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Abstract. Recently, we have extended SDP by adding a quadratic term in the objective function and give a
potential reductioo algorithm using NT directions. This paper presents a predictor-corrector algorithm us-
ing both Dikin-type and Newton centering steps and studies properties of Dikin-type step. In this algorithm,
when the condition K.{XS) is less than a given number KQ, we use Dikin-type step. Otherwise, Newton
centering step is taken. In both cases, step-length is determined by line search. We show that at least a
constant reduction in the potential function is guaranteed. Moreover the algorithm is proved to terminate
in O(v^ log ( l / f ) ) steps. In the end of this paper, we discuss how to compute search direction (AX, AS)
using the conjugate gradient method.
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1. Introduction

In recent years, semi-definite programming (SDP) has attracted much attention from
researchers. Many interesting and important results on SDP have been obtained. SDP
has the fo]]owing standard form:

min(C,X) (1.1)

s.t {Ai,X) = bi, i = l m, (1.2)
XtO, (1.3)

where C, Ai e S^"^", Sdi"^" being the set of all n x « real symmetric matrices. The
notation X >0 means that X € SfR"^" and X is positive semidefinite. (A, B) denotes
the inner product in the space St"''" namely

(A.5) = Tr(A^5), VA, 5 € 3 t " ^ " . (1.4)

Most works on SDP are about interior point methods, for example, see [1-3,15,19,20].
The SDP problem (].1)-(1.3) has a similar form to the linear programming, it is also
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called as SDPLP by [16]. Recently, there are researches on extensions of the SDP, most
of them are about semi-definite linear complementarity problems (SDPLCP). For more
details about SDPLCP, see [8,13] and [16].

Recently, Nieand yuan[12] give another extension of SDP problems. Its extension
is obtained by adding a quadratic term in tfi"^". It is known that the general quadratic
term in fK"^" can be expressed in the standard form ^x^Hx, where JC e St" and H e
ĝ nxn However, in the matrix space di"""", the general quadratic term in 9^""" cannot
be written as -x^Hx. For example, term {X^, X) = Tr(X^) do not have the above
expression. Fortunately, any quadratic term in Sff"̂ " can be written as the product of a
linear operator (piX) and variable X, that is

G{X) = i ( ^ ( X ) , 4 • (1.5)

Then what is the general expression for (piX)"} The following theorem answers (his
question.

Theorem 1. The linear operator <piX): fR"^" -> fR"'^" has the following standard form

(1.6)
1=1

where H} and Hf are matrices in JR"^" and I is an integer not greater than n^.

2

Proof. Define vec as the linear operator from 31" ̂ '^ to W which satisfies that

vec(X) = (1.7)

where X = [xi,X2,...., Xn\. The inverse of vec is denoted by mvec. Because vec, mvec

and (p{X) are linear, the operator vec(^(mvec(x))) iSft" -*• W is also linear. From
basic linear algebra results, we know that there exists a matrix A € 91" **" such that

vec (p (mvec (x))) = Ax. (1.8)

Assume that A = (A,j)nxn where A,j is a matrix of order n. For any X = [JCI,;C2. •••yXn\
e SR"̂ ", we have

h
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V A
j=i i=i i.j=\

where matrix E'.jS only notizero entry is (/, y)th entry. This proves that expression (1.6)
is general. D

Throughout this paper, we make the following assumption.

Assumption 2, Linear operator <p{X) is in 591'""' and is symmetric and positive semi-
definite, that is

XeJH"^", (1.9)

XeM"^" . (1.10)

Obviously, linear operator ^(X) = XI(=i fij^fii satisfies assumption 2. However,
as an anonymous referee pointed out, one interesting question is that whether the Hnear
operators satisfying assumption 2 can always be expressed as X!,=i HjXHi. Unfortu-
nately, we find a negative answer. A counterexample is as follows. The linear operator
(p{X) = XEii + EiiX obviously satisfies assumption 2, but it can not be expressed
as J2i=i fij^^i- Otherwise, by setting X to be the identity matrix, we would have
2E\\ = ^J^ j HJH,. Assume that //, = {hi,h'2, . . . , /ij,]. Comparing the diagonal of
both sides of matrix equation 2E\\ = 5Z,=i Z/,^//,, one can see that 2 = X ,̂=i P i II" and
0 = T!i=i Wj f> > = 2 , . . . , n. This show that /̂ ^ = 0 for 2 ^ 7 ^ n and 1 < i < /.
Thus, the last n — 1 columns of 5Z,=i fiJXHi are zero. Because

(1-11)

/2A',i
0

+
0 .. . 0

we see that ^(X) = J](^, HjXHi can not be hold unless Xn = • • • = Xin = 0.
This example indicates that not all linear operators satisfying assumption 2 may not be
expressed by the form ^^^i HjXHi.

Now we consider the following extended problem:

(QSDP) min qix) = (C, X) + ~{<piX), X) (1.12)

s.t. {Ai,X) = bi, 1 = 1 m, (1.13)

X > 0, (1.14)
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where <piX) has the form (1.6) and satisfies assumption 2. Because of assumption 2,
problem (QSDP) can be reformulated as a monotone semi-definite LCP. The dual prob-
lem of (QSDP) is

(QSDD) max d{X, y) = b'^y - ]A<P{X), X] (1.15)

s.L J^y,-A, + 5 = C + ¥>(X), (1.16)

X,S>^Q. (1.17)

For simplicity, we denote the primal feasible region and dual feasible region by

- , ^;, = {XG59t"^": {Ai,X) = b,, i = \ m, X > O) (1.18)

and

Jv = I iX, y, S) € 59^^" X !R'" X 5iR""": C + ^(X) = Y^yiAi + S, X,S>o\,

(1.19)
respectively. In order to guarantee the existence of initial strict interior points, we make
the following assumption:

Assumption 3 (Slater regularity condition). There exist X > 0, S > Q and >> e SR'"
such that A" G .?> and {X, y, S) e J^d-

Nie and Yuan [12] give the following optimality condition.

Theorem 4. If A i A ĵ are linearly independent, and under the assumptions 2 and 3,
(1.12)-(1.14) has solutions. Furthermore, (p is given and satisfies assumption (2), X* e
Tp is an solution to the problem (1.12)-(1.14) if and only if there exist y* e Sft"* and

* >: 0,

(X*,y*,r)e^rf; (1.20)

and

; x*r=o. (1.21)

For any pair iX, y, S) € Td, if X e Tp it follows that

- diy, X) = (C, X) -h ̂ -{<piX), X) - b'^y + ̂ -{<p(X). X)

-\- C -J^ytAi, x\ = [S, X) ^ 0. (1.22)
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Therefore, if we can find a pair iX\ y\ S*) G Tj such that A" e J^p and (X\ S*) = 0,
problems (QSDP) and (QSDD) are solved simultaneously. To this goal, we introduce
the primal-dual potential function:

, S) = in + p)log{X, 5) - logdet (X) - logdet (5) , (1.23)

where yO > 0 is a parameter. Using inequality (see [17])

n Iog{X, 5) - logdet(X5) ^ n logn, (1.24)

we know that \\mk->.oo{Xk, Sk) = 0 if a sequence {iXt, Sk)] satisfies that
—OO. The main aim of this paper is to study how to generate such a sequence.

The paper is organized as follows. In the next section, we introduce the central
path and two measures for the deviation from the central palh. In section 3, Dikin-type
step is introduced and its property in (QSDP) is studied. Moreover, the reduction in
the potential function is estimated. In section 4, we discuss how to reduce the potential
function if the pair iX. S) is far away from the central path. In section 5, our algorithm
is presented and its polynomial convergence is proved. In section 6, we discuss how to
use the conjugate gradient method to compute search directions.

2. The central path and its deviation measure

Most algorithms for SDP and its extended problems use interior point techniques and
the central path is often involved. In (QSDP), a pair (X. S) is called in the central path
if X € J^p, (X, y, S) G J^d and the following equation holds:

XS = fiI, (2.1)

where fi > 0 is a parameter. But in practical implements, equation (2.1) is hardly
satisfied. As there are many good properties of the central path, we want the generated
sequence [iX^, Sk)) is close to the central path. A "distance" is needed to measure how
far a pair is from the cenU âl path. Many measures for the deviation from the central path
have been given. Two of these measures are discussed in the following.

Because X and 5 are positive definite, equation (2.1) holds if and only if
^majiiXS) = XfraniXS), where Xm^^iXS) and Xmin(X5) denote the largest and small-
est eigenvalues of XS respectively. Thus, a measure for the closeness to the central path
can be quantified by the following:

The larger KliXS) is, the farther (X. S) is away from the central path; the smaller fCiXS)
is. the closer is iX, S) to the cenU-al path. For any A" ^ 0 and S > 0, )CiXS) ^ 1. So
when KliXS) is close to I, (X, 5) is close to the central path. However, ICiXS) is difficult
to calculate. Therefore simpler measures are needed.
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First, we introduce a transformation. For any given X^ >- 0 and Sk >- 0, let W^ be
the symmetric positive definite matrix which satisfies the following relation

(2.3)

The above transformation was introduced by Nesterov and Todd [101. The matrix Wk
is called the scaling point in [10,11] and the symmetric primal-dual transformation in
Sturm and Zhang [14]. It has the following expression

One can easily see that
equivalent to

= V^ and

=
Thus, another measure can be given as follows:

(2.4)

I. Equation (2.1) is

(2.5)

(2.6)

where fj. = TriXt;Sk)/n. This measure is introduced for SDP by Jiang [6], and it be-
comes to the measure given by [5] for the special case of linear programming. We can
see that 5(Xt, Sk) = 0 if and only if (Xt, 5^) is in the central path. The smaller 5 (X*, 5*)
is, the closer iXk, Sk) to the central path. Then a question is what is the relationship be-
tween the two measures (2.2) and (2.6). The following result from Jiang [6] offers an
answer to the question.

Lemma 5. Let Xk, Sk, V* be the matrices satisfying equation (2.3), we have the fol-
lowing inequality:

N

Using this lemma and = K.ii\/y/]J)Vk), we can see that

(2.7)

Roughly speaking, if
plies a larger 5(Xt, 5A).

is small,

+ >/4 +

is also small. A larger

(2.8)

im-
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3. Dikin-type step and its properties

In this section, we begin to discuss how to generate a sequence [iXk, Sk)} such that
limt^oo ^iXk' Sk) = —00. Firstly, we assume that we already have a strict interior
point pair (X^. Sk) such that Xk e Tp and {Xk, yk, Sk) e T^. For simplicity, we begin
our discussion with the following transformation:

(3.1)

The direction (dX, dy, d5) is called a Dikin-type step if it is generated by the fol-
lowing linear system:

(3.2)

(3.3)

(3.4)

(A;,dX) = O, ( = 1 m,

1
\\yi\\F

Properties of Dikin-type step in SDP are discussed in detail by De Klerk [7]. In this
section, we study its properties in (QSDP). In SDP, dX and d5 are orthogonal, which
does not hold any more in (QSDP). However, from (3.3) and (3.4), it is obvious that

, d5) = 0, (3.5)

since ^ is positive semi-definite.
Once a direction (AX, Ay, A5) is computed, how to select step-length a^ such

that Xk + at AX >- 0 and Sk + a^ A5 > 0? An obvious sufficient condition is that

that is.

But it is hard to get an exact upper bound for this estimation. Nemirovskii and Gahinet
[9] gives another estimation:

-I-
- l /2| |2 (3.6)
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which can be written as

Furthermore, a often used Dikin-type estimation is

'^ ' l l (3.8)
Now we can see that if oti^y/esG < 1. then Xt + at AX and Sk + at AS are strictly
feasible. The relationship between (3.7) and (3.8) in SDP is studied by De Klerk [7]. We
generalize this relationship to {QSDP) as follows.

Lemma 6. Let idX, dS) be generated by system (3.2)-(3.4), we have

(3.9)

Proof. From (3.7), one can see that

dS)

(3.10)

where the third line depends on (3.5). Similarly,

ED = Tr(V^^' (dX + dS) Vf' (dX + dS))

+ dX d5

(3.11)

which completes the proof. D

Our goal is to make * (Xt . St) converge to negative infinity. Therefore we need to
study the reduction in the potential function.

Lemma 7. Let Xt+i = X t + aAX, Sjt+i = 5 t + aAS. If X^+i ^ 0 and 5^+1 :̂  0, then
the following holds:

, 0.12)
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where dV = dX + d5 and function hit) is defined by

^ . (3.13)

Proof. First, consider the reduction in log{X, S):

where we use the inequality

f ) < r . V f > - 1 . . (3.15)

In the following proof, we need a more exact inequality (see [17])

Tr(Z) ^ logdet(/ + Z) ^ Tr(Z) - •' ; if ||Z||2 < 1. (3.16)

where Z e 59t"'"'. Using this inequality, we have

logdet(Xji+i) -|- logdet(5A+i) — logdet(XA) — logdet(5i)

= log det(/ + ceV^ dX V)~ ) + log det(/

' -1 dV) ^ ! - ^

Because \\V~^^~dSV'^^^h ^ V ^ ^ n d ||V^"'^^dXV4"'^^|l2 ^ y/i^, (3.17) yields

logdet(Xi5i) (3.18)

dV) -h(cty/I^y (3.19)

Combing inequalities (3.14) and (3.19), one can see that the lemma is true. D

If (dX, dS) satisfies (3.2)-(3,4), the reduction in the potential function can be ob-
tained as follows. From (3.4), it follows that

, 2 ( ) ]
\-a ^— —a

T(y^) J
Jl^/ll^ Tr(V/) 2 Jr(dXd.S) .

p)—^-r a—:^ » (« -\- p) T: hiaJefjc)- (3.20)
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From the relation that

and Tr(dX dS) < ^||dX + d5!|^, it follows from inequality (3.20) that

V" 2
From (3.9), we have that

2 Tr(V/)Tr(V/)

(3.21)
p cp-in+p)

= ;c(v,^). (3.22)

If we let a ^ 7//X;(Vf), where 0 < r; < 1, inequalities (3.22) and (3.21) yield

^ + f 1 + - ) V W ) = /(«)• (3.23)

Now we consider the following line search:

max / ( a ) (3.24)

s.t. . ^ j ^ . (3.25)

Let or' be the optimal solution. Simple calculations show that

/(a*) = mini ^ , —^l-—\, (3.26)
\2KiV})[lli\) + il+l)-\2^KiVl)\

Assume that ^(V^^) ^ KQ, where KQ is a pre-specified constant. If we let p = -JnJQ,
we can show that

Thus, if a is obtained by the following line search;

(3.27)

max *(Xt + aAX, St + aA5), ' (3.28)

it follows that A*t ^ ^i. Because a < rj/fCiV^) ensures that Xt + aAX >- 0 and
Si + a AS >- 0, we have the following lemma.
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Theorem 8. If search direction (AX, Ay, AS) uses Dikin-type step, that is (AX, Ay,
AS) is defined by linear system (3.2)-(3.4), fCiV^) < KQ and parameter p = •JnK^,
then the potential function * (X, 5) can be reduced by at least a constant.

4. The Newton centering step

In the previous section, it is shown that the potential function can be reduced by at least a
constant if/C(V/) ^ ^o- Now we consider the case when this inequality does not hold.
In this case, the current point pair (X^. Sk) is "far" away from the central path. So we
expect to update this point in a direction towards to the central path. A Newton step may
be a good choice. Direct calculations show that the Newton step for VkVk = p.1 is

i(ndV + dVn) = ii!- Vl ' (4.1)

This is a kind of Sylvester equation. Its unique symmetric solution is given by

dV = dX -I- d5 = /iV^-^ - Vk, (4.2)

which is equivalent to

W^^ AXW^^ + AS = ^X~^ - S. (4.3)

Now we consider the the reduction in the potential function. From lemma 7, we
know that

-in

= —a

,

(4.4)

where yx = Tr(V^)/n is used. Similar to the previous section, if we require (X
which implies Xj+i and 5fc+i are strictly feasible, (4.4) gives that

y [(l +

2(1 - T))

+ T^=g(a). (4.5)
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Let ^t = (1 + p/n)S^iXk, Sk) + £WG/(1 - ^;). and let the step-length a* be the solution
of the following problem:

2
max gia) = aS^Xt, Sk) - ySjt (4.6)

s.t. a ^ —?=. (4.7)

, Sk)/ek ^ n / V ^ . we can see that the a* = 5'(Xt, 5t)A. Thus,

m t . 50 15*(X*, St)^ S'iX,, 5i)

, Sk)/6k > vly/^NG^ it can be seen that a' = r]l^£NG^ which gives that

^ . \ ^ < i ^ . (4,9)

Using (4.8) and (4.9), we can see that

Theorem 9. Let constant TSTQ = (7 + 3'v/5)/2 and parameter /9 = -JnK^. If search di-
rection (AX. Aj , A5) uses Newton centering step, that is (AX, Aj , A5) satisfies linear
system (3.2), (3.3) and (4.2), and /C(Vf) ^ A'Q, then the potential function »JJ(X, 5) can
also be reduced by at least a constant.

Proof Noung KQ = (7 + 3V5)/2, from (2.8) we know that KiV^) ^ KQ implies
, 5jt) ^ 1 and therefore S^iX^, Sk) ^ 8\Xk, Sk). In this case, (4.10) gives that

If
-min
2 [

(4.11)

where Tk = S^iXk, Sk)/^ENG- Jiang [6] shows that

k) ^ 2 _̂, ^^^
^ — > T= = To- (4.12)

8HXS) 1 + V5
The above two inequalities give that

1/(1 - r?) + (1 + o

This shows that the reduction in the potential function can be at least a fixed constant
when fCiV^) ^ KQ. D



PREDICTOR-CORRECTOR ALGORnHM 127

5. The predictor-corrector algorithm

Let KQ = il + 3 N / 5 ) / 2 . We use the primal-dual Dikin-type step if ^(V^-) < ^o^
otherwise we use the Newton centering step. Thus, from theorems 8 and 9 in the previous
two sections, we ean see that at every iteration the the potential function is reduced by at
least a constant:

A^k>tnm{^i,h} = ̂ >0. (5.1)

The following is our predictor-corrector algorithm that use both Dikin-type step and
Newton centering step.

Algorithm 10. Given a strict interior point pair (Xo, yo, SQ) € .?v and XQ € 7^p. Given
a small e > 0 and constant 0 < i; < 1.^ = 0.

Step 1. Let T̂o = (7 + 3%/5)/2 and p =

Step 2. If Tr(A'i5t) ^ e then stop.

Step 3. If/C(Vj^) < KQ, compute (AX, A5) from system (3.2)-(3.4); otherwise com-
pute (AX, AS) from system (3.2), (3.3) and (4.2).

Step 4. Compute line search interval [a\,a2[.

= max

= mm

0, X ̂  Xi

0, X = Xi\

Step 5. Compute step-length by line search:

a' = argmin ^iXk + a AX,

Step 6. Let (Xi+i, y^+u St+i) = (Xt, yk, Sk) + a*(AX. Ay, AS).

Step 7. k := k + l, and go to step 2.

Step 3 of the above algorithm computes search direction (AX, Ay, AS). It will
be discussed in the next section. The performance of algorithm 10 can be seen in the
following theorem.

Theorem 11. Algorithm 10 will terminate in O(v''i log(l/e)) iterations.

Proof. From (5.1) we know that

o ) ^ - ^ ^ (5.2)

It follows from the definition of »l'(Xjt, Sk) and inequality (1.23) that

^iXQ,So)-k^, (5.3)
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which yields that

TriXkSk) < expj j . (5.4)

Simple calculations show that TriXkSk) ^ e if

Therefore the theorem is true. D

6. Search direction calculation

This section considers the calculation of the search direction in the algorithm given in
the previous section. The search direction, as we can see, is determined by (3.2)-(3.4)
or by (3.2), (3.2) and (4.2). These equations are relations about the variables dX and dS.
Using the transformation (3.1), these equations can be rewritten as follows:

m

(piAX) - ^(A>-),.4,. - A5 = 0, (6.1)

(A,-, AA:) = O, 1 = 1 m, (6.2)

^ ^ + A5 = -Bk, (6.3)

where Bk equals SXS/\\XS\\f if a Dikin-type is used, or -fj.X~^ + 5"^ if the Newton
centering step is used, depending on the value of KiXkSk)-

Therefore, all we need to do is to solve the linear system (6.1), (6.2) and (6.3).
(6.1) and (6.3) give the following equation:

+ W^'AXWk' - Y.^Ay)iAi = -Bk. (6.4)
1=1

(AX, Ay) can be computed from (6.2) and (6.4). Then, AS could be obtained by
(6.3). System (6.2) and (6.4) can be solved by any standard linear system solver (see
Golub and Van Loan [4]). As the system involves a n^ by n~ matrix, its dimension is
extremely high. We use the conjugate gradient method to solve this system. One of the
good properties of the conjugate gradient method is that it can exploit sparsity.

For simplicity, define the linear operator tf": JR"'̂ '' -> 3t"'*" as follows:

= <piAX) + W^^AXWk\ VAX e m"''". (6.5)

Thus we can see that (AX, Ay) can be obtained by solving linear system ' .

, = - 5 , , (6.6)
l

{A,,AX> = 0. (6.7)
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Assumption 2 and (6.5) imply that the operator <P is positive definite. Furthermore,

(<I>(AX). AX) ^ Anan(W-2)llAX|pp, VAX 6 r ^ " . (6.8)

One can easily show that system (6.6), (6.7) is equivalent to the following subproblem

min {Bk, AX) + - (*(AX), AX) (6.9)

s.L (Ai, AX) = 0, 1 = 1 m. (6.10)

Ay is the corresponding Lagrange multiplier. (6.9), (6.10) is essentially minimizing
a strict convex function over a subspace in W^". By observing this, we can use the
generalized conjugate gradient method to compute AX.

Define a projective operator P : S^""" ->• Sm"""" as follows.

(6.11)
1

where coefficients X,(Z) are chosen so that

{Ai, Z - P(Z)) = 0, i = \,...,m. (6.12)

From the definition, one can easily see that

(P(AX), AX) = O. (6.13)

( ( / - P ) ( A X ) . A X ) = \\il - P)iAX)\\\ (6.14)

where AX is a feasible point for subproblem (6.9), namely (6.10) holds.
At the beginning of computation, find a feasible point AX°, namely AX'' is

symmetric and satisfies (6.12). We generate AX' in the following way. Let G*̂  =
Bk + *(AX**), and Z)° = - ( / - P)G^. Step-length a" is determined by minimizing
the objective function of subproblem (6.9) in the line AX'̂  -\-aD^, i.e.

Let AX' = AX'' + a°D° and G' = 5^ + <I>(AX'). Since a° is an exact line search
step-length, it is obvious that:

((/ - P)G\ D°) = {G\ D°) = 0. (6.16)

We generate D' as follows:

' ' h ^ ° D ^ (6.17)

where ^° is chosen so that D° and D' are <i)-conjugate, i.e., {<i>iD^), Z)') = 0. Simple
calculations show that
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We generate AX^ as AX^ = AX' +a'Z>', where a' is defined by

^ . ^ _ ( ^ > + 1>(AX')D-)
((J>(/)i).D') ^ ^

Because AX'', Z)° and AX^ are symmetric, AX' is also symmetric. For any i ^ 1, if
AX'"*"', D' and or' are known, AX'"*"̂ , Z)'"*"' and a'"*"̂  are generated as follows:

' + a ' + ' D ' + ' , (6.22)

where coefficients ^' and ^ j ' ' are chosen so that so that £> ,̂ £ ) ' , . . . , Z)'" '̂ are mutually
O-conjugate and

( ' ) . (6.23)

Note that matrices AX'"*"', G'"*"' and D'"^^ are all symmetric, which guarantees the iterate
AX'"*"̂  to be symmetric.

Theorem 12, Sequence {G'] and D' generated by (6.20) have the following property:

= 0, 7 = 0, 1 , . . . , i. (6.24)

Proof. We prove the theorem by induction. When i = 0, (6.24) follows from (6.16).
Assume that (6.24) holds for i — 1, i.e.

((/ - P)G', D^) = 0, 7 = 0.1 / - 1. (6.25)

Since AX'"*"' = AX' + or' D' is defined by exact line search, it can be seen that

( ' ' , D ' ) = O. (6.26)

For any j ^ i — 1, if follows from (6.23), (6.13) and the mutually conjugacy of
Z)° D' that

= {il - P)G'-\-a'iI -

= ((/ - P)G', D^) + a'{ () )

'),D^)-[^{D'),D^)]=Q. (6.27)

Therefore the theorem is true. D

It follows from (6.20) that (/ - P)G' is a combination of D ^ , . . . , D'. Thus,
Theorem 12 tells us that

((/ - P)G'^\ (/ - P)G^) = 0, 0 < ; ^ i, (6.28)
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which implies

= 0,

O ^ ; ^ i - 1 . (6.29)

Thus, from (6.20) and (6.29), it can be easily shown that

^]." = 0, O^JKi-\, . (6.30)

Relation (6.28) implies (/ — P)G''^ (/ — P)G' are orthogonal, and therefore linearly
independent. Consequently, there exists an integer q such that

(/ - P)G''+^ = 0, (6.32)

which is equivalent to

;.,Ai, (6.33)
1=1

O, 1 = 1 m. (6.34)

This is a necessary and sufficient optimality condition for subproblem (6.9), (6.10). Let
AX = AXi+\ Ay = k and AS ^ <piAX) - Y,?=i A.V/-̂ ,- Thus, the solution for
(6.1)-(6.3) is obtained, which is the search direction we want to compute.

In our algorithm, we also need to compute the scaling matrix W^^ = 5^

(5^ XkSj. )~^^^S^ . Here we use the technique introduced by Todd, Toh and Tutuncu
[15]. Let the Cholesky factorizations of the matrices Xk and 5^ be

5 = LiL/, X=^LiL2^. (6.35)

We compute the SVD of L\LI

L2'^Li = UAV'^ (6.36)

and define J = Lf'5^^-^, which is an orthogonal matrix. From the fact ±at

Sl^'XkSl'' = 7^(L/L,)(/,2'^Li)7 = (y^V)A2(V^7), (6.37)

it follows

{l^^l^Y^^ = (7^V)A-'(V^/). (6.38)
Thus, W^r' = LiVA-^V'^L{^ = FF'^, where F = Z-j

Now we can give an algorithm for solving system (6.1)-(6.3).

Algorithm 13.

Step I. Compute 5 = LiZ-i"^, X = LiL-^, and L-i^
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Step 2. F =

Step 3. If ;C(Xt50 ^ KQ let Bk = SkXkSk/\\SkXk\\F otherwise Bk = - / i X " ' + 5,
where /j, = TiiXkSO/n.

Step 4. Let AX^ = 0. If | |(/ - P)G^\\ = 0 then stop;
Z>° = - ( / - P)G°, i = 0.

Step 5. Compute the step-length:

Step 6. If 11(7 - P)G'+^ II = 0 then stop;

Step 7. / = i + 1. Go to step 5.

From properties of the conjugate gradient method, one can see that the following
theorem holds.

Theorem 14. Algorithm 13 terminates within at most ^n(n +1 ) steps. Furthermore, for
any 1 ^ e ^ jtiin + 1), we have

((/ - P)G', D') = - | | ( / - P)G'\\\ (6.39)

O, (6.40)

O, (6.41)

• ' • {{I- P)G',il-P)GJ) = O, (6.42)

where J = 0, 1 i — I.
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