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Institute of Computer Science, Czech Academy of Sciences,
Prague, Czech Republic

Seminar at the Chinese Academy of Sciences, Beijing, July 11-16, 2010



Saddle point problems

We consider a saddle point problem with the symmetric 2× 2 block form(
A B
BT 0

)(
x
y

)
=

(
f
0

)
.

I A is a square n× n nonsingular (symmetric positive definite) matrix,

I B is a rectangular n×m matrix of (full column) rank m.

Applications: mixed finite element approximations, weighted least squares, constrained
optimization etc. [Benzi,Golub, Liesen, 2005].
Numerous schemes: block diagonal preconditioners, block triangular preconditioners,
constraint preconditioning, Hermitian/skew-Hermitian preconditioning and other
splittings, combination preconditioning
References: [Bramble and Pasciak, 1988], [Silvester and Wathen, 1993, 1994], [Elman,
Silvester and Wathen, 2002, 2005], [Kay, Loghin and Wathen, 2002], [Keller, Gould
and Wathen 2000], [Perugia, Simoncini, Arioli, 1999], [Gould, Hribar and Nocedal,
2001], [Stoll, Wathen, 2008], ...



Symmetric indefinite system, symmetric positive definite preconditioner

A =
(
A B
BT 0

)
≈ P = RTR

A symmetric indefinite, P positive definite (R nonsingular)

(
R−TAR−1)R

(
x

y

)
= R−T

(
f

0

)
R−TAR−1 is symmetric indefinite!



Iterative solution of preconditioned (symmetric indefinite) system

I Preconditioned MINRES is the MINRES on R−T AR−1, minimizes the
P−1 = R−1R−T -norm of the residual on Kn(P−1A,P−1r0)
≡ H-MINRES on P−1A with H = P−1

I CG applied to indefinite system with R−T AR−1:
CG iterate exists at least at every second step (tridiagonal form Tn is nonsingular
at least at every second step)

[Paige, Saunders, 1975]

I peak/plateau behavior:
CG converges fast → MINRES is not much better than CG
CG norm increases (peak) → MINRES stagnates (plateau)

[Greenbaum, Cullum, 1996]



Symmetric indefinite system, indefinite or nonsymmetric preconditioner

P symmetric indefinite or nonsymmetric

P−1A

(
x
y

)
= P−1

(
f
0

)
(
AP−1)P

(
x
y

)
=

(
f
0

)

P−1A and AP−1 are nonsymmetric!



Iterative solution of preconditioned nonsymmetric system, positive definite
inner product

I The existence of a short-term recurrence solution methods to solve the system
with P−1A or AP−1 for arbitrary right-hand side vector

[Faber, Manteuffel 1984, Liesen, Strakoš, 2006]

I Matrices P−1A or AP−1 can be symmetric (self-adjoint) in a given inner product
induced by the symmetric positive definite H. Then three term-recurrence
method can be applied

H(P−1A) = (P−1A)TH ⇐⇒ (P−TH)TA = A(P−TH)
H(AP−1) = (AP−1)TH ⇐⇒ HAP−1 = P−TAH

I H(P−1A) symmetric indefinite: MINRES applied to H(P−1A) and
preconditioned with H
≡ H-MINRES on P−1A

I H(P−1A) positive definite: CG applied to H(P−1A) and preconditioned with
H; works on Kn(P−1A,P−1r0) and can be seen as the CG scheme applied to
P−1A with a nonstandard inner product H
≡ H-CG on P−1A



Iterative solution of preconditioned nonsymmetric system, symmetric
bilinear form

I if there exists a symmetric indefinite H such that

H(P−1A) = (P−1A)TH = [H(P−1A)]T

[(AP−1)TH]T = H(AP−1) = (AP−1)TH
is symmetric indefinite

MINRES method applied to H(P−1A) or H(AP−1)

I symmetric indefinite preconditioner H = P−1 = (P−1)T so that

(P−1)T (P−1)A = A(P−1)T (P−1)
(P−1)TAP−1 = P−1AP−1

right vs left preconditioning for symmetric P

P−1Kn(AP−1, r0) = Kn(P−1A,P−1r0)
(AP−1)T = (P−1)TA = P−1A



Iterative solution of preconditioned nonsymmetric system, symmetric
bilinear form

I H-symmetric variant of the nonsymmetric Lanczos process:

AP−1Vn = Vn+1Tn+1,n, (AP−1)TWn = Wn+1T̃n+1,n

W T
n Vn = I =⇒ Wn = HVn

[Freund, Nachtigal, 1995]

I H-symmetric variant of Bi-CG
H-symmetric variant of QMR ≡ ITFQMR

[Freund, Nachtigal, 1995]

I QMR-from-BiCG:

H-symmetric Bi-CG + QMR-smoothing
=⇒ H-symmetric QMR

[Freund, Nachtigal, 1995, Walker, Zhou 1994]

I peak/plateau behavior:
QMR does not improve the convergence of Bi-CG (Bi-CG converges fast → QMR
is not much better, Bi-CG norm increases → quasi-residual of QMR stagnates)

[Greenbaum, Cullum, 1996]



Simplified Bi-CG algorithm is a preconditioned CG algorithm

H = P−1-symmetric variant of two-term Bi-CG on AP−1 is the Hestenes-Stiefel CG
algorithm on A preconditioned with P

P−1-symmetric Bi-CG(AP−1) PCG(A) with P−1(
x0

y0

)
, r0 = b−A

(
x0

y0

)
P−1p0 = P−1r0 , p̃0 = r̃0 = P−1p0 z0 = P−1r0
k = 0, 1, . . .
αk = (rk, r̃k)/(AP−1pk, p̃k) αk = (rk, zk)/(AP−1pk,P

−1pk)(
xk+1

yk+1

)
=

(
xk

yk

)
+ αkP−1pk

rk+1 = rk − αkAP−1pk

r̃k+1 = P−1rk+1 zk+1 = P−1rk+1

βk = (rk+1, r̃k+1)/(rk, r̃k) βk = (rk+1, zk+1)/(rk, zk)
P−1pk+1 = P−1rk+1 + βkP−1pk P−1pk+1 = zk+1 + βkP−1pk

p̃k+1 = P−1pk+1



Saddle point problem and indefinite constraint preconditioner

(
A B
BT 0

)(
x
y

)
=

(
f
g

)

P =

(
I B
BT 0

)
, H = P−1

PCG applied to indefinite system with indefinite preconditioner; will not work for
arbitrary right-hand side, particular right-hand side or initial guess:(
x0

y0

)
, r0 =

(
s0
0

)
, here g = 0 and x0 = y0 = 0

[Lukšan, Vlček, 1998], [Gould, Keller, Wathen 2000]

[Perugia, Simoncini, Arioli, 1999], [R, Simoncini, 2002]



Saddle point problem and indefinite constraint preconditioner -
preconditioned system

(
A B
BT 0

)(
x
y

)
=

(
f
0

)
, P =

(
I B
BT 0

)

AP−1 =

(
A(I − Π) + Π (A− I)B(BTB)−1

0 I

)
Π = B(BTB)−1BT - orth. projector onto span(B)



Indefinite constraint preconditioner: spectral properties of preconditioned
system

AP−1 nonsymmetric and non-diagonalizable!
but it has a ’nice’ spectrum:

σ(AP−1) ⊂ {1} ∪ σ(A(I − Π) + Π)

⊂ {1} ∪ σ((I − Π)A(I − Π))− {0}

and only 2 by 2 Jordan blocks!

[Lukšan, Vlček 1998], [Gould, Wathen, Keller, 1999], [Perugia, Simoncini 1999]



Basic properties of any Krylov method with the constraint preconditioner

ek+1 =
(
x− xk+1

y − yk+1

)

rk+1 =
(
f
0

)
−
(

A B
BT 0

)(
xk+1

yk+1

)

r0 =

(
s0

0

)
⇒ rk+1 =

(
sk+1

0

)
⇒ BT (x− xk+1) = 0
⇒ xk+1 ∈ Null(BT )!



The energy-norm of the error in the preconditioned CG method

rTk+1P
−1rj = 0, j = 0, . . . , k

xk+1 is an iterate from CG applied to

(I −Π)A(I −Π)x = (I −Π)f !

satisfying

‖x− xk+1‖A = minu∈x0+span{(I−Π)sj}‖x− u‖A

[Lukšan, Vlček 1998], [Gould, Wathen, Keller, 1999]



The residual norm in the preconditioned CG method

‖xk+1 − x‖ → 0

but in general

yk+1 6→ y

which is reflected in

‖rk+1‖ =
∥∥∥∥( sk+1

0

)∥∥∥∥ 6→ 0!

but under appropriate scaling yes!



The residual norm in the preconditioned CG method

xk+1 → x

x− xk+1 = φk+1((I −Π)A(I −Π))(x− x0)

rk+1 = φk+1(A(I −Π) + Π)s0

σ((I −Π)A(I −Π)) ⊂ σ(A(I −Π) + Π)

{1} ∈ σ((I −Π)αA(I −Π))− {0}

⇒ ‖rk+1‖ =
∥∥∥∥( sk+1

0

)∥∥∥∥→ 0!



How to avoid the misconvergence of the scheme

I Scaling by a constant α > 0 such that

{1} ∈ conv(σ((I −Π)αA(I −Π))− {0})

(
A B
BT 0

)(
x
y

)
=

(
f
0

)
⇐⇒

(
αA B
BT 0

)(
x
αy

)
=

(
αf
0

)

v : ‖(I −Π)v‖ 6= 0, α =
1

((I −Π)v,A(I −Π)v)
!

I Scaling by a diagonal A→ (diag(A))−1/2A(diag(A))−1/2 often gives what we
want!

I Different direction vector so that ‖rk+1‖ = ‖sk+1‖ is locally minimized!

yk+1 = yk + (BTB)−1BT sk

[Braess, Deuflhard,Lipikov 1999], [Hribar, Gould, Nocedal, 1999]

[Jiránek, R, 2008]



Numerical example

A = tridiag(1, 4, 1) ∈ R25,25, B = rand(25, 5) ∈ R25,5

f = rand(25, 1) ∈ R25

σ(A) ⊂ [2.0146, 5.9854]

α = 1/τ σ(

(
αA B
BT 0

)(
I B
BT 0

)−1

)

1/100 [0.0207, 0.0586] ∪ {1}
1/10 [0.2067, 0.5856] ∪ {1}
1/4 [0.5170,1.4641]

1 {1} ∪ [2.0678, 5.8563]
4 {1} ∪ [8.2712, 23.4252]
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Inexact saddle point solvers

1. exact method: exact constraint preconditioning, exact arithmetic : outer
iteration for solving the preconditioned system;

2. inexact method with approximate or incomplete factorization scheme to solve
inner problems with (BTB)−1: structure-based or with appropriate dropping
criterion; inner iteration method

3. the rounding errors: finite precision arithmetic.

References: [Gould, Hribar and Nocedal, 2001], [R, Simoncini, 2002] with the use of
[Greenbaum 1994,1997], [Sleijpen, et al. 1994]



Delay of convergence and limit on the final accuracy



Preconditioned CG in finite precision arithmetic

(
x̄k+1

ȳk+1

)
, r̄k+1 =

(
s̄
(1)
k+1

s̄
(2)
k+1

)

‖x− x̄k+1‖A ≤ γ1‖Π(x− x̄k+1)‖+ γ2‖(I −Π)A(I −Π)(x− x̄k+1)‖

Exact arithmetic:

‖Π(x− xk+1)‖ = 0

‖(I −Π)A(I −Π)(x− xk+1)‖ → 0



Forward error of computed approximate solution: departure from the

null-space of BT + projection of the residual onto it

‖x− x̄k+1‖A ≤ γ3‖BT (x− x̄k+1)‖+ γ2‖(I −Π)(f −Ax̄k+1 −Bȳk+1)‖

can be monitored by easily computable quantities:

BT (x− x̄k+1) ∼ s̄(2)k+1

(I −Π)(f −Ax̄k+1 −Bȳk+1) ∼ (I −Π)s̄
(1)
k+1



Maximum attainable accuracy of the scheme

‖(f −Ax̄k+1 −Bȳk+1)− s̄(1)k+1‖,
‖BT (x− x̄k+1)− s̄(2)k+1‖ ≤

≤ ‖
(
f
0

)
−
(

A B
BT 0

)(
x̄k+1

ȳk+1

)
−
(
s̄
(1)
k+1

s̄
(2)
k+1

)
‖

≤ c1εκ(A) maxj=0,...,k+1 ‖r̄j‖
[Greenbaum 1994,1997], [Sleijpen, et al. 1994]

good scaling: ‖r̄j‖ → 0 nearly monotonically
‖r̄0‖ ∼ maxj=0,...,k+1 ‖r̄j‖
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Conclusions

I Short-term recurrence methods are applicable for saddle point problems with
indefinite preconditioning at a cost comparable to that of symmetric solvers.
There is a tight connection between the simplified Bi-CG algorithm and the
classical CG.

I The convergence of CG applied to saddle point problem with indefinite
preconditioner for all right-hand side vectors is not guaranteed. For a particular
set of right-hand sides the convergence can be achieved by the appropriate
scaling of the saddle point problem or by a different back-substitution formula for
dual unknowns.

I Since the numerical behavior of CG in finite precision arithmetic depends heavily
on the size of computed residuals, a good scaling of the problems leads to
approximate solutions satisfying both two block equations to the working
accuracy.



Thank you for your attention.

http://www.cs.cas.cz/∼miro
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Null-space projection method

I compute x ∈ N(BT ) as a solution of the projected system

(I −Π)A(I −Π)x = (I −Π)f,

I compute y as a solution of the least squares problem

By ≈ f −Ax,

Π = B(BTB)−1BT is the orthogonal projector onto R(B).

Results for schemes, where the least squares with B are solved inexactly. Every
computed approximate solution v̄ of a least squares problem Bv ≈ c is interpreted as
an exact solution of a perturbed least squares

(B + ∆B)v̄ ≈ c+ ∆c, ‖∆B‖ ≤ τ‖B‖, ‖∆c‖ ≤ τ‖c‖, τκ(B)� 1.



Null-space projection method

choose x0, solve By0 ≈ f −Ax0

compute αk and p
(x)
k ∈ N(BT )

xk+1 = xk + αkp
(x)
k∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

solve Bp
(y)
k ≈ r(x)

k − αkAp
(x)
k

back-substitution:

A: yk+1 = yk + p
(y)
k ,

B: solve Byk+1 ≈ f −Axk+1,

C: solve Bvk ≈ f −Axk+1 −Byk,

yk+1 = yk + vk.


inner
iteration

r
(x)
k+1 = r

(x)
k − αkAp

(x)
k −Bp(y)

k



outer
iteration



Accuracy in the saddle point system

‖f −Axk −Byk − r
(x)
k ‖ ≤

O(α3)κ(B)

1− τκ(B)
(‖f‖+ ‖A‖Xk),

‖ −BT xk‖ ≤
O(τ)κ(B)

1− τκ(B)
‖B‖Xk,

Xk ≡ max{‖xi‖ | i = 0, 1, . . . , k}.

Back-substitution scheme α3

A: Generic update

yk+1 = yk + p
(y)
k

u

B: Direct substitution
yk+1 = B†(f −Axk+1)

τ

C: Corrected dir. subst.
yk+1 = yk +B†(f −Axk+1 −Byk)

u

}
additional least
square with B



Maximum attainable accuracy of inexact null-space projection schemes

The limiting (maximum attainable) accuracy is measured by the ultimate (asymptotic)
values of:

1. the true projected residual: (I −Π)f − (I −Π)A(I −Π)xk;

2. the residuals in the saddle point system: f −Axk −Byk and −BT xk;

3. the forward errors: x− xk and y − yk.

Numerical experiments: a small model example

A = tridiag(1, 4, 1) ∈ R100×100, B = rand(100, 20), f = rand(100, 1),

κ(A) = ‖A‖ · ‖A−1‖ = 7.1695 · 0.4603 ≈ 3.3001,

κ(B) = ‖B‖ · ‖B†‖ = 5.9990 · 0.4998 ≈ 2.9983.



Generic update: yk+1 = yk + p
(y)
k
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Direct substitution: yk+1 = B†(f −Axk+1)
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Corrected direct substitution: yk+1 = yk +B†(f −Axk+1 −Byk)
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Schur complement reduction method

I Compute y as a solution of the Schur complement system

BTA−1By = BTA−1f,

I compute x as a solution of
Ax = f −By.

I inexact solution of systems with A: every computed solution û of Au = b is
interpreted an exact solution of a perturbed system

(A+ ∆A)û = b+ ∆b, ‖∆A‖ ≤ τ‖A‖, ‖∆b‖ ≤ τ‖b‖, τκ(A)� 1.



Iterative solution of the Schur complement system

choose y0, solve Ax0 = f −By0

compute αk and p
(y)
k

yk+1 = yk + αkp
(y)
k∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

solve Ap
(x)
k = −Bp(y)

k

back-substitution:

A: xk+1 = xk + αkp
(x)
k ,

B: solve Axk+1 = f −Byk+1,

C: solve Auk = f −Axk −Byk+1,

xk+1 = xk + uk.


inner
iteration

r
(y)
k+1 = r

(y)
k − αkB

T p
(x)
k



outer
iteration



Maximum attainable accuracy of inexact Schur complement schemes

The limiting (maximum attainable) accuracy is measured by the ultimate (asymptotic)
values of:

1. the Schur complement residual: BTA−1f −BTA−1Byk;

2. the residuals in the saddle point system: f −Axk −Byk and −BT xk;

3. the forward errors: x− xk and y − yk.

Numerical experiments: a small model example

A = tridiag(1, 4, 1) ∈ R100×100, B = rand(100, 20), f = rand(100, 1),

κ(A) = ‖A‖ · ‖A−1‖ = 7.1695 · 0.4603 ≈ 3.3001,

κ(B) = ‖B‖ · ‖B†‖ = 5.9990 · 0.4998 ≈ 2.9983.



Accuracy in the outer iteration process

‖ −BTA−1f +BTA−1Byk − r
(y)
k ‖ ≤

O(τ)κ(A)

1− τκ(A)
‖A−1‖‖B‖(‖f‖+ ‖B‖Yk).

Yk ≡ max{‖yi‖ | i = 0, 1, . . . , k}.
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BT (A+ ∆A)−1Bŷ = BT (A+ ∆A)−1f,

‖BTA−1f −BTA−1Bŷ‖ ≤
τκ(A)

1− τκ(A)
‖A−1‖‖B‖2‖ŷ‖.



Accuracy in the saddle point system

‖f −Axk −Byk‖ ≤
O(α1)κ(A)

1− τκ(A)
(‖f‖+ ‖B‖Yk),

‖ −BT xk − r
(y)
k ‖ ≤

O(α2)κ(A)

1− τκ(A)
‖A−1‖‖B‖(‖f‖+ ‖B‖Yk),

Yk ≡ max{‖yi‖ | i = 0, 1, . . . , k}.

Back-substitution scheme α1 α2

A: Generic update

xk+1 = xk + αkp
(x)
k

τ u

B: Direct substitution
xk+1 = A−1(f −Byk+1)

τ τ

C: Corrected dir. subst.
xk+1 = xk +A−1(f −Axk −Byk+1)

u τ

}
additional
system with A

−BTA−1f +BTA−1Byk = −BT xk −BTA−1(f −Axk −Byk)



Generic update: xk+1 = xk + αkp
(x)
k
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Direct substitution: xk+1 = A−1(f −Byk+1)
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Corrected direct substitution: xk+1 = xk +A−1(f −Axk −Byk+1)
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Related results in the context of saddle-point problems and Krylov subspace
methods

I General framework of inexact Krylov subspace methods: in exact arithmetic the
effects of relaxation in matrix-vector multiplication on the ultimate accuracy of
several solvers [?], [?].

I The effects of rounding errors in the Schur complement reduction (block LU
decomposition) method and the null-space method [?], [Arioli, 2000], the
maximum attainable accuracy studied in terms of the user tolerance specified in
the outer iteration [?], [?].

I Error analysis in computing the projections into the null-space and constraint
preconditioning, limiting accuracy of the preconditioned CG , residual update
strategy when solving constrained quadratic programming problems [?], or in
cascadic multigrid method for elliptic problems [?].

I Theory for a general class of iterative methods based on coupled two-term
recursions, all bounds of the limiting accuracy depend on the maximum norm of
computed iterates, fixed matrix-vector multiplication, cf. [Greenbaum, 1997].



General comments and considerations, future work

”new value = old value + small correction”

I Fixed-precision iterative refinement for improving the computed solution xold to a
system Ax = b: solving update equations Azcorr = r that have residual
r = b−Ayold as a right-hand side to obtain xnew = xold + zcorr, see [?], [?].

I Stationary iterative methods for Ax = b and their maximum attainable accuracy
[?]: assuming splitting A = M −N and inexact solution of systems with M , use
xnew = xold +M−1(b−Axold) rather than xnew = M−1(Nxold + b), [?].

I Two-step splitting iteration framework: A = M1 −N1 = M2 −N2 assuming
inexact solution of systems with M1 and M2, reformulation of
M1x1/2 = N1xold + b, M2xnew = N2x1/2 + b, Hermitian/skew-Hermitian
splitting (HSS) iteration [Bai, Golub, and Ng, 2003].

I Inexact preconditioners for saddle point problems: SIMPLE and SIMPLE(R) type
algorithms [Vuik and Saghir, 2002] and constraint preconditioners [?].
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