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Saddle Point Systems

Saddle Point Linear Systems

where A € R"*", B € R™*" x, f € R", A\ ge&R™

e A and B are sparse and large; m is typically smaller (possibly
much smaller) than n.

e A is symmetric positive semidefinite (occurs often in practice):
(Az,x) > 0 for all x € R™. Note: A could be singular.

@ B has full row rank: rank(B) = m.

@ In this setting the saddle point matrix is nonsingular if and
only if null(A) N null(B) = {0}.



Saddle Point Systems

Many Applications

@ fluid flow: Stokes equations, Navier-Stokes,...
@ electromagnetics
@ linear, quadratic, semidefinite programming in optimization

Survey of solution methods: Benzi, Golub & Liesen, Acta
Numerica, 2005 (137 pages, over 500 references).



Saddle Point Systems

Example: the Steady State Stokes Equations

V-u=0;

on a domain  with appropriate boundary conditions (Dirichlet,
Neumann, mixed).

u is a velocity vector (2D or 3D) and p is a pressure scalar.
FE or FD discretization yields

A BT\ (u\ _[f
B 0 p) \0/)’
where A is symmetric positive definite, but ill-conditioned as the

mesh is refined.
See Elman, Silvester, Wathen [2005].
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Saddle Point Systems

Example: Quadratic Programming (Equality Constraints)

min & { Az, )  (f,7)
subject to Bx = g.
Lagrangian:
L(z,\) = %(Aac,x) —(f,z) + (\,g — Bz),
differentiate and equate to zero
VL(z,\) =0,

and obtain the saddle point system.
See Nocedal and Wright [2006].
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Saddle Point Systems

Challenges and Goals

@ matrix is indefinite (tough for iterative and direct solvers)
@ want to exploit structure
@ want to take advantage of properties of underlying continuous
operators (if applicable)
e want to know how to deal with a singular (possibly with a
high nullity) or an ill-conditioned (1, 1) block A:
interior point methods in optimization
The Maxwell equations in mixed form

]

]

o fluid flow problems

e magnetohydrodynamics problems
o



Saddle Point Systems

A Few Possible Re-Formulations



Saddle Point Systems

Re-Formulation 1: Nonsymmetric Semidefinite System

where A € R™*" B e R™" gz, feR" X\ geR™

Matrix is nonsymmetric but positive semidefinite;

0o BT
-B 0
is skew-symmetric;

can use Hermitian-Skew-Hermitian Splitting (HSS)
(Bai, Ng and Golub [2003], Benzi & Golub [2004]);
or Accelerated HSS (AHSS): Bai & Golub [2007].



Saddle Point Systems

Re-formulation 2: Regularization

where A € RV B e R™*" gz f € R", \, g € R™.

Common in fluid flow for some low order mixed finite element
discretizations

This approach gives a different solution than for C' = 0.

C'is typically positive semidefinite, but not always; see Bai, Ng and
Wang [2009] for general symmetric (2,2) block.
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Saddle Point Systems

Re-Formulation 3: Augmented Lagrangian (Stabilization)

Augmented Saddle Point System:

A B™\ (@\ _ (f\_, (A+B"WB B\ (x\ _(f
B 0 A \O B 0 A)\o/)°
@ A may be singular or highly ill-conditioned;

@ may be interpreted as penalizing constraint violations ;

@ explored mainly for optimization:

Hestenes [1969], Fletcher[mid 1970s],... Fortin & Glowinski
[mid 1980s], ...
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Saddle Point Systems

A Tribute to Gene Golub (1932-2007)
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Saddle Point Systems

Spectral Analysis (W = ~I)

[Golub and Greif, 2003]

A+~+BTB BT
LetK(7)=< ; 0).

o Clustering: As -y grows large, the m negative eigenvalues

cluster near to —%.

@ Dependence of k2(K) on 7v:

R2(K(7)) = 2?BIIE # 0 as v — cc.

So, need to choose a moderate value of v to balance fast
convergence with conditioning deterioration.
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Saddle Point Systems

Condition Numbers: Singular Leading Block

Condition numbers as a function of y

10 w
=@=cond(K(y))

1070 | cond(A+y B'T)
=#=cond(S(y))
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Saddle Point Systems

The Inverse

Fletcher [1974]; Golub & Greif [2003]

A+ BTw-1c BT
KW):= ( c 0 .

Then if I(W) is nonsingular:
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Block Preconditioning
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Augmentation Preconditioners

Basic Block Decompositions

(

Dual Schur Complement (A nonsingular):

A BT\ I 0)[/A 0 I A7'BTY\
B 0 — \BA!' 1)\0 —BAIBT)\0O I ’

Primal Schur Complement (regularizing (2,2) block added):

A BT\ (I -B™WY\ /A+B"W™'B 0 I 0
B -w) —\0 I 0 ~W)\-W™'B I
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Augmentation Preconditioners

Block Preconditioning

Three basic approaches with many possible variants:
@ (Dual) Schur complement-based preconditioners:

A 0
Ms = (0 BA—lBT>'

@ Constraint preconditioners:

G BT
Mc = (B 0 > .
e Augmentation (primal Schur complement-based)
preconditioners:

_(A+B™W™B 0
Ma= ( 0 W) '
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Augmentation Preconditioners

Augmentation Preconditioner

Greif and Schotzau [2006-2007]
Consider the preconditioner giving the preconditioned matrix

A+BTwW-'B o0\ '/A BT
0 1% B 0/

M K

@ If A has nullity » < m, then the preconditioned matrix has the
eigenvalue 1 of multiplicity n, the eigenvalue —1 of multiplicity
r, and the remaining m — r eigenvalues of M~!KC satisfy

Moy = BTW~1By.

e Eigenvectors are known and for A = 1 are readily available.
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Augmentation Preconditioners

Blessing of Nullity

If A has nullity m, then two distinct eigenvalues:

1 (multiplicity n)
—1 (multiplicity m)

Also, the eigenvectors are explicitly known. In particular, n — m of
the eigenvectors are of the form (z;,0), where z; form a basis for
the null space of B.
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Applications
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Applications

Semidefinite Programming (SDP)
Joint With Michael Overton [2010]
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Applications

The Problem

minXeSn CeX
such that Ape X =b,, k=1,...,m
X =0.

@ be R™ and C € 8", the space of n x n real symmetric
matrices

@ the Ay are linearly independent in S™
@ the inner product C e X istr CX = Z” Cij Xij
@ X > 0 means X is positive semidefinite
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Applications

The dual standard form is:
l’IIaXye]IUm7 ZeSn bTy
such that S ykAr+Z=C
Z = 0.

In practice: all matrices are block-diagonal.
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Applications

Primal-Dual Interior Point Methods

Illustrate on LP:

min ¢’ z, subject to: Ax =0b, x > 0.
x

max bIN, subject to: ATA+s=¢, 5s>0.

Progress along a path in the interior of the domain.

0 AT T Az Te
A 0 0 AN == n
S 0 X As XSe

(5 D)) ()

Matrix becomes increasingly ill-conditioned as solution is

approached.
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Applications

SDP: Many Important Applications

@ Minimize the maximum eigenvalue (related to stabilizing
PDEs)

@ Minimize the Ly norm of a matrix

@ Generalize other optimization problems (linear programming,
convex quadratically constrained programming, etc.)

o Control theory
@ Minimization of nuclear norm

@ ... and more

See Todd, Acta Numerica [2001]
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Applications

The Augmented System

The linear algebra bottleneck is

vec AX
H[ » ]—f,

where

X loz AT
a0 A -

(vec AT
)

(vec A

m " . . 2
Here, "vec” maps n X n matrices to vectors in R™".
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Applications

The Central Path

Assuming that the primal and dual SDPs have feasible points
X > 0and (y,Z) with Z > 0, the central path

{(X*, y*, ZF) feasible with X*ZH = ul, > 0}

exists and converges to solutions of the primal and dual SDPs
(which have the same optimal value) as p | 0.

At the solution, XZ = 0. Suppose the primal solution X has rank
r and the dual slack solution Z has rank n — r, that is strict
complementarity holds. Then X* and Z* respectively have r and
n — r eigenvalues that are O(1) as i | 0; the others are O(pu).

Primal-dual interior-point path-following methods generate iterates
that approximately follow the central path.
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Applications

[terative Methods for SDP

o lterative methods for semidefinite programming problems have
not been extensively used, perhaps because the problems have
a strong dense component and have not been overly large.

e Toh [2003]: apply preconditioned SQMR to a newly
introduced dense “reduced augmented system”, using
diagonal preconditioners

@ Zhao, Sun, Toh [2009]: a Newton-CG augmented Lagrangian
method
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Applications

Augmented System

The saddle point matrix is

[ xtez AT
ra

Since on the central path, Z = ,uX_l, and n — r eigenvalues of X
are O(p), H has order n? +m and has

e (n —r)? eigenvalues that are O(1/p)
@ the rest are O(1).
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Applications

Preconditioning the Augmented System

We consider preconditioning the augmented system matrix

X1z AT
=
by
X 1®zZ+8BTB 0
K: —1
0 671
in two cases:
Q@ B=A

@ B consists of s rows of A: BBTB = ATV A where V is
sparse, diagonal
Then we could iterate with MINRES, with an inner CG iteration to
“invert” the K71 block.
In second case require s > 7(r + 1)2, number of eigenvalues of
X1 ® Z that are O(p).
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Applications

Low Rank correction (m — s small)

Suppose W~ = 3I,,,. Let V be a diagonal matrix with s of its
diagonal values equal to 3 and the rest zero. Denote the
eigenvalues of K1 H in this case by vj, ordered in descending
order. Then, for 3 sufficiently large, the eigenvalues of the
preconditioned matrix are given by

v > 1, j=1....m—s;
v; =1, j=m-—s+1,...,N;

7 .
m_VN+j§B'Yj+1<O, J=1...s
v; < —1, j=N+s+1,....N+m
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Eigenvalues

Applications
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Applications

Interlacing

V is Low rank change of W~!: developed an interlacing theory
for a quadratic eigenvalue problem associated with the Schur
complement matrix M

<V2(M71 + Bl —uu’) —vM ™t — ﬂ[m)é =0.
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Applications
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Applications

Solution of LPs and QPs (with Rees)
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Applications

Time-Harmonic Maxwell (with Li and Schotzau)
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Applications

The Maxwell Problem in Mixed Form

Greif and Schotzau [2007], Greif, Li and Schotzau [2009-2010]
The time-harmonic Maxwell equations with constant coefficients in
lossless media with perfectly conducting boundaries:

VXxVxu—ku+Vp=f in €,
V-u=20 in €,
uxmn=0 on 0f),

p=20 on 0f).

u is an electric vector field; p is a scalar multiplier.

k% = w?ej, where w is the temporal frequency, and ¢ and 1 are
permittivity and permeability parameters.

Assume throughout small wave number: k < 1.
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Applications

Mixed Finite Element Discretization: Saddle Point System

(556 =()

A € R™ "™ is the discrete curl-curl; B € R™*" is a discrete
divergence operator with full row rank; M € R™*"™ is a vector mass
matrix.

Note: A is semidefinite with nullity m; (1,1) block is indefinite if
k # 0.

Define also L € R™*™ as the scalar Laplacian.

39/51



Applications

Much Related Work

Arnold and Falk [2000]

Bochev, Hu, Siefert, Tuminaro [2007]

Demkowicz and Vardapetyan [1998]

Hiptmair [2002] (Acta Numerica survey)

Hiptmair and Xu [2006]

Hu, Tuminaro, Bochev, Garasi and Robinson [2005]
Hu and Zou [2004]

Reitzinger and Schéberl [2002]

Romer, Witzigmann, Chinellato and Arbenz [2007]

(]

and more...
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Applications

A Few Key Properties

e Discrete Helmholtz Decomposition: R™ = null(A) & null(B).

@ There is a ‘gradient matrix’ C € R™ "™ such that for any
u € null(A) there is a unique ¢ € R™ such that u = Cq.

e AC=0
e BC=1L
e MC =BT

o Coercivity, Continuity and Inf-Sup,...

@ And more...
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Applications

Preconditioner

@ MINRES preconditioned with

A+~M 0
PM,LZ( 07 L)’

where 7 is a scalr, L is the scalar Laplace matrix and M is the
vector mass matrix

o P;; K has eigenvalues 1y =1 and p_ = —1/(1 — k?) of
high multiplicities

@ The rest of the eigenvalues are bounded; bound depends on

the shape regularity of the mesh and the finite element
approximation order.
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Applications

Eigenvalues

Use Laplacian L for augmentation, then replace BTL~'B by a
simple mass matrix M which is spectrally equivalent.
For inner iteration, use Hiptmair & Xu's auxiliary nodal projection.
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Applications

Grid [ m+m | k=0 k=1L k=1 k=1
Gl | 113 5 5 5 5
G2 | 481 5 5 5 5
G3 | 195 | 5 5 5 5
G4 | 8065 | 6 6 5 6
G5 | 32513 | 6 6 6 6
G6 | 130,561 | 6 6 6 6
G7 | 523265 | 6 6 6 6

Table: Iteration counts for a typical example with a divergence free right
hand side and various values of k and various meshes, using MINRES for
solving the saddle point system with the preconditioner Py ;. The
iteration was stopped once the initial relative residual was reduced by a
factor of 10710,
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Applications

Large Scale Implementation

o A+ yM:
e CG preconditioned with Hiptmair & Xu's solver:
Pyl = diag(A+ M)+ P(L+~Q) 'PT + 4 tC(L )T

o r2(Py ' (A + vM)) is independent of the mesh size
e Matrix inversions are approximated with one AMG V-cycle

o L:

e CG with algebraic multigrid preconditioner
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Applications

3D Maxwell Test Problems

3D box-shaped object 3D gear
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Applications

Programming Language and External Packages

Programming language: C4++

Iterative solvers: PETSc and Hypre libraries

Mesh generator: Some meshes were generated with TetGen
Mesh partition: METIS

Parallelization: MPICH2
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Applications

Maxwell Numerical Results: 3D Box

np Nel DOFs its  its;,  itsi, ts ta
3 3,693,263 4,738,111 18 31 6 3716.27s  38.99s
6 7,380,288 9,509,347 17 32 6 4186.47s 40.01s
9 14,760,128 19,082,621 17 33 7 4796.96s 41.92s

MINRES with rtol = 1e — 6, preconditioned with Pr p,

@ its, its;1, its;o: iteration counts for outer iterations, (1,1)
and (2, 2) blocks of the inner iterations

® tisq): times (sec) for {solution, assembly}
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Applications

Maxwell Numerical Results: 3D Gear

np Nel DOFs its its;, itsi, ts ta

4 596,011 685,736 8 47 5 126.04s  6.43s
8 1,046,568 1,245,761 8 42 5 293.87s 5.55s
16 1,965,622 2,398,793 8 42 5 292.65s 5.16s
32 3,802,327 4,725385 8 42 5 346.04s 5.13s

MINRES with rtol = 1e — 6, preconditioned with Pr p,

@ its, its;1, its;o: iteration counts for outer iterations, (1,1)
and (2, 2) blocks of the inner iterations

® tisq): times (sec) for {solution, assembly}
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Applications

Summary

@ Solution of saddle point systems: an important theme in
numerical linear algebra, optimization, solution of PDEs.

@ lterative solution taking center-stage due to increasing size of
problems. Preconditioning is a must when it comes to
iterative solvers.

@ Block preconditioning is largely based on finding
approximations to primal and dual Schur complements; nullity
of (1,1) block plays a role in augmentation preconditioning

@ Interesting and tough problems and applications
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Applications

THANK YOU!
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