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PREFACE

All the results in this dissertation are believed to be ori-
ginal except where explicit reference is made to other authors.
The results were worked out between January 1983 and December
1985 in the Department of Applied Mathematics and Theoretical
Physics under the supervision of Professor M.J.D. Powell. The
work in Sections 3.3 and 3.4 was carried out in collaboration
with my supervisor, Professor M.J.D. Powell. No part of this
thesis has been, or is being currently, submitted for a degree or

diploma or other gualification at any other University.
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CHAPTER 1 INTRODUCTION

1.1 The Problem

4

I

i The problem we consider is

minimize f(x) xer" (1.1.1)

subject to

ci(x) =0, i=1,2,...,m (1.1.2)

g#x) > 0, j=m_*1,...,m. (1.1.3)

where f(x), ci(x)(i=1,2,..Jn) are real functions in n£7. We use the
notations E={1,2“..,me} and I=={me+1,“.,m}. A point x is called
a feasible point if it satisfies (1.1.2)-(1.1.3). Let X Dbe the
set of all feasible points, which is referred as the feasible
set. Since our goal is to select a x from the feasible set to
minimize f(x), the function f(x) is called@ the objective function,
and ci(x)(i;l,z,“.,m) the constraint functions. If either f(x) or
at least one of c;(x) is nonlinear in x, problem (1.1.1)-(1.1.3)
is called a nonlinear program, in contrast to a linear program,
where all functions in (1.1.1)-(1.1.3) are 1linear. If m»>o0
(1.1.1)-(1.1.3) 1is called a constrained optimization problem,
otherwise a unconstrained problem. x* 1is called a local solu-
tion, or local minimizer, if there exists a small neighbourhood

of it such that the inequality

Kx) 2 f(x*) (1.1.4)



holds for all feasible points x in the neighbourhood. A 1local
solution is called a global solution, or global minimizer, if
(1.1.4) holds for all feasible points x. At a solution, we say a

constraint c;(x) is active if c;(x) =0, otherwise it is inactive.

Nonlinear programming problems arise in many different forms
and may be found in engineering, economics, physical sciences,
business administration, and mathematics. The following example
shows how a real decision-making problem can be represented as
(1.1.1)-(1.1.3). Considering 2-dimensional Euclidean space, we
want to calculate a point x* in the curve f(x,y): fﬂx—ljz} which
is closest to the origin. Writing this as a mathematical model,

we need to solve: )

- 2 2
minimize x; + x, , (1.1.5)
subject to
2
X, = (x371) = 0. {(1.1.6)

For a unconstrained optimization problem, it is easy to see

that a necessary condition for x* being a local solution is

vi(x*) = 0 , (1.1.7)

if f(x) is differentiable. A point satisfying (1.1.7) 1is also
called a stationary point. A second order necessary condition 1is

that the matrix Vzﬂx*) be positive semidefinite, that is,

d'PHx*yd > o (1.1.8)

for all dean. A sufficient condition is that x* satisfies both

(1.1.7) and



a'9?i(x*yd > o (1.1.9)

for all nonzero de}Rn.

For constrained problems, a Lagrangian function

m

Lix,x) = f(x) = A e(x) = f(x) = T X e (x) (1.1.10)
i=1
is defined, where k=(kl,... ,xm)TE ]Rm. ki(i=1,...,m) are called

multipliers. Such a function can be derived by sensitivity
analysis (Wilde, 1967), which considers small perturbations in
the problem. It has been found that the function (1.1.10) is con-
nected with Lagrange's (1760-1761) philosophy (see Wilde and
Beightler, 1967). The following necessary condition, due to Kuhn

and Tucker (1951), is well known:

Theorem 1.1.1 Assume that f(x) and ci(x) (i=1,2,3,...) are continu-

ously differentiable in an open set containing x*. If x* is a
local solution of (1.1.1)—-(1.1.3), and if Vci(x*) (i€1'UE) are

linearly independent, where

I' = [ i€r, ci(x*)=0 } , (1.1.11)

then there exits a k*=(kl*,...,xm*)Te lRm such that

v L(x*, x*) =0

Ci(X*) = 0 i1€E

c.(x*)y 3 0, A.*3o0, jeI : (1.1.12)
3 3

)\i*Ci(Xx) =0 i€X

The conditions (1.1.12) are called Kuhn-Tucker conditions. A

point Lthat satisfies (1.1.12) is called a Kuhn-Tucker point. The



last egquation in (1.1.12) is the complementarity condition, which
shows that any inactive constraint must have a zero multiplier.
The so called strict complementarity condition is that
legjl +ix;*1 > 0 for all i. The following results are also well

known (see Fletcher, 1981):

Theorem 1.1.2 Assume that f(x‘) and c;(x) (i=1,2,3,...) are twice

continuously differentiable in an open set containing x*. If x*
is a local solution of (1.1.1)-(1.1.3), and if vey (i€1'UE) are

linearly independent, then there exists a A* such that (1.1.12)

holds and

d'Wxd > o for all d€S* (1.1.13)
where

2 m 2
Wx = v f(x*) - L. xi*v ci(x*) (1.1.14)
i=1 ‘
and
T c e -
S* = {d } d#o0, d Vci(x*)'—-o if i€E or ki*>o,

dTVci(x*)>o if i€I' and Xi*=0}. (1.1.15)

Theorem 1.1.3 Assume that f(x) and c;(x) (i=1,2,3,...) are twice

continuously differentiable in an open set containing x*. I1f at

x* there exists a A* such that (1.1.12) holds and if

d'w=d > o (1.1.16)



holds for all d€S*, then x* is an isolated local solution.

The condition that Vc,; (i€I'UE) are linear independent in Theorems
1.1.1 and 1.1.2 can be relaxed. For more details, see Fletcher
(1981). Optimality conditions are also studied by Bandler (1971),
Ben-tal (1980), Fiacco and McCormick (1968), Guignard (1982),
Hancock (1917), Mangasarian énd Fromoritz (1967), Rockafellar

{1870, 1981), Uzawa (1958), Wilde (1964), and many others.

A Kuhn-Tucker point x* is a global solution if all the func-
tions are linear. Hence it is easy to see that x* is a solution
to problem (1.1.1)-(1.1.3) if we replace f and cy by their linear
expansions at x* respectively. Therefore we have to consider
second order derivatives if we want to fina a "better"™ point near
x*, that is, a feasible point having smaller function wvalue f.
But most methods for solving (1.1.1)-(1.1.3) do not use second
order derivatives, so their tasks are no more than seeking a

Kuhn-Tucker point.

1.2 Literature Survey

1.2.1 Methods for Unconstrained Problems

First we consider the case when n=1. We discuss this case
individually not only because it is simple and it can give us
inspirations for the case when n>1, but also because many
methods for solving a function of several variables need to cal-

culate the least function value along a specific direction.

Methods that use function values only are called direct
search methods. Assume f(x) is unimodal on a finite interval,

say [(a, b], and we want to calculate the minimum of the function.



The Fibonacci search method is given by Kiefer (1953), and he
shows that the method 1is optimal in a certain sense. The
Fibonacci search method is also studied by Johnson (1956) and
Oliver and Wilde (1964). Other direct search methods include
dichotomous search method, golden section method, random search
method and polynomial approximation methods. For more details,

see Swann (1972) and Wilde (1964).

If f(x) is continuously differentiable, a simple and explicit
method is the descent direction method. The method is as follows.
Given an approximate point x, we subtract from x a small positive
number & times Vi(x). We accept the new point if it reduces the
function value, otherwise we reduce 6, and try again. Two most
widely used polynomial approximation methods are a quadratic
method (Rosenbrock, 1960) and a cubic method (Fletcher and
Powell, 1963). These methods choose a new point by considering a
éuadratic or cubic approximation to the objective function and
its gradient at o0ld point(s). Changing the problem to Vf(x)=0, we
can apply the methods for nonlinear equations (Ortega and Rhein-

boldt, 1970).

Now we consider the general case when n>1. There are two
main classes of methods. The first is line search methods and the
other is trust region algorithms. They are all iterative, and at

the beginning of calculations, an initial point x, should be pro-

1
vided. The main ideas of both classes of methods are given
below. Then we review methods that do not require derivatives,

followed by those for which Vf(x) is needed.

For line search methods, a search direction d is computed at

the beginning of an iteration. Then a step-length @ >0 is

evaluated by some line search technique and the next iterate is



set by «x =x,+ad Two common line search technigques are exact

k+l Tk kk”

line search and the Armijo line search (Armijo, 1966). An exact

line search requires that

f(xk+akdk) = min f(x

+ad) , (1-2.1)
@>0

k

and Armijo line search chooses «, such that

K

f(xp + @ d,) < F(x,) + @ bl(V.f(xk))Tdk (1.2.2)
and

(VHx, + @ d, ) d, > b, (VHx ) d, (1.2.3)

where ble(o, 1), and bze(bl, 1) are positive constants (Powell,

1976c) .

For trust region methods, at the beginning of an iteration a
trust region is also available. An approximate problem is solved
within the trust region and a trial step d, is obtained. Then
some test 1is applied to decide whether we should accept this

step. If dk is accepted, we let x

=xk+dk and continue our cal-

culation, otherwise the trust region is reduced and we resolve

k+1

the approximate problem.

Mést direct. search methods for l-dimensional problems can be
easily generalized to the case when n>1. The generalized
Fibonacci method is described by Box, Davies and Swann (1969). A
simple method, due to Southwell (1946), is the alteé?ting vari-
ables method, which consists of minimizing with respect to each
independent variable in turn (see Swann, 1972, Fletcher, 1980).

Shah, Buehler and Kempthorne (1961, 1964) give the parallel



tangents method, which can find the solution within 2n+ 1 itera-
tion if the hypersurface contours of the objective function are
concentric ellipsoids. The pattern search method, or Hooke-
Jeeves method, consists of two phases. One is to find a pattern
step and the other is to make a exploratory move (Hooke and
Jeeves, 196l1l). This method is modified by Box, Davies and Swann
(1969). The Rosenbrock's method, also called rotating coordinate
method, makes use of explorations along a set of directions
(Rosenbrock, 1960). After each iteration, a new set of orthonor-
mal search directions are defined. The method is modified by
Davies, Swann and Campey (Swann, 1964, 1972). Economical methods
for calculating the new search vectors are given by Palmer (1969)
and Powell (1968). The simplex method is given by Spendley, Hext
and Himsworth (1962), and is improved by Nelder and Mead (1965).
The method uses n+ 1 points which form a simplex. At every itera-
tion, a point which has the greatest function value is removed
from the simplex, and a better point is added. A very efficient
direct search method is given by Powell (1964). In Powell's
method, at the beginning of each iteration, n linearly indepen-
dent directions are available. The method searches along n direc-
tions in turn. A new direction is defined as the one from the
starting point to the point obtained at the end of the a-th 1-
dimensional search. Then searching along the new direction gives
a new point, which is the starting point for the next iteration.
One of the first n directions is replaced by the new direction
and the next iteration begins. Powell's method is a special con-
jugate directions method. Such methods use conjugate directions

dl'dz" .. satisfying

T L
d; Gd. =0 if  i%y (1.2.4)



if the objective function is a convex quadratic function

Ty +-;-xTGx ’ (1.2.5)

f(x) =g
where G is a positive definite matrix. It is well known that con-
jugate direction methods have the nice quadratic termination pro-
perty, that is, the solution can be found within n-steps if the
objective function is (1.2.5). The first method to make use of
conjugate directions seems to be given by Smith (1962), which is
much more complex than Powell's method (Swann, 1972). Zangwill
(1967a) points out that Powell's method could break down and he
modifies the method. However, since the objective function can be
closely approximated by a guadratic function near the solution,
Powell's method seems to be the most efficieﬁt method that uses
function values only. Methods without evaluating derivatives are
also discussed by Fletcher (1965), Kowalik and Osborne (1968) and

Powell (1974). (to be continued atpégé 9a)
(continued from page 9b)
\\Much more attention has been given to the methods that use

first order derivatives, since they are much more efficient. A
very obvious method is the steepest descent method, which takes
the steeéest descent direction -Vf(x) as a search direction. This
technique, first proposed by Cauchy (1847) to solve simultaneous
linear equations, was exhumed a century later by Courant (1943)
to deal with problems in mathematical physica (Wilde and
Beightler, 1967). However the steepest descent method may con-

verge very slowly (for example, see Fletcher, 1980).

The conjugate gradient method is pioneered by Fletcher and
Reeves (1964), based on a method of Hestenes and Stiefel (1952)
for solving linear systems. The first search direction of the

method is the steepest descent direction, that is,



(continued from line 15 of page 9)

There is an example given by Sargon that Powell's algo-
rithm (1964) cycles because no new directions can be
obtained, and for problems of reasonable size it is a widely
held view that using variable metric method with gradients
approximated by finite differences is in practice better
than any of the methods described (Dixon, private communica-

tion, 1986). More references are listed below:

R.P. Brent, Algorithms for Minimization without Derivatives (Prentice
Hall Inc., Englewood Cliff. N.J., 1973)

L.C.W. Dixon, (ed.) Optimization in Action (Academic Press, Lon-
don, 1976).

L.C.W. Dixon and G.P. Szego, (eds.) Towards Global Optimization |
(North Holland, Amsterdam, 1975)

L.C.W. Dixon and G.P. Szego, (eds.) Towards Global Optimization
Il (North Holland, Amsterdém, 1978) |
P.E. Gill and W. Murray, "Quasi-Newton methods for uncon-
strained optimization", J. Ins. Math. Appl. 9(1972) 91-108.

R. Mifflin, "A superlinearly convergent algorithm for minim-

ization without evaluating derivatives", Math. Prog.
9(1975) 100-117.
F. Sloboda, "Parallel method of conjugate directions for

minimizations", Appl. Math. 20(1975) 436-446.
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Sloboda, "A conjugate direction method and its applica-
tion", in: Optimization Techniques (Proc. 8th IFIP Conf.,

Wurzberg, 1977) Part 2, pp. 147-157.

G.W. Stewart, "A modification of Davidon's minimization

C.

method to accept difference approximation of deriva-
tives", J. Ass. Comput. Mach. 14(1967) 72-83.

Sutti, "A new method for unconstrained minimisation
without derivatives™, in: Towards Global Optimisation (Proc.
Workshop Univ. Cagliari, Cagliari, 1974) pp. 277-289
(1974a).

Sutti, "Remarks on conjugate direction methods for minim-
isation without derivatives", in: Towards Global Optimisation
(Proc. Workshop Univ. Cagliari, Cagliari, 1974) pp. 290-
304 (1974b). |

Sutti, "Convergence proof of minimization algorithms for
nonconvex function", J. Opt. Theory Appl. 23(1977) 203-210.
Sutti, "Nongradient methods for unconstrained optimizai-
ton", in: Nonlinear Optimization (Proc. Intern. Summer School,
Univ. Bergamo, Bergamo, 1979) pp. 137-147.

Sutti, "Nongradient minimization methods for parallel
processing computers”, Part 1 and Part 2, J. Opt. Theory

Appl. 39(1983) 465-474 and 475-488.
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(to be continued at line 16 of page 9)



