬁv)> ds,
J%,z(f) = /Ot </0s SN(s—r) (FN (Xﬁv) — FN(X(r))) dr, FN (Xi:’nx) —FN (Xﬁv)> ds.

s LZP(Q :H)
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STRONG CONVERGENCE OF ADAPTIVE TIME-STEPPING SCHEMES 17

The estimate of the term J f 5 is similar to that of J% 1» Whose proof is based on the Taylor formula to

F'. And one can obtain ||J% 2Dy = C5P. Now we show the estimate of the term J%z = Z?:l J%’é,
where

21 t s

Iy () ::/ </ SN(s — ratdr, @fs> ds,
’ 0 \JO

22 t s s

20 ;:/ / SN (s — 1) dr, DF (X{V )/ SV (s — ty,) AW () ) ds
’ 0 \Jo STt ’

ny

t N r
+ / < / $N(s — DF (xgyn ) / SV (r = ty,) AW () dr, m> ds,
0 \JO "7t

myr

A= [ SN(s—r)DF( ) "N (r = b)) AW () dr DF (X)) "N (s — ty) AW )
1,2 = 0 I, . my 2 s Tmg i N mg ui s

mg

with 7, = DF (XY ) (¥ (r=1,,) = 1) XY+ J7 SV (r=1,,) F¥ (X2 ) due) + Ry (X} . X))

For the term 112’5, noting that ford = 1,

t s
V(s — PR (XN ,XN) dr, Ry (XN xV >dsH
| [{[] 50— nme (2, x2) anrecxt o) ],

[ d+eq
<C s—n" 2 ”R (XN ,XN) H R (XN ,XN) H drds < C8?,
< /07‘/0( ) F Iy r _d#»% F ting s d+€0 7(2) =
and ford = 2, 3,
t Ky
H/ </ SN (s — IRy (Xgnxﬁ") dr,Rp (Xﬁ)’ns,Xﬁv)>ds‘U7(m
d+eo N N
<C/ / (¢=n" H‘RF(X Xr )H dieg ‘RF( fmg” S)H)mmdrds
d+eo N
<c . R ’ . drds
/ / ( ) ‘ F( Ty r) HLZ[)(QH d-go)se[o T L8 (2;L4(0))
t s d+e 4 1_4 2
505/ / 6= 4 i H drds < €8P,
o Jo mg le’(ﬂ)
we have
t Ky
H ()‘ / </ SV(s — DRy (Xg’n Xf’) dr, Ry (Xﬁ:'" X§V)> ds
@ ~ |Jo \Jo ’ ' @)
|0 swp Hor (x))] (X
re[0,T] mr Z(H) "l g LZP(Q)
v s or (52)] . I (2|
ref0,T] Z(H) L (£2)
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18 C. CHEN ET AL.

+82//(s_r) dte HRF(XN XN)H v
(‘ ) +HF( s H)”U(m drds:| < csP.

For the term leg , applying the stochastic Fubini theorem yields

XN

g

2,2
HJLZ @ HLP(.Q)
m; ) s
> / - Xt (10 X111 (5) < /O $V(s =z, dr, DF (X)) $¥(s = 1) ds dW(u)>
ti

i=0

=<

fit1 tit1 N N\ o
> / / Xt ) X1 5) (1) (424, SN (s — r)DF (X,l_ ) SV(r — 1) drd
1 1

And by a similar proof to that of (5.5), one can show that ||J]2:§(t)|| (2)
the term J%; by using the stochastic Fubini theorem twice and letting G(s)

rDF (X;:’nr) ft;r SN (r— t,,,) AW (u,) dr, we derive

0]

P(2)

tivl  [liyl
/ / <G(s), DF (XQ_’ ) X)) Xy (9)SY (s — 1) ds AW (u 1))
t; t;

t
(]
0 rr

u1+7T8
3 oN N
( / / sup 058V (s = 1) 114, @) 111, 0 @DF (X2 ) GC
0 |

11 —738)v0 s€[0,T]

@)
tmu| +Tm 2
LN N
/ 038V (5= 1) X1 W) Xi1,, 0y ODF (X, ) G(s) s
1,

my

N\

bF (X’mv) Hf(H)

LP(2)

ds.
LP(£2)

W(u)>

< ¢85!, For
Jo sV —

du,
($2:H)

) 2
s) ” dsdu,
LP($2;H)

li+ fjit+1
<Cb sup / | / 05" (s — 1) DF (X1 ) 8¥s = nDF (X)) 1y 2019 ()
0 l

s€[0,T] j=

xS (r — 1;) dr dW (u,)
LP($2;H)
< C§ sup /
s€[0,T] 0

tnus +15 1
/ * 038" (s —1,,) DF (X)) (s = nDF X, xy,,,
1,
N _ 3 ?
5 (0-10,) 0t

iy

2
< C§°.

) (“z)X[;mM2 5) )

1
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STRONG CONVERGENCE OF ADAPTIVE TIME-STEPPING SCHEMES 19

For the term 113,2, we split it as J1372 = 1135 + 1135 with

T = /Ot</os SN (s — r)(FN (Xﬁ") FN(X(r))) dr, > ds,
30 = /O t< /0 sV - n(F¥ (x¥) = F¥xe)) dr, DF (X)) /t S (s—1,) dW(u)> ds

ms

Combining (5.1)—(5.2), the term J 3’; can be estimated as

d+eo |
UJ(_Q) / / (s=n" [ X@r )HLZP(.Q JH) + (

20 + X))t

r L8P (2:E) L8P (82; E))

(8’3 N T (5 P R CO ) R | L A | I g | e
sc )X -y izmz;m ds+csﬁ+cxjg‘3.

By the stochastic Fubini theorem and the Young inequality, the term J f; can be estimated as
M et plig s

> / / < / SV(s = nEYXY) — FY(X(r)) dr,

—0 t; 1 0

x DF (X)) S5 = 1) X1 (0115, (5) ds dW(u)>

EC(A’

/ s — ) (FN (Xﬁ\’) —FN (X(r))) drds ’

LP(2;H)
C(

1
2
1 X XV —x H drd H
<[ ( +x ]} + onz) o aras], , a
tmu+rmu

5 N N
( 2 el e ’””’ Xin, H ZL(H)
1

03" (1 = 1,) X1y 0111, ) ODF (XY,
X ( ‘XN

i

Q)

Lr($2)

g+,
LN
/ O3SV (1 = 1,,,) Xy X1, IDF (XY, )
Ty

1

[S]

du

tmu +Tmu

LN
Q2 S (t - tmu )X[tmu’s) (M)X g of) (S)DF ( tm”) ”g(H)

tm

2 2
= ||X(r>||E) ds - X()

2
dr] du
L20($2:H)

L2 (2)

t 2 t t tmu-‘r‘fmu
<C ( ' dr 4+ C ,
a /o ® L2P($2:H) r+ /o /0 /tm Kt 9) ) X1, ()

2 2 2\
HstN t—1, )DF(X, ) ( +||X(r)||§) ds dr| du
ma ) || £ H) E )
127(2)
2

<c N dr+ €5 + CryP,

0 L2 ($23H)
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20 C. CHEN ET AL.

where in the third step we exchange the order of the integral and use the Holder inequality, and in the
last step we use (5.1)—(5.2).
Hence, we derive that for g € (0, 2],

2
xN _yN

! dr+csf + 0P, relo,Tl. (5.7)
L2 ($2;H)

t
WOl < C /O

Therefore, combining estimates of terms J 11 and J 12 (i.e., (5.6) and (5.7)), we derive

2 t
) <C / HXN — YN
LP(23H) ~ o I s

where p > 1, and the constant C > O dependsonp, T, 7,,;,,
the Gronwall inequality, we obtain

2
N N
X, —-Y

-B B
d A sF ),
ey Ty )

A=t 1 .
Ly, Ly, Ly, Xy and |[A 2 Q2| &, - Applying

_B B
sup ||XN —yVN §C(/\ 2+5z), > 1,
osng ! " v 2:m N P
which together with (5.1)—(5.2) finishes the proof of the scheme (AE). O

6. Discussions on the multiplicative noise case

For the stochastic Allen—Cahn equation driven by a multiplicative noise, there have been some works on
the numerical study, see e.g., Majee & Prohl (2018); Jentzen & Pusnik (2020); Feng et al. (2021); Liu
& Qiao (2021) and references therein. To be specific, for the stochastic Allen—Cahn equation driven by
the Brownian motion, the authors in Feng ef al. (2021) propose the fully discrete finite element method
and prove the strong convergence with nearly optimal rates; the authors in Majee & Prohl (2018) give
variational error analysis for the structure preserving finite element based space-time discretization of
the strong variational solution. For the stochastic Allen—Cahn equation driven by the Q-Wiener process,
Jentzen & Pusnik (2020) derives the strong convergence rate for the nonlinearity-truncated exponential
Euler approximation scheme; Liu & Qiao (2021) proves strong convergence rates for both the drift-
implicit Euler—Galerkin finite element scheme and the Milstein—Galerkin finite element scheme.

In this section, we present the numerical analysis of the adaptive time-stepping scheme for the
multiplicative noise case, i.e., the stochastic Allen—Cahn equation with the multiplicative noise

6.1)

dX (1) + AX(1) dr = F(X () dt + G(X()) dW (1), 1€ (0,T),
X(0) = X,,

where A and F are defined as in (1.1). In this section, {W(t)}te[O,T] is a generalized Q-Wiener process
valued on another separable Hilbert space U. Here, G : H — ,,2”20 = 2, (U, H) is Lipschitz continuous

with Uy := Q2 (), ie.,

IGX) =Gl g =CIX =Y, X.YeH
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STRONG CONVERGENCE OF ADAPTIVE TIME-STEPPING SCHEMES 21

for some constant C > 0. The corresponding adaptive time-stepping scheme for (6.1) is

XN

N =5V, (Xﬁi +FY (va ) 1, +PVG (Xf:’n ) AWm) . XN = PVX,, (AE-M)
where 7, is defined similarly as in (AE). The differential form of the continuous version of (AE-M) is
given by

ax) = —AVXY dr SV (0= 1,,) PV (XN ) dr 8 (=1, ) PG (X)) dW@). (62)

We remark that in this section we still use notations X(t), XQ’" and XfV in the multiplicative noise case for
the simplicity of symbols. And we will emphasize on them when these symbols are referred to solutions
in the additive noise case.

The following lemma shows the boundedness of the expected supremum of the pth moment for the
solution of (AE-M).

LEmMA 6.1 Under Assumptions 2.1, 2.3 and (3.5)(3.6), we have E[ supy, <7 ”X{VHP] < Cforp > 2
with some constant C := C(p, T, X)) > 0.

Proof. We only consider the case of p > 4 since the case of 2 < p < 4 can be obtained by the use
of the Holder inequality. The proof is based on the truncation technique. For K > ||PN Xy » define the
truncated function @ € ‘55’0 : H — [0, 1] satisfying @ (x) = 1 for ||x|| < K and O (x) = O for
|lx]| > 2K. Introduce the truncated stochastic process of the numerical solution {Xgn } =0 as

XNK SN(_L_m) (XN,K + Oy (XN,K) PN (XgnK) T, + PNG (XN,K) AWm).

Imt1 Im Im Im

The corresponding continuous version is defined as

t t
xNK = sV (1 PVX, +/ SY (e = 1) Ok (X05) FY (x0F) ds+/ SY (= 1) PYG (X0F) aW o),
0 s 0 s mg

Tmg

Then the proof is separated into two steps.
Step 1: Expected supremum of the pth moment of the truncated numerical solution.

By the contraction property of PV and S(¢) in H, i.e., |[PVull < |lull, IS(t)u|| < ||lu||, and using (3.6),
we have

XN K

2 2
MK < XK+ o (XN’K) PN (XZ‘K) o+ PVG (Xf:’;K) AW, H

Im

2 1 2
[ 2o () (P (629)) e (129 [ 52 )

2

Im

" 2<X£Z‘K + O (XN’K) PN (XfVK) o PNG (fo;K) AWm> n HPNG (XZ‘K) AW,

2
=

Im Im

2 _
xNVK H +21, (L2

2
XQ’”'KH + L3) + 2<XZ’K +0x (XN’K) Y (xf:’”’() G (XN’K) AWm> + HG (XQ’”'K) AW,
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22 C. CHEN ET AL.

Similarly, for ¢ € (t,,.1,,, 1),

2
xf‘”K’ <

H +2(t — t) (Lz

XK+ o (xN5) FY (x )@~ + PG ( ") wa - W(tm))H2

3) +2(x0 5 + o (X05) FY (X05) (= 1), G (X05) W) = W)

2
< NK

+ HG (x5 wa - W[

By induction, we have

2 2 _ 1 2
fVKH < HPNXOH +2L2/ Xﬁ’n;KH ds+2L31+2/ < K1 ok ( )FN (X )((t,,,x + Tig) At — ),
0

‘ 2

+ |6 (XY (wor = w ()

G (xX) awis)) + mi:l G (x) aw|’
i=0

Taking the ’%th moment with p > 4 and applying the Burkholder-Davis—Gundy inequality yield

e

+E (/ H +OK tm )FN(Xm )((tmé_—i—rms)/\t—tmj

[HXNKH ] <CO(,T,Ly) (IE[IIXoH” ]+78 +/ [H tns

Jo(le ) |
+E (; |6 (xi) ,-2+HG(X%K) (W(t)—W(tm[))‘2)2:|).

Notice that

NK 2

(ty, + T ) AT — 1, ) Ok (Xf:’n;K)

)

(
(< ()¢ e ) (629) [ (29
o)

XN K

tmg
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STRONG CONVERGENCE OF ADAPTIVE TIME-STEPPING SCHEMES 23

and

P 2
(nil"G( NK) ) =K mtz_o‘jnHG(Xg?AW"

p_

m—1 \ 2 w1 HG(X )AW,»
<E (Z r,) ZT’—,

i=0

where we have used the inequality (3, 7u,)” < (3 7)" - > T, the property of the conditional

[ ) 1l

expectation, the Burkholder—Davis—Gundy inequality and the Lipschitz continuity of G. Therefore,
combining the Holder inequality, we get for p > 4,

B[54 = € 01101 o) (14 x0T+ [ B[00 ] )

o),

_ t
<C(p.T, ||Q||%(H),L2)(1 +H<:[||x0||1’]+/O sup E|

0<u<s

which implies

] a).

t
sup E[nxy”‘np] <C(p.T.10l ,%(H),Lz)(l +E[I1X1P] + /0 sup E[

0<r<t 0<u<s

Applying the Gronwall inequality leads to that for p > 4,

s B[[x "] < €010 L) (1 -+ E 1) 63)

$202 dunr 90 uo 1sanb Aq 909%99//600884p/WNUBWI/SE0 | 01 /10P/3[0Ie-aoueApe/eulewl/wod dno olwapese//:sdiy Wolj papeojumo(



24 C. CHEN ET AL.

To obtain the expected supremum of the pth moment of va K weneedto apply the following Burkholder—
Davis—Gundy inequality:
p}

2 2 2
o ()] o
g %O

t
/ <X2{;SK e (XZK) F (Xﬁ’n’f) TG (Xf:’n;K) dW(s)>
; .

E |: sup

0<t<T

T

ces ([
0

T
< C/ sup EH
0 s€[0,7T]

tmg

XK+ o (X0F) FY (x09) 7,

XN K

timg

p] ds < C,

p
where we use (6.3). And the remaining proof of E [SUPOSng HX;VK H ] <C(l+E [||X0||1’]) can be
given similarly. Moreover, the assumption (3.5) gives that E[M;] < TE |supy-,r r(XﬁV’K)_l] <
N.K

TE [SUPOSth (fl ’Xt
Step 2: Expected supremum of the pth moment of Xﬁv .

q
0 + {2)] < Cwith C independent of K, which implies that 7 is a.s. attainable.

Define the stopping time by T, = inf{r € [0,T] : HX;v’K H > K}. Then for ¢ € [0, le A fKZ), we have

O, MKy = Ok, (xN52) = 1 and thus X" = X2 as. due to the existence and uniqueness of the
solution. Hence, Ty is nondecreasing with respect to K. Denote limg_, . Ty = T, a.s. The Chebyshev
inequality gives

0<t<T

P{#, =T} = IP’[ sup HxﬁV’K H < K]

>1 —K'E |: sup

0<t<T

4
XﬁV’KH :|—>1 as K — oo,

which implies T = T,,. Define X" on [0, T] by X¥ = XX on [0, ;). Then XV is the solution of (6.2)

with limy_, o sup,cpoz,) (X0 X H = sup,o.7) | X | a.s. Hence, applying the Fatou lemma and Step 1
leads to
P P
E|:sup Xﬁv :| < lim E|:sup XﬁVKH i| 5C(1+]E[||X0||p]).
0<t<T K—o00 | 0<i<T
The proof is finished. 0

Below, we give the a priori estimate in E-norm of the solution of (AE-M) for the case of d = 1 based
on the Sobolev embedding H St s E
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STRONG CONVERGENCE OF ADAPTIVE TIME-STEPPING SCHEMES 25

PrOPOSITION 6.2 Let d = 1. Under Assumptions 2.1, 2.3, 3.3-3.4 and (3.4)—(3.6), we have for p > 2,

N

t =C

sup sup -

NEN+ 0<t<T

for some C := C(p,T,X,) > 0, where X{V is the solution of (AE-M) with timestep function 78 for
§€(0,1).

Proof. We split the numerical solution as XV = Y{Vt + Yévl + ZN, where Y{Vt, Yévl and ZV are solutions
of

dyl, = —AVyY de SV (r =, ) FY (x0 ) de— FY (X)) ar, vy =PYX,,  (64)

tmy
dry, = ¥ (xY) dr, vhy=o,
and
dzN = —ANZY di + SV (1 -1, ) PG (Xﬁ:'ﬂ) aw,, zl =o, (6.5)

respectively.
Applying Lemma 4.2 to Yév , yields that

! d 72
§C(1+/(t—s)4 ds).
E 0 E

Recall the definition Z,N (see (AS)) in the proof of Proposition 4.3. It can be observed that Y{\j .+ Zﬁv

has a similar expression to that of ZV, in which the counterpart of WI{‘V is Z?’ in this setting. Thus, it
suffices to prove that supy.,.r E[HZ?] ||qE] < oo for g > 2 in the multiplicative noise case. In fact, the

3
H Yy, VL HZT |+ H Yy, + ZY

Sobolev embedding H 3¢ <5 Ewithe > 0, the Burkholder—Davis—Gundy inequality and the Lipschitz
continuity of G give that

q

%+e

r t
Z_] <Csup E H/ SV (t—1, ) PG (xﬁjn ) AW (s)
L' Jo ’ !
N
’«fzo ds)

0<t<T
2 3
PG (x| ds)
mg 220
! 142¢ N 2 %
(/ (=57 (1+ | ) ds)
0 S
q
! 142¢ 2 2
—Lize N
< C sup /(t—s) 2 1+ sup |X ds) <C.
0<t<T \JO 0<s<T L9($2;H)

sup E [HZ?’

0<t<T

B t
<C sup E (/ HAIJZZESN (t—tms) PNG (Xgn)
0 s

0<t<T

! 142
<C sup E (/ (t—1,) 2
0 :

0<t<T

<C sup E
0<t<T

tmg
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26 C. CHEN ET AL.

The remaining proof is similar to that of Proposition 4.3 under conditions (3.4)—(3.5) and hence is
omitted. O

With the above regularity estimates, one can derive the a priori estimate in H'-norm of the solution
of (AE-M) by a similar approach to Proposition 4.4. Then similar to the proof of Theorem 3.5, one can
obtain the following convergence order of the adaptive time-stepping scheme (AE-M).

PRrROPOSITION 6.3 Let d = 1. Under conditions in Proposition 6.2, for p > 4,
sup HX(t) — Xﬁv

_1 1
<C (AN2 + 32) ,
1€[0,T] LP($2;H)

where X;V is the solution of (AE-M) and C := C(p, T, X)) > 0.

Proof. Similar to the proof of Theorem 3.5, we introduce the auxiliary process Y?,
t t
YV = sV PVX, + /O SNt — )FN (X(s)) ds + /0 SV (t—1,,) PG (ng ) AW(s).

It can be shown that | Y)Y || ;. < Cand YV — Yo < Ct — 5)2. The error can be divided
into

HX(t) —xV

< IX®) = PYXOllpaum + | PVX @ =YY

+ HYﬁV—XﬁV

LP($2:H) 1P(2:H) LP(2:H)

_1
With the regularity of the solution X, we have || X(r) — PNX(r) (2 = CANZ IXON 1o (.-
For the term |PNX(7) — Yﬁv l2r (2.8 it follows from the Burkholder-Davis—Gundy inequality that
forp > 2,

HPNX(t) —YY

LP(2:H)

=

/0 "y (G(X(s)) -G (YQ’ )) dw(s)

1P ($2:H)

+ A’SN(t ) (Id — sV (s tms)) G (YQ’) Aw(s)

1P (S2:H)

1
2

v [ leso ()L
2

L2(2)
% i|
P
L2(2)
2

<cfita (/ot [P¥x - v ATV = 9AE (1 =8 (s =) ) G (1Y) | 05

i20
1
! 2
/ ‘ L2 (2 ’
0 2(82)

which together with (2.1)—(2.3), the Holder continuity of Yﬁv and the Gronwall inequality yields that
_1 |
IPNX (@) = YNl () < COy? +87).

P
L2(2)

<cC H /0 l HG(X(S)) - G(PNX(‘Y))H;ZO ds

; d
s
2

t
5]
2

ATV 9aE (1 =8 (s =) (6 (W) =6 (W) | 08

+ /01 HSN(z —9) (Id — sV (s— tms)) G (Yﬁv)}

1
2

2 3
ds) +
17 (2:H)

4
L2(2)
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STRONG CONVERGENCE OF ADAPTIVE TIME-STEPPING SCHEMES 27

For the term YN — XN|| 17 (2:1)» applying the Itd formula gives

2
”x{"—Y,NH :2/0

+ 2/(5(;({?’ — YN, SN (5 — tmg) PV (G (Xﬁ)’n) -G (Y{,Y)) dW(s)> + /Ot HSN (s — tmy) PV (G (Xj)’n) -G (Yi.v)) H;O ds.
2
(6.6)

t(x{g’ — v, -V (x¥ —Y{;’)>dz+2/0t<x§" — VSN (5 = tmy) FY (X0, ) = FY (X)) s

Then compared with the additive noise case (see (5.3)), the main difference of the estimation of ||XfV —
YN 17 (02:1 lies in the estimation of the last two terms in (6.6), which can be estimated as for p > 4,

?[ i

/0 (kY w5 (=0, PV (6 (60) — 6 (1)) aweo)
([ b P letet) o) |
,,] ds + Cs%,

sc/otIEH

XN _yV

xN vV

and

[STaS]

gl

}

L5 6= (o (1) -6 ()

t
<c [l e[lx-w
0

p P
]ds+C82,

respectively, where the Holder continuity of XV, the Holder inequality, the Young inequality and the
Lipschitz condition of G are used. Hence, similar to the proof of (5.3), one can obtain that ||va -

1
YNy < Chy” + §2. This finishes the proof. O

Note that the proof of Proposition 6.2 is not applicable for the case of d > 1 due to that the Sobolev

embedding H St E requires a higher space regularity. Hence other skills are needed to obtain the
regularity estimate of (AE-M) in E-norm. We leave this as the future work and attempt to study it in the
future.

7. Numerical experiments

In this section, we present numerical experiments for the trace-class noise case and the space-time white
noise case to verify the previous theoretical results, respectively. Meanwhile, some alternative choices
of the adaptive timestep function are given.
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28 C. CHEN ET AL.
Consider the following stochastic Allen—Cahn equation with the generalized Q-Wiener process:

W=y W), 1€ (0,11, x e (1),

u(0,x) = +/2sin(x), xe€ (0,1), (7.1)
u(t,0) = u(r,1) =0, 1€ (0,1].

For the trace-class noise case, we choose Q such that Qe; = ilzel-, i > 1, which implies that tr(Q) < oo
and Assumption 2.2 holds for some § € [1,2]. For the space-time white noise case, i.e., 0 = Id,
Assumption 2.2 holds for 8 € (0, %).

We are going to compare the performance of adaptive schemes with the scheme with a uniform
timestep. The scheme with a uniform timestep is chosen as the tamed exponential integrator (TE), see
e.g., Wang (2020). In the following, error bounds are measured in root-mean-square (RMS) sense at the
end point 7 = 1, caused by spatio-temporal discretization. And the expectations are approximated by
computing averages over 1000 samples. The infinite-dimensional Hilbert space L*(0, 1) is approximated
through the finite-dimensional subspace spanned by the first 219 eigenfunctions of the Laplacian, i.e.,
in the spectral Galerkin method, we take N = 2'°. Since the exact solution cannot be given explicitly,
we take the solution generated by the same method with a timestep that is three times smaller as the
reference solution. Numerical experiments are tested by Matlab R2017a in MacBook Pro (13-inch, 2019,
Two Thunderbolt 3 ports).

Besides (3.8), there are other choices for the backstop scheme ¥, for example, the nonlinearity-
truncated exponential integrator (see Becker & Jentzen, 2019, Eq. (6))

lI/(x,h,y)=SN(h)(x+hFN(x)x{ 6 <h_]}+y), (7.2)

151815 )=

and the linear-implicit nonlinearity-truncated scheme (see Becker & Jentzen, 2019, Eq. (7))

U (x,hy) = (1d—AVp)~! (x + hFN(x)X[”X”ﬁlg <h71] + y) ) (7.3)

L'S(o)™

Hence, for the coupled scheme (3.7), when the backstop scheme ¥ is chosen to be (7.2) or (7.3), we
obtain two coupled schemes denoted by (CAU 2) and (CAU 3), respectively. Similarly, for the coupled
scheme (3.10), when the backstop scheme ¥ is chosen to be (3.8), (7.2) or (7.3), we obtain three coupled
schemes denoted by (CAU a), (CAU b) and (CAU c), respectively.

7.1 Trace-class noise

We show the experiment results for the trace-class noise case in this subsection. For the trace-class noise
case, the seven methods tested are: the scheme TE that is with the uniform timestep, schemes (CAU 1),
(CAU 2), (CAU 3), (CAU a), (CAU b) and (CAU c) that are with the adaptive timestep. Recall that 7° is
the refined timestep function controlled by the scalar parameter § € (0, 1) and satisfies Assumption 3.3.
We choose the following two types of adaptive timestep functions: type I:

4
X + 0.5 )3

0 (X) = 87, (X) with 7, (X) = (W
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Type 1 Type 1

107

RMS error
)
W
RMS error

10"
Number of timesteps CPU time

(a) timestep type 1 (b) timestep type 1

FiG. 1. RMS error for numerical schemes with trace-class noise for type 1.

X4, +001 [ x| +02 \}
T (X) = 871,(X) withrlz(X)zmin[ Lt ( 1XI] + ) ,

IX1% +0.01 “\IFXOI +0.8
type 2:
§ (X) = 87, (X) with 7, (X) ( 11 )3
T — wi T — e ,
” . 2 IFOO 132
4
3,(X) = 5735(X) with £3(X) = min | X1+ 001 ( L1 )3
v = = min i ’
” ” 2 ||X||26+0.04 IFCO| + 3.2

where § = 2711 = 2,...,7. Here, 711, Ty are adaptive timestep functions for (CAU 1), (CAU 2) and
(CAU 3), and T14,, 75, are adaptive timestep functions for (CAU a), (CAU b) and (CAU c). In type 1, we
let L,(w) = [|X(w)] + ¢ with X being the reference solution or numerical solution, ¢ = 0.5 in rl‘sl and

c=0.2in rﬁz, and Lz = % In type 2, we let L, = 1.1 and Z2 = 2 independent of w. One can verify that
the type 1 and type 2 timestep functions satisfy Assumption 3.3.

The comparisons of the seven schemes with fype I and type 2 timestep functions are presented in
Fig. 1 and Fig. 2, respectively, where the left ones are about the RMS error against the average number
of timesteps, and the right ones are about the RMS error against the CPU time. Recall (3.3) and (3.5),
and set 7,,;, = 0.28, {; = 3,9y = 1 and {, = 4 for type I and type 2. The length of a timestep for TE is
set by 7,,;,- From Figs 1 and 2, we observe that the convergence orders in the temporal direction of these
seven schemes are slightly bigger than % As for the type I timestep function, for a given RMS error,
we see from Fig. 1 (a) that the adaptive schemes cost slightly fewer numbers of timesteps than TE that
has the uniform timestep. And we observe from Fig. 1 (b) that the adaptive schemes cost less CPU time
than TE for a given RMS error. A similar phenomenon is observed from Fig. 2 for the type 2 timestep
function. These mean that for the fype I and fype 2 timestep functions, the adaptive schemes perform
slightly better than TE that uses the uniform timestep.
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Here, the uniform timestep is t,,
is T

TABLE 1

RMS error
)
[

Type 2

C.CHEN ET AL.

Number of timesteps

(a) timestep type 2

10°

RMS error

10'
CPU time

(b) timestep type 2

F1G. 2. RMS error for numerical schemes with trace-class noise for type 2.

Time in seconds (8 = 26 )

CAU1 CAU2 CAU3

CAUa CAUb CAUc TE

Typel 8178 8280  82.83
Type2 7684 8274  79.54

77.66 77.00 86.08  93.52
87.29 88.75 86.55  93.52

Timestep function

%108 Type 1

—+—CAU1
——CAUa

0 50 100 150 200 250 300

Timesteps

%107

Timestep function
o
Tyt
L

W W
S

[}

e
o ©
—

50 100 150 200 250 300
Timesteps

F1G. 3. Timestep function for numerical schemes with trass-class noise (§ = 276,

in

We list the CPU time costed by these schemes with the type i (i = 1, 2) timestep functions in Table 1.
= 0.28 with § = 27°. The critical parameter for (CAU 1)-(CAU 3)
and that for (CAU a)-(CAU c) is (¢ [|IX]|7° + ;2)’1 with ¢, = 3,4, = 4,95 = 1. And 1000
realizations are calculated. It can be observed that the coupled schemes are in a lower computational
cost in terms of the CPU time compared with TE that uses the uniform timestep. This can be explained
by Fig. 3, since coupled schemes like (CAU 1) and (CAU c) use many large timesteps compared with

the uniform timestep, which may reduce the computational cost of the schemes.
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TABLE 2 Time in seconds (§ = 26 )

CAU 1 CAU 2 CAU 3 TE
Type 3 82.80 81.98 77.85 102.62

Type 3 Type 3
0.09 s | 0.085 \
% i 0.08 = X
0.08 5 ] 0.075 :
00 1 0.07
01 0.065
0.06
5008 g
£ £0.055
2] 2]
= = 0.05
2005 2
0.045
CAU 1 i 0.04 CAU1
0045 & cauz ’ ——CAU2 N
—¥—CAU3 —%—CAU3
-g-TE 0.035 [ | ——TE
— — Order line of 1/4 — — Order line of 1/4
— Ry, v
10" 10? 10° 1072 107 10° 10’
Number of timesteps CPU time
(a) timestep type 3 (b) timestep type 3

FiG. 4. RMS error for numerical schemes with space-time white noise.

7.2 Space-time white noise

We show the experiment results for the space-time white noise case in this subsection. For the space-time
white noise case, the four schemes tested are: the scheme TE that is with the uniform timestep, schemes
(CAU 1), (CAU 2) and (CAU 3) that are with the adaptive timestep. We choose the following adaptive
timestep function for the considered three adaptive schemes: type 3:

4
3

. 1.1 3
3, (X) = 873, (X) with 73, (X) = (m) ’

where § is the same as before. In this case, the type 3 timestep function can also be verified to satisfy
Assumption 3.3.

For space-time white noise case, Fig. 4 shows the comparison of RMS error against the number of
timesteps and CPU time. It can be gained from Fig. 4 that the convergence orders in the temporal direction
of the four schemes are JT. For a given RMS error, we see from Fig. 4 (a) that the adaptive schemes
cost slightly fewer numbers of timesteps than TE that uses the uniform timestep. And we observe from
Fig. 4 () that the adaptive schemes cost less CPU time than TE for a given RMS error. The total time
for these schemes with fype 3 timestep function is listed in Table 2, from which we can see that the
coupled schemes are in a lower computational cost in terms of the CPU time. These mean that for the
type 3 timestep function, the adaptive schemes still perform slightly better than TE that uses the uniform
timestep.

At the end of this section, we present the experiment result of the multiplicative noise case in one
dimensional case with the diffusion coefficient G(X)(x) = X(x) + 1,x € & and the trace-class operator
Q satisfying Qe; = l.lze,-,i > 1. Here, we only take type I timestep functions as an example, which are
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TABLE 3 Time in seconds (§ = 2-6 )

CAU 1 CAU 2 CAU 3 CAU a CAU b CAUc TE
Type 1 48.88 49.68 55.21 54.61 55.55 54.75 97.26
Type 1 Type 1
1071 0.09 >

0.08
2 . 0.07
o 9 0.06
0.05
5 5004
é N é 0.03

oo o
N 0.02

TE
— — Order line of 1/2 — — Order line of 1/2
¥ 7
Number of timesteps CPU time
(a) timestep type 1 (b) timestep type 1
F1G. 5. RMS error for numerical schemes of multiplicative noise case.
taken as
4 4
X||+0.6 )3 20XIIf, +0.01 ¢ x| +03 3
X)) =4 (L) ., T5(X) =8 min - ( 1 X + ) .
IFGXOI+ 1.4 X126 +0.01 “\[IF(X)| + 0.8

Figure 5 shows the comparison of RMS error against the number of timesteps and CPU time, which
implies the convergence orders in the temporal direction of schemes are % For a given RMS error, it
can be observed that in Fig. 5 (a), the adaptive schemes cost slightly fewer number of timesteps than
TE with the uniform timestep, and that in Fig. 5 (b), the adaptive schemes cost less CPU time than TE.
The total CPU time is listed in Table 3, from which we can see that the coupled schemes are in a lower
computational cost in terms of the CPU time. These show the better performance of adaptive schemes
for the multiplicative noise case.

Funding

National Key R&D Program of China (No. 2020YFA(0713701); National Natural Science Foundation
of China (No. 12022118, No. 12031020, No. 11971470, No. 11871068); Youth Innovation Promotion
Association CAS.

REFERENCES

BECCARI, M., HUTZENTHALER, M., JENTZEN, A., KURNIAWAN, R., LINDNER, F. & SaLiMova, D. (2019) Strong
and weak divergence of exponential and linear-implicit Euler approximations for stochastic partial differential
equations with superlinearly growing nonlinearities. arXiv: 1903.06066.

$202 dunr 90 uo 1sanb Aq 909%99//600884p/WNUBWI/SE0 | 01 /10P/3[0Ie-aoueApe/eulewl/wod dno olwapese//:sdiy Wolj papeojumo(



STRONG CONVERGENCE OF ADAPTIVE TIME-STEPPING SCHEMES 33

BECKER, S. & JENTZEN, A. (2019) Strong convergence rates for nonlinearity-truncated Euler-type approximations
of stochastic Ginzburg—Landau equations. Stochastic Process. Appl., 129, 28-69.

BREHIER, C., Cur, J. & Hong, J. (2019) Strong convergence rates of semidiscrete splitting approximations for the
stochastic Allen—Cahn equation. IMA J. Numer. Anal., 39, 2096-2134.

BREHIER, C. & GOUDENEGE, L. (2019) Analysis of some splitting schemes for the stochastic Allen—Cahn equation.
Discrete Contin. Dyn. Syst. Ser. B, 24, 4169-4190.

Cal, M., GaN, S., WANG, X. (2021) Weak convergence rates for an explicit full-discretization of stochastic Allen-
Cahn equation with additive noise. J. Sci. Comput., 86, Paper No. 34, 30.

CaMPBELL, S. & Lorp, G. (2018) Adaptive time-stepping for stochastic partial differential equations with non-
lipschitz drift. arXiv: 1812.09036.

CERRAL S. (2001) Second Order PDE’s in Finite and Infinite Dimension. A Probabilistic Approach. Lecture Notes
in Mathematics, vol. 1762. Berlin: Springer.

CHEN, C. & HONG, J. (2016) Symplectic Runge—Kutta semidiscretization for stochastic Schrodinger equation. SIAM
J. Numer. Anal., 54, 2569-2593.

CHEN, H., BHAKTA, M. & HaJja1gs, H. (2022) On the bounds of the sum of eigenvalues for a Dirichlet problem
involving mixed fractional Laplacians. J. Differential Equations, 317, 1-31.

Cuy, J. & HoNng, J. (2019) Strong and weak convergence rates of a spatial approximation for stochastic partial
differential equation with one-sided Lipschitz coefficient. SIAM J. Numer. Anal., 57, 1815-1841.

Cuy, J., HONG, J. & Sun, L. (2021) Weak convergence and invariant measure of a full discretization for parabolic
SPDEs with non-globally Lipschitz coefficients. Stochastic Process. Appl., 134, 55-93.

FanG, W. & GILES, M. (2020) Adaptive Euler—Maruyama method for SDEs with nonglobally Lipschitz drift. Ann.
Appl. Probab., 30, 526-560.

FENG, X., L1, Y. & ZHANG, Y. (2021) Strong convergence of a fully discrete finite element method for a class of
semilinear stochastic partial differential equations with multiplicative noise. J. Comput. Math., 39, 574-598.

HoEL, H., vON SCHWERIN, E., SZEPESSY, A. & TEMPONE, R. (2012) Adaptive multilevel Monte Carlo simulation.
Numerical Analysis of Multiscale Computations. Lect. Notes Comput. Sci. Eng., vol. 82. Heidelberg: Springer,
pp. 217-234.

JENTZEN, A. & PUSNIK, P. (2020) Strong convergence rates for an explicit numerical approximation method for
stochastic evolution equations with non-globally Lipschitz continuous nonlinearities. IMA J. Numer. Anal., 40,
1005-1050.

KELLY, C. & LorD, G. J. (2018) Adaptive time-stepping strategies for nonlinear stochastic systems. IMA J. Numer.
Anal., 38, 1523-1549.

KeLry, C. & Lorp, G. J. (2022) Adaptive Euler methods for stochastic systems with non-globally Lipschitz
coefficients. Numer. Algorithms, 89, 721-747.

KovAcs, M., LARsSON, S. & LINDGREN, E. (2018) On the discretisation in time of the stochastic Allen—Cahn
equation. Math. Nachr., 291, 966-995.

KRUSE, R. (2014) Strong and Weak Approximation of Semilinear Stochastic Evolution Equations. Lecture Notes in
Mathematics, vol. 2093. Cham: Springer.

LamBA, H. (2003) An adaptive timestepping algorithm for stochastic differential equations. J. Comput. Appl. Math.,
161, 417-430.

LEMAIRE, V. (2007) An adaptive scheme for the approximation of dissipative systems. Stochastic Process. Appl.,
117, 1491-1518.

Liu, W. & ROCKNER, M. (2015) Stochastic Partial Differential Equations: An Introduction. Universitext. Cham:
Springer.

Liu, Z. & Q1a0, Z. (2020) Strong approximation of monotone stochastic partial differential equations driven by
white noise. IMA J. Numer. Anal., 40, 1074-1093.

Liu, Z. & Qiao, Z. (2021) Strong approximation of monotone stochastic partial differential equations driven by
multiplicative noise. Stoch. Partial Differ. Equ. Anal. Comput., 9, 559-602.

Lorp, G.J., POWELL, C. E. & SHARDLOW, T. (2014) An Introduction to Computational Stochastic PDEs. Cambridge
Texts in Applied Mathematics. New York: Cambridge University Press.

$202 dunr 90 uo 1sanb Aq 909%99//600884p/WNUBWI/SE0 | 01 /10P/3[0Ie-aoueApe/eulewl/wod dno olwapese//:sdiy Wolj papeojumo(



34 C. CHEN ET AL.

MaJEE, A. K. & PrROHL, A. (2018) Optimal strong rates of convergence for a space-time discretization of the
stochastic Allen—Cahn equation with multiplicative noise. Comput. Methods Appl. Math., 18, 297-311.

MERLE, F. & ProHL, A. (2021) An adaptive time-stepping method based on a posteriori weak error analysis for
large SDE systems. Numer. Math., 149, 417-462.

MILSTEIN, G. N. & TRETYAKOV, M. V. (2021) Stochastic Numerics for Mathematical Physics, 2nd edn. Scientific
Computation. Cham: Springer [of 2069903].

Q1, R. & WaNG, X. (2019) Optimal error estimates of Galerkin finite element methods for stochastic Allen—Cahn
equation with additive noise. J. Sci. Comput., 80, 1171-1194.

WAaNG, X. (2020) An efficient explicit full-discrete scheme for strong approximation of stochastic Allen—Cahn
equation. Stochastic Process. Appl., 130, 6271-6299.

Appendix A.
Proof of Lemma 4.1. (i) Letu = > 2, (u, ¢;)e;. Then the Holder inequality gives that

A2 PN S(t)ul| p = sup

Ze )‘tkp(u e;)e;(x)
xe0

< CZe*“)\p l(u, e;)]

i=1

YN 2 N » >
2p — . —cti
< C(Z)\ P =2 t) (Zl(u, ei>|2) < C(Z(lz/d)zﬂe cti ) ”M”
i=1 i=1

By the monotonicity of the function y4'°/ d =ty rt. y € (0, 00), which takes the maximum value
at the point y = (¢ 20 )d/ 2 and letting i := L( )d/ 2| with |-] being the floor function, we have

00 2d io—1 00
. —cti2/d Ap/d —cti . —cti?ld . py
Zl4p/d€ ctitld _ ZOP/ e~Ctiy 4 Z jAo/d g—cti + Z jArld g—cti
i=1 i=ip+1

2p 00
< (2_0) e / yleme ay
ct 0

< C(p.d) : 1 /OOZZH%‘le‘“dz < C(p,d) L L),
20 ,2p+‘—§ 0 20 t2p+%

where in the last step we have used the fact that f;° 2ol dy = ¢20=5 P (2p + 4y with I being

the Gamma function. Applying the inequality (a + b)% < az + b? leads to the desired result.
(if) By the Holder inequality, we obtain

Ze (u, e;)e;(x)

IPVS(tyullp = sup

<CZe Mt (u, e;)|

i=1

N LY 7 -~ 1
—2Aity =P p 2 —2p/d —cy*!?t
<D e, D Alwep?) <cC Ty ),
i=1 i=1

1
00 2
< C(p,d) (,p_g / g Pl dz) lull, < Codyts =% ull,
0
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where in the last step we have used the fact that fooo z_p+%_1e_cz dz = c"’_% I'(—p+ %) for p € [0, %).
The proof is finished. 0

Proof of Lemma 4.2. By Lemma 4.1 (i) with p = 0 and the Sobolev embedding H' < L°(0), we get

Hvﬁ\’HE < C/Of(,_s)—i ( Lﬁ(ﬁ’)) ds. (A1)

The Taylor formula, the Young inequality, the Gagliardo—Nirenberg inequality |lull;n p) =

C (1 Aull® )|l =% + lull g () for u € H* with o = %’ € (0,11, 7, > 2,7, > 0 imply that

2 t
:/ (—2 HAviV
0
t

N
HV"z

(V.Y (o + zgv))) ds

2 2 2 4 6 2
e [ i (e 2T (L) T R R )
' 2 44 4 2 2 o
5—(2—6)/ HAvgV (1 (‘Av Al I Y )(ZN +1)+ W2
0 0 E E
6 2
+ |2 ot W )ds
! gh 2 6 6
<Clo / ( A +1) ) as, (A2)
0 E E

where in the second step we use the fact that (VvISV ,3as (VISV )2VV§V ) < 0, and in the third step we take
1, = 4, n, = 2. Using the Taylor formula again, and combining (2.5) and the Young inequality give that

t 2 t 2 t
—2/ ds+2L0/ ds+2/ (W RV (2)) as
0 0 0
! 2 ! 6
§2L0/ ds+C/( o )ds,
0 0 E

which yields that VN[> < Ce@LotOT [1(1 + ||2V)|$) ds due to the Gronwall inequality. This, together

V,NZ \aTAd

s

W

2

W +

with (A.2) leads to
) 28a) 6
sup Vvﬁ,v <C| sup vﬁ.v / (IIZNII ) s+/ ( )ds+ sup vﬁv
0<s<t 0<s<t 0 0<s<t

el (1)) ]
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Plugging the above inequality into the right-hand side of (A.1), one has

4 d
SC/ (t—s)"4 (1+
E 0

t d 3 t
§C/(t—s)_4(l+ )ds+C|:1+(/ (1+
0 E 0

t
5C[1+/ ((r—s)ﬁ g 2 ;2) ds]

N
SE
where we have used the fact that 2 5 ( —=d d 4 1) <9 for d < 3. The proof is finished. OJ

N 3

N
Vi A

)ds+C sup

0<s<t

z z

8 b= R :
) )
E

Proof of Proposition 4.3. First, define a sequence of nonincreasing events as follows:

o
2, =jwe2: sup (rja)
JE{0, 1,y ()}

l.(a))” 51}, 0<i<T
J E

with @ > 0 being determined later. It is clear that x, € .%,. Note that one can always choose § > 0

sufficiently small so that P ({ ()1 X) [z > 1}) < (T(S)"‘]E[HXN gl < 1, and hence P(£2,) > 0, which
implies §2, # . Intuitively, £2, is the event that the E-norm of the numerical solution can be bounded
by timestep sizes with a certain order before time ¢ (including ?).

We claim that

N p -1 1 ) N
E I:X'Q’ Xt E] <C (p, T’LI’LZ’ A2 Q2 2@ R ”XO”L‘“ ($2:F18)> P XO Lo (_Q;E)) (A3)
and
Elxo [xV] ] <c L.L, A% 0} X0l a2 ceroirsns |PVX (A4)
Xae |4 el = 2T, T, Ly, Ly, Zan’ 0 L92($2;HP)> Ol L2 (2:) .

with g1, ¢, > 0 sufficiently large, whose proofs are given in Step I and Step 2, respectively. Once we
prove (A.3) and (A.4), the proof of (4.2) is finished due to the Minkowski inequality.

Step 1: Proof of (A.3).

Let

t t
7V = sV PV X, +/ SV (1 =1, ) FY (ij;) ds—/ SN — s)FY (XQ’) ds+ WY@, (A9
0 g s

where WY (1) 1= PNW, (1) with Wy (1) = [3 S (t —1,, ) dW(s). Then XN = [(SV(t—s)FN (xV) ds+2ZD.
Let XN := XV — ZN Tt satisfies

dxV = (—ANXN + FN (XN +ZV)) dt, 1€ (0, 7],
X\ =o.

Then applying Lemma 4.2 yields that | XY || ; < C [, (l F(t—s)F ||Z§V||l3Y + HZQ’”?) ds. This implies

Nolp =€ [ (1+0-071
LP(£2)

3 72

N

N
X.Q, Zs

+ a2

ds. (A.6
HX“Q’ E 13 (2) E L72P(.(2)) (A-6)
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It follows from the definition of Zﬁv that for0 <s <1,

/(:SN(S — 9 (FN (xﬁfn) —FN (Xﬁv)) dr
/OS (SN (s — tm,) — SN — r)) FN (Xf:’nr) dr

= |s¥ PV, HE 1) + 1) + | W) HE .

z

<[ s¥)PVx H
E_H ) OE+XQ’

X0,
E

+X9t

+ H Wi (s)
E

E

Estimate of I,. Since

,
XY =8V (r—1,) X +/ SV (= 1) FY (X0 ) dut WY @) =S¥ (r =1, ) WA,

my

37

(A7)

(A.8)

and by the contractivity of the semigroup in E, i.e., |S(®ully < |lullg, (3.2), Assumption 3.3 and Lemma

4.1 (ii) with p = 0, we obtain

r _d
X IXY Nl < xQ,( x|+ C/ (r=t,,) "
tiny

d
1-7

+C (Tri,)

P )|+ o]+ v )

)

N
= Xe, ( Xtm, E

s (], + et ]+ w2 )] )

tmy

We derive from (2.1)—(2.2) and (3.1)—(3.2) that for 8 € (0,2], 0 <r <1,

xe, ‘Xﬁv —Xgnr H < H (S(r) - S(fm,.))PNXOH + Xe, H /O’S(r_ tm,) FY (X;:]nu) du

- /Otmr S (tmr _ tm,,) PN (Xi\iu) duH + HPN (WA(V) — Wy (tm,)) ”

by
|8, 1) (50 =1,) ~10) P (x)
0 u

5(1,8 )g

my

N
P XOHﬁ + xe,

o A UACER A

F (Xf’\; )H du

+X9r

-
/ S(V_tm,) FN (Xﬁ:/nr) du
tmy

1,
mr _ 1—¢
PNXO Hﬁ + CXQ:/O (tmr - tmu) e (T;Elr)

B
< ()’

+ Cg,mi, [ (X0,)] + 1Wat) = Wa (1)

s Wa() = Wy (s
< C(Lg) (‘L';'Slr) 2 € 1+||X0||ﬂ+ H A ﬁfl(m') ’

() *

P et [0, ¢ o )

)

(A9)

) af

(A.10)
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8
where 0 < € < 1, and in the last step we have used z’”r < I < <T(T '+ 7:_1) due to (3.3)

— Smin{T,ty,} — min

and Assumption 3.3. We deduce from Lemma 4.1 (i7) Wlth p =0, (2.6) and (A9) that

F (Xﬁv) —F (Xffn) H dr

Iy(s) < Xe, /Ox(s — r)—%

S d 2
Y KRRl (B I gy A e
<C(L1,Lz)xg/(s—r) i (1+HXN H +HWN(r>H +|wd )] )\ dr,
which together with (A.10) leads to
s _d N YN N 2
To(s) 5C(L1,L2)X_Qt/0 (s— )8 (1+ HX, JFHWA (r)HE-i-”WA (tm,) E)
5\ 2 [Wa 1)~ Wa (om,)|
x (rm,_) 1+ X0l + a dr
s\ 72
Tmr
s d 2 2 W — Wy (1
SC(LI’LZ)/O (s—r71% (1+ HWQ’(r)HEnL HWQ’ (tm,) E) 1+ 1Xollp + [Wa® ﬁﬁl( m)l | o,
s\ 2
T,

d
BAING
4

where we have used the definition of §2, and taken a € (0, . Taking LP(§2)-norm (p > 2) on

both sides of the above equation, and applying the Minkowski inequality and the Holder inequality, we
derive

[t + [ |,

s d
5 —7r) 4
Iyl = L) [ =) N

[Wa) = W, (1)
(3)"

x|+ 1 Xpll g + dr.

L2P(£2)

BAl . -
Note that sup,¢(o 1 ||A% W,o@® |l e = C and (2.2) imply the Holder continuity of W,

[Wa ) = Wy (1) =A% (s=n)=19)] Wi ()

Z(H)

+

/r S (r — ’m,) dW (u)
1,

my

(p, HA 2 Qz ZZ(H)) (rr‘flr)@ .

sz’(Q;H)
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STRONG CONVERGENCE OF ADAPTIVE TIME-STEPPING SCHEMES 39

which combining properties of the conditional expectation gives

2p .
E IWa(r) — Wz, )l _ElE [Wo(r) — WA(tm,)IIZP) 7,
BAL @Xf my
()" ()
BAL A= ~ _
5§ \— 5 x2p 2 ~ -1 1
_E [(fmr) B (W) = W ()] \z)} <c (p, |4 0! D%(H)) .
Similar as the proof of (2.12), we have
NP
sup IE|:HWA (I)H :| < 00. (A.11)
0<t<T E

Therefore, we arrive at

A’STQ%

sup ()l (o) < C (13, ToLy. Ly,

0<s<t

141Xl 2500 )
i”z(H)) ( 0llL2p (2;HP)

Estimate of I,. Applying Lemma 4.1 (i) with p = 1 — f—f —e =: pyand (2.2) yields that for0 < s <1,

I(s) = X,

/0 “AnsN(s — A (8% (—1,,) —1a) ¥ (X)) ar

E
3
xN E) dr

Iy

= C(LI)XQt /OS ((s - I")_po + (S - r)_po_%) (T;Elr)po (1 + ‘

< C(Ll)/s ((S -+ (s — r)‘ﬂo-%) dr,
0

where we have used the definition of £2, and taken o € (0, 5']. Therefore, we get sup,, |11, (s) | @) =
Cp,T,Ly).

- . . . Ind 4
Combining estimates of /; and /, and taking parameter « in £2, as o = o := (ﬁ/\4/\2 A %) —€,

we derive that

H ZN 3 ZN 72
su + H
se[OPT] x| g L3p(£2) X | g L7 ($2)
-1 1
= C(p’ DL Lo, HA A PP L72P<9;E)’”XOHL'W(Q;%)'
Then (A.6) can be estimated as
_ =1 1
XN H <c(p1.L,.L,.[|a5 02 ,HPNX Xl o s ), (A12
”X.Q, t Elr) = p 1>5=2 Q L (H) 0 L2 (2:E) ” 0||L144I(Q’H,5) ( )
which leads to
i = e 8y + e 271,
HXQI) el = 1520 g U’(.Q)+ X2 |1%0 g o)
B—1 1
< 202 .
- C(p’ L Lo, HA | 170 L72P(.(2;E)’”XOHLWP(Q;H/S))'
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Step 2: Proof of (A.4). Recall that in Step I we take o = oy. Note that for0 <t < T,

@], >1])-

Qf=Qf U (.th, N {a) e2: ()"

Hence, by iteration,

XQ,” (w) = X.Qf},,, (@) + X‘Qfmr (@) - X{( ”)ot() X%, E 1}(0))
m;(w)
= 2 O 1y )
where x, = 1.Then for 0 <t < T, combining the Holder inequality yields
E =k 5 XM
[XQ,C ' HE] B JZ(; H ! HE Xy .X{<’j5>a0 HX{]YHE>1]
=K 3 ) L x|
_ _J;O X-Qtj_] . X{(Tjﬁ)ao HX{}/HE>1}‘[j -L—]ifs H t HE
— 1 p
=], () s s L

1

wioe) EI)

S

o
= (E |:02/11<)T( ) j|) (E |:/0 X2, -X{(T’i K

It can be shown that

<C(T, 7, )8 " (A.13)

min)

\/w
L 1
SN——

W=

Notice that

E>1}] —p(foen, ()"

E |:X‘Q’m;—| . X{(T’;;Is)ao

N
XN
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STRONG CONVERGENCE OF ADAPTIVE TIME-STEPPING SCHEMES 41

Combining the Chebyshev inequality, the Holder inequality and Assumption 3.3 gives

P ({w €Qixg, ()" HE > 1}) (A.14)

3p+1)
5\ ||y o
=" |:(X9t'”s—1 ' (Im‘) Xin E) O :|

6(r-+1) % 6(p+1) %
) N Q
(E [(Tms) ]) (E |:XQ,mS_1 % A £ ‘ :|)

IA

Lol 3(p+1)
< . 2 2 .
<C (P, T, Tmm’Ll’ )A 0} o s 0 LI@:E) s ||Xo||L2q(Q;H/5)) 8 s
where we have utilized the fact that
6(p+1)
E| V| | <cpT7, .1, |45 0F X H X0l 20005
L = » L Tmin> S LH) Oll a;py " ONLA(S2:HP)

(A.15)

with g = 72 x %{;” The proof of (A.15) is a combination of (A.3) and

N N (N N
E - X.thY HS mé—l) (X’m ot F (Xtmrl) Tng—1 P AWmS_l) HE

<o, (I, e )+ Pram )

x|+ HPNAWmS_l HE) .

N
thmx—] ‘ X

g

d
4

Img—1

= CXQ,m » (

1
It remains to estimate (IE[ ||XfV ||13Ep ]) * For0 <ty < T and the fixed w € 2, it follows from Lemma
4.1 (ii) with p = 0 and the contractivity of the semigroup {S(¢), # > 0} in E that

Xl < ISEMXN g + ISEFY (X0 ) ol + ISPV AW, |

<X lg+ C)' 4

F(X0) |+ 19 G Dl + WY @)1

m
< HPNXOHE +C> ((rﬁ)lf%
i=0

F () |+ 1w Gl + WY @l )

Similarly,

Hence, by Assumption 3.1, we obtain

HX?]HE = HPNXOHE + Ci ((Tis)l_g
i—0

N 1-7
L S I g+ Clr—1,) 7

(X0 )|+ 1wi o1+ 1wy @)l

F () + i ong + 1wiali)
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This, together with (A.11) implies that for 0 < < T,

T -1
N 8 N N
1] ey = 1P 0]y +€ | ‘(rm) (L + WY )2+ 1W my)l 20 ) s

2(2)

It can be deduced from (z%)~! < 5_1(Tmm +7)~' and (A.11) that

3p 3p 3
E[ E} < C (P T i L 147 07 L)) (H I P). (A.16)
It follows from (A.13), (A.14) and (A.16) that
E[ oy ]< s—1sr+ (1 HPN 57) <
Xog | X, C + JR. + <C

. . B-1
with C > O depending on p, T, Ly, L,, T, 1A 2 Q%
Therefore, combining Step I and Step 2, we get

s ||Xo||L2q(_Q;HA‘3)-

p
s E[N]<c T.Ly.Ly. 7, |AT Q2 X
OsltlgT E P L2 T | 2 s | O”LZ"(Q HLIPNXoll g0,
for some large ¢ := q(p, B,d) > 0, which finishes the proof. O

Proof of Proposition 4.4. For the proof of the regularity (4.3), when B € (0, 2), applying (2.1) and (2.3)
yields that

sup XN, 2:dp) < CA + X0l (0.8 + sup IXN13,, +|IA T Q2||g H))-
( ) ( ) L3 (2:E) 2(H)

0<t<T

And when 8 = 2, it follows from (2.1), (2.9) and the Holder inequality that

AN

< CUL+ Xl iy + sup IXN 20 i) + SUD ||X§v 1o
0<s<T 0<s<T ”

‘ xN xV

tg

d _1 11

LP(§2;H?)

These, combining Proposition 4.3 finish the proof of (4.3).
For the proof of the Holder continuity (4.4), when y € (0, 8] with 8 € (0,2), or y € (0, 8) with
B = 2, we can deduce from (2.1)—(2.3), Proposition 4.3 and (4.3) that

v=8 8 'y
1Y~ XN ity < IAZ SV =)~ 10OAZXY ) + H/ ATSN (0= 1) FY (X)) ds HU(Q.H)
) »

Ioi—p+ p—1
+‘/A TSN (1= 1) AT AW )|
N

1P (2:H)

By ! _Y
<Ci-95" ||x§Y||U,(Q;Hﬁ)+c/ (t—tm,) "2 (1+H N L3P(QE)) ds

/\1

/\
+ AT 02 gy — 9 F < c— 9"

And when y = 8 = 2, it follows from (4.3) that ||XfV - X§V||U,(Q;Hz) < C. The proof is finished. O
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STRONG CONVERGENCE OF ADAPTIVE TIME-STEPPING SCHEMES 43

Appendix B.

Proof. Proof of the convergence of (CAU 1).Based on the auxiliary process Y7, the error can be divided
into the following terms,

1
1X() — X" Plip@un < 1X@) = PNXOlp @ + IPYXO = YV aun + 1YY = XVl

where terms [|X(t) — PNX (0|1 (.17 and [PVX(6) — YV || 1p .41, have been estimated; see (5.1)~(5.2).

For the estimate of the term || YV — Xiv’(l) Il r 2.1y combining the differential form

N,(1 N N N, (1 N N N N, (1)
) = () ) P )

FN (XN,(l))

tmy

N
RS Ll o | L

and applying the Taylor formula give

+

Xieh <o} | 4= FN(X(1)) dt

with fmm =91, Tmin>

[ - Y,NHZ = 2/(; (x =y, -V (0 - v as

+2/0[(x§\”“) —¥N, SV (s =t ) FV (xﬁj’n;(”) FN(X(s))>X{15SZTW} ds
P (x), <1))

g

N N(l)
v e () e

t
= 2/ (N _yN - _qN xN Dy Ny ds 42K () + 2K ().
0

ds

+2/0 < XN _yN gV (5 = tmy) FN(X(s))>x{,s <8

mg min }

For the estimate of the term K, by (2.5) and the Young inequality, we have

K\ () = /0t<Xg’,(1) -V, (SN (s—1,) —Id) FN( N(l))>X{T5 ~o0 yds

ms — “min

t
1 N(1
+/0 <X§V< ) —yN, N (Xl»n.q( )) FN(YN)> X{e3 =78, ) ds

t
+ /0 XY = PN = FN X)) A, o0 1 A

1\ [ 1
< (L0+§)/O ||X§V’(1)—YSN||2ds+§/O IFN YNy — FN(X(s) |17 ds + K () + K 5 (0),
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where

t
N0 ::/0 Ny, (SN (s = 1) —Id) PN (Xf:i;“))m{fs Lo yds,

ms — “min

t
Ky, () :=/O (xM® —yN, FN (X’”“) — FY X N X, 200,y ds.

We first show the estimate of the term K ;. For the case B = 1 or B = 2, similar to the estimate of
J1,1- the term K ; can be estimated as [|K | (D)l 50y < Cfo ||XN(1) —YN|| dr+C8#, 1 €10,T].
The proof is omitted.

For the case B € (0,1) U (1,2), we need to further split the term K1,1 into two parts, which are
denoted by Kl’l,i,i = 1,2, based on

XN’(D—YN:/s sV FY (X)) = sV(s — PV x oo 1d
PO = (Y (5= a) Y (00) = 8V = nENXOD) K et O

L2P(2;H)

T
+/0 S le=tm) S P () [ — ST = NFRXWO) | Xep, <, O

Namely,

t s
K = sV FN (x0D) — sV — nF¥x s dr,
G /0 < /0 (8 (5 = ) F¥ (x007) = 8¥65 = DFYXOD) 2058 20, 07

(5% = ) = 1) P (30) Dt 2ot 0

FN (XN’(I))

tm,

t N
L N _ Neo _ N
o= [ [/ sve- ) T )T O )

tmin

(Y (5 = 1) = 1) P (X)) sty 28, .

ms = “min

For the term K| | , it can be further split as
t N N.(1)
Kl,u(;)z/ </ Vs =Y (r=1,,) = 1OF (X)) xps oy,
0o \Jo

(5 (5 = 1) = 14) FY (X0) ) g s 1 s

ms = “min

o[ (5 () - (10)) g

(SN (S—tms)—ld)FN( N(l))>)( 5 >0 }dS

mv = "min

8060 (B (80) = P 00D g s

(8% (s = 1) = 1) FY (X0 0) ) g 2oty ds =2 KL 0 + K210+ K5 4 ),

ms — mm
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STRONG CONVERGENCE OF ADAPTIVE TIME-STEPPING SCHEMES 45

Similar to estimates of Jl1 and J% |» terms Kll’l,1 and K13’171 can be estimated as IIKllsl’l(t)IIU,(_Q) +
1K | O llpegy < € Jo 1X0 = v)? dr+ Cry" + €8P for B € (0,1) U (1,2) and 1 € [0, T].
The proof is omitted.

For the term K12,1,1’ when 8 € (0, 1), the estimate is still similar as J%’l and ||Ki1’1 D2y = Ccsh.
And when 8 € (1,2), by the Taylor formula, and the fact that

L20($2;H)

K12,1,1(t)

t N _
= _/ </ A%SN(s—r)DF (XtNm’f')) (SN (r—tm,) _Id) N(I)X{Ta Lo ydr,
0 0 myp = "min

A5 (SN (s = tm,) — Id)A%FN (XZ’}“))X{H sy ds

ms = “min

t 5 r
—/ </ sV (s = nDF (X ,,"i“))/ SV (r = tm,) (FN (X0 ) 2, 2,
0 0 tmr my = “min

FN( ﬁvu))

my 7ﬁ l

T (VD) [ 25 <o) duxpey, =ch,) dr A7 (SN (5= tm) _Id)AzFN (Xivn’s(l)) Xeh 27} 95
+ H ( B ) T min my min s min

tmy, min
N SR N1 N
_ A" 8V = nDF (x)") " (=) AW W)X (s = 1 A7,
0 0 1,

mr

B
ATE(SY (s = tn) — 1) AT FY (Xﬁ,vnjf”)>x{ra Lo yds

mg

/0 < SN (s — r)Rp ( XM XN(I)) X{zp, =78, ) dr, (SN (5 = Im, ) - Id) B (XNA(I))> X{zh zthi} ds

=111 (t) + I (t) + I15() + I14(7).

Proofs of terms I,,1I3, 1, are similar to those of /1,113, 11, and ||fll(t)||U;(_Q) + ||I73(t)||U;(_Q) +
||II4(t)||U,(Q) < C8P for B € (1,2). For the term II,, it follows from (2.1)—~(2.2), (2.7) and Corollary 4.5
that

||112(t)||]j([2) <C8 //(

< I (X0 ) 2o gy drds < €8,

WOIIE (X)) s 2, )

"lr - lel

L2 (£2)

Hence, we get that for 8 € (0,1) U (1,2), ||K] 1 1(t)||U,(_Q) < C8P, te(0,7T).
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Similarly, the term K, ; , can be split as

FN (XN’(I)

tiny

t Ky
K = SNs=n (SN (r—1,)—1d d
1120 /0 </0 (s r)( (r = t,) ) I+ ||FN( N(l)) ||TmmX{ <t} O

mv - mln

! N N (V- N
+ SN —r) (F FNx dr,
/(; </0 (S r) ( ( ( (r))) {Tm trfu'n} r

(SN(s—rm_)—Id FN N“) >x,a -

(SN(s—tml)—Id FN N“) >x
)-

e HF’“(’””)H (”“))
- / < / SV(s — 1) I’V”’("l) L teh, <o 4
0\ e () e

N, (1

(SN (S - tms) o Id) FN (Xl’”f( ))> X{Tpélyzrmm} ds - Kl L, z(t) + Kl L, z(t) + Kl 1 z(t)

Terms K 11 1. 2,K12 12 can be estimated similarly to terms K 11 1,1 and K121 |+ Kf 11> respectively, and we
N,(1 -

can get |K! | (Ol + I1K2 1,0 llpig) < € Jo X0 " — V02 gy 5 + )’ + csf for B e

(0,1) U (1,2). Then we show the estimate of the term Kl 10 By (2.1)—(2.2) and the Young inequality,
we arrive at for 8 € (0,2),

: TSR Ul G| P )
Ki,l,Z([): _/ / AzS (S—V) X{T <70 }dr,
0 0

8
1+ [|ev (Xi\i,r(l)) H T;fu'n iy <Tmin
B
ATE(SY (s = tw,) — 1) F (XQ’Z’:(U)>X{I Lo yds

4
<o [ [omnt [[r (O @hag g+ 6 =) [ (20 s 2] s

which gives [[K7 | 5 ()l oy < C8F, 1 € [0,T].

Hence, we derive [[K; (D]l p) < C fy [xN-D _ yNy2
B € (0,2].

The estimate of K| , is similar to that of J; ,, and we can obtain ||K, 5()ll o) < Cfo xy-®
YN”sz(Q ) ds + C)\Nﬂ + C8° for B € (0,2] and ¢ € [0, T]. The proof is omitted.

Based on Corollary 4.5, similarly to the estimate of the term K, ; , and Wang (2020, Theorem 4.12),
the term K, can be estimated as ||K; (Dl 5oy < Cfo ||XN(1) - YN|| ds + C)»X,ﬂ + 8% for
B € (0,2] and ¢ € [0, T]. The proof is omitted.

2 & + OO + €8P, 1 € [0, for

L20($2;H)
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Therefore, combining estimates of terms K and K, yields

2 "M |2
<C / ”X, —Y
120($2:H) 0

N,(1) N
HXI - Yt 2 ;
120($2:H)

ds+x;ﬂ+aﬁ),

L, Ly, Ly, Xg and [A"T Q7 g, . Recalling
that Ay, ~ N -3 , and applying the Gronwall inequality, we obtain

where p > 1 and the constant C > 0 dependsonp, T, 7,,;.,

N,(1) N _B B
sup [xMO — v, §C<Nd—|—52), > 1,
OSIET H ! ! LZP(Q;H) P
which combining (5.1)—(5.2) finishes the proof of (CAU 1). [l
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