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Saddle Point Linear Systems

(
A BT

B 0

) (
x
λ

)
=

(
f
g

)
,

where A ∈ Rn×n, B ∈ Rm×n, x, f ∈ Rn, λ, g ∈ Rm.

A and B are sparse and large; m is typically smaller (possibly
much smaller) than n.

A is symmetric positive semidefinite (occurs often in practice):
〈Ax, x〉 ≥ 0 for all x ∈ Rn. Note: A could be singular.

B has full row rank: rank(B) = m.

In this setting the saddle point matrix is nonsingular if and
only if null(A)

⋂
null(B) = {0}.
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Many Applications

fluid flow: Stokes equations, Navier-Stokes,...

electromagnetics

linear, quadratic, semidefinite programming in optimization

Survey of solution methods: Benzi, Golub & Liesen, Acta
Numerica, 2005 (137 pages, over 500 references).
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Example: the Steady State Stokes Equations

−∆u +∇p = f,

∇ · u = 0;

on a domain Ω with appropriate boundary conditions (Dirichlet,
Neumann, mixed).
u is a velocity vector (2D or 3D) and p is a pressure scalar.
FE or FD discretization yields(

A BT

B 0

) (
u
p

)
=

(
f
0

)
,

where A is symmetric positive definite, but ill-conditioned as the
mesh is refined.
See Elman, Silvester, Wathen [2005].
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Example: Quadratic Programming (Equality Constraints)

min
x

1
2
〈Ax, x〉 − 〈f, x〉

subject to Bx = g.

Lagrangian:

L(x, λ) =
1
2
〈Ax, x〉 − 〈f, x〉+ 〈λ, g −Bx〉,

differentiate and equate to zero

∇L(x, λ) = 0,

and obtain the saddle point system.
See Nocedal and Wright [2006].
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Challenges and Goals

matrix is indefinite (tough for iterative and direct solvers)

want to exploit structure

want to take advantage of properties of underlying continuous
operators (if applicable)

want to know how to deal with a singular (possibly with a
high nullity) or an ill-conditioned (1, 1) block A:

interior point methods in optimization
The Maxwell equations in mixed form
fluid flow problems
magnetohydrodynamics problems
. . .
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A Few Possible Re-Formulations
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Re-Formulation 1: Nonsymmetric Semidefinite System

(
A BT

−B 0

) (
x
λ

)
=

(
f
−g

)
,

where A ∈ Rn×n, B ∈ Rm×n, x, f ∈ Rn, λ, g ∈ Rm.

Matrix is nonsymmetric but positive semidefinite;(
0 BT

−B 0

)
is skew-symmetric;
can use Hermitian-Skew-Hermitian Splitting (HSS)
(Bai, Ng and Golub [2003], Benzi & Golub [2004]);
or Accelerated HSS (AHSS): Bai & Golub [2007].
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Re-formulation 2: Regularization

(
A BT

B −C

) (
x
λ

)
=

(
f
g

)
,

where A ∈ Rn×n, B ∈ Rm×n, x, f ∈ Rn, λ, g ∈ Rm.

Common in fluid flow for some low order mixed finite element
discretizations

This approach gives a different solution than for C = 0.

C is typically positive semidefinite, but not always; see Bai, Ng and
Wang [2009] for general symmetric (2,2) block.
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Re-Formulation 3: Augmented Lagrangian (Stabilization)

Augmented Saddle Point System:(
A BT

B 0

) (
x
λ

)
=

(
f
0

)
→

(
A + BT WB BT

B 0

) (
x
λ

)
=

(
f
0

)
.

A may be singular or highly ill-conditioned;

may be interpreted as penalizing constraint violations ;

explored mainly for optimization:
Hestenes [1969], Fletcher[mid 1970s],... Fortin & Glowinski
[mid 1980s], ...
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A Tribute to Gene Golub (1932-2007)
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Spectral Analysis (W = γI)

[Golub and Greif, 2003]

Let K(γ) =
(

A + γBT B BT

B 0

)
.

Clustering: As γ grows large, the m negative eigenvalues

cluster near to − 1
γ .

Dependence of κ2(K) on γ:

κ2(K(γ)) → γ2‖B‖2
2 6= 0 as γ →∞.

So, need to choose a moderate value of γ to balance fast
convergence with conditioning deterioration.
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Condition Numbers: Singular Leading Block
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The Inverse

Fletcher [1974]; Golub & Greif [2003]

K(W ) :=
(

A + BT W−1C BT

C 0

)
.

Then if K(W ) is nonsingular:

K−1(W ) = K−1(0)−
(

0 0
0 W−1

)
.
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Block Preconditioning
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Basic Block Decompositions

Dual Schur Complement (A nonsingular):(
A BT

B 0

)
=

(
I 0

BA−1 I

) (
A 0
0 −BA−1BT

) (
I A−1BT

0 I

)
;

Primal Schur Complement (regularizing (2,2) block added):(
A BT

B −W

)
=

(
I −BT W−1

0 I

) (
A + BT W−1B 0

0 −W

) (
I 0

−W−1B I

)
.
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Block Preconditioning

Three basic approaches with many possible variants:

(Dual) Schur complement-based preconditioners:

MS =
(

A 0
0 BA−1BT

)
.

Constraint preconditioners:

MC =
(

G BT

B 0

)
.

Augmentation (primal Schur complement-based)
preconditioners:

MA =
(

A + BT W−1B 0
0 W

)
.
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Augmentation Preconditioner

Greif and Schötzau [2006-2007]
Consider the preconditioner giving the preconditioned matrix(

A + BT W−1B 0
0 W

)
︸ ︷︷ ︸

M

−1 (
A BT

B 0

)
︸ ︷︷ ︸

K

.

If A has nullity r ≤ m, then the preconditioned matrix has the
eigenvalue 1 of multiplicity n, the eigenvalue −1 of multiplicity
r, and the remaining m− r eigenvalues of M−1K satisfy

λAv = BT W−1Bv.

Eigenvectors are known and for λ = 1 are readily available.
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Blessing of Nullity

If A has nullity m, then two distinct eigenvalues:

1 (multiplicity n)
−1 (multiplicity m)

Also, the eigenvectors are explicitly known. In particular, n−m of
the eigenvectors are of the form (zi, 0), where zi form a basis for

the null space of B.
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Applications
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Semidefinite Programming (SDP)
Joint With Michael Overton [2010]
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The Problem

minX∈Sn C •X
such that Ak •X = bk, k = 1, . . . ,m

X � 0.

b ∈ Rm and C ∈ Sn, the space of n× n real symmetric
matrices

the Ak are linearly independent in Sn

the inner product C •X is tr CX =
∑

i,j CijXij

X � 0 means X is positive semidefinite
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The Dual

The dual standard form is:

maxy∈Rm, Z∈Sn bT y
such that

∑m
k=1 ykAk + Z = C

Z � 0.

In practice: all matrices are block-diagonal.
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Primal-Dual Interior Point Methods

Illustrate on LP:

min
x

cT x, subject to : Ax = b, x ≥ 0.

max
λ

bT λ, subject to : AT λ + s = c, s ≥ 0.

Progress along a path in the interior of the domain.0 AT I
A 0 0
S 0 X

 ∆x
∆λ
∆s

 = −

 rc

rb

XSe


→

(
D AT

A 0

) (
∆x
∆λ

)
=

(
−rc + s
−rb

)
Matrix becomes increasingly ill-conditioned as solution is
approached.
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SDP: Many Important Applications

Minimize the maximum eigenvalue (related to stabilizing
PDEs)

Minimize the L2 norm of a matrix

Generalize other optimization problems (linear programming,
convex quadratically constrained programming, etc.)

Control theory

Minimization of nuclear norm

... and more

See Todd, Acta Numerica [2001]
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The Augmented System

The linear algebra bottleneck is

H

[
vec ∆X

∆y

]
= f,

where

H =
[

X−1 ⊗ Z AT

A 0

]
, A =

 (vec A1)
T

...

(vec Am)T

 .

Here, “vec” maps n× n matrices to vectors in Rn2
.
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The Central Path

Assuming that the primal and dual SDPs have feasible points
X � 0 and (y, Z) with Z � 0, the central path

{(Xµ, yµ, Zµ) feasible with XµZµ = µI, µ > 0}

exists and converges to solutions of the primal and dual SDPs
(which have the same optimal value) as µ ↓ 0.

At the solution, XZ = 0. Suppose the primal solution X has rank
r and the dual slack solution Z has rank n− r, that is strict
complementarity holds. Then Xµ and Zµ respectively have r and
n− r eigenvalues that are O(1) as µ ↓ 0; the others are O(µ).

Primal-dual interior-point path-following methods generate iterates
that approximately follow the central path.
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Iterative Methods for SDP

Iterative methods for semidefinite programming problems have
not been extensively used, perhaps because the problems have
a strong dense component and have not been overly large.

Toh [2003]: apply preconditioned SQMR to a newly
introduced dense “reduced augmented system”, using
diagonal preconditioners

Zhao, Sun, Toh [2009]: a Newton-CG augmented Lagrangian
method
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Augmented System

The saddle point matrix is

H =
[

X−1 ⊗ Z AT

A 0

]
.

Since on the central path, Z = µX−1, and n− r eigenvalues of X
are O(µ), H has order n2 + m and has

(n− r)2 eigenvalues that are O(1/µ)
the rest are O(1).
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Preconditioning the Augmented System

We consider preconditioning the augmented system matrix

H =
[

X−1 ⊗ Z AT

A 0

]
by

K =
[

X−1 ⊗ Z + βBT B 0
0 β−1I

]
in two cases:

1 B = A
2 B consists of s rows of A: βBT B = AT V A where V is

sparse, diagonal

Then we could iterate with MINRES, with an inner CG iteration to
“invert” the K11 block.
In second case require s ≥ r(r + 1)2, number of eigenvalues of
X−1 ⊗ Z that are O(µ).
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Low Rank correction (m− s small)

Suppose W−1 = βIm. Let V be a diagonal matrix with s of its
diagonal values equal to β and the rest zero. Denote the
eigenvalues of K−1H in this case by νj , ordered in descending
order. Then, for β sufficiently large, the eigenvalues of the
preconditioned matrix are given by

νj > 1, j = 1, . . . ,m− s;
νj = 1, j = m− s + 1, . . . , N ;

−1 <
−βγj+m−s

βγj+m−s + 1
≤ νN+j ≤

−βγj

βγj + 1
< 0, j = 1, . . . , s;

νj < −1, j = N + s + 1, . . . , N + m.
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Eigenvalues
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Interlacing

V is Low rank change of W−1: developed an interlacing theory
for a quadratic eigenvalue problem associated with the Schur
complement matrix M(

ν2(M−1 + βIm − uuT )− νM−1 − βIm

)
z̃ = 0.
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Solution of LPs and QPs (with Rees)
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Time-Harmonic Maxwell (with Li and Schötzau)

Dominik Schötzau Dan Li
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The Maxwell Problem in Mixed Form

Greif and Schötzau [2007], Greif, Li and Schötzau [2009-2010]
The time-harmonic Maxwell equations with constant coefficients in
lossless media with perfectly conducting boundaries:

∇×∇× u− k2u +∇p = f in Ω,

∇ · u = 0 in Ω,

u× n = 0 on ∂Ω,

p = 0 on ∂Ω.

u is an electric vector field; p is a scalar multiplier.
k2 = ω2εµ, where ω is the temporal frequency, and ε and µ are
permittivity and permeability parameters.
Assume throughout small wave number: k � 1.
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Mixed Finite Element Discretization: Saddle Point System

(
A− k2M BT

B 0

) (
u
p

)
=

(
g
0

)
.

A ∈ Rn×n is the discrete curl-curl; B ∈ Rm×n is a discrete
divergence operator with full row rank; M ∈ Rn×n is a vector mass
matrix.
Note: A is semidefinite with nullity m; (1,1) block is indefinite if
k 6= 0.
Define also L ∈ Rm×m as the scalar Laplacian.
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Much Related Work

Arnold and Falk [2000]

Bochev, Hu, Siefert, Tuminaro [2007]

Demkowicz and Vardapetyan [1998]

Hiptmair [2002] (Acta Numerica survey)

Hiptmair and Xu [2006]

Hu, Tuminaro, Bochev, Garasi and Robinson [2005]

Hu and Zou [2004]

Reitzinger and Schöberl [2002]

Römer, Witzigmann, Chinellato and Arbenz [2007]

and more...
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A Few Key Properties

Discrete Helmholtz Decomposition: Rn = null(A)⊕ null(B).
There is a ‘gradient matrix’ C ∈ Rn×m such that for any
u ∈ null(A) there is a unique q ∈ Rm such that u = Cq.

AC = 0
BC = L
MC = BT

Coercivity, Continuity and Inf-Sup,...

And more...
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Preconditioner

MINRES preconditioned with

PM,L =
(

A + γM 0
0 L

)
,

where γ is a scalr, L is the scalar Laplace matrix and M is the
vector mass matrix

P−1
M,LK has eigenvalues µ+ = 1 and µ− = −1/(1− k2) of

high multiplicities

The rest of the eigenvalues are bounded; bound depends on
the shape regularity of the mesh and the finite element
approximation order.

42 / 51



Saddle Point Systems
Augmentation Preconditioners

Applications

Eigenvalues

Use Laplacian L for augmentation, then replace BT L−1B by a
simple mass matrix M which is spectrally equivalent.
For inner iteration, use Hiptmair & Xu’s auxiliary nodal projection.
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Grid n + m k = 0 k = 1
8 k = 1

4 k = 1
2

G1 113 5 5 5 5
G2 481 5 5 5 5
G3 1,985 5 5 5 5
G4 8,065 6 6 5 6
G5 32,513 6 6 6 6
G6 130,561 6 6 6 6
G7 523,265 6 6 6 6

Table: Iteration counts for a typical example with a divergence free right
hand side and various values of k and various meshes, using MINRES for
solving the saddle point system with the preconditioner PM,L. The
iteration was stopped once the initial relative residual was reduced by a
factor of 10−10.
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Large Scale Implementation

A + γM :

CG preconditioned with Hiptmair & Xu’s solver:

P−1
V = diag(A + γM)−1 + P (L̄ + γQ̄)−1PT + γ−1C(L−1)CT

κ2(P−1
V (A + γM)) is independent of the mesh size

Matrix inversions are approximated with one AMG V-cycle

L:

CG with algebraic multigrid preconditioner
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3D Maxwell Test Problems1 boundary markers

1

3D box-shaped object

1 boundary markers

1

3D gear
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Programming Language and External Packages

Programming language: C++

Iterative solvers: PETSc and Hypre libraries

Mesh generator: Some meshes were generated with TetGen

Mesh partition: METIS

Parallelization: MPICH2
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Maxwell Numerical Results: 3D Box

np Nel DOFs its itsi1 itsi2 ts ta
3 3,693,263 4,738,111 18 31 6 3716.27s 38.99s
6 7,380,288 9,509,347 17 32 6 4186.47s 40.01s
9 14,760,128 19,082,621 17 33 7 4796.96s 41.92s

MINRES with rtol = 1e− 6, preconditioned with PI,L

its, itsi1, itsi2: iteration counts for outer iterations, (1, 1)
and (2, 2) blocks of the inner iterations

t{s,a}: times (sec) for {solution, assembly}
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Maxwell Numerical Results: 3D Gear

np Nel DOFs its itsi1 itsi2 ts ta
4 596,011 685,736 8 47 5 126.04s 6.43s
8 1,046,568 1,245,761 8 42 5 293.87s 5.55s
16 1,965,622 2,398,793 8 42 5 292.65s 5.16s
32 3,802,327 4,725,385 8 42 5 346.04s 5.13s

MINRES with rtol = 1e− 6, preconditioned with PI,L

its, itsi1, itsi2: iteration counts for outer iterations, (1, 1)
and (2, 2) blocks of the inner iterations

t{s,a}: times (sec) for {solution, assembly}
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Summary

Solution of saddle point systems: an important theme in
numerical linear algebra, optimization, solution of PDEs.

Iterative solution taking center-stage due to increasing size of
problems. Preconditioning is a must when it comes to
iterative solvers.

Block preconditioning is largely based on finding
approximations to primal and dual Schur complements; nullity
of (1, 1) block plays a role in augmentation preconditioning

Interesting and tough problems and applications
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THANK YOU!
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