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In this paper, we propose a new trust region affine scaling method for nonlinear programming with simple
bounds. Our new method is an interior-point trust region method with a new scaling technique. The scaling
matrix depends on the distances of the current iterate to the boundaries, the gradient of the objective
function and the trust region radius. This scaling technique is different from the existing ones. It is motivated
by our analysis of the linear programming case. The trial step is obtained by minimizing the quadratic
approximation to the objective function in the scaled trust region. It is proved that our algorithm guarantees
that at least one accumulation point of the iterates is a stationary point. Preliminary numerical experience
on problems with simple bounds from the CUTEr collection is also reported. The numerical performance
reveals that our method is effective and competitive with the famous algorithm LANCELOT. It also
indicates that the new scaling technique is very effective and might be a good alternative to that used in
the subroutine fmincon from Matlab optimization toolbox.

Keywords: bound constrained optimization; trust region; interior point; affine scaling

1. Introduction

In this paper, we study the general bound constrained optimization problems:

min
x∈Rn

f (x) (1a)

s.t. l ≤ x ≤ u, (1b)

where f : R
n → R is a twice continuously differentiable function, l = (l(1), . . . , l(n))T and u =

(u(1), . . . , u(n))T. Likewise, it is possible to include one-sided constraints by setting l(i) to −∞
or u(i) to ∞, depending on which bound is required. Without loss of generality, we assume that
l(i) < u(i) for all i.

Though the bound constrained optimization problem (1) is a very simple constrained
optimization problem, it appears often in practice and has been studied extensively. Many
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872 X. Wang and Y.-X. Yuan

numerical methods for (1) have been proposed [2,3,5–8,11,12,16–18,20–25,28–31,33,37]. Some
of these papers studied the special case where the objective function f (x) is quadratic, whereas
others considered the general nonlinear f (x). Most of these numerical methods use quadratic mod-
els to compute the search direction or the trust region trial step, though some also use projected
gradients. Either an active set technique or an interior-point technique is used in these algorithms.
The algorithm that we propose in this paper is a trust region interior-point method in which we
use a new affine scaling technique.

The affine scaling algorithm was first introduced by Dikin [13] for linear programming. The
method was later re-discovered independently by Barnes [1] and byVanderbei et al. [35].A second-
order affine scaling algorithm for convex quadratic programming (QP) problems was proposed
by Dikin and Zorkaltsev [14] in 1980. In that paper, an ellipsoid that centres at the current point
and whose radius is a fixed fraction β ∈ (0, 1) of the largest scaled ellipsoid inscribed in the
non-negative orthant was constructed. The next iterate was generated by minimizing the objective
function over the intersection of the ellipsoid with the feasible region. Many papers have been
published on affine scaling algorithms for QP problems [4,26,33]. Affine scaling algorithms for
solving linearly constrained convex programming problems have also been studied [27,32]. All
the aforementioned affine scaling methods require that the ellipsoid defined be contained in the
feasible region. For general nonlinear programming problems, affine scaling algorithms normally
use trust region techniques to ensure convergence. Trust region methods are a large class of
numerical methods for nonlinear programming [10,36].

In [7], a famous affine scaling algorithm for solving (1) was proposed. Based on an equivalent
scaled Karush-Kuhn-Tucker (KKT) system, the authors minimized a quadratic function subject
to an ellipsoidal constraint. In that algorithm, the scaling matrix Dk is dependent on the distance
of xk to the bounds and ∇f (xk). However, to maintain feasibility, after obtaining the solution of
the subproblem, truncation needs to be done. A similar idea was also adopted by others, such as
Bellavia et al. [2] and Coleman and Li [6]. Since truncation may lead to short steps, the authors
took a projection step instead of performing truncation in [22,23]. When the bound of some
variable is very far away from the current iterate point, the scaling technique of Coleman and Li
would give a very large diagonal element of Dk . In this case, the ellipsoid ‖D−1

k d‖ ≤ �k can be
very oblong, and consequently the trust region step would likely be very large along one particular
coordinate direction, which means that all the other variables would remain nearly unchanged.
Different from previous works, in our algorithm, the trust region technique is dedicated to the
design of the scaling matrix.

In this paper, we study a trust region method which generates the trial step sk by minimizing
a second-order approximation of f (x) over an ellipsoidal trust region defined by a new affine
scaling technique. Motivated by linear programming, we find an interesting relationship among
the scaling matrix Dk , the trust region radius �k and the gradient gk . We minimize a quadratic
function in a scaled trust region and require that every iterate be a strictly feasible point. Without
any non-degeneracy assumption, we obtain the global convergence of the iterates to stationary
points. Lastly, we test the new algorithm on the majority of the bound constrained optimization
problems from CUTEr and compare it with LANCELOT and the subroutine fmincon in the Matlab
optimization toolbox based on the method proposed in [6]. The numerical results show that our
new method is very effective.

This paper is organized as follows. In Section 2, we state the algorithm in detail, whose global
convergence to first-order critical points is shown in Section 3. Computational results are presented
and discussed in Section 4. In Section 5, we give some concluding remarks.

Notation In all the following expressions, the norm symbol without a subscript, ‖ · ‖, refers to
the 2-norm. Superscript ‘(i)’ refers to the elements of the vector and superscript ‘ii’ refers to the
diagonal elements of the matrix. Subscript ‘k’ refers to the iteration indices, and fk is taken as
f (xk), while gk means ∇f (xk).
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Optimization Methods & Software 873

2. The algorithm

The interior-point technique requires that all iteration points xk be in the interior of the feasible
set. Define the following sets:

F := {x ∈ R
n : l ≤ x ≤ u}, F◦ := {x ∈ R

n : l < x < u}. (2)

A trust region affine scaling method for the bound constrained optimization (1) normally solves
the subproblem at the current iterate point xk ∈ F◦ stated by

min
d∈Rn

gT
k d + 1

2
dTBkd (3a)

s.t. ||D−1
k d|| ≤ �k , (3b)

where �k > 0 is the trust region radius and Dk is a positive definite diagonal matrix. The scaling
matrix Dk is often chosen so that every point in the ellipsoid �k = {d| ||D−1

k d|| ≤ �k} gives a
feasible step. Namely, xk + d is a feasible point of the original bound constrained problem (1)
for all d in �k . For scaling matrices Dk which do not have this property, either the step computed
by (3) may need to be truncated or an additional constraint l ≤ xk + d ≤ u has to be added
to (3).

The affine scaling matrix Dk given by Coleman and Li [6,7] is defined by

(Dk)ii =
√

|v(i)(xk)|, i = 1, . . . , n, (4)

where v(i)(x) is defined by

v(i)(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x(i) − u(i) if g(i)(x) < 0 and u(i) < ∞,

x(i) − l(i) if g(i)(x) ≥ 0 and l(i) > −∞,

−1 if g(i)(x) < 0 and u(i) = ∞,

1 if g(i)(x) ≥ 0 and l(i) = −∞.

(5)

The derivation of the scaling matrix (4) is based on Newton’s method for the diagonal
system

D(x)2g(x) = 0. (6)

We now derive our new scaling technique. Consider the very simple case where we need to
solve the following linear programming:

min
x∈Rn

cTx (7a)

s.t. x ≥ 0, (7b)

with c > 0. It is easy to see that the optimal solution is x∗ = 0, and all the constraints are active.
Hence, for any current point xk , it is desirable to have sk = −xk . Now, suppose we have a trust
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874 X. Wang and Y.-X. Yuan

region subproblem of the following form:

min
d∈Rn

cTd (8a)

s.t. ‖D−1
k d‖ ≤ �k . (8b)

We would like to choose Dk in such a way that the solution of (8) will yield sk = −xk . The KKT
system of (8) is

c + λkD−2
k sk = 0,

λk(�k − ‖D−1
k sk‖) = 0,

λk ≥ 0.

(9)

From (9), we have

sk = − 1

λk
D2

kc (10)

with

λk = cTxk

�2
k

. (11)

Remembering that we require sk = −xk , we can set

(Dk)ii = √
λk

√
x(i)

k

c(i)
, i = 1, . . . , n. (12)

For general nonlinear problems, we use the scaling technique (11)–(12) for those variables that
seem to be active likely and set (Dk)ii = 1 for inactive variables.

In order to make our descriptions clear, we need to introduce two vectors ak and bk , which are
defined componentwise by

a(i)
k = x(i)

k − l(i), b(i)
k = u(i) − x(i)

k , i = 1, . . . , n.

Then, we define two index sets as follows:

S1
k = {i : a(i)

k ≤ �k , g(i)
k ≥ εa(i)

k }, S2
k = {i : b(i)

k ≤ �k , −g(i)
k ≥ εb(i)

k }, (13)

where ε � 1 is a positive constant. We consider these two sets as some prediction of active indices.
Motivated by (11), we define a parameter tk as

tk =
√∑

i∈S1
k

a(i)
k g(i)

k + ∑
i∈S2

k
b(i)

k |g(i)
k |

�k
. (14)

And, our new scaling matrix Dk is defined by

(Dk)ii =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

tk ·
√

a(i)
k

g(i)
k

, i ∈ S1
k ,

tk ·
√

b(i)
k

|g(i)
k | , i ∈ S2

k ,

1, i /∈ Sk
�= S1

k ∪ S2
k .

(15)
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Optimization Methods & Software 875

Because xk ∈ F◦, (15) is well defined and (Dk)ii > 0 for all i. Moreover, (Dk)ii is always finite
no matter the bound corresponding to x(i) is finite or not. In addition, it is easy to see that

a(i)
k

g(i)
k

≤ 1

ε
, i ∈ S1

k ,
b(i)

k

|g(i)
k | ≤ 1

ε
, i ∈ S2

k ,

and

tk ≤
√∑

i∈S1
k

a(i)
k g(i)

k + ∑
i∈S2

k
bi

k|gi
k|

�k
≤

√
n‖gk‖
�k

.

Hence,

‖Dk‖ ≤ max

{√
n‖gk‖
ε�k

, 1

}
. (16)

The trust region subproblem of our affine scaling algorithm can now be given as follows:

min
d∈Rn

qk(d) = gT
k d + 1

2
dTBkd (17a)

s.t. ‖D−1
k d‖ ≤ �k , (17b)

xk + d ∈ F◦. (17c)

Since problem (17) may not admit a solution, as the feasible set may not be a closed one, and an
exact solution of (17) may be hard to find even if it exists, an approximate solution sk is computed.
Similar to classical analysis in trust region methods, we require sk to satisfy the feasible conditions
(17b)–(17c) and the following inequality:

qk(sk) ≤ βqk(d
c
k ) (18)

for some constant β ∈ (0, 1), where dc
k is the Cauchy point of (17) defined by

dc
k = arg min

d

{
qk(d) : d = −τ

D2
kgk

‖Dkgk‖ , τ ≥ 0, ‖D−1
k d‖ ≤ �k , xk + d ∈ F

}
. (19)

Once the trust region trial step sk is obtained, we need to compute the actual reduction in f

Aredk = f (xk) − f (xk + sk)

and the predicted reduction

Predk = qk(0) − qk(sk).

The ratio

ρk = Aredk

Predk
(20)

plays an important role in deciding whether the trial step can be accepted and in adjusting the
trust region radius. To be more precise, the next iterate is defined by

xk+1 =
{

xk + sk if ρk ≥ η,

xk if ρk < η,
(21)
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876 X. Wang and Y.-X. Yuan

where η is a positive constant in (0, 1). The trust region radius in the next iteration is given by

�k+1 ∈ [�k , min(γ2�k , �̄)] if ρk > η2, (22a)

�k+1 = �k if η1 ≤ ρk ≤ η2, (22b)

�k+1 ∈ (0, γ1�k] if ρk < η1, (22c)

where η1 ≤ η2 are two positive constants in (η, 1).
The termination conditions for our algorithm are standard. Optimality conditions for prob-

lem (1) are well established [36]. Assume that the feasible point x∗ is a stationary point, then the
first-order necessary conditions hold at x∗:

g(i)(x∗) = 0 if l(i) < x(i)
∗ < u(i),

g(i)(x∗) ≥ 0 if x(i)
∗ = l(i),

g(i)(x∗) ≤ 0 if x(i)
∗ = u(i).

(23)

The projected gradient of the objective function f at point x, ĝ(x), is defined componentwise by

ĝ(i)(x) =

⎧⎪⎨
⎪⎩

g(i)(x) if l(i) < xi < u(i),

min{0, g(i)(x)} if x(i) = l(i),

max{0, g(i)(x)} if x(i) = u(i).

(24)

It can be seen that (23) holds if and only if

ĝ(x∗) = 0. (25)

In our algorithm, we will use ‖ĝ(x)‖ as the first-order criticality measure [8,10]. We also stop our
algorithm if either the trust region radius or the predicted reduction Predk is sufficiently small, or
the trial step is too short.

Now, we are ready to give the descriptions of our complete algorithm for solving (1).

Algorithm 2.1 Trust region affine scaling algorithm

Step 0: Initialization.
Given x0 ∈ F◦, �0 > 0 and the constants �̄, ε, η, η1 and η2 satisfying

�̄ > 1, ε > 0, ε̄ > 0, 0 < γ1 < 1 < γ2, 0 < η < η1 ≤ η2 < 1.

Compute f (x0) and ĝ(x0), set k = 0.
Step 1: Termination test.

If ‖ĝk‖ < ε or �k < ε̄, then stop (returning xk as a solution).
Step 2: Determine a trial step.

Compute sk satisfying (18).
If Predk < ε̄, or ‖sk‖ < ε̄, then stop (returning xk + sk as a solution).

Step 3: Test to accept the trial step
Compute f (xk + sk) and ρk through (20).
Set xk+1 by (21).

Step 4: Update the trust region radius.
Choose �k+1 by (22).
k := k + 1, go to Step 1.

In Section 4, we will discuss the details of the implementation of the above algorithm to practical
computation.
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Optimization Methods & Software 877

3. Global convergence properties

In this section, we prove that the iterates xk generated by Algorithm 2.1 are not bounded from
stationary points. Before we give the convergence results, some assumptions need to be made.

(AS.1) f ∈ C2.
(AS.2) Given an initial point x0 ∈ F◦, the level set L = {x ∈ F : f (x) ≤ f (x0)} is compact.
(AS.3) There exists a constant χB > 1 such that ‖Bk‖ ≤ χB for all k.

From (AS.1) and (AS.2), we know that there exist positive scalars M1 and χg such that

‖∇2f (x)‖ ≤ M1 and ‖gk‖ ≤ χg

for all k and all x ∈ L. Without loss of generality, we assume that M1 = χB, then for all k and all
x ∈ L,

‖Bk‖ ≤ χB, ‖∇2f (x)‖ ≤ χB.

The following lemma is a natural consequence of the construction of Algorithm 2.1.

Lemma 3.1 Suppose that {xk} is a sequence generated by Algorithm 2.1, then

xk ∈ F◦

for all k.

Proof For each xk ∈ F◦, from the definition of sk , we know that xk + sk ∈ F◦. Thus, no matter
xk+1 = xk + sk or xk+1 = xk , we always have xk+1 ∈ F◦. Consequently, by induction, xk ∈ F◦ for
all k. �

Following the standard techniques for analysing trust region algorithms, we first give a lower
bound for the predicted reduction Predk . In order to do so, we need to introduce a new vector vk ,
which is defined componentwise by

v(i)
k =

⎧⎪⎨
⎪⎩

a(i)
k , i ∈ S1

k ,

b(i)
k , i ∈ S2

k ,

1, i /∈ Sk .

(26)

Lemma 3.2 Assume that (AS.1)–(AS.3) hold. If sk satisfies (18), then

Predk ≥ β
‖vk ◦ gk‖

2�̄
min

{
ε‖vk ◦ gk‖�k

nχgχB�̄
,
‖vk ◦ gk‖

χB�̄
, �k

}
, (27)

where ‘◦’ represents the Hadamard product of two vectors, namely (v ◦ g)(i) = v(i)g(i) for all i.

Proof Denote d(τ ) = −τ(D2
kgk/‖Dkgk‖)(τ ≥ 0). First, we need to determine the bound on τ

as the Cauchy step must be in the intersection of the trust region and the feasible region.

(1) d(τ ) should satisfy the trust region constraint, namely ‖D−1
k dc

k (τ )‖ ≤ �k , which is equivalent
to τ ∈ [0, �k].

(2) d(τ ) should satisfy the feasibility constraint xk + d(τ ) ∈ F . First, we observe that

‖Dkgk‖2 = t2
k

⎡
⎣∑

i∈S1
k

a(i)
k g(i)

k +
∑
i∈S2

k

b(i)
k |g(i)

k |
⎤
⎦ +

∑
i/∈Sk

g(i)2
k ≥ t4

k �
2
k . (28)

Next, let us consider the following subcases:
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878 X. Wang and Y.-X. Yuan

Case 2.1 i ∈ S1
k . The feasibility condition x(i)

k + d(i)(τ ) ≥ l(i) is equivalent to

τ ≤ ‖Dkgk‖
t2
k

. (29)

Inequality (28) implies that ‖Dkgk‖/t2
k ≥ �k . Hence, x(i)

k + d(i)(τ ) ≥ l(i) is satisfied if τ ∈ [0, �k].

Case 2.2 i ∈ S2
k . Similar to Case 2.1, we can show that x(i)

k + d(i)(τ ) ≤ u(i) always holds if
τ ∈ [0, �k].

Case 2.3 i /∈ Sk . If g(i)
k = 0, τ can be any value in the interval [0, +∞). It remains for us to

consider the case where g(i)
k 
= 0.

If g(i)
k 
= 0, without loss of generality, we only need to consider the case g(i)

k > 0. The feasibility
condition x(i)

k + d(i)(τ ) ≥ l(i) is equivalent to

τ ≤ a(i)
k

‖Dkgk‖
g(i)

k

. (30)

If a(i)
k > �k , it is easy to see that a(i)

k (‖Dkgk‖/g(i)
k ) ≥ �k . Thus, the feasibility condition x(i)

k +
d(i)(τ ) ≥ l(i) is guaranteed if τ ∈ [0, �k].

If a(i)
k ≤ �k , the fact that i /∈ Sk implies that 0 < g(i)

k < εa(i)
k . In this case, a(i)

k (‖Dkgk‖/g(i)
k ) ≥

||Dkgk||/ε. Hence, x(i)
k + d(i)(τ ) ≥ l(i) holds as long as τ ≤ ||Dkgk||/ε.

To sum up, we have proved that

xk + d(τ ) ∈ F for all τ ∈
[

0, min

{‖Dkgk‖
ε

, �k

}]
. (31)

Define ϕ : R → R by setting ϕ(τ) = qk(d(τ )). Let τ ∗ be the minimizer of ϕ on
[0, min{‖Dkgk‖/ε, �k}]. The definition of ϕ(τ) gives that

ϕ(τ) = −τ‖Dkgk‖ + τ 2

2

gT
k D2

kBkD2
kgk

‖Dkgk‖2
.

Direct calculation indicates that

−ϕ(τ ∗) ≥ ‖Dkgk‖
2

min

{ ‖Dkgk‖
‖DkBkDk‖ ,

1

ε
‖Dkgk‖, �k

}
. (32)

Under our assumptions, it follows from (16) that

‖Dk‖ ≤ max

{√
nχg

ε�k
, 1

}
=⇒ 1

‖Dk‖2
≥ min

{
ε�k

nχg
, 1

}
.

As a result, (32) implies that

−ϕ(τ ∗) ≥ ‖Dkgk‖
2

min

{
ε‖Dkgk‖�k

nχgχB
,

1

χB
‖Dkgk‖,

1

ε
‖Dkgk‖, �k

}

≥ ‖Dkgk‖
2

min

{
ε‖Dkgk‖�k

nχgχB
,

1

χB
‖Dkgk‖, �k

}
(33)
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Optimization Methods & Software 879

as ε � 1. Moreover,

‖Dkgk‖2 = [∑i∈S1
k

a(i)
k g(i)

k + ∑
i∈S2

k
b(i)

k |g(i)
k |]2

�2
k

+
∑
i/∈Sk

g(i)2
k

≥ [∑i∈S1
k

a(i)
k g(i)

k + ∑
i∈S2

k
b(i)

k |g(i)
k |]2 + ∑

i/∈Sk
g(i)2

k

max{�̄2, 1}
≥ ‖vk ◦ gk‖2

max{�̄2, 1}
≥ ‖vk ◦ gk‖2

�̄2
(34)

since �̄ > 1. Combining (33)–(34) with (18)–(19), we obtain (27). �

For simplicity, we denote

ζ1 = β

2�̄
, ζ2 = ε

nχgχB�̄
, ζ3 = 1

χB�̄
, (35)

and then (27) can be rewritten as

Predk ≥ ζ1‖vk ◦ gk‖ min{ζ2‖vk ◦ gk‖�k , ζ3‖vk ◦ gk‖, �k}. (36)

Before analysis, we make another assumption.

(AS.4) If limk→∞ �k = 0, the following relation holds:

‖sk‖ = O(�k). (37)

This assumption seems to be reasonable. To illustrate this, let us consider the scaled ball
‖D−1

k d‖ ≤ �k . For i ∈ Sk , the corresponding axis length of this ball is �k . By the definition of
S1

k , we know that the corresponding variable is very close to the boundary (the distance is less
than �k), and also since g(i)

k is positive, intuitively it will approach the boundary if we search by
some descent algorithm. So, ‖sk‖ should be O(�k) along these coordinate directions. A similar
consideration can be made on S2

k .

Lemma 3.3 Assume that (AS.1)–(AS.4) hold. Then, the sequence {xk} generated by Algorithm 2.1
satisfies

lim inf
k→∞

‖vk ◦ gk‖ = 0. (38)

Proof In order to obtain a contradiction, we assume that there exist k0 and ε > 0 such that

‖vk ◦ gk‖ ≥ ε ∀ k ≥ k0.

Then, from Lemma 3.2, we deduce that for all k ≥ k0,

Predk ≥ ζ1ε min{ζ2ε�k , ζ3ε, �k}.
Denote S as the set of all successful iterations

S = {k ∈ Z+ : ρk ≥ η}.
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880 X. Wang and Y.-X. Yuan

If there are only finitely many successful iterations, that is, S is a finite set, then for all k sufficiently
large, from the framework of Algorithm 2.1, we have �k+1 ≤ γ1�k , which implies that

∞∑
k=0

�k < ∞.

If S is an infinite set, from (21), we know that Aredk ≥ η Predk for all k ∈ S. Since {fk} is a
non-increasing sequence, it follows that ∑

k∈S
�k < ∞.

The updating rules of the trust region radius in our algorithm imply that

∞∑
k=0

�k ≤
(

1 + γ2

1 − γ1

) (
�1 +

∑
k∈S

�k

)
< ∞.

Hence,

lim
k→∞

�k = 0. (39)

Consequently, for all k sufficiently large,

Predk ≥ ζ1ε min{ζ2ε, 1}�k . (40)

Besides, (AS.4) implies that sk → 0. Thus, for all k sufficiently large,

|Aredk − Predk| ≤ 1
2 |sT

k (∇2f (θk) − Bk)sk| ≤ χB‖sk‖2, (41)

where θk ∈ [xk , xk+1]. By (AS.4), it can be concluded that

lim
k→∞

ρk = 1,

and hence for all k sufficiently large, �k+1 ≥ �k , which contradicts (39). Therefore, (38) is
true. �

Based on the above analysis, we obtain the main convergence result in this paper as follows.

Theorem 3.1 Under (AS.1)–(AS.4), the sequence {xk} generated by Algorithm 2.1 is not
bounded from the stationary points.

Proof From Lemma 3.3, assume that there exist a subsequence K and a point x∗ such that

lim
k→∞
k∈K

xk = x∗, lim
k→∞
k∈K

‖vk ◦ gk‖ = 0. (42)

In order to obtain convergence, we need to consider the following cases.

Case 1 l(i) < x(i)∗ < u(i). By the definition of vk in (26), we have that for all large k ∈ K, no
matter which is the set that encompasses the index i,

vi
k ≥ min

{
u(i) − x(i)∗

2
,

x(i)∗ − l(i)

2
, 1

}
> 0,

which concludes that g(i)∗ = 0.
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Optimization Methods & Software 881

Case 2 x(i)∗ = l(i). If there are infinitely many indices k ∈ K such that i ∈ S1
k , since

g(i)
k ≥ εa(i)

k ,

it implies that g(i)∗ ≥ 0. If there are only a finite number of indices k ∈ K such that i ∈ S1
k , for all

large k, we have

v(i)
k ≥ min

{
u(i) − l(i)

2
, 1

}
,

which indicates that g(i)∗ = 0.

Case 3 x(i)∗ = u(i). Similar to Case 2, we have that g(i)∗ ≤ 0 in this case.
The above analysis shows that x∗ is a KKT point. �

4. Preliminary numerical experience

In this section, we examine the practical behaviour of Algorithm 2.1 given in Section 2. Our
implementation is written in Matlab 7.6.0 (R2008a). The numerical results have been obtained on a
PC with a 1.86 GHz Pentium Dual-Core microprocessor and 1 GB of memory running Fedora 8.0.
We test all the 106 simple bound constrained optimization problems from CUTEr collection [19].
Due to memory limitation, 103 problems could be decoded by SifDec in our machine except
problems CHENHARK, QRTQUAD and QUDLIN. Before we give the computational results,
some issues need to be considered.

First, in our algorithm, since CUTEr can provide the exact Hessian of the functions, we set
Bk = ∇2f (xk) in the trust region subproblem (17). We also relax xk + d ∈ F◦ to xk + d ∈ F .
Thus, by replacing D−1

k d with d̃, we obtain the following trust region subproblem:

min
d̃∈Rn

q̃k(d̃) = (Dkgk)
Td̃ + 1

2
d̃T(DkBkDk)d̃ (43a)

s.t. ‖d̃‖ ≤ �k , (43b)

D−1
k (l − xk) ≤ d̃ ≤ D−1

k (u − xk). (43c)

Since the exact solution of (43) is not easy to obtain, an obvious inexact solution can be obtained
by truncating the exact solution of (43a)–(43b) to the feasible region of (43c). However, numerical
results show that this approach is not a good idea, as the step obtained in this way is normally
very small and does not satisfy the sufficient descent condition (18). Therefore, we apply Powell’s
subroutine [30] to obtain an inexact solution of the QP subproblem (43). The step d̃k obtained by
Powell’s method may lie on the boundary of the feasible region. Thus, we let

sk = βDkd̃k (44)

for β ∈ (0, 1). Consequently, we always have xk + sk ∈ F◦.
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882 X. Wang and Y.-X. Yuan

Second, the CUTEr problems provide the initial points xstart. However, the starting points may
not be in F◦. We modify the initial points as follows:

x(i)
0 =

⎧⎪⎨
⎪⎩

l(i) + 0.5 min{1, u(i) − l(i)} if x(i)
start < l(i) + 10−12,

u(i) − 0.5 min{1, u(i) − l(i)} if x(i)
start > u(i) − 10−12,

x(i)
start otherwise.

Next, in some CUTEr problems, some of the variables may be fixed. Then, we deal with this
case as follows. Let P be the set of indices of the variables which are to be fixed. Let ei be the ith
column of the n by n identity matrix and let P be the matrix made up of columns ei, i /∈ P . Then,
consider (17) as a function of the free variables d̄ = PTd.

The parameters used in our implementation are set as follows:

�0 = 1, �̄ = 100, η = 10−8, β = 0.9999, ε = 10−5, ε̄ = 10−15, ε = 10−8.

For updating the trust region radius, we use the following strategy:

�k+1 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

max{�k , 1.5‖D−1
k sk‖} if ρk > 0.9,

�k if ρk ∈ [0.1, 0.9],
max{0.5�k , 0.75‖D−1

k sk‖} if ρk ∈ [10−8, 0.1),

0.5�k if ρk ∈ (−∞, 10−8).

(45)

We compare Algorithm 2.1 with the famous code LANCELOT [9] and the subroutine fmincon
from the Matlab optimization toolbox in Figures 1 and 2, respectively. Since some parameters in
LANCELOT and fmincon are optional to meet different users’ demand, in our experiments, we
adopt the following options to make the comparison as fair as possible:

For LANCELOT,
BEGIN

gradient-accuracy-required 1e-5
exact-second-derivatives-used
trust-region-radius 1.0
maximum-number-of-iterations 1000
two-norm-trust-region-used

END
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Algorithm2.1
LANCELOT

Algorithm2.1
LANCELOT

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
τ

Figure 1. (a) Performance profile on function evaluations between Algorithm 2.1 and LANCELOT. (b) Performance
profile on gradient evaluations between Algorithm 2.1 and LANCELOT.
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Figure 2. (a) Performance profile on function evaluations between Algorithm 2.1 and fmincon. (b) Performance profile
on gradient evaluations between Algorithm 2.1 and fmincon. (c) Performance profile on CPU time between Algorithm 2.1
and fmincon.

For fmincon,
options = optimset(‘Algorithm’, ‘Trust-Region-Reflective Algorithm’, ‘Hessian’, ‘on’, ‘Init-
TrustRegionRadius’, ‘1’, ‘MaxFunEvals’, ‘1000’, ‘TolCon’, 1e-12, ‘TolFun’, ‘1e-6’, ‘TolPCG’,
1e-5, ‘TolX’, 1e-15).

In Table 1, we report the experiment results performing all the aforementioned algorithms.
For each problem, the number of function evaluations ‘nf ’ and the number of gradient evalua-
tions ‘ng’ are given. And ‘n’ denotes the dimension of the problems. The entry ‘F’ means that
the algorithm stops when either the number of iterations or the number of function evaluations
exceeds the maximum number. In addition, we report the CPU time ofAlgorithm 2.1 and fmincon.
Moreover, we display all the problems which achieve different final objective function values by
Algorithm 2.1 and fmincon in Table 2. Combining with Table 1, it can be seen that on these
problems, Algorithm 2.1 obtains a better solution at a lower computational cost.

To give a vivid description of the algorithms, efficiency comparisons are shown in Figures 1–2,
using the performance profiles introduced by Dolan and Moré [15]. The performance profiles
are generated by executing solvers S on the test set P . Considering the measure of interest, for
example, number of function evaluations, for each problem p ∈ P and each solver s ∈ S, define

np,s = number of function evaluations to solve problem p by solver s.

To compare the performance on problem p by solver s with the best performance on p by any
solver, define the performance ratio

rp,s = np,s

min{np,s : 1 ≤ s ≤ ns} , (46)
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884 X. Wang and Y.-X. Yuan

Table 1. Numerical results on simple bounded optimization problems from CUTEr.

LANCELOT fmincon Algorithm 2.1

Problem n nf ng nf ng CPU time nf ng CPU time

3PK 30 16 17 25 24 0.1201 28 28 0.1875
ALLINIT 4 16 17 9 8 0.0314 10 9 0.0227
BDEXP 100 12 10 F F F 16 16 0.1555
BIGGSB1 100 12 13 13 12 0.1906 7 8 0.383
BLEACHNG 9 52 53 7 6 35.9055 7 7 35.6095
BQP1VAR 1 1 2 5 4 0.0117 3 3 0.0022
BQPGABIM 46 3 4 6 5 0.0574 3 3 0.0549
BQPGASIM 50 3 4 5 4 0.047 3 3 0.0628
CAMEL6 2 5 6 8 7 0.0278 6 6 0.0082
CHEBYQAD 100 140 110 28 27 3.429 62 46 6.4551
CVXBQP1 1000 4 5 7 6 10.913 3 3 4.6465
DECONVB 61 18 15 25 24 0.3352 F F F
EG1 3 4 5 9 8 0.0354 7 6 0.0125
EXPLIN 1200 21 22 30 29 81.478 21 22 109.4536
EXPLIN2 1200 17 18 18 17 48.4334 18 17 79.9722
EXPQUAD 120 22 20 23 22 0.2553 32 26 0.268
GRIDGENA 1226 99 86 4 3 8.2426 5 5 138.3152
HADAMALS 400 69 60 12 11 2.2947 12 12 2.744
HART6 6 8 8 8 7 0.0286 9 8 0.0167
HATFLDA 4 24 25 63 62 0.1445 11 11 0.0122
HATFLDB 4 20 21 21 20 0.0668 8 8 0.0096
HATFLDC 25 4 5 6 5 0.0294 5 5 0.0227
HIMMELP1 2 11 11 7 6 0.0227 14 15 0.08911
HS1 2 36 30 30 29 0.0667 29 25 0.0325
HS110 50 3 4 5 4 0.0222 3 3 0.0063
HS2 2 6 7 12 11 0.0351 9 8 0.0123
HS25 3 0 1 1 0 0.0118 0 1 0.0026
HS3 2 4 5 5 4 0.0144 8 8 0.0076
HS38 4 50 42 189 188 0.4567 47 39 0.0926
HS3MOD 2 4 5 12 11 0.037 8 8 0.0099
HS4 2 1 2 5 4 0.0142 3 3 0.0025
HS45 6 3 4 6 5 0.0234 5 5 0.0042
HS5 2 5 6 8 7 0.0252 6 6 0.0045
JNLBRNG1 1024 7 8 23 22 35.4785 5 5 68.5448
JNLBRNG2 1024 6 7 16 15 23.8144 6 6 34.6967
JNLBRNGA 1024 7 8 20 19 30.2861 6 7 142.6648
JNLBRNGB 1024 7 8 18 17 26.7303 10 11 48.599
LINVERSE 199 22 19 126 125 4.3002 21 17 6.5245
LOGROS 2 101 82 22 21 0.0619 35 26 0.0279
MAXLIKA 8 8 9 15 14 0.0912 46 41 0.1682
MCCORMCK 1000 8 9 28 27 43.6524 10 10 20.8506
MDHOLE 2 53 48 50 49 0.154 45 39 0.0435
NCVXBQP1 1000 9 10 10 9 15.5187 9 9 17.8724
NCVXBQP2 1000 8 9 49 48 76.3267 32 13 94.1669
NCVXBQP3 1000 11 12 36 35 56.0918 20 13 88.4003
NOBNDTOR 1024 7 8 15 14 3.2927 3 4 5.7361
NONSCOMP 484 12 13 21 20 5.6525 20 20 7.4561
OBSTCLAE 484 7 8 202 201 65.9593 11 11 10.5567
OBSTCLAL 1024 8 9 13 12 22.0112 F F F
OBSTCLBL 1024 8 9 10 9 14.6636 5 6 385.0913
OBSTCLBM 1024 4 5 9 8 13.3187 4 4 144.5011
OBSTCLBU 1024 8 9 9 8 13.9918 F F F
OSLBQP 8 2 3 10 9 0.0289 4 4 0.0042
PALMER1 4 39 25 25 24 0.087 31 22 0.0415
PALMER1A 6 71 63 27 26 0.0976 41 36 0.0838
PALMER1B 4 36 35 155 154 0.367 37 30 0.0623
PALMER1E 8 205 183 F F F 53 43 0.1409
PALMER2 4 25 23 9 8 0.0355 25 17 0.0261

(Continued)
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Table 1. Continued

LANCELOT fmincon Algorithm 2.1

Problem n nf ng nf ng CPU time nf ng CPU time

PALMER2A 6 178 156 513 512 1.1716 57 50 0.1067
PALMER2B 4 19 19 65 64 0.1744 31 25 0.0421
PALMER2E 8 108 101 F F F 125 99 0.3433
PALMER3 4 16 16 10 9 0.0397 25 20 0.0526
PALMER3A 6 176 153 612 611 1.3692 73 64 0.1553
PALMER3B 4 40 35 28 27 0.1047 18 16 0.0345
PALMER3E 8 58 55 386 385 1.1896 87 68 0.1965
PALMER4 4 23 21 9 8 0.0361 17 16 0.0268
PALMER4A 6 66 57 232 231 0.5319 54 44 0.1261
PALMER4B 4 35 31 22 21 0.0621 19 16 0.0548
PALMER4E 8 122 108 F F F 48 39 0.1129
PALMER5A 8 F F F F F 1000 828 2.1048
PALMER5B 9 F F F F F 150 144 0.3704
PALMER5D 8 9 10 6 5 0.031 14 14 0.0225
PALMER5E 8 F F F F F 298 295 0.6184
PALMER6A 6 255 218 F F F 102 91 0.2009
PALMER6E 8 75 70 522 511 1.3207 47 37 0.1364
PALMER7A 6 F F F F F 730 714 1.4255
PALMER7E 8 12 13 F F F 209 166 0.4624
PALMER8A 6 10 10 158 157 0.3751 52 40 0.2084
PALMER8E 8 67 62 F F F 26 24 0.1138
PENTDI 1000 1 2 12 11 19.043 F F F
PROBPENL 500 4 5 5 4 1.7571 6 6 2.2039
PSPDOC 4 8 8 21 20 0.0718 8 8 0.0173
QR3DLS 155 89 79 194 193 5.3834 61 59 3.0024
S368 100 12 11 11 10 0.6419 14 13 0.8284
SCOND1LS 500 217 186 84 83 0.3504 140 104 0.5689
SIM2BQP 1 1 2 6 5 0.0201 3 3 0.0047
SIMBQP 2 4 5 7 6 0.0229 7 7 0.0109
SINEALI 100 15 14 10 9 0.0883 12 10 0.0948
SPECAN 9 10 11 12 11 1.2789 10 10 1.2137
TORSION1 1024 10 11 11 10 16.1714 4 5 487.1617
TORSION2 1024 5 6 11 10 16.2599 4 4 492.338
TORSION3 1024 5 6 10 9 14.4309 6 7 45.7184
TORSION4 1024 4 5 10 9 14.4825 6 6 43.5582
TORSION5 1024 3 4 15 14 21.3003 5 6 12.4611
TORSION6 1024 5 6 15 14 21.3937 5 5 12.3605
TORSIONA 1024 10 11 9 8 13.339 5 6 158.266
TORSIONB 1024 4 5 9 8 13.1222 5 5 161.7327
TORSIONC 1024 5 6 9 8 12.9654 5 6 25.1166
TORSIOND 1024 4 5 9 8 13.0406 5 5 24.681
TORSIONE 1024 3 4 14 13 19.8415 5 6 23.1277
TORSIONF 1024 5 6 14 13 20.591 5 5 23.1345
WEEDS 3 55 49 56 55 0.163 32 28 0.0695
YFIT 3 95 81 F F F 45 39 0.0645

where ns is the number of solvers. Whenever the solver s does not solve problem p, set rp,s = rM .
Here, rM is a very large preset positive constant. To obtain the overall performance of solver s on
the test set P , define

ρs(τ ) = 1

np
size{p ∈ P : log2 rp,s ≤ τ }. (47)

Equivalently, ρs(τ ) represents the probability that the performance ratio rp,s is within the factor
2τ . It is easy to see that ρs(0) is the probability that the solver s wins over the rest of the solvers.

From Figure 1, we can see that Algorithm 2.1 performs slightly better than LANCELOT on
gradient evaluations and about the same on function evaluations. It shows that the probability
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Table 2. Problems with different objective function values.

fmincon Algorithm 2.1
Problem fval fval

CHEBYQAD 0.0095 0.0087
LINVERSE 68.0015 68
PALMER1A 59.7543 0.0899
PALMER2A 0.0204 0.0171
PALMER3A 0.0379 0.0204
PALMER3E 0.049 5.1e−5
PALMER4 2.285e+3 2.424e+3
PALMER4A 0.0432 0.0406
PALMER6E 0.079 2.24e−4

that Algorithm 2.1 is faster on the function evaluations is near 55% (obtained from ρs(0)) and
on the gradient evaluations is 62%. If we choose being within a factor of 1(τ = 1) of the best
solver as the scope of our interest, Algorithm 2.1 will be a winner for about 90% of the reported
problems on gradient evaluations. So, our algorithm is effective and comparable with the famous
solver LANCELOT. A similar analysis can be made from Figure 2. We can see that the new
method performs better than fmincon not only on the function evaluations but also on the gradient
evaluations, which shows that the new scaling technique that we proposed is more effective
than that of Coleman and Li on the tested problems when considering the function and gradient
evaluations. Figure 2(c) indicates that the overall performance on CPU time of Algorithm 2.1
is better than fmincon. However, we have to admit that on some large-scale problems given in
Table 1, Algorithm 2.1 does not perform as well as fmincon. As pointed by a referee, the reason for
this may be that the inexact solution of (43) obtained by Powell’s subroutine is not good enough.
We believe that our algorithm can be improved if we can solve (43) more efficiently, particularly
for large-scale problems.

5. Conclusion

In this paper, we proposed a new affine scaling method for solving bound constrained optimization
problems. It combines affine scaling strategy with trust region technique. By studying a simple
linear programming problem, we derived a new scaling technique for the possible active variables.
Our scaling matrix depends not only on the gradient of the current iterate and its distances to the
bounds, but also on the relationship between these distances and the trust region radii. Different
from traditional affine scaling methods, the trust region radius also plays an important role in the
design of the scaling matrix. Through analysis, without any degeneracy, we proved that the iterates
generated by our algorithm are not bounded away from the stationary points. Lastly, we tested
our algorithm on the majority of the bound constrained optimization problems from CUTEr. The
preliminary numerical experience verified the theoretical results obtained and also demonstrated
that the new algorithm is comparable with LANCELOT. We also compared our new algorithm
with the Matlab subroutine fmincon. The numerical results showed that our new scaling technique
is competitive and a viable alternative to that of Coleman and Li.
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