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Most superlinear convergence results about trust region algorithms for non-smooth
optimization are dependent on the inactivity of trust region restrictions. An example
is constructed to show that it is possible that at every iteration the trust region
bound is active and the rate of convergence is only linear, though strict
complementarity and second order sufficiency conditions are satisfied.

1. Introduction

IT 15 SHOWN in this paper that some trust region algorithms for non-smooth
optimization may converge only linearly, though many strong conditions are
satisfied.

Trust region algorithms are iterative. The problem we want to solve has the
following form

min h(f{x)), (L.1)

where f(x) from R" to R™ is a continuously differentiable function, and h(.) from R™
to R is a convex function. This form of objective function occurs frequently in
discrete approximation and data fitting calculations.

At the beginning of the kth iteration, an estimate x, of the solution of (1.1), a trust
region bound p, > 0, and a n x n symmetric matrix B, are available. We calculate d,
by solving the following subproblem

min ¢,(d) = h(f(x) + VTfix,)d)+ 3d"B,d (1.2)

subject to
Hdll < pu (1.3)

where ||.|| is a given norm. Then the “predicted reduction” ¢,(0)—¢.(d,) and the
“actual reduction” h(f(x,))—h(fix,+d,)) are compared, to decide whether to set
Xp+1 = Xy +d, Or x4, = x,. The choice of p,,, and B,,, also depend on this
comparison, and the calculation of B, , usually requires some first derivatives at x,
and x,,,. Many strategies are known, and each leads to a specific algorithm. Here
we give a general algorithm, and it turns out that many known methods are special
cases of our algorithm.

t Presented at the 1983 Dundee Conference on Numerical Analysis.

327
0272-4979/84/030327 + 09 $03.00/0 © 1984 Academic Press Inc. (London) Limited



328 Y. YUAN

Denote the ratio between the actual reduction and the predicted reduction by r,,
that is,

_ hflx) = hflxy + do) y
ST 0= (19

Let ¢; (i=1,2,3) be any constants from the open interval (0, 1) satisfying
¢, € ¢, € ¢3. Then x, ., is defined as follows

xe+d, ifr,=c,
Xk+1 =

1.5
Xy ifr,,<cl ( )

and p, ., is chosen in some way that satisfies the following conditions.

(A) If r, < c, then p,., is bounded by ¢, p, where ¢, is a constant from (0, 1);
(B) if r, = c5 then p,., is not less than ||d,||;
(C) py+. is not greater than Mp, for some constant M.

We permit the replacement of “>" by “>" and “<” by “<” in (1.5), and similar
changes in (A) and (B). '

The following more restrictive conditions for the revision of the trust region
bound, pointed out by the referee, are usual:

(D) Pes1=pe chsr,§c3,and )
(E) pesr=MpM>1ifr. 2 €3 and if p; = [ld,]l.

Furthermore, in addition to (A), in practice it is also usual to set
(F) px+y = either cyp, Or cylldyf| if 1y < c3.

The class of algorithms stated above is very general and many known trust
region methods are special cases of it, for example, see Fletcher (1980), Moré (1982),
Powell (1983) and Yuan (1983). All these algorithms require that p,,, does not
exceed a fraction of p, or a fraction of ||d,ll, when r, < ¢,. We stress this property
because it can cause slow convergence, and any other trust region methods sharing
this property may also suffer slow convergence.

By constructing a minimax problem, we show that for non-smooth optimization
some trust region algorithms may converge only linearly, though superlinear
convergence would occur if the objective function (1.1) were continuously
differentiable.

2. The Example

In this section, an example is constructed to show that the algorithm given in
Section 1 may converge only linearly.

The problem we consider is a minimax calculation. In (1.1), we let
h(f) = max {f,, f2}, n =m =2, and f = (f}, f>)7 is defined by

fi=1+v—u?

fi=1—v+(1+eu 21)
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where ¢ > 0 is a parameter to be defined, and where u and v are the components of
x. The solution of (1.1) is x* = (u*, v*)T = (0,0)". By expressing the minimax
problem as a constrained optimization calculation (Overton, 1982), we find that the
Lagrange multipliers of our problem at the solution are A} = 1% =4. Strict
complementarity and second order sufficiency conditions (Fletcher, 1981) hold, and
we have

2 .
GL = 3 AV, v%) = [8 3] 22

We let B, = G¥ for all k, and we let the norm in (1.3) be the infinity norm. The

motivation of setting B, = Gy is that, if x, = x*, if x, ., = x,+d, for all sufficiently

large k, where d =d, is a local minimum of (1.2), and if {B,} (k=1,2,...) are

uniformly bounded, then the superlinear convergence of {x,} is equivalent to the

limit ’
. IPR(Bi— GL)dill
LT 4

where P% is the orthogonal projection operator from R" to {d; V7f(x*)d =0,
i = 1,2} (see Powell, 1983, and Powell & Yuan, 1983).

What we will show is that the parameter ¢ and the initial information may be such
that for all k (4, v,)7 lies on the curve v = 6u?, and u,,, = au, for some constant
a € (0, 1), where 6 is a constant satisfying 8 < 1+¢/2. We consider the kth iteration,
in the case when v, = Gu? and p, = (1 —ajy,.

Let us consider the subproblem (1.2), which becomes

min ¢,(d)
=max {1 —(1-0)u} —2ud, +d,, 1+(1 +e~0)uf +2(1 + u,d, —d,} +4ed?, (2.4)

subject to

0, (2.3)

lidllo < Pe- (2.5)

To solve (2.4)H2.5), we consider the cases in which the first term or the second term
achieves the max in (2.4) separately.

In the case that the second term in the bracket achieves the max, (2.4) reduces to
the following problem:

min ¢y(d) = 14+(1 +e—Ou +2(1 +&)u,d, —d, + 4ed?, (2.6)
subject to d € H, n B(0, p,), where

H, = {(d,, d,)"; 2 +¢&—20)uf + 22 +e)u,d, —2d, > 0}, 2.7
B(O, p) = {d; lldll < pu}-

Further we assume |u,} is so small that
H,n B0, p) = {(dp dy), ldy| € po —pe < d; < (1 + % - 9) up +(2+5)“kd1}- 28)

From (2.6) ¢, decreases as d, increases for all d in H; n B(0, p,). By (2.8) it follows
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that ¢,(d) attains its minimum over H, n B(0, p,) only when
d, = (1 + % - B) u? + 2+eud,.

In the other case, a similar analysis holds. Hence the solution of (2.4} and (2.5) lies
on the line H, n H,, where

H, ={(d,, d,); 2 +&e—20)uf +2(2 + &)u,d, —2d, < 0}. 2.9

Noticing that on H, n H, n B(0, p,) (2.6) still holds, we have that the solution of
(2.4) and (2.5) is

(dy, d5)7 = (= (1 —a)uy, (2 +)uyforu, — 3u,) — 6u)T, (2.10)
which is the intersection point of H, n H, and {d; d, = — p,}. Therefore
X +dy = (e, 2+ e)(a—dud). 2.11)
Since we require to retain x, +d, on the curve v = fu?, we need the relation
Q+e)a—1) = 6a?, (2.12)

which is independent of k.
The actual reduction and predicted reduction are as follows

h(f1x))—h(fx, +d) = (1 +e—0)(1 —a®)u?, (2.13)
6(0) — Buldy) = 2(1 +e)(1 — aJui — 6(1 —a?)u — Je(1 —a)us,
where the last line depends on Equation (2.12). Thus we have
' (1+e—6)1+a)

= : 2.14
T M te— 6l +a)—de(l—a) (2.14)

From (2.12) and (2.14), elementary calculations show that

2(1 —a)*(1 + o)+ e(1 —ax + 2a%)
= —3 . -1
=R = Tl —at e+ @) (213
Since Rfe, a) is continuous for ¢ > 0, « € (0, 1), and since
lim R o) =1,
e, a0+

(2.16)

lim R((1—a)?,0) =0,

for any given 0 <c¢,; <c, we can choose ¢> 0, a €(0,1) properly such that
r.€(cy, ¢;3). Thus x,,, = x,+d; and p, ., satisfies (A). We let 8 have the value
(2+¢e)(@—4)/a?® so that (2.12) holds. Therefore if ¢, > a (c, = « when the algorithm
requires (F)), the algorithm sets

Pr+1 = apy = alldy]] = ol —Juy = (1 —a)uy,y, (217
and we have that

Xppy = Xt dy = (e y, O, ). (2.18)
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Comparing the above two equations with the conditions at the beginning of the kth
iteration, it follows by induction that x, = (u,, v;)T and p, > 0 may be such that x,
is on the curve v=06u’? and u,,, =au, for all k. Thus for all large k
1xp 41 —x*lo = allx,—x*|| o, which shows that linear convergence occurs. Thus we
have the following result. .

Result

For any algorithm which belongs to the class described in Section 1, if the
algorithm only requires that ¢, € (0, 1) instead of giving a specific c,, then for any
given 0 < ¢; < ¢; < ¢;3 < 1, there exists ¢, € (0, 1) such that by suitable choices of
initial point and initial trust region bound, the algorithm may converge only
linearly, though B, = G¥, and strict complementarity and second order sufficiency
conditions are satisfied.

It is noted that if ¢, < 1 is given in advance, and if p,,, = ¢, p, on every iteration
for which r, < ¢,, the above example is not valid for all choices of ¢;, ¢, and ¢4. To
ensure the validity of the example. we require that a = ¢,. If

I_Ci = R(O, C4) < C,y,

1-c4+2c3 (2.19)
T———=—3 = R(o, ,
l1—c,+ci+c} (0, ¢4) > €4

then we can choose ¢ > 0 such that R(g, c;) € (c,, ¢5). Therefore if (2.19) is satisfied,
we can choose € so that linear convergence occurs. The second equation of (2.19) is
usually satisfied since ¢, is usually less than a half and since the left side is greater
than 0851 for all ¢, € (0, 1). Thus for many -algorithms if 1 —c3 < ¢, then linear
convergence may OCCUr.

However, (2.19) is not a necessary condition for linear convergence. For
¢y =c¢y =025, ¢, =0, ¢y = 0-75 (Fletcher, 1981, p. 208), (2.19) is not satisfied, yet
the following example shows linear convergence. Let f be defined by (2.1) as before,

and let
5 T
% = (a,‘, §(1 + %) a,f) ,
(2.20)

where 4, > 0 is very small and ¢ > 0 is a parameter. Then we have
ik +Jk = (%ﬁk’ é(z + G)ﬁf)r,
. 30+26e (2-21)
"= 32527
which gives 7, > {2 > c;, since ¢ > 0. Therefore,

Xee1 = % +d,

. ) . (2.22)
Prs1 =20 = %“b
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since M = 2 (see Fletcher, 1981). Direct calculations show that

. - 5 i T
s )

. _-6+13e
o1 = T 07

(2.23)

Let ¢> % and sufficiently close to & in order that 0 <#,,, <c,. Then the

algorithm sets
. . 5
Xe+2 = | Ugs2s §' “k+z )
(2.24)

Prez = 3hrer = Tl %uu-z
where i, ., = 3u,. By induction, {x,} converges only linearly, the step-bound is
reduced once every two iterations, and without the assumption (2.19) linear
convergence still occurs. We believe that for any given 0 <c¢, <¢;<c¢3 <1,
¢4 € (0, 1), by modifying the given example, it is possible to demonstrate that an
algorithm may converge only linearly.

3. A Range of Initial Points for Linear Convergence

In this section it is shown that for some algorithms there is a range of starting
points which may cause linear convergence.

The problem we want to solve is that in the previous section. Assume
0<cy<c;<%cy>32 and ¢, >4 [c, =} if the algorithm requires (F)]. Let ¢ > 0
be very small so that

3
3¢

< ¢y,
T+e—0 &

4
2(T+—8-)' <y, (31)

3 1+¢—%0
4\1+4e—6

) € (CZ: cJ)a

hold for all 8 € [0, 4]. We consider the initial point X, = (&,, 843)", where 8 € [0, 3],
and where i, < p, is a small positive number. First it is noted that the solution of

(2.4) is
P T
dy = (—u,‘, —(1 +3+ o) u§> (3.2)

when the trust region bound is inactive. Hence from (3.2) and the fact that &, < p,,
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- € T
(Il=(—lll, —(I +§+0)ﬁ§) ,

[
-0

T Tve—0

Because it follows from (3.1) and (3.3) that 7, < ¢,, after the first iteration we have
that

we have that

(3.3)

X, = X, = (u,, 637,

- - (34)
P2 = HIdill = 4i,.
At the second iteration, the subproblem (1.2)(1.3) gives
JZ = (—3u,, —01‘4})’,
. 3 1+e—%0 (3-3)
2 4\1+3e—-0)
From (3.1) and (3.5), we find that 7, € (c,, ¢3), which implies
. '3 = ’:‘:‘*"Iz = (4a,,0)", 3.6)
p =P
Hence it follows that
_ APEAY
dy = ("i“b -<1 + E) (‘}“1)2) ;
3.7
Fom——t
3T Al+e)
Consequently, since 7, < c,, the algorithm sets
i4 = iJ,
_ > - (3.8)
Pa = 1P = i,.
Thus we obtain
d, = (—%a,,0)7,
o= (45,0 69)

i5 = i4‘!"&'4- = (ﬁh O)T
It follows by induction that
Xok+2 = Xox+1 = ((%)kl“n O)T, (3.10)

for all k > 1. Therefore linear convergence occurs, and we have the following result.

Result

For any algorithm which belongs to the class described in Section 1, if
0<cy<c; <% c3>% and ¢, >4 [cq =3 if the algorithm requires (F)], then for
12
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any given initial trust region bound, there exists a region such that any starting
point in the region causes a linear rate of convergence, though B, = G¥%, and strict
complementarity and second order sufficiency conditions are satisfied.

As in the previous section, we also believe that for any given
O0<ecy<cy<ey3<], ¢ €(0,1), by modifying the example given above, it is
possible to verify that the above result is valid.

4. Discussion

Though for some trust region algorithms the values of the parameters c;
(i=1,2,3,4) are given (for example, Fletcher, 1980), and for some algorithms
typical parameter values are suggested (Powell, 1983), many algorithms do not
provide specific parameter values, and they allow many choices of these constants.
Usually the conditions for the choices of the parameters are not more restrictive
than 0 < ¢, < ¢, <¢3 < 1, ¢, € (0, 1) (see Moré, 1982; Powell, 1975, 1983; and Yuan,
1983). Thus, for many trust region algorithms, suitable choices of the initial point
and the initial step-bound may cause linear convergence for non-smooth problems.

From the example discussed in this paper, we see that the inactivity of trust region
bounds plays an important role in the rate of convergence. In fact, for most trust
region algorithms, the inactivity of trust region restrictions is a necessary condition
for superlinear convergence, while for many specific algorithms, under certain other
conditions, this condition is also sufficient for superlinear convergence (for example,
Fletcher, 1980; Powell, 1983, Powell & Yuan, 1983). Specifically, for minimax
problems, if {x,} — x*, if at x* strict complementarity and second order sufficiency
conditions are satisfied, if B, = Gy, and if the step-bounds are inactive for all large k,
then the convergence is superlinear (see Powell & Yuan, 1983). Our example satisfies
all these conditions except the inactivity of the step-bounds, and the lack of this
condition obviates the superlinear convergence.

It is noted that our example is not the same as the “Maratos effect”, though both
are caused by derivative discontinuities. In fact for the example in Section 2, if we let
e=1,a=14 0 =0, if we choose the initial point as (u,, 0)7 for small u, > 0, and if
we remove the trust region constraint, then the solution is achieved within two
iterations [the first iteration gives x, = (0, —3u?)T].

The given examples depend on the derivative discontinuities of the objective
function, because in the smooth case we may have

Sixy+dy) = fx) + VT(x)dy +4d] B, d, + o(lid,]|?) @4.1)

when B, is an approximation to the second derivative matrix. Thus r, tends to 1 and
the superlinear convergence follows (Powell, 1975). However, in the non-smooth
case the relation

h(flxi+dy) = h(fix) + Vfix)d) +4d] Bd + of|d,%) (4.2)

does not generally hold, even though B, = G%. Therefore when {x,} — x* along a
path such that [A(f{x,))—h(fx*))] is O(|}x,—x*||?), the error in (4.2) may cause the
ratio r, not to indicate that x, is converging, which leads to a reduction in the step-
bound, and consequently linear convergence may follow.
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A possible way to force superlinear convergence is to consider second derivative
information. Fletcher (1982) conjectures that his “second order correction” method
can ensure superlinear convergence if some mild conditions are satisfied. Yet
superlinear convergence still depends on the inactivity of the trust region bound, so
it is desirable to investigate whether this assumption holds.

1 am greatly indebted to my supervisor Professor M. J. D. Powell for his constant
help and encouragement and for his studying the early versions of this paper. He
made many important corrections and helpful suggestions which make the paper
possible. I also wish to thank the referee for many good suggestions which led to

improvements.
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