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1 Introduction

The focus of this work is the theoretical analysis of a class of algorithms for uncon-
strained optimization of a possibly non-convex function. Notable iterative schemes
for this type of problem are line-search, trust-region, and regularization algorithms.
As observed by Shultz et al. [1] and by Toint [2], line-search algorithms can be seen as
particular instances of trust-region algorithms. Recently, a nonlinear stepsize control
(NSC) framework has been proposed by Toint [3] as a generalization of many trust-
region and regularization algorithms. This framework provides a unified setting in
which theoretical results can be proved for a wide range of algorithms. In particular,
the NSC framework covers the classical trust-region method [4,5], the ARC algo-
rithm proposed by Cartis et al. [6,7], the quadratic regularization method proposed
by Nesterov [8] (as extended by Bellavia et al. [9]), the modified trust-region method
proposed by Fan and Yuan [10], the quadratic regularization methods proposed by
Zhang andWang [11] and by Fan [12], respectively, and the conic trust-region method
proposed by Lu and Ni [13]. For details, see [3] and [14].

Under the assumption that the Hessians of the models are uniformly bounded, Toint
[3] has proved lim-type and liminf-type global convergence results for the class ofNSC
algorithms. For the more general case in which the norm of the Hessians can grow
by a constant amount at each iteration, Grapiglia, Yuan and Yuan [15] have proved a
liminf-type convergence result by adapting the seminal analysis done by Powell [16]
for the classical trust-region method. Regarding the worst-case complexity of NSC
algorithms, Grapiglia, Yuan and Yuan [15] have also provided upper bounds on the
number of iterations required in the worst-case to reduce a certain first-order criticality
measure below a given threshold.

In this paper, we investigate the worst-case complexity of the NSC algorithms
to achieve approximate first- and second-order optimality. More specifically, we can
distinguish three main contributions of this work. Firstly, by modifying one basic
assumption, we further generalize the NSC framework in order to include the regu-
larization algorithms described in [17]. Then, by using a different proof technique,
we are able to improve the complexity results established in [15] to ensure approxi-
mate first-order optimality. Finally, we propose a second-order NSC framework, and
we estimate an upper bound on the number of iterations required in the worst case
to ensure approximate second-order optimality. This result generalizes the complex-
ity bound proved by Cartis, Gould, and Toint [18] for a second-order version of the
classical trust-region method.

The paper is organized as follows. In Sect. 2, the NSC framework is reviewed.
In Sect. 3, the improved complexity bounds for first-order optimality are proved. In
Sect. 4, complexity bounds for second-order optimality are obtained. Finally, in Sect. 5,
the contributions of the paper are summarized.

2 Preliminaries on the NSC Framework

As mentioned above, we are interested in the unconstrained optimization problem

min
x∈Rn

f (x), (1)
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where f : Rn → R is smooth and bounded below. In order to describe the NSC in a
compact way, let us consider first the following conditions:

A1 There exists a continuous, bounded, and nonnegative function ω : Rn → R

such that ω(x) = 0 only if ∇ f (x) = 0.
A2 There exist three continuous nonnegative functions φ,ψ, χ : Rn → R, such
that, providedω(x) > 0,we havemin {φ(x), ψ(x), χ(x)} = 0 only if∇ f (x) = 0.
A3 There exists κχ > 0 such that

χ(x) ≤ κχ for all x . (2)

By convention, from here, we denote

φk = φ(xk), ψk = ψ(xk), χk = χ(xk) and ωk = ω(xk).

A4 The step sk satisfies the bound

‖sk‖ ≤ κsΔ(δk, χk) whenever δk ≤ κδχk, (3)

for some constants κs ≥ 1 and κδ > 0, where the function Δ is of the form

Δ(δ, χ) = δαχβ, (4)

for some powers α ∈ [0, 1], α �= 0, and β ∈ [0, 1].
A5 The step sk produces a decrease in the model, which is sufficient in the sense
that

mk(xk) − mk(xk + sk) ≥ κcψk min

{
φk

1 + ‖Hk‖ ,Δ(δk, χk)

}
, (5)

for some positive constant κc < 1, and where Hk is the Hessian matrix of f at xk

or an approximation thereof.
A6 For all k ≥ 1, the model mk(xk + s) : Rn → R satisfies1

mk(xk) = f (xk) and f (xk + s) − mk(xk + s) ≤ κm‖s‖2 ∀s ∈ R
n, (6)

for some constant κm > 0.

Considering A1-A6, we can summarize the generic NSC framework as follows.

Algorithm 1. (Nonlinear Stepsize Control Algorithm (first order) [3])

Step 0 Given x1 ∈ R
n , H1 ∈ R

n×n , δ1 > 0, 0 < γ1 < γ2 < γ3 < 1 < γ4 and
0 < η1 ≤ η2 < 1, set k := 1.

1 The inequality in (6) typically results from an error bound on Taylor series and a bounded Hk .
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Step 1 Choose amodelmk(xk +s) satisfyingA6 and find a step sk which sufficiently
reduces the model in the sense of A5 for which ‖sk‖ satisfies A4.

Step 2 Compute the ratio

ρk = f (xk) − f (xk + sk)

mk(xk) − mk(xk + sk)
, (7)

set the next iterate

xk+1 =
{

xk + sk, if ρk ≥ η1,

xk, otherwise,
(8)

and choose the stepsize parameter δk+1 by the update rule

δk+1 ∈
⎧⎨
⎩

[
γ1δk, γ2δk

]
, if ρk < η1,[

γ2δk, γ3δk
]
, if η1 ≤ ρk < η2,[

δk, γ4δk
]
, if ρk ≥ η2.

(9)

Step 3 Compute Hk+1, set k := k + 1, and go to Step 1.

Just to mention a few examples, under suitable assumptions, it can be shown that
Algorithm 1 covers the following algorithms2:

• the classical trust-region algorithm [4,5]:

mk(xk + s) := f (xk) + ∇ f (xk)
T s + 1

2
sT Hks,

ω(x) = 1, φ(x) = ψ(x) = χ(x) = ‖∇ f (x)‖,
δk = Δk, α = 1, β = 0,

• the ARC algorithm of Cartis et al. [6]:

mk(xk + s) := f (xk) + ∇ f (xk)
T s + 1

2
sT Hks + σk

3
‖s‖3,

ω(x) = 1, φ(x) = ψ(x) = χ(x) = ‖∇ f (x)‖,
δk = 1

σk
, α = 1/2, β = 1/2,

• the trust-region algorithm of Fan and Yuan [10]:

mk(xk + s) := f (xk) + ∇ f (xk)
T s + 1

2
sT Hks,

ω(x) = 1, φ(x) = ψ(x) = χ(x) = ‖∇ f (x)‖,
δk = μk, α = 1, β = 1,

2 For details, see Section 2 in [3].
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Table 1 Worst-case complexity bounds obtained from Theorem 2.1

Algorithm A8 A9 (α, β) Complexity bound

Classical trust-region [4,5] Yes Yes (1, 0) O(ε−2)

Trust-region of Fan and Yuan [10] Yes No (1, 1) O(ε−3)

ARC algorithm [6] Yes Yes
(
1
2 , 1

2

)
O(ε−2)

Quadratic regularization [11,12] No No (1, 1) O(ε−3)

• the quadratic regularization algorithms for f (x) = (1/2)‖F(x)‖2 proposed by
Zhang and Wang [11] and by Fan [12]:

mk(xk + s) := 1

2
‖F(xk) + JF (xk)s‖2,

ω(x) = 1, φ(x) = ψ(x) = ‖JF (x)T F(x)‖,
χ(x) = ‖F(x)‖γ , δk = ν j , α = 1, β = 1,

where JF (x) is the Jacobian of F at x , 1/2 < γ < 1, 0 < ν < 1 and j is reset to
zero when a new iterate is accepted and incremented by one otherwise.

Before to recall the complexity bounds given in [15], consider the following addi-
tional conditions:

A7 There exists a constant κH > 0 such that ‖Hk‖ ≤ κH for all k.
A8 For all k, φk ≥ χk and ψk ≥ χk .
A9 The powers α and β satisfy the inequalities α + β ≤ 1 and 2α + β ≥ 1.

Theorem 2.1 (Theorems 2 and 3 in [15]) Suppose that A1–A7 hold. Let { f (xk)} be
bounded below by flow. Then, to reduce the criticality measure Fk = min {ωk, φk, ψk,

χk} below ε, 0 < ε < 1, Algorithm 1 takes at most O(ε−(2+β)) iterations. If addi-
tionally, A8–A9 hold, then this worst-case complexity bound is reduced to O(ε−2)

iterations.

Table 1 above summarizes the complexity bounds obtained from Theorem 2.1 for
the NSC algorithms described above. In the next section, by using a proof technique
different from that in [15], we shall establish a complexity bound of O(ε−2) for NSC
algorithms satisfying A8, but with (α, β) outside the region defined by A9.

3 Complexity Bounds for First-Order Optimality

Inwhat follows,we say that iteration k is successfulwheneverρk ≥ η1, very successful
whenever ρk ≥ η2, and unsuccessful whenever ρk < η1. From this naming, we
consider the following notation:
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S = {k ≥ 1 | k successful} , (10)

S j = {k ≤ j | k ∈ S} , for each j ≥ 1, (11)

U j = {k ≤ j | k /∈ S} for each j ≥ 1, (12)

where S j andU j form a partition of {1, . . . , j}, and |S j | and |U j | denote the cardinality
of these sets. Moreover, we shall replace A4 by the following condition:

A4’ The step sk satisfies either
(a) ‖sk‖ ≤ κsΔ(δk, χk) for all k; or

(b) if β �= 0, ‖sk‖ ≤ κsΔ(δk, χk) whenever δk ≤ κδχ

(1−β)
β

k .
for some constants κs ≥ 1 and κδ > 0, where the function Δ is defined as in A4.

Remark 3.1 The new condition A4’(b) allows us to include in the NSC framework
the class of regularization algorithms described in [17]. Specifically, this class of
algorithms is characterized by the choices:

mk(xk + s) := f (xk) + ∇ f (xk)
T s + 1

2
sT Hks + σk

p
‖s‖p (p > 2), (13)

ω(x) = 1, φ(x) = ψ(x) = χ(x) = ‖∇ f (x)‖, (14)

δk = 1

σk
and α = β = 1

p − 1
. (15)

Indeed, by Lemma 3.3 in [17],

‖sk‖ ≤
(
2p

σk

) 1
p−1 ‖∇ f (xk)‖

1
p−1 whenever σk ≥ (pκH )p−1

(2p‖∇ f (xk)‖)p−2 . (16)

Then, using (14) and (15), we can see that (16) is equivalent to the statement

‖sk‖ ≤ κsΔ(δk, χk) whenever δk ≤ κδχ

(1−β)
β

k ,

where κs = (2p)
1

p−1 and κδ = (1/pκH )p−1(2p)p−2. That is, the class of algorithms
specified by (13)–(15) satisfies A4’(b). Note that this class includes the ARC when
p = 3. Moreover, for the ARC algorithm (α = β = 1/2), condition A4’(b) reduces
to condition A4.

Remark 3.2 For convenience, in the rest of the paper, whenwe refer to A4, we actually
mean conditions A4’.

3.1 Worst-Case Complexity Analysis

The next lemma gives a lower bound on δα
k when χk is bounded away from zero and

A4(a) holds.
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Lemma 3.1 Suppose that A1–A8 hold and let 0 < ε < 1. If A4(a) holds and

χk ≥ ε for k = 1, . . . , j, (17)

then there exists κ̄ f > 0, independent of k and ε, such that

δα
k ≥ κ̄ f ε

(1−β) for k = 1, . . . , j + 1. (18)

Proof We show by induction that (18) holds with

κ̄ f = min

{
δα
1 ,

γ α
1

1 + κH
,
γ α
1 κc(1 − η2)

κmκ2
s

}
. (19)

Clearly, (18) holds for k = 1. Assuming that (18) holds for some k ∈ {1, . . . , j}, we
shall prove that (18) also holds for k + 1. Indeed, by A4(a),

‖sk‖ ≤ κsΔ(δk, χk). (20)

Thus, by A5, A6, (20), and A8, we have

1 − ρk = f (xk + sk) − mk(xk + sk)

mk(xk) − mk(xk + sk)
≤ κmκ2

s Δ(δk, χk)
2

κcχk min

{
χk

1 + κH
,Δ(δk, χk)

} . (21)

Suppose that

δα
k < min

{
χ

(1−β)
k

1 + κH
,
χ

(1−β)
k κc(1 − η2)

κmκ2
s

}
. (22)

In this case, it follows that

Δ(δk, χk) = δα
k χ

β
k ≤ min

{
χk

1 + κH
,
χkκc(1 − η2)

κmκ2
s

}
. (23)

Then, by (21) and (23), we obtain

1 − ρk ≤ κmκ2
s Δ(δk, χk)

2

κcχkΔ(δk, χk)
= κmκ2

s Δ(δk, χk)

κcχk
≤ 1 − η2,

and so ρk ≥ η2. Thus, from rule (9) and the induction assumption, it follows that

δα
k+1 ≥ δα

k ≥ κ̄ f ε
(1−β),
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that is, (18) holds for k + 1. Now, suppose that (22) is not true. Then, from (9), (17),
and (19), we have

δα
k+1 ≥ γ α

1 δα
k ≥ γ α

1 min

{
χ

(1−β)
k

1 + κH
,
χ

(1−β)
k κc(1 − η2)

κmκ2
s

}

≥ min

{
γ α
1

1 + κH
,
γ α
1 κc(1 − η2)

κmκ2
s

}
ε(1−β)

≥ κ̄ f ε
(1−β)

that is, (18) holds for k + 1. This completes the induction argument. 
�
The next lemma gives a lower bound on δα

k when χk is bounded away from zero
and A4(b) holds.

Lemma 3.2 Suppose that A1–A8 hold and let 0 < ε < 1. If A4(b) holds and

χk ≥ ε for k = 1, . . . , j, (24)

then there exists κ f > 0, independent of k and ε, such that

δα
k ≥ κ f ε

max
{
(1−β),

α(1−β)
β

}
for k = 1, . . . , j + 1. (25)

Proof We show by induction that (25) holds with

κ f = min
{
δα
1 , γ α

1 κα
δ , κ̄ f

}
(26)

where κ̄ f is defined in (19). Clearly, (25) holds for k = 1. Assuming that (25) holds
for some k ∈ {1, . . . , j}, we shall prove that it also holds for k + 1. Indeed, suppose
that

‖sk‖ > κsΔ(δk, χk). (27)

Then, by A4(b), we must have δk > κδχ

(1−β)
β

k . In this case, it follows from (9), (24),
and (26) that

δα
k+1 ≥ γ α

1 δα
k > γ α

1 κα
δ χ

α(1−β)
β

k ≥ γ α
1 κα

δ ε
α(1−β)

β

≥ κ f ε
max

{
(1−β),

α(1−β)
β

}
,

that is, (25) holds for k + 1. On the other hand, if

‖sk‖ ≤ κsΔ(δk, χk)
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by following the same argument as in the proof of Lemma 3.1, we also get the bound

δα
k+1 ≥ κ f ε

max
{
(1−β),

α(1−β)
β

}
,

that is, (25) also holds for k + 1. This completes the induction argument. 
�
The next result combines the two previous lemmas.

Lemma 3.3 Suppose that A1–A8 hold and let 0 < ε < 1. If

χk ≥ ε for k = 1, . . . , j,

then

δα
k ≥ κ f ε

g(α,β) for k = 1, . . . , j + 1,

where κ f is the positive constant defined in (26) and where the function g is given by

g(α, β) =
{
1 − β, if A4(a) holds,

max
{
1 − β,

α(1−β)
β

}
, if A4(b) holds.

The theorem below provides an iteration complexity bound for Algorithm 1 to
achieve approximate first-order optimality. Its proof is based on the proof of Theorem
2.1 and Corollary 3.4 in [7].

Theorem 3.1 Suppose that A1–A8 hold and that { f (xk)} is bounded below by flow.
Then, given 0 < ε < 1, Algorithm 1 takes at most O

(
ε−max{2,1+g(α,β)+β}) iterations

to ensure Fk = min {ωk, φk, ψk, χk} ≤ ε.

Proof Let j1 ≤ +∞ be the first iteration such that Fj1+1 ≤ ε. Then, Fk > ε for
k = 1, . . . , j1. Thus, by A5, A7, and Lemma 3.3, we have

mk(xk) − mk(xk + sk) > κcεmin

{
ε

1 + κH
, κ f ε

g(α,β)εβ

}

≥ κc min

{
1

1 + κH
, κ f

}
min

{
ε2, ε1+g(α,β)+β

}

= κ̄cε
max{2,1+g(α,β)+β}, for k = 1, . . . , j1,

where κ̄c = κc min
{
1/(1 + κH ), κ f

}
. Thus, as f (xk) ≥ flow for all k and the sequence

{ f (xk)} is monotonically non-increasing, it follows that

f (x1) − flow ≥
∞∑

k=1

[ f (xk) − f (xk+1)] ≥
∑

k=1, k∈S j1

[ f (xk) − f (xk+1)]

≥
∑

k=1, k∈S j1

η1κ̄cε
max{2,1+g(α,β)+β}

= η1κ̄c|S j1 |εmax{2,1+g(α,β)+β}.
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Therefore,

|S j1 | ≤ ( f (x1) − flow)

η1κ̄c
ε−max{2,1+g(α,β)+β}. (28)

On the other hand, from (9) and Lemma 3.3, it follows that

δα
k+1 ≤ γ α

4 δα
k , if k ∈ S j1,

δα
k+1 ≤ γ α

2 δα
k , if k ∈ U j1,

δα
k ≥ κ f ε

g(α,β), for k = 1, . . . , j1 + 1.

Thus, considering uk ≡ 1/δα
k , we have

α4uk ≤ uk+1, if k ∈ S j1 , (29)

α2uk ≤ uk+1, if k ∈ U j1 , (30)

uk ≤ ūε−g(α,β), for k = 1, . . . , j1 + 1, (31)

where α4 = γ −α
4 ∈ (0, 1), α2 = γ −α

2 > 1, and ū = κ−1
f . From (29) and (30), we

deduce inductively

u1α
|S j1 |
4 α

|U j1 |
2 ≤ u j1+1.

From (31), it follows that

α
|S j1 |
4 α

|U j1 |
2 ≤ ū

u1
ε−g(α,β).

Then, taking logarithm on both sides, we get

|U j1 | ≤
[
− log(α4)

log(α2)
|S j1 | + ū

u1 log(α2)
ε−g(α,β)

]
. (32)

Finally, since j1 = |S j1 | + |U j1 | and

ε−g(α,β) ≤ ε−max{2,1+g(α,β)+β},

we conclude from (28) and (32) that j1 ≤ O
(
ε−max{2,1+g(α,β)+β}). 
�

Remark 3.3 If A4(a) holds, then g(α, β) = 1 − β and so Theorem 3.1 provides an
upper bound of O(ε−2) iterations. This result is better than the corresponding result
in [15] (see Theorem 2.1), as it was established without assumption A9. For example,
if we consider the trust-region algorithm of Fan and Yuan [10], Theorem 2.1 gives a
bound of O(ε−3) iterations, while Theorem 3.1 gives a bound of O(ε−2), which is a
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significant improvement. On the other hand, when A4(b) holds, we have two cases. If
β ≥ α, then

max {2, 1 + g(α, β) + β} = 2,

and we also get a bound of O(ε−2) iterations. If β < α, then

max {2, 1 + g(α, β) + β} = 1 + α(1 − β)

β
+ β > 2,

and so Theorem 3.1 provides an upper bound of O

(
ε
−

(
1+ α(1−β)

β
+β

))
iterations. How-

ever, under assumptions A4(b), the authors are only aware of algorithms for which
β = α. Specifically, we have in mind the regularization algorithms specified by (13)–
(15). In this case, Theorem 3.1 recovers results proved in [17]. Table 2 below shows a
comparison between the complexity bounds obtained from Theorems 2.1 and 3.1 for
some of the algorithms covered by Algorithm 1 and that satisfy A1–A8.

Remark 3.4 It is worth to mention that similar upper bounds of O(ε−2) have been
proved by Nesterov [19] for the steepest descent method, by Gratton, Sartenaer, and
Toint [20] for trust-region methods, by Cartis, Gould, and Toint [7] for the basic
ARC algorithm, by Cartis, Sampaio, and Toint [21] for a non-monotone line-search
algorithm, and by Ueda and Yamashita [22] for the Levenberg–Marquardt method
when f (x) = (1/2)‖F(x)‖2 with F : Rn → R

m continuously differentiable. With
additional second-order information, improved complexity bounds of O(ε−3/2) have
been proved by Nesterov and Polyak [23] for the cubic regularization of the Newton’s
method, by Cartis, Gould, and Toint [7] for second-order variants of the ARC algo-
rithm, byCurtis, Robinson, and Samadi [24] for amodified trust-regionmethod, and by
Martínez and Raydan [25] for a cubic regularization version of a variable-norm trust-
regionmethod. Furthermore, a complexity bound of O(ε−(p+1)/p) has been proved by
Birgin et al. [26] for a regularization method based on the minimization of (p + 1)-rst
order models.

Table 2 Comparison between the complexity bounds obtained from Theorems 2.1 and 3.1

Algorithm Assumption (α, β) Theorem 2.1 Theorem 3.1

Classical trust-region
[4,5]

A4(a) (1, 0) O(ε−2) O(ε−2)

Trust-region of Fan
and Yuan [10]

A4(a) (1, 1) O(ε−3) O(ε−2)

ARC algorithm [6] A4(b)
(
1
2 , 1

2

)
O(ε−2) O(ε−2)

Regularization
algorithms [17]

A4(b)
(

1
p−1 , 1

p−1

)
Does not apply O(ε−2)
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Remark 3.5 In [15], the NSC framework was extended to include some algorithms
for composite non-smooth optimization (NSO) problems and for unconstrained mul-
tiobjective optimization (MOO) problems. As expected, with minor changes in the
proof, Theorem 3.1 remains true if we consider these extensions of the NSC algo-
rithm. Specifically, for NSO and MOO problems, ‖∇ f (x)‖ in A1 and A2 must be
replaced by the appropriate criticality measures. Furthermore, in the case of MOO
problems, f (x) must be replaced by Φ(x) = maxi=1,...,m { fi (x)}. For details, see
Section 4 in [15].

4 Complexity Bounds for Second-Order Optimality

In this section, we investigate the worst-case complexity of a second-order variant
of Algorithm 1. We shall denote by τk = λmin(Hk) the smallest eigenvalue of the
symmetric matrix Hk . Let us consider the following conditions:

C1–C3 Same as A1–A3.
C4 The step sk satisfies

‖sk‖ ≤ κsΔ(δk, υk) for all k,

for some constant κs ≥ 1, where the function Δ is of the form

Δ(δ, υ) = δαυβ

for some powers α ∈ [0, 1], α �= 0, and β ∈ [0, 1]. From here, we shall denote
υk = max {χk,−τk}.
C5 The step sk produces a decrease in the model, which is sufficient in the sense
that

mk(xk) − mk(xk + sk) ≥ κc max

{
ψk min

{
φk

1 + ‖Hk‖ ,Δ(δk, υk)

}
,−τkΔ(δk, υk)

2
}

for some positive constant κc < 1, and where Hk is the Hessian matrix of f or an
approximation thereof.
C6 For all k ≥ 1, the model mk(xk + s) : Rn → R satisfies

mk(xk) = f (xk) and f (xk + s) − mk(xk + s) ≤ κm min
{
‖sk‖2, ‖sk‖3

}
,

for some constant κm > 0.
C7–C8 Same as A7–A8.

Now, we can state a generic second-order NSC algorithm as follows.
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Algorithm 2. (Nonlinear Stepsize Control Algorithm (second order))

Step 0 Given x1 ∈ R
n , H1 ∈ R

n×n , δ1 > 0, 0 < γ1 < γ2 < γ3 < 1 < γ4 and
0 < η1 ≤ η2 < 1, set k := 1.

Step 1 Choose amodelmk(xk +s) satisfying C6 and find a step sk which sufficiently
reduces the model in the sense of C5 for which ‖sk‖ satisfies C4.

Step 2 Compute the ratio ρk by (7);
Set the next iterate xk+1 by (8); and
Choose the stepsize parameter δk+1 by the update rule (9).

Step 3 Compute Hk+1, set k := k + 1 and go to Step 1.

We claim that, under suitable assumptions,Algorithm2 covers the class of nonlinear
trust-region algorithms specified by the choices:

mk(xk + s) := f (xk) + ∇ f (xk)
T s + 1

2
sT Hks, (33)

ω(x) = 1, φ(x) = ψ(x) = χ(x) = ‖∇ f (x)‖, (34)

Δk = δα
k max {χk,−τk}β , α ∈ [0, 1] (α �= 0) and β ∈ [0, 1], (35)

where Δk is the trust-region radius. Note that this class includes the second-order
version of the classical trust-region algorithm described in [4,18] for which (α, β) =
(1, 0). Moreover, if we consider (α, β) = (1, 1), this class also covers a novel second-
order variant of the trust-region algorithm of Fan and Yuan [10]. Specifically, let us
consider the assumptions below.

H1 The function f : Rn → R is twice continuously differentiable with Lipschitz
continuous gradient and Hessian.
H2 For all k ≥ 1,

‖Hk‖ ≤ κH and
∥∥∥(

∇2 f (xk) − Hk

)
sk

∥∥∥ ≤ κhess‖sk‖2,

for some constants κH > 1 and κhess > 0.
H3 There exists a bounded set Ω ⊂ R

n such that xk ∈ Ω for all k.
H4 For all k ≥ 1, the step sk produces a decrease in the model, which is sufficient
in the sense that
(a) mk(xk + sk) ≤ mk(xk + sC

k ), where sC
k = −αC

k ∇ f (xk) and

αC
k = argminα>0 {mk(xk − α∇ f (xk)) : ‖ − α∇ f (xk)‖ ≤ Δk} .

(b) mk(xk + sk) ≤ mk(xk + s E
k ) whenever τk < 0, where s E

k = αE
k zk ,

αE
k = argmin0<α≤1 {mk(xk + αzk)}

and vk satisfies

zT
k ∇ f (xk) ≤ 0, ‖zk‖ = Δk and zT

k Hk zk ≤ κντkΔ
2
k .

for some constant 0 < κν ≤ 1.
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Let us now justify our claim. Conditions C1 and C2 follow directly from (34),
while C3 is satisfied due to H3 and the continuity of ∇ f (x) (guaranteed by H1). As
in trust-region algorithms we have ‖sk‖ ≤ Δk for all k, it follows from (35) that C4 is
satisfied. On its turn, Condition C5 follows from Theorems 6.3.1 and 6.6.1 in Conn,
Gould, and Toint [4]. Finally, Condition C6 follows from Lemma 4.1 in Cartis, Gould,
and Toint [18].

4.1 Worst-Case Complexity Analysis

The next lemma gives a lower bound on δα
k when χk or −τk is bounded away from

zero.

Lemma 4.1 Suppose that C1–C8 hold and let 0 < εF , εH < 1. If, for k = 1, . . . , j ,

χk ≥ εF or τk ≤ −εH , (36)

then there exists a constant κw > 0, independent of k, εF and εH , such that, for
k = 1, . . . , j + 1,

δα
k ≥ κw min {εF , εH }(1−β) . (37)

Proof We show by induction that (37) holds with

κw = min

{
δα
1 ,

γ α
1

1 + κH
,
γ α
1 κc(1 − η2)

κmκ2
s

,
γ α
1 κc(1 − η2)

κmκ3
s

}
. (38)

Clearly, (37) holds for k = 1. Assuming that (37) holds for some k ∈ {1, . . . , j}, we
shall prove that (37) also holds for k + 1. Let us divide the proof in two cases.
Case I: χk ≥ −τk .
In this case, by (36) and C4, we have

χk ≥ min {εF , εH } and ‖sk‖ ≤ κsδ
α
k χ

β
k . (39)

Thus, (7), C5–C8, and (39) imply that

1 − ρk = f (xk + sk) − mk(xk + sk)

mk(xk) − mk(xk + sk)
≤

κmκ2
s

(
δα

k χ
β
k

)2

κcχk min

{
χk

1 + κH
, δα

k χ
β
k

} . (40)

Suppose that

δα
k < min

{
χ

(1−β)
k

1 + κH
,
χ

(1−β)
k κc(1 − η2)

κmκ2
s

}
. (41)
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In this case, it follows that

δα
k χ

β
k < min

{
χk

1 + κH
,
χkκc(1 − η2)

κmκ2
s

}
. (42)

Then, by (40) and (42), we obtain

1 − ρk ≤
κmκ2

s

(
δα

k χ
β
k

)2
κcχk

(
δα

k χ
β
k

) =
κmκ2

s

(
δα

k χ
β
k

)
κcχk

≤ 1 − η2,

and so, ρk ≥ η2. Thus, from rule (9) and the induction assumption, it follows that

δα
k+1 ≥ δα

k ≥ κw min {εF , εH }(1−β) ,

that is, (37) holds for k + 1.
On the other hand, if (41) is not true, then from (9), (39), and (38), it follows that

δα
k+1 ≥ γ α

1 δα
k ≥ min

{
γ α
1

1 + κH
,
γ α
1 κc(1 − η2)

κmκ2
s

}
min {εF , εH }(1−β)

≥ κw min {εF , εH }(1−β) ,

that is, (37) holds for k + 1.
Case II: −τk > χk .
In this case, by (36) and C4, we have

− τk ≥ min {εF , εH } and ‖sk‖ ≤ κsδ
α
k |τk |β. (43)

Thus, (7), C5–C8, and (43) imply that

1 − ρk = f (xk + sk) − mk(xk + sk)

mk(xk) − mk(xk + sk)
≤ κmκ3

s

(
δα

k |τk |β
)3

κc|τk |
(
δα

k |τk |β
)2 = κmκ3

s

κc|τk |
(
δα

k |τk |β
)
.

(44)

Suppose that

δα
k <

|τk |(1−β)κc(1 − η2)

κmκ3
s

. (45)

In this case, it follows that

δα
k |τk |β <

|τk |κc(1 − η2)

κmκ3
s

. (46)
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Then, combining (44) and (46), we obtain 1 − ρk ≤ 1 − η2, and so ρk ≥ η2. Thus,
from rule (9) and the induction assumption, it follows that

δα
k+1 ≥ δα

k ≥ κw min {εF , εH }(1−β) ,

that is, (37) holds for k + 1. On the other hand, if (45) is not true, then from (9), (43),
and (38), it follows that

δα
k+1 ≥ γ α

1 δα
k ≥ γ α

1 κc(1 − η2)

κmκ3
s

|τk |(1−β) ≥ κw min {εF , εH }(1−β) ,

that is, (37) holds for k + 1. This completes the induction argument. 
�
We are now ready to obtain an iteration complexity bound for Algorithm 2 to

achieve approximate second-order optimality. The proof of this result is based on the
proofs of Lemmas 4.5 and 4.6 in [18].

Theorem 4.1 Suppose that C1–C8 hold and that { f (xk)} is bounded below by flow.

Then, given 0 < εF , εH < 1, Algorithm 2 takes at most O(max
{
ε−3

F , ε−3
H

}
) iterations

to ensure

Fk ≤ εF and τk ≥ −εH . (47)

Proof Let j1 + 1 ≤ +∞ by the first iteration such that (47) holds. Then, for k =
1, . . . , j1, either Fk > εF or τk < −εH . If Fk > εF , it follows from C5, C8, C4,
Lemma 4.1 and υk ≥ min {εF , εH } that

mk(xk)−mk(xk + sk)≥κcεF min

{
εF

1 + κH
, κw min {εF , εH }

}
≥ κ̄c min {εF , εH }3 ,

where κ̄c = κc min {1/(1 + κH ), κw}.
On the other hand, if τk < −εH , it follows from C5, C4, Lemma 4.1 and υk ≥

min {εF , εH } that

mk(xk) − mk(xk + sk) ≥ κc|τk |Δ(δk, υk)
2 ≥ κ̃c min {εF , εH }3 ,

where κ̃c = κcκ
2
w. Thus, as f (xk) ≥ flow for all k and { f (xk)} is monotonically

non-increasing, it follows that

f (x1) − flow ≥
∞∑

k=1

[ f (xk) − f (xk+1)] ≥
∑

k=1,k∈S j1

η1 min {κ̄c, κ̃c}min {εF , εH }3

= η1αc|S j1 |min {εF , εH }3 ,

where αc = min {κ̄c, κ̃c}. Therefore,

|S j1 | ≤ ᾱc max
{
ε−3

F , ε−3
H

}
, (48)
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where ᾱc = ( f (x1) − flow)/η1αc. Finally, as in the proof of Theorem 3.1, we also
can prove that

|U j1 | ≤ O
(
max

{
ε−3

F , ε−3
H

})
. (49)

Thus, since j1 = |S j1 |+ |U j1 |, by (48) and (49), we obtain the desired upper bound. 
�
Remark 4.1 If εF = O(εH ), Theorem 4.1 provides an upper bound of O(ε−3

H ) itera-
tions. This bound recovers the result of Theorem4.7 in [18] for the second-order variant
of the classical trust-region algorithm, which correspond to the choice (α, β) = (1, 0).
In fact, Theorem 4.1 generalizes the referred result in [18] for the whole domain
(α, β) ∈ [0, 1] × [0, 1] (α �= 0) of stepsize parameters, and thus cover all the nonlin-
ear trust-region algorithms in the class specified by (33)–(35). Moreover, as expected,
our bound of O(ε−3

H ) matches in order the bounds obtained by Nesterov and Polyak
[23] for the cubic regularization of the Newton’s method, and by Cartis, Gould, and
Toint [18] for the ARC framework.

5 Conclusions

In this paper, we have investigated the worst-case complexity of the nonlinear stepsize
control (NSC) framework recently proposed by Toint [3] for unconstrained optimiza-
tion. Firstly, by modifying one basic assumption, we further generalize the NSC
framework. In particular, we were able to include in the framework the regulariza-
tion algorithms described in [17]. Then, under suitable conditions, we have proved a
worst-case complexity bound of O(ε−2) iterations for the generic NSC framework to
achieve first-order optimality within ε. This bound improves the results obtained by
Grapiglia, Yuan, and Yuan [15]. Finally, we have studied the worst-case complexity of
a class of second-order variants of the NSC framework. Specifically, we have proved a
worst-case complexity bound of O(ε−3)iterations for the generic algorithm to achieve
second-order optimality within ε. This bound matches in order the bounds obtained
by Nesterov and Polyak [23] for the cubic regularization of Newton’s method, and by
Cartis, Gould, and Toint [18] for the ARC framework and for the classical trust-region
method.
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