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PageRank

Links determine the importance and authority of a webpage.

For PageRank, the ‘raw’ PageRank xi of page i is defined as

xi =
∑
j→i

xj

nj
,

where {xj} is the set of pages that link to page i , and nj is the
outdegree of page j .
The problem is thus: find a vector x that satisfies x = PT x , where
P is given by

Pij =

{ 1
ni

if i → j ,

0 if i 9 j .
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Eigenvalue Problem
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Stationary Distribution Vector

The matrix P is row-stochastic; nonnegative entries between 0 and
1, and Pe = e, where e is a vector of all-ones.

Definition

Given a Webpage database, the PageRank of the ith Webpage is
the ith element πi of the stationary distribution vector π that
satisfies πTP = πT , where P is a matrix of weights of webpages
that indicate their importance.

Theorem

Perron(1907)-Frobenius(1912): A nonnegative irreducible matrix
has a simple real eigenvalue equal to its spectral radius, whose
associated eigenvector is a vector all of whose entries are
nonnegative.
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Challenges and Difficulties

1 P is very large (size in the billions): can’t just use our favorite
decompositions.

2 The existence of dangling nodes (all-zero row in the matrix):
could have ‘dead-ends’. Those ‘sinks’ are not necessarily
unimportant!

3 Cyclic paths, reducibility: a small entity with no entry points
and exits to the ‘outside world’. Hurts uniqueness.

4 The dynamic nature of the Web: new Websites are
continually generated, eliminated, changing. The Web link
graph is a function of time and so is its dimension. (Will not
pursue this in this talk.)
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PageRank: Scale and Incorporate Rank-One Perturbation

Difficulties

1 The existence of dangling nodes (correspond to an all-zero
row in the matrix).

2 Periodicity: a cyclic path in the Webgraph.

Solution

1 Set P ′ = PT + D where D = dvT is a rank-1 matrix with d
being a vector which is 0 if the outdegree is nonzero, and 1 if
it is. (In other words, ’perturb’ pages without outlinks.)

2 Set P̃ = αP ′ + (1− α)E, where E is a rank-1 matrix related
to the personalization vector.
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The PageRank Matrix

An interpretation of the convex combination with a low rank
matrix: a surfer may jump randomly elsewhere, not necessarily
following a link, with probability 1− α.

Consider
A(α) = αPT + (1− α)E ,

where E = evT is a positive rank-1 matrix.

A(α) is a strictly positive row-stochastic matrix, and for
α < 1, by Perron-Frobenius there exists a unique (up to
scaling) PageRank vector x(α) such that A(α)x(α) = x(α).
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Many Relevant/Related Models for Other Applications

“For the purpose of evaluating status in a manner free from the
deficiencies of popularity contest procedures, this paper presents a
new method of computation which takes into account who chooses
as well as how many choose. It is necessary to introduce, in this
connection, the concept of attenuation in influence transmitted
through intermediaries.” (Leo Katz, PSYCHOMETRIKA 1953.)

A random particle starts randomly walking from node i , and moves
to its neighbors with probability proportional to their edge weights.
The relevance score of node j with respect to note i is defined as
the steady state probability that the particle will end up at node j .

How closely related are two nodes in a weighted graph.

Social networks, link prediction, ...
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A Linear System Formulation

Since eT x = 1 it follows that

x = Ax = αPT x + (1− α)veT x → (I-αPT )x = (1− α)v

(See, e.g. Arasu et al. [2002].)

The Neumann expansion is valid for α < 1:

(I − αPT )−1 = I + αPT + α2(PT )2 + . . .

Katz: transmission of information or rumor through a group. The
parameter α is an “attenuation factor”. (α = 1: no attenuation)
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Significance of Damping Factor (or Mixing Parameter) α

In PageRank context, α is the probability of following an
outlink (as opposed to jump randomly elsewhere).

What is ‘the right value of α’? A regularization effect: small
value (say 0.85) leads to a more stable computation, but
further away from true solution. (This is subject to debate;
see, e.g. Boldi, Santini and Vigna [2004].) See also a nice
discussion in Langville and Meyer [2006].

In general, hard to beat the power method for small values of
α. But if α is close to 1, it will not perform well: linear
convergence, with asymptotic error constant (recall λ1 = 1)

max
|λj |
|λ1|

.

And we have the following beautiful property...
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The Eigenvalues

Theorem

Brauer, 1952; Serra-Capizzano, Eldén - recently
Let P be a column-stochastic matrix with eigenvalues
{1, λ2, λ3, . . . , λn}. Then the eigenvalues of
M(α) = αP + (1− α)veT , where 0 < α < 1 and v is a
nonnegative vector with eT v = 1, are

{1, αλ2, αλ3, . . . , αλn}.

This implies
|λj |
|λ1|
≤ α.
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Ordering as a Function of α (Rankings in Wikipedia 2005,
Size ≡ 1.1M , nz ≡ 18M)

Entry α = 0.85 α = 0.90 α = 0.95 α = 0.99

United States 1 1 1 1

United Kingdom 3 3 2 2

Canada 8 10 17 17

2005 5 5 11 10

2004 6 6 12 13

2000 7 15 20 29

Category: culture 12 9 8 6

Category: politics 13 7 6 5
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Many Acceleration Techniques

Quadratic Extrapolation (Kamvar, Haveliwala, Manning,
Golub [2003])

Aggregation/Disaggregation (Langville & Meyer, Stewart
[2005])

Permutations (Del Corso, Gulli and Romani [2007],....)

Linear system formulation (Arasu, Novak, Tomkins and
Tomlin [2002]; Gleich, Zhukov and Berkhin [2004])

Padé-type acceleration (Brezinski and Redivo-Zaglia [2006])

Arnoldi-type method (Golub and Greif [2006])

Power-Arnoldi method (Wu and Wei [2007])

Ordinal ranking (Wills and Ipsen [2008])

and many many more...
Surveys, properties, etc. : Langville and Meyer [2005-2006],
Berkhin [2005], Bryan and Leise [2006], ...
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Quadratic Extrapolation
(Kamvar, Haveliwala, Manning, Golub [2003])

Slowly convergent series can be replaced by series that converge to
the same limit at a much faster rate.
Idea: Estimate components of current iterate in the directions of
second and third eigenvectors, and eliminate them.
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Quadratic Extrapolation

Suppose A has three distinct eigenvalues. The minimal polynomial
is given by PA(λ) = γ0 + γ1λ + γ2λ

2 + γ3λ
3. By the

Cayley-Hamilton theorem, PA(A) = 0. Hence for any vector z ,

PA(A)z = (γ0 + γ1A + γ2A
2 + γ3A

3)z = 0.

In particular, set z = x (k−3) and use the fact that
x (k−2) = Ax (k−3) and so on.
In the end, since A has more than three eigenvalues, solve a least
squares problem.
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An Arnoldi-type Method for PageRank
(Golub and Greif, 2006)

Similar to computing refined Ritz vectors (Jia) , but pretend
largest eigenvalue stays 1 in smaller space, i.e., we do not compute
any Ritz values, and avoid complex arithmetic.

Set initial guess q and k, the Arnoldi steps number
Repeat
.....[Q,H] = Arnoldi(A, q, k)
.....Compute H − [I ; 0] = UΣV T

.....Set v = V (:, k)

.....Set q = Qv
Until σmin(H − [I ; 0]) < ε
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The Arnoldi Algorithm

q1 = q/‖q‖2
for j=1 to k
.....z = Aqj

.....for i = 1 to j

.........hi ,j = qT
i z

.........z = z − hi ,jqi

.....end for

.....hj+1,j = ‖z‖2

.....if hj+1,j = 0, quit

.....qj+1 = z/hj+1,j

end for

Arnoldi(A, q, k).
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Pros and Cons

Good:

Orthogonalization allows for going up in dimension.

Shift by identity: exploit knowledge of the largest eigenvalue.

No Ritz value estimates are involved and no complex
arithmetic, however can’t expect H to really be singular.

It can be shown that ‖Aq − q‖2 = σmin(H − [I ; 0]).

Smooth convergence behavior.

Bad:

Not as easy to implement as power method and other
techniques.

Iterations more computationally expensive.

Even for small k the required storage quickly becomes as large
as original matrix.
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An Inner/Outer Stationary Iteration:
Gleich, Gray, Greif, and Lau (SISC, 2010)

Back to linear system formulation:

(I − αPT )x = (1− α)v .

A simple preconditioning/splitting algorithm:
Outer iteration:

(I − βPT )xk+1 = (α− β)PT xk + (1− α)v , k = 1, 2, . . .

Inner iteration:

yj+1 = βPT yj + (α− β)PT xk + (1− α)v ,
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Iteration Matrices

The outer iteration is associated with the splitting

I − αP = MO − NO ; MO = I − βP ; NO = (α− β)P,

and the corresponding outer iteration matrix is given by

TO = M−1
O NO = (α− β)(I − βP)−1P.

The inner iteration corresponds to the splitting

MO = I − βP = MI − NI ; MI = I ; NI = βP.

The corresponding inner iteration matrix is

TI = M−1
I NI = βP.

Note: end cases β = 0, α yield power method.
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Algorithm 1 basic inner-outer iteration

Input: P, α, β, τ, η, v
Output: x
1: x ← v
2: y ← Px
3: while ‖αy + (1− α)v − x‖1 ≥ τ
4: f ← (α− β)y + (1− α)v
5: repeat
6: x ← f + βy
7: y ← Px
8: until ‖f + βy − x‖1 < η
9: end while
10: x ← αy + (1− α)v

22



Advantages (if We Can Make It Fast Enough)

Attractively simple

No projections, orthogonalizations, permutations, ...

Minimal storage requirements

Easily parallelizable: based almost exclusively on matrix-vector
products.
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Inexact Iterations

For 0 ≤ β ≤ α < 1 can show convergence of exact inner
iterations (use M-matrix theory, regular splittings, etc.).

Practicality dictates using inexact inner/outer iterations.

Central question: how to determine the parameters.

Inner/outer iterations: interesting previous work for stationary
methods: Golub and Overton [1988]; Elman and Golub
[1994]; Giladi, Golub and Keller [1998], ... and also for Krylov
solvers: Simoncini and Szyld [2003], ...
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Outer Iteration – Correction Interpretation

Write

A(α) = αP + (1− α)veT ; A(β) = βP + (1− β)veT .

Then
A′(α) = A′(β) = P − veT .

(By linearity derivative does not depend on the damping factor.)
Thus

A(α) = A(β) + (α− β)A′.

Thus, can interpret the outer iteration as a procedure in which we
locally solve the PageRank problem for β rather than for α, and
correct for the remainder, which is a scalar multiple of the
derivative of A.
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Convergence Analysis for Outer Iterations (Cont.)

MO = I − βP is a diagonally dominant M-matrix. If λi is an
eigenvalue of P then

µi =
(α− β)λi

1− βλi

is an eigenvalue of TO . Can show ρ(TO) = α−β
1−β < 1 (equality!).

Lemma Given 0 < α < 1, if the inner iterations are solved exactly,
the scheme converges for any 0 < β < α. Furthermore,

‖xk+1 − x‖1 ≤
α− β

1− β
‖xk − x‖1

and

‖xk+1 − xk‖1 ≤
α− β

1− β
‖xk − xk−1‖1,

and hence the contraction factor α−β
1−β indicates that the closer β is

to α, the faster the outer iterations converge.
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Convergence Analysis for Inner Iterations

Difference inequalities:

Mxk+1 = Nxk + g + δk ; ek = xk − x .

Suppose ‖δk‖ ≤ η‖ek − ek−1‖ = η‖xk − xk−1‖ for some η. Then

‖ek+1‖ ≤ ‖T‖ ‖ek‖+ η‖M−1‖ ‖ek − ek−1‖.

Defining ρ = ‖T‖ and σ = η‖M−1‖, can show that

‖ek‖ ≤ a1ξ
k
+ + a2ξ

k
−

where

ξ± =
ρ + σ

2

(
1±

√
1 +

4σ

(ρ + σ)2

)
.
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Convergence Analysis for Inner Iterations (Cont.)

The coefficients are given by

a1 =
2(β2 − β1ξ−)

(ρ + σ)2s(s + 1)
; a2 =

2(β2 − β1ξ+)

(ρ + σ)2s(s − 1)
,

with s =
√

1 + 4σ/(ρ + σ)2, β1 = ‖e1‖, β2 = ‖e2‖.
After some further simplifications, a sufficient (but really and truly
not necessary) condition for convergence is

0 < η <
1− α

2
.

The closer α is to 1, the smaller η should be chosen to be, which
makes sense intuitively.
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Figure: Total number of matrix-vector products required for convergence
of the inner-outer scheme, for the in-2004 matrix. (Outer tolerance 10−7,
α = 0.99, β, and η varied. The iteration limit was 1500 and causes the
ceiling on the left figure.)
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A Few Examples

Table: Dimensions and number of nonzeros of a few test matrices

name size nonzeros avg nz per row

ubc-cs-2006 51,681 673,010 13.0
ubc-2006 339,147 4,203,811 12.4
eu-2005 862,664 19,235,140 22.3
in-2004 1,382,908 16,917,053 12.2
wb-edu 9,845,725 57,156,537 5.8
arabic-2005 22,744,080 639,999,458 28.1
sk-2005 50,636,154 1,949,412,601 38.5
uk-2007 105,896,555 3,738,733,648 35.3
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Figure: Convergence of the computation for the 9, 845, 725× 9, 845, 725
wb-edu matrix (τ = 10−7, β = 0.5 and η = 10−2 in the inner-outer
method.) The interior figures highlight the first few iterations.

31



Table: α = 0.99, β = 0.5, η = 10−2; 8-core parallel code.

tol. graph work (mults.) time (secs.)

power in/out gain power in/out gain

10−3 ubc-cs-2006 226 141 37.6% 1.9 1.2 35.2%
ubc 242 141 41.7% 13.6 8.3 38.4%
in-2004 232 129 44.4% 51.1 30.4 40.5%
eu-2005 149 150 -0.7% 26.9 28.3 -5.3%
wb-edu 221 130 41.2% 291.2 184.6 36.6%
arabic-2005 213 139 34.7% 779.2 502.5 35.5%
sk-2005 156 144 7.7% 1718.2 1595.9 7.1%
uk-2007 145 125 13.8% 2802.0 2359.3 15.8%

10−5 ubc-cs-2006 574 432 24.7% 4.7 3.6 22.9%
ubc 676 484 28.4% 37.7 27.8 26.2%
in-2004 657 428 34.9% 144.3 97.5 32.4%
eu-2005 499 476 4.6% 89.3 87.4 2.1%
wb-edu 647 417 35.5% 850.6 572.0 32.8%
arabic-2005 638 466 27.0% 2333.5 1670.0 28.4%
sk-2005 523 460 12.0% 5729.0 5077.1 11.4%
uk-2007 531 463 12.8% 10225.8 8661.9 15.3%

10−7 ubc-cs-2006 986 815 17.3% 8.0 6.8 15.4%
ubc 1121 856 23.6% 62.5 49.0 21.6%
in-2004 1108 795 28.2% 243.1 179.8 26.0%
eu-2005 896 814 9.2% 159.9 148.6 7.1%
wb-edu 1096 777 29.1% 1442.9 1059.0 26.6%
arabic-2005 1083 843 22.2% 3958.8 3012.9 23.9%
sk-2005 951 828 12.9% 10393.3 9122.9 12.2%
uk-2007 964 857 11.1% 18559.2 16016.7 13.7%
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Spectral Structure of Preconditioned Matrix

For wb-cs.stanford with α = 0.99, plot the eigenvalues of the
preconditioned matrix

(I − βP)−1(I − αP)

and approximations based on Neumann series. Each dashed circle
encloses a circle of radius 1 in the complex plane centered at
λ = 1, and hence the scale is the same in each small figure. Gray
lines are contours of the function

pm(λ) = (1− αλ)(1 + βλ + · · ·+ (βλ)m),

which is the identity matrix for m = 0 (i.e. no preconditioning)
and the exact inverse when m =∞. The dots are the eigenvalues
of the preconditioned system, pm(λi ).
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Figure: Parallel scalability for the three large graphs arabic-2005,
sk-2005, and uk-2007. Light gray or teal lines are the relative speedup
compared with the same algorithm on one processor. Black lines are the
true speedup compared with the best single processor code. The
parameters were α = 0.99, β = 0.5, and η = 10−2.
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Conclusions

Large scale computation of stationary distribution vectors of
parameterized Markov chains requires fast and simple
methods, with minimal memory requirements.

Presented an inner/outer stationary iteration which indeed is
simple, fast and requires minimal overhead: no permutations,
projections, orthogonalizations or decompositions of any sort
are involved.

Programming the method is easy, and it is straightforward
parallelizable.

The algorithm is parameter-dependent, but an effective choice
of the parameters can be made.

Detailed convergence analysis.

36



Conclusions (Cont.)

The proposed technique is effective for a large range of inner
tolerances, particularly for large values of the damping factor.
The gains are often made in the initial iterates.
Any iterative solver that is effective for the linear system
formulation of PageRank computations can have inner-outer
iterations incorporated to possibly accelerate convergence.
Future work: how to dynamically determine the parameters β
and η, and explore the performance of the algorithm as an
acceleration technique for a variety of methods, and for other
problems of a similar flavour to PageRank.
Code is available to download and test at

http://www.stanford.edu/~dgleich/publications/
2009/innout/.

Paper is now published in SISC (2010).

THANK YOU!
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