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Componentwiseerror bounds for linear complementarity problems are presented. For the problem with
an H-matrix the error bound can be computed by solving a system of linear equations. It is proved that
our error bound is more accurate than that obtained recently byChen & Xiang(2006,Math. Prog., Ser.
A, 106, 513–525). Numerical results show that the new bound is often much better than previous ones.
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1. Introduction

Let M ∈ <n×n andq ∈ <n be given. The linear complementarity problem (LCP), denoted by LCP
(M, q), is to find a vectorx∗ ∈ <n suchthat

x∗ > 0, Mx∗ + q > 0, (x∗)T(Mx∗ + q) = 0,

or to show that no suchx∗ exists. Here the inequalities are meant componentwise. LCPs have many
important real-world applications, for example, seeCottleet al. (1992) andFerris & Pang(1997).

Let x̂ ∈ <n
+ be an arbitrary but fixed vector. Estimation of the errorx̂ − x∗ playsan important

role in both the numerical solution and theoretical analysis. Norm error estimation for LCPs has been
extensively studied so far, for example, seeChen & Xiang(2006),Mangasarian & Ren(1994),Mathias
& Pang(1990) andPang(1997).

In this paper we present new componentwise error bounds, that is, we giver ∈ <n
+ suchthat

|x̂ − x∗| 6 r,

where|y| meansthe vector whosei th component is|yi |. Such anr can be computed in general by find-
ing a feasible solution of a convex quadratic programming problem for which a very mild computational
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ERROR BOUNDS FOR LINEAR COMPLEMENTARITY PROBLEMS 349

cost is expected. The solution of the convex quadratic programming problem delivers a tight error
bound.

For the case whereM is an H-matrix, that is, the comparison matrix̄M = (m̄ij ) ∈ <n×n hasa
non-negative inverse, where

m̄ij =

{
|mii | if i = j,

−|mij | if i 6= j,

wepresent a tight error boundϕH (x̂) thatcan be computed by solving a system of linear equations. For
an LCP with an H-matrix the error bound

‖x̂ − x∗‖p 6 ‖M̄−1 max(D, I )‖p‖ min(x̂, Mx̂ + q)‖p =: φp(x̂) (1.1)

was given byChen & Xiang(2006), wherep ∈ [1, +∞], D is the diagonal part ofM , I is the identity
matrix, and ‘max’ and ‘min’ are taken componentwise. The error boundφp(x̂) was proved to be more
accurate than the well-known bound given byMathias & Pang(1990). We will prove that our error
boundϕH (x̂) is more accurate than the error boundφp(x̂) given in (1.1) in the sense that

‖ϕH (x̂)‖p 6 φp(x̂).

Thenumerical results illustrate that this inequality holds strictly and for different orders of magnitude
for our model problem.

To conclude this section we give some notation. The set

FEA(M, q) := {x ∈ <n: x > 0, Mx + q > 0} (1.2)

is called thefeasible setof the problem LCP(M, q). An element of FEA(M, q) is called afeasible vector
of the problem LCP(M, q). This feasible vector is also known as afeasible solution.

For x = (xi ) and y = (yi ) ∈ <n we have thatx 6 y stands forxi 6 yi , wherei = 1, . . . ,n.
We denote by max(x, y) and by min(x, y) the componentwise maximum and minimum ofx and y,
respectively. Leta = (ai ) ∈ <n anda = (ai ) ∈ <n begiven witha 6 a. We define ann-dimensional
interval vector as the set of vectors

[a] = [a, a] := {x ∈ <n: a 6 x 6 a}.

For an interval vector [a] = [a, a] we define the operation

max(0, [a]) := [max(0,a), max(0, a)].

For simplicity, we write [a, a] = a for a ∈ <n. The operations+, − and× can be defined for intervals.
We refer toNeumaier(1990) for details.

2. Error bound

We begin our study with an existence theorem. It gives a sufficient condition for guaranteeing that an
interval vector contains a solution of an LCP.

THEOREM 2.1 Let M ∈ <n×n andq ∈ <n begiven. Let [x] be ann-dimensional interval vector and
let x̂ ∈ [x] be an arbitrary but fixed vector. Let a diagonal matrixΔ = diag(δi ) ∈ <n×n begiven with
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350 Z. WANG AND Y.-X. YUAN

δi > 0, wherei = 1, . . . ,n. If

Γ (x̂, [x],Δ) := max
(
0, x̂ − Δ(Mx̂ + q) + (I − ΔM)([x] − x̂)

)
⊆ [x] (2.1)

then LCP(M, q) has a solutionx∗ ∈ Γ (x̂, [x],Δ).

For the proof of Theorem 2.1 we refer toAlefeld et al. (2004).
Now we find a vectorr ∈ <n

+ suchthat the condition (2.1) holds for the interval vector [x̂−r, x̂+r ].
Consequently, it follows from Theorem2.1 that LCP(M, q) has a solutionx∗ ∈ [ x̂ − r, x̂ + r ], which
implies the componentwise error bound

|x̂ − x∗| 6 r.

Given a vector̂x ∈ <n
+, we define

α := {i : x̂i 6 (Mx̂ + q)i }, (2.2)

x̃ := (x̃i ) with x̃i =

{
x̂i if i ∈ α,

0 if i /∈ α,
(2.3)

ỹ := (ỹi ) with ỹi =

{
(Mx̂ + q)i if i ∈ α,

−|(Mx̂ + q)i | if i /∈ α,
(2.4)

M̃ := D − |B|, (2.5)

q̃ := M̃ x̃ + ỹ, (2.6)

whereD and−B are the diagonal and the off-diagonal parts ofM , respectively.
Using these definitions, we can give our main error estimation result as follows.

THEOREM 2.2 Let M ∈ <n×n, q ∈ <n andx̂ ∈ <n
+ begiven. LetM̃ ∈ <n×n andq̃ ∈ <n bedefined by

(2.5) and (2.6), respectively. Ifu ∈ FEA(M̃, q̃) then LCP(M, q) has a solutionx∗ ∈ [x] := [ x̂−r, x̂+r ],
wherer = x̃ + u andx̃ ∈ <n is defined by (2.3). As a direct consequence, we have the error bound

|x̂ − x∗| 6 r. (2.7)

Proof. It is sufficient to show that condition (2.1) holds forr = x̃ + u. We define a positive-definite
diagonal matrixΔ = diag(δi ) ∈ <n×n by setting

δi =

{
1 if mii 6 0,

1/mii if mii > 0.

It can be verified that (seeNeumaier,1990)

(I − ΔM)([x] − x̂) = [−| I − ΔM |r, |I − ΔM |r ].

By the definition ofΓ (x̂, [x],Δ), we haveΓ (x̂, [x],Δ) = [Γ ( x̂, [x], Δ), Γ (x̂, [x],Δ)], where

Γ (x̂, [x], Δ) = max(0, x̂ − Δ(Mx̂ + q) − |I − ΔM |r ),

Γ (x̂, [x],Δ) = max(0, x̂ − Δ(Mx̂ + q) + |I − ΔM |r ).
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ERROR BOUNDS FOR LINEAR COMPLEMENTARITY PROBLEMS 351

First, we provethat Γ (x̂, [x],Δ) 6 x̂ + r . Remembering thatD and−B are the diagonal and
off-diagonal parts ofM , respectively, we have

|I − ΔM |r = r − Δ(D − |B|)r = r − ΔM̃r.

The definition (2.4) yieldsMx̂ + q > ỹ. Note thatM̃ x̃ + ỹ = q̃, r = x̃ + u andM̃u + q̃ > 0. Thus it
follows that

x̂ − Δ(Mx̂ + q) + |I − ΔM |r 6 x̂ − Δỹ + r − ΔM̃r

6 x̂ + r − Δỹ − ΔM̃(x̃ + u)

= x̂ + r − Δ(M̃u + M̃ x̃ + ỹ)

= x̂ + r − Δ(M̃u + q̃)

6 x̂ + r,

which, together witĥx + r = x̂ + x̃ + u > u > 0, yieldsΓ (x̂, [x],Δ) 6 x̂ + r .
Now we prove thatΓ (x̂, [x], Δ) > x̂ − r . For any indexi ∈ α we have

[Γ ( x̂, [x], Δ)]i = 0> −ui = x̂i − ri .

For any indexi /∈ α we note from the definition (2.4) that−(Mx̂+q)i > ỹi . Considering thatM̃ x̃+ ỹ =
q̃ andu ∈ FEA(M̃, q̃) and thatr = x̃ + u, we have

[Γ ( x̂, [x], Δ)]i > [ x̂ − Δ(Mx̂ + q) − |I − ΔM |r ]i

> [ x̂ + Δỹ − r + ΔM̃r ]i

> x̂i − ri + [Δ ỹ + ΔM̃(x̃ + u)] i

= x̂i − ri + [Δ(M̃u + M̃ x̃ + ỹ)] i

= x̂i − ri + [Δ(M̃u + q̃)]i

> x̂i − ri .

Henceit is shown that condition (2.1) holds for [x] := [ x̂−r, x̂+r ] with r = x̃+u. Therefore it follows
from Theorem2.1that LCP(M, q) has a solutionx∗ ∈ [x] := [ x̂ − r, x̂ + r ], which in turns implies that
the error bound (2.7) holds. This completes our proof. �

We note that the matrixM̃ , defined by (2.5), is a Z-matrix. A Z-matrix is a matrix whose all off-
diagonal entries are nonpositive. So, if FEA(M̃, q̃) 6= ∅, then there is a unique vectoru∗ ∈ FEA(M̃, q̃)
thatis a solution of LCP(M̃, q̃) such that, for anyu ∈ FEA(M̃, q̃), we haveu∗ 6 u (Cottleetal., 1992,
pp. 198–212). This vectoru∗ is usually called theleast elementof the feasible set FEA(M̃, q̃). As u∗

is also a feasible vector, we obtain the following error estimation result, which is a special case of
Theorem2.2.

COROLLARY 2.3 In the setting of Theorem2.2we letu∗ bethe least element of FEA(M̃, q̃), which is
unique. We define

ϕ(x̂) := x̃ + u∗. (2.8)
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352 Z. WANG AND Y.-X. YUAN

ThenLCP(M, q) has a solutionx∗ ∈ [x] := [ x̂ − ϕ(x̂), x̂ + ϕ(x̂)]. As a direct consequence, we have
the error estimate

|x̂ − x∗| 6 ϕ(x̂). (2.9)

Corollary 2.3 indicates that the error boundϕ(x̂), defined by the least element, is the ‘sharpest’
compared with the one defined only by a certain feasible vector of LCP(M̃, q̃). To computeϕ(x̂) we
need to find the least elementu∗ of the feasible set FEA(M̃, q̃). It can be cast into the following convex
quadratic programming problem:

min uT u,

suchthat M̃u + q̃ > 0,

u > 0,

(2.10)

which can be solved efficiently using existing software, for example, using CVX byGrantet al.(2008).
Of course, we sometimes do not need to solve the problem (2.10) exactly because any feasible solution
of (2.10) provides an error bound (2.7). In this way, a much smaller computational cost can be expected.

Now we consider the special case thatM is an H-matrix whose diagonal elements are all positive.
An H-matrix is a matrix whose comparison matrix is an M-matrix, while an M-matrix is a matrix whose
off-diagonal elements are all nonpositive and whose inverse has no negative elements (seePlemmons,
1977). In this case the problem LCP(M, q) has a unique solution for anyq ∈ <n (seeCottleetal., 1992,
pp. 148–152). An LCP with an H-matrix appears frequently in modelling real-world problems (see, e.g.,
Rodrigues,1987andFerris & Pang,1997). The following theorem shows that, for such an LCP, an error
bound given by (2.7) can be obtained by solving a system of linear equations.

THEOREM 2.4 Suppose thatM is an H-matrix whose diagonal elements are all positive. Letx̃, M̃ and
q̃ be defined by (2.3), (2.5) and (2.6), respectively. Then we have the estimate

|x̂ − x∗| 6 ϕH (x̂) := x̃ + M̃−1 max(0,−q̃), (2.11)

wherex∗ is the unique solution of LCP(M, q).

REMARK 2.5 The estimate (2.11) can be computed by solving a system of linear equations.

Proof of Theorem2.4. SinceM is assumed to be an H-matrix whose all diagonal elements are positive,
we haveM̃−1 > 0, that is, each element of̃M−1 is non-negative. So

u = M̃−1 max(0,−q̃) > 0,

M̃u + q̃ = M̃ M̃−1 max(0,−q̃) + q̃ = max(0,−q̃) + q̃ > 0.

This means thatu = M̄−1 max(0,−q̃) ∈ FEA(q̃, M̃). Therefore (2.11) follows from (2.7) in Theo-
rem2.2. �

We mentioned in Section1 that the error bound (1.1) was given byChen & Xiang(2006) for the
LCP with an H-matrix. This bound was proved to be more accurate than the well-known error bound
given byMathias & Pang(1990). We now show that our error bound (2.11) is more accurate than (1.1).

THEOREM2.6 Let M ∈ <n×n bean H-matrix with positive diagonal partD, and letq ∈ <n andx̂ ∈ <n
+

be given. Let x̃, M̃ and q̃ be defined by (2.3), (2.5) and (2.6), respectively. LetM̄ be the comparison
matrix of M . (Note that we havẽM = M̄ sinceM has the positive diagonal part.) Then we have

‖x̃ + M̃−1 max(0,−q̃)‖p 6 ‖M̄−1 max(D, I )‖p‖ min(x̂, Mx̂ + q)‖p. (2.12)
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ERROR BOUNDS FOR LINEAR COMPLEMENTARITY PROBLEMS 353

Proof. Let ỹ be defined by (2.4). We first prove that

max(M̃ x̃, −ỹ) 6 max(D, I )| min(x̂, Mx̂ + q)|.

Consider any indexi ∈ α for which we havêxi 6 (Mx̂ + q)i . From (2.3) and (2.4), the definitions of̃x
and ỹ, it follows that

(M̃ x̃)i = mii x̃i −
∑

j 6=i

|mij |x̃ j 6 mii |x̂i | 6 max(mii , 1)|x̂i |

and

−ỹi = −(Mx̂ + q)i 6 −x̂i 6 max(mii , 1)|x̂i |.

Sowe have fori ∈ α that

max((M̃ x̃)i , −ỹi ) 6 max(mii , 1)|x̂i | = max(mii , 1)| min(x̂i , (Mx̂ + q)i )|.

Considerany indexi /∈ α for which we havêxi > (Mx̂ + q)i . From (2.3), the definition of̃x, it follows
that x̃i = 0, and so

(M̃ x̃)i = mii x̃i −
∑

j 6=i

|mij |x̃ j = −
∑

j 6=i

|mij |x̃ j 6 max(mii , 1)|(Mx̂ + q)i |.

From(2.4), the definition of̃y, it follows that

−ỹi = |(Mx̂ + q)i | 6 max(mii , 1)|(Mx̂ + q)i |.

Sowe have fori /∈ α that

max((M̃ x̃)i , −ỹi ) 6 max(mii , 1)|x̂i | = max(mii , 1)| min(x̂i , (Mx̂ + q)i )|.

To summarize, we have that

max(M̃ x̃, −ỹ) 6 max(D, I )| min(x̂, Mx̂ + q)|.

SinceM is an H-matrix whose diagonal elements are all positive, the matrixM̃ has a non-negative
inverse. Thus it follows that

M̃−1 max(M̃ x̃, −ỹ) 6 M̃−1 max(D, I )| min(x̂, Mx̂ + q)|.

This, together with the relation

M̃−1 max(M̃ x̃, −ỹ) = M̃−1(M̃ x̃ + max(0,−M̃ x̃ − ỹ)) = x̃ + M̃−1 max(0,−q̃),

yields

x̃ + M̃−1 max(0,−q̃) 6 M̃−1 max(D, I )| min(x̂, Mx̂ + q)|.

Becausethe norm‖∙‖p is monotone, inequality (2.12) follows from the above inequality. This completes
the proof. �

Finally, we show thatϕ(x̂) = ϕH (x̂) = 0 if x̂ is a solution of LCP(M, q). This means that the two
error bounds (2.9) and (2.11) are tight for all points in the solution set.
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354 Z. WANG AND Y.-X. YUAN

THEOREM 2.7 If x̂ is a solution of LCP(M, q) then we haveϕ(x̂) = ϕH (x̂) = 0.

Proof. Let x̃ andq̃ be defined for̂x = x∗ by (2.3) and (2.6), respectively. It is easy to show thatx̃ = 0
andq̃ > 0. So we haveϕH (x̂) = x̃ + M̃−1 max(0,−q̃) = 0.

It is clear thatu∗ = 0 is the least element of FEA(M̃, q̃), whereM̃ is defined by (2.5). Therefore,
by the definition (2.8), we haveϕ(x̂) = x̃ + u∗ = 0. This shows that the theorem holds. �

3. Numerical experiment

In this section we perform numerical experiments to illustrate the error bound (2.9) and to show that the
error bound (2.11) is more accurate than (1.1).

EXAMPLE 3.1 We consider the problem LCP(M, q) with the followingM = (mij ) ∈ <2×2 andq ∈ <2:

M =

[
0 2

1 1

]

, q =

[
−1

−1

]

.

We choosêx =
[1

4, 5
4

]
T. By the definitions (2.3), (2.5) and (2.6), we have

x̃ =

[
1
4

0

]

, M̃ =

[
0 −2

−1 1

]

, q̃ =

[
3
2

−3
4

]

.

By a simple computation, we obtain the least elementu∗ =
[
0, 3

4

]
T of the feasible set FEA(M̃, q̃) and

conclude from Corollary2.3that LCP(M, q) has a solutionx∗ with

|x̂ − x∗| 6 ϕ(x̂) = x̃ + u∗ =

[
1
4
3
4

]

.

Actually, LCP(M, q) has two solutions [0,1]T and
[1

2, 1
2

]
T. The former one satisfies our componentwise

error estimation with equality.

EXAMPLE 3.2 We consider the problem LCP(M, q) with M = (mij ) ∈ <n×n and

M =











H −I

−I H
. . .

. . .
. . . −I

−I H











,

whereH ∈ <k×k, k =
√

n and

H =











4 −1

−1 4
. . .

. . .
. . . −1

−1 4











.
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TABLE 1 Values ofκ for Example3.2

ε n = 100 n = 400 n = 900 n = 1600 n = 2500 n = 3600

101 1.3463× 10−3 1.3063× 10−2 7.7890× 10−3 4.6964× 10−3 2.3229× 10−3 2.1577× 10−3

100 1.0740× 10−2 3.2756× 10−3 4.7064× 10−3 5.6017× 10−3 3.2634× 10−3 3.6529× 10−3

10−1 1.7994× 10−3 8.8600× 10−3 6.6397× 10−3 6.8918× 10−3 4.6962× 10−3 4.7909× 10−3

10−2 5.6892× 10−3 8.2067× 10−3 4.2431× 10−3 3.2666× 10−3 3.3089× 10−3 4.2454× 10−3

10−3 5.2584× 10−3 2.7136× 10−3 7.3654× 10−3 2.3826× 10−3 5.7360× 10−3 3.1293× 10−3

10−4 2.0426× 10−2 5.9763× 10−3 3.7591× 10−3 3.7955× 10−3 4.7315× 10−3 4.3478× 10−3

It can be verified thatM is an H-matrix. We letx∗ = (x∗
i ) ∈ <n with x∗

i = max(0,vi − 0.5) ×
1010(wi −0.5), q = (qi ) ∈ <n with

qi =

{
−(Mx∗)i x∗

i > 0,

−(Mx∗)i + max(0, ṽi − 0.5) × 1010(w̃i −0.5) x∗
i = 0,

andx̂ = (x̂i ) ∈ <n
+ with x̂i = x∗

i +εw̆i , wherewi , vi , w̃i , ṽi andw̆i arerandom numbers in [0, 1]. Such
an LCP appears frequently in modelling obstacle problems (seeRodrigues,1987). It is easy to see that
x∗ is the solution of LCP(M, q). For different choices of the dimensionn and ofε we report in Table1
the values of

κ :=
‖x̃ + M̃−1 max(0,−q̃)‖∞

‖M̄−1 max(D, I )‖∞‖ min(x̂, Mx̂ + q)‖∞
.

Thenumerical results illustrate that the error bound (2.11) is much smaller than the error bound (1.1).

4. Final remarks

In this article we have presented an approach for computing the bound of the error|x̂ − x∗|, wherex∗ is
a solution of LCP(M, q) and x̂ is a given vector. The following are some remarks on the accuracy and
the computational cost of our error bounds.

• For the case thatM is an H-matrix our error bound (2.11) was proved to be more accurate than the
bound (1.1) given by Chen and Xiang. Numerical tests indicated that the new bound is much sharper.

• For the case ofM being a P-matrix, that is, a matrix whose principal minors are all positive, the error
bound

‖x̂ − x∗‖p 6 max
d∈[0,1]n

‖(I − D + DM)−1‖p‖ min(x̂, Mx̂ + q)‖p (4.1)

was given inChen & Xiang(2006), whered = (di ) ∈ <n, di ∈ [0, 1] for i = 1, . . . ,n and
D = diag(d). So far, no theoretical results have been obtained that compare the accuracy of the
error bounds (2.9) and (4.1).
Some numerical examples indicated that (2.9) could be more accurate than (4.1). For an illustration
we consider the problem LCP(M, q) with

M =

[
1 −4

5 7

]

, q =

[
−3

1

]

.
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356 Z. WANG AND Y.-X. YUAN

It is easy to see thatM is a P-matrix and LCP(M, q) has a unique solutionx∗ = [3, 0]T. This
problem was studied inChen & Xiang(2006). We choosêx = [4, 1]T andcompute

x̃ =

[
0

1

]

, M̃ =

[
1 −4

−5 7

]

, q̃ =

[
−7

35

]

.

It is easy to verify thatu∗ = [7, 0]T is the least element of the feasible set FEA(M̃, q̃). So from (2.9)
we obtain the error bound

|x̂ − x∗| 6 ϕ(x̂) = x̃ + u∗ =

[
7

1

]

.

Obviously, we have‖x̂ − x∗‖1 6 ‖ϕ(x̂)‖1 = 8 and‖x̂ − x∗‖∞ 6 ‖ϕ(x̂)‖∞ = 7. While the error
bound (4.1) yields

‖x̂ − x∗‖1 6 20 and ‖x̂ − x∗‖∞ 6 15.

(seeChen& Xiang, 2006). This indicates that, for this special example, the bound (2.9) is more
accurate than (4.1).

• Our error bounds can be computed if an element of the feasible set FEA(M̃, q̃) is available, and
such an element can be obtained by solving a convex quadratic programming problem (2.10) in the
general case, and by solving a linear system in the case of an H-matrix. The exact solution of the
convex programming problem (2.10) gives a ‘sharpest’ error bound (2.9), while any feasible solution
of (2.10) delivers an error bound (2.7). For the latter case one can expect a smaller computational
cost.

• The problem remains open when the feasible set FEA(M̃, q̃) is empty. Otherwise, our algorithm
works efficiently, due to the convex programming formulation (2.10).

• Finally, we mention that our error estimation may work in a loose setting, say for the problem
LCP(M, q) studied in Example 1, whereM is not a P-matrix. Actually,M is not even an R0-matrix.
M is called an R0-matrix if LCP(M, 0) has a unique solution. It is well known that a P-matrix is an
R0-matrix.The error bound for LCP(M, q), whereM is not an R0-matrix,has not yet been studied.
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