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Abstract In this paper, we consider the problem of finding sparse solutions for underdetermined systems of

linear equations, which can be formulated as a class of L0 norm minimization problem. By using the least

absolute residual approximation, we propose a new piecewise quadratic function to approximate the L0 norm.

Then, we develop a piecewise quadratic approximation (PQA) model where the objective function is given by the

summation of a smooth non-convex component and a non-smooth convex component. To solve the (PQA) model,

we present an algorithm based on the idea of the iterative thresholding algorithm and derive the convergence and

the convergence rate. Finally, we carry out a series of numerical experiments to demonstrate the performance

of the proposed algorithm for (PQA). We also conduct a phase diagram analysis to further show the superiority

of (PQA) over L1 and L1/2 regularizations.

Keywords sparse optimization, non-convex approximation, iterative thresholding algorithm

MSC(2010) 90C30, 90C59, 90C90

Citation: Li Q, Bai Y, Yu C, et al. A new piecewise quadratic approximation approach for L0 norm minimization

problem. Sci China Math, 2019, 62: 185–204, https://doi.org/10.1007/s11425-017-9315-9

1 Introduction

Sparsity problems have attracted considerable attention in both theoretical study and engineering prac-

tice in recent years, including variable selection [34], face recognition [41], image processing [7], matrix

completion [8] and compressed sensing [17]. Finding sparse solutions for underdetermined systems of

linear equations, as an important class of sparsity problems, is to recover a sparse vector x ∈ Rn from

the measurements:

b = Ax,

where b ∈ Rm is an observation, and A ∈ Rm×n (m < n) is a measurement matrix of full row rank.

Mathematically, this problem can be formulated as

(P) min
x∈Rn

∥x∥0 subject to b = Ax, (1.1)
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where ∥x∥0, known as the L0 norm, is the number of nonzero components of x. Instead of solving

problem (P) directly, it is general to consider the following L0 regularization problem:

min
x∈Rn

{∥b−Ax∥2 + λ∥x∥0}, (1.2)

where ∥ · ∥ denotes the Euclidean norm and λ > 0 is a regularization parameter to balance the weights

of two terms in the objective.

L0 regularization problem is in general challenging to solve as it is NP-hard [29]. In order to overcome

such difficulty, L1 regularization has been proposed

min
x∈Rn

{∥b−Ax∥2 + λ∥x∥1}, (1.3)

where ∥x∥1 =
∑n

i=1 |xi| is the L1 norm. It is well known that L1 regularization is a convex optimiza-

tion problem. Hence, there exist many exclusive and efficient algorithms, for example, the interior-point

method [12], least angle regression [18], two-step iterative shrinkage algorithm (TwIST) [3], Nesterov’s

algorithm (NESTA) [2], augmented Lagrangian method (ALM) [42], soft thresholding algorithm (soft

algorithm) [13, 16], and fast iterative shrinkage-thresholding algorithm (FISTA) [1]. Under certain cir-

cumstances, a solution of L1 regularization is the solution of L0 regularization (L1/L0 equivalence) [17].

However, L1 regularization cannot guarantee a solution with desired sparsity in some case. There are some

convex improvements on L1 regularization, such as the weighted LASSO and the corrected LASSO [36].

Further consideration for solving the L0 regularization problem is to solve the following Lq regulariza-

tion problem:

min
x∈Rn

{∥b−Ax∥2 + λ∥x∥qq}, (1.4)

where ∥x∥q = (
∑n

i=1 |xi|q)1/q, 0 < q < 1, is the Lq quasi-norm. The Lq regularization leads to a

non-convex, non-smooth, and nonlipschitz optimization problem. There are two types of algorithms

for solving Lq regularization, the iterative reweighted algorithm [14, 26] and the iterative thresholding

algorithm [23,45]. Nevertheless, how to choose an appropriate q to yield the best result is also a problem.

Recently, this issue has been studied in [11, 33, 37, 38]. In particular, the special importance of L1/2

regularization is highlighted [39, 40]. By developing a thresholding representation theory, an iterative

half thresholding algorithm (half algorithm) [38] has been proposed for finding a fast solution to the L1/2

regularization. The convergence result of the half algorithm has been given in [44].

Moreover, other non-convex approximations of the L0 norm have been investigated, including smoothly

clipped absolute deviation [19], log-sum penalty [10], minimax concave penalty [46] and L1−2 (∥x∥1−∥x∥)
minimization [43]. These approximations can be solved by four classes of algorithms, including the half-

quadratic algorithm [21, 22], the iterative reweighted algorithm [10, 14, 24, 26], the difference of convex

functions algorithm [20, 47], and the iterative thresholding algorithm [23, 45]. Among these algorithms,

the iterative thresholding algorithm is mostly used, since it is easy to implement and has almost the least

computational complexity for large scale problems [32].

In this paper, to solve the L0 norm minimization problem, we first propose a new piecewise quadratic

function to approximate the L0 norm, and then develop a piecewise quadratic approximation (PQA)

model. The objective function of (PQA) contains a smooth non-convex term and a non-smooth convex

term. Then, we present an iterative algorithm for solving (PQA) based on the iterative thresholding

algorithm [1, 23] and prove that it converges to an ϵ stationary point within O(1/ϵ) iterations. Finally,

we provide a series of numerical experiments to demonstrate the performance of the proposed algorithm

for solving (PQA). We also conduct a phase diagram analysis to further show the superiority of (PQA)

over L1 and L1/2 regularizations.

The rest of this paper is organized as follows. In Section 2, a new piecewise quadratic approximation is

proposed. We develop an iterative algorithm for solving (PQA) and establish its convergence properties

in Section 3. In Section 4, we carry out a series of numerical experiments, including signal recovery and

image recovery, to show the performance of the iterative algorithm for solving (PQA). We finally conduct
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a phase diagram analysis in Section 5 to further demonstrate the superiority of (PQA) over L1 and L1/2

regularizations. We conclude this paper in Section 6.

2 The piecewise quadratic approximation

2.1 The new approximation for L0 norm

It is well known that L0 regularization is generally difficult to solve since it is NP-hard [29]. In the past

decade, various approximations to the L0 norm have been proposed, including ∥x∥1 and ∥x∥qq (0 < q < 1).

In this section, we will derive a new approximation for the L0 norm.

Without loss of generality, we first investigate the approximation for the L0 norm over [−e, e], e =

(1, 1, . . . , 1)T. Consider the set

S = [−e, e] = {x = (x1, x2, . . . , xn)
T : xi ∈ [−1, 1], i = 1, 2, . . . , n}.

There exist a series of aij ∈ {0, 1}, i = 1, 2, . . . , n, j = 1, 2, . . . , 2n, such that {Sj}, where

Sj = {x ∈ S : xi ∈ [−aij , 1− aij ], i = 1, 2, . . . , n}, j = 1, 2, . . . , 2n,

is a partition of S satisfying int(Sj) ̸= ∅, j = 1, 2, . . . , 2n, int(Si) ∩ int(Sj) = ∅ for i ̸= j, and

S = S1 ∪ S2 ∪ · · · ∪ S2n .

For illustration, we consider the two-dimensional case where S = {x = (x1, x2)
T : xi ∈ [−1, 1], i = 1, 2}.

We have the following partition for S:

S1 = {x : x1 ∈ [0, 1], x2 ∈ [0, 1]}, S2 = {x : x1 ∈ [−1, 0], x2 ∈ [0, 1]},
S3 = {x : x1 ∈ [−1, 0], x2 ∈ [−1, 0]}, S4 = {x : x1 ∈ [0, 1], x2 ∈ [−1, 0]}.

By the definition of ∥x∥0, ∥x∥1 and ∥x∥qq (0 < q < 1), we observe that they share the following

properties:

(i) The function values of them are equal at the vertex of each Sj , j = 1, 2, . . . , 2n.

(ii) They are concave on each of Sj , j = 1, 2, . . . , 2n.

(iii) They are monotonically decreasing on [−1, 0) and monotonically increasing on (0, 1] with respect

to each of the component xi, i = 1, 2, . . . , n.

Motivated by these properties, we approximate ∥x∥0 by the following piecewise quadratic function:

P (x) =



xTH1x+ (h1)Tx, x ∈ S1,
...

...

xTH lx+ (hl)Tx, x ∈ Sl,
...

...

xTH2nx+ (h2n)Tx, x ∈ S2n ,

where x = (x1, x2, . . . , xn)
T, l = 1, 2, . . . , 2n, (H l

ij) ∈ Rn×n and hl = (hl1, h
l
2, . . . , h

l
n)

T. To ensure

the proposed piecewise quadratic function shares the above properties and moreover, to achieve a good

approximation, it is essential to find appropriate H l and hl. We want the area between ∥x∥0 and P (x)

over [−e,e] minimized. These help us to determine H l and hl, l = 1, 2, . . . , 2n.

By definition, P (x) is symmetric over each of the hyperplane xi = 0, i = 1, 2, . . . , n. Thus, we only

need to compute H1 and h1 in

xTH1x+ (h1)Tx, x ∈ S1.

We set S1 = [0, e], where 0 = (0, 0, . . . , 0)T. For simplicity, we denoteH1 and h1 asH and h, respectively.
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By Property (i), the value of xTHx+hTx should be equal to ∥x∥0 at the vertex of [0, e]. Set x = ei,

where ei = (0, . . . , 1, . . . , 0)T, i = 1, 2, . . . , n. From eTi Hei + hTei = ∥ei∥0, we get

Hii + hi = 1. (2.1)

Then, we set x = ei+ej , i ̸= j, i, j = 1, 2, . . . , n, with ∥x∥0 = 2. From (ei+ej)
TH(ei+ej)+hT(ei+ej)

= 2, we have

Hii + 2Hij +Hjj + hi + hj = 2. (2.2)

Combining (2.1) and (2.2), we obtain

Hij = 0, i ̸= j, (2.3)

and hence H is a diagonal matrix.

By Property (ii), P (x) should be concave on Sl, l = 1, 2, . . . , 2n, and hence

Hii 6 0, i = 1, 2, . . . , n. (2.4)

By Property (iii), it is natural to assume that xTHx+ hTx is monotonically increasing with respect

to each of xi over [0, 1]. Therefore, we have

2Hiixi + hi > 0, ∀xi ∈ [0, 1], i = 1, 2, . . . , n. (2.5)

Combining (2.1), (2.4) and (2.5), we have

− 1 6 Hii 6 0, 1 6 hi 6 2, i = 1, 2, . . . , n. (2.6)

Finally, the area between ∥x∥0 and xTHx+ hTx over [0, e] is minimized

min
H,h

S =

∫ 1

0

· · ·
∫ 1

0

|∥x∥0 − xTHx− hTx|dx1 · · · dxn (2.7)

with constraints (2.1), (2.3) and (2.6) to obtain H and h. By (2.1), (2.3) and (2.6), we have

xTHx+ hTx =

n∑
i=1

(Hiix
2
i + hixi) 6 ∥x∥0, x ∈ [0, e]. (2.8)

Furthermore, (2.7) can be reformulated as the following problem:

min
h

∫ 1

0

· · ·
∫ 1

0

∥x∥0dx1 · · · dxn −
∫ 1

0

· · ·
∫ 1

0

n∑
i=1

[(xi − x2i )hi + x2i ]dx1 · · · dxn (2.9)

with the constraint (2.6). Combining (2.1), (2.6) and (2.9), we obtain Hii = −1, hi = 2, i = 1, 2, . . . , n.

Therefore,

xTHx+ hTx = −xTx+ 2eTx.

Remark 2.1. For the training points xj ∈ [0, e], we consider the following least absolute residual

approximation problem:

min
H,h

∑
j

(∥xj∥0 − (xj)THxj − hTxj). (2.10)

This model is minimizing the sum of absolute residuals between ∥x∥0 and xTHx+ hTx at the training

point xj . Instead of solving (2.7), solving (2.10) can obtain the same H and h as above.

By symmetry, we can finally obtain the piecewise quadratic approximation function

P (x) = −xTx+ 2∥x∥1, x ∈ [−e, e].
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Figure 1 Various approximations for the one-dimensional case
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Figure 2 Various approximations for the two-dimensional case

Remark 2.2. As above, we obtain the piecewise quadratic function to approximate ∥x∥0 over [−e, e].

Then, we extend the domain of P (x) to Rn, i.e., P (x) = −xTx + 2∥x∥1, x ∈ Rn. However, outside

[−e, e], ∥x∥0 cannot be well approximated by P (x) (see Figure 1(b)). As a result, when we use P (x) to

develop the piecewise quadratic approximation model, we will introduce a scaling parameter t to restrict

all the iterations of x in [−e, e].

In what follows, we shall illustrate the approximation effects of ∥x∥1, ∥x∥1/21/2, ∥x∥1/31/3, ∥x∥1 − ∥x∥
and P (x) for one-dimensional and two-dimensional cases, respectively.

For the one-dimensional case, the figures of ∥x∥0, ∥x∥1, ∥x∥1/21/2, ∥x∥
1/3
1/3, ∥x∥1−∥x∥ and P (x) are plotted

in Figure 1(a). From the geometric point of view, P (x) is superior to ∥x∥1 on approximating the L0 norm

when |x| 6 1. More specifically, when 0.38 6 |x| 6 1, P (x) gives a better approximation to ∥x∥0, as
compared with ∥x∥1/21/2. P (x) gives a better approximation to ∥x∥0 than ∥x∥1/31/3 when 0.61 6 |x| 6 1. For

∥x∥1−∥x∥, it remains zero for the one-dimensional case and hence is not a good approximation for ∥x∥0.
In Figure 1(b), we can see that ∥x∥0 cannot be well approximated by ∥x∥1, ∥x∥1/21/2, ∥x∥

1/3
1/3 and P (x)

when |x| > 1. This is because when |x| > 1, P (x) is decreasing, while ∥x∥1, ∥x∥1/21/2 and ∥x∥1/31/3 are

increasing. Thus, it is necessary to consider the approximation within [−e, e].

Figure 2 shows the figures of ∥x∥0, ∥x∥1, ∥x∥1/21/2, ∥x∥
1/3
1/3, ∥x∥1−∥x∥ and P (x) for the two-dimensional
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case (0 6 x 6 e). We observe from Figure 2 that P (x) is still superior to ∥x∥1 and ∥x∥1 − ∥x∥ on

approximating ∥x∥0. Although ∥x∥1/21/2 and ∥x∥1/31/3 are superior to P (x) in the neighborhood of (0, 0),

P (x) gives a better approximation in the neighborhood of (1, 1) when compared with ∥x∥1/21/2 and ∥x∥1/31/3.

2.2 The piecewise quadratic approximation of L0 norm minimization problem

We now consider the piecewise quadratic approximation of L0 norm minimization problem:

(PQA) min −
∥∥∥∥xt

∥∥∥∥2 + 2

∥∥∥∥xt
∥∥∥∥
1

subject to b = Ax,

where t > 1 is a scaling parameter. The (PQA) model can be viewed as an approximation of a scaled L0

norm minimization problem

(SP) min
x∈Rn

∥∥∥∥xt
∥∥∥∥
0

subject to b = Ax, (2.11)

where the problem (SP) is equivalent to the problem (P). This is because ∥x∥0 = ∥x/t∥0, when t > 1.

Remark 2.3. In the (PQA) model, the objective value is generally unbounded. However, by intro-

ducing a scaling parameter t, it becomes possible to restrict all the iterations of x within a box in Rn.

In Section 3, we will derive a parameter-setting strategy for t, such that all iterative points xk generated

by the proposed algorithm satisfy

xk ∈ [−te, te], k > 0,

and consequently, the objective values of (PQA) at xk (k > 0) are bounded from below. Moreover, the

boundedness of the iterative points is an indispensable condition to ensure the convergence result of the

proposed iterative algorithm for solving the problem (PQA).

2.3 A simple example

In this subsection, we give an example where ∥x∥1, ∥x∥1/21/2, ∥x∥
1/3
1/3 and ∥x∥1−∥x∥ fail to find the sparsest

solution, while P (x) succeeds. Consider the following example:

A =


5 10 10 10

−5 20 0 10

−3 10 0 0

 , b =


15

15

7

 .

The basic feasible solutions of b = Ax are

x =


0

7/10

7/10

1/10

+ c


−10

−3

7

1

 , c ∈ R. (2.12)

It is obvious that all the possible objective values of (P) in this example are {0, 1, 2, 3, 4}. (0, 0, 0, 0)T is

not the feasible solution of (P), so the minimum of (P) cannot be 0. From (2.12), there is no such c that x

only has one non-zero component. So the minimum of (P) cannot be 1. When c = −0.1, x∗ = (1, 1, 0, 0)T

is the unique optimal solution of (P). Thus the minimum of (P) is 2.

It is not difficult to verify that the unique optimal solution of

min{∥x∥1 | b = Ax}
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is x = (0, 0.7, 0.7, 0.1)T, and the optimal value is 1.5. Next, we use P (x) to relax the L0 norm. We set

−1/10 6 c 6 3/70 which ensures |x| 6 e. The optimal solution of

min{−xTx+ 2∥x∥1 | b = Ax}

may be obtained at x when c = −1/10, 3/70 or 0. It is easy to verify that when c = −1/10, we obtain

the optimal solution x∗ = (1, 1, 0, 0)T, which is the sparsest solution.

However, the optimal solution of

min{∥x∥1 − ∥x∥ | b = Ax}

is not x∗, because ∥x∥1−∥x∥ < ∥x∗∥1−∥x∗∥. Moreover, ∥x∥1/21/2 < ∥x∗∥1/21/2 and ∥x∥1/31/3 < ∥x∗∥1/31/3, so x∗

is not the optimal solution of

min{∥x∥1/21/2 | b = Ax}, min{∥x∥1/31/3 | b = Ax}.

Therefore, the non-convex approximations ∥x∥1−∥x∥, ∥x∥1/21/2 and ∥x∥1/31/3 cannot obtain the sparsest solu-

tion in this example, while P (x) can. Of course, one could construct other examples in which ∥x∥1−∥x∥,
∥x∥1/21/2 and ∥x∥1/31/3 approximations would perform better than the piecewise quadratic approximation.

The objective function of (PQA) is given by the summation of a smooth non-convex component and a

non-smooth convex component, whereas the objective function of the L1−2 problem is given by the sum-

mation of a non-smooth convex component and a non-smooth non-convex component, which is generally

more difficult to solve. Actually, ∥x∥qq, 0 < q < 1 can provide a better approximation to ∥x∥0, when the

value of q is smaller. However, when 1/2 6 q < 1, the L1/2 regularization always yields the best sparse

solution and when 0 < q 6 1/2, the performance of the regularizations takes no significant difference [39].

In numerical experiments, L1/2 regularization will be taken as a representative of Lq regularizations to

compare with the (PQA) model, which can be solved by the half algorithm efficiently.

In the next sections, we will present an iterative algorithm for solving the (PQA) model and provide

a series of experiments and applications to further demonstrate the performance of the (PQA) model.

3 Computational approach

Denote f(x) = −∥x/t∥2 and

g(x) =

2

∥∥∥∥xt
∥∥∥∥
1

, x ∈ X,

+∞, x ̸∈ X,

where X = {x | b = Ax}. Obviously, f : Rn → R is a smooth non-convex function of the type C1,1
Lf

(Rn),

i.e., continuously differentiable with Lipschitz continuous gradient

∥∇f(x)−∇f(y)∥ 6 Lf∥x− y∥, ∀x,y ∈ Rn,

where Lf > 0 is the Lipschitz constant of ∇f . In addition, g : Rn → R is a non-smooth convex function.

In this section, we first develop an iterative algorithm to solve the following general formulation which

includes the problem (PQA) as a special case:

min
x∈Rn

F (x) ≡ f(x) + g(x). (3.1)

To continue, we assume that the following conditions hold:

1. f is a smooth non-convex function of the type C1,1
Lf

(Rn).

2. g is a proper closed convex function which is possibly non-smooth.
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3.1 The iterative algorithm

In accordance with the basic idea of the iterative thresholding algorithm [1,23], we consider the following

quadratic approximation of F (x) at a given point y:

QLf
(x,y) := f(y) + ⟨x− y,∇f(y)⟩+ Lf

2
∥x− y∥2 + g(x).

This formulation admits a unique minimizer

PLf
(y) := argmin{QLf

(x,y) : x ∈ Rn},

which can be rewritten as

PLf
(y) := argmin

x

{
g(x) +

Lf

2

∥∥∥∥x−
(
y − 1

Lf
∇f(y)

)∥∥∥∥2}.
The operator PLf

(y) mentioned in the above formula is actually the proximal mapping [28, 31] of g at

the point y − (1/Lf )∇f(y), where the proximal mapping is defined as

proxcg(u) = argmin
x

{
g(x) +

1

2c
∥x− u∥2

}
.

Based on the above results and the iterative thresholding algorithm for convex problems [1], we are

now ready to describe the basic iteration of the iterative algorithm for solving the problem (3.1).

Algorithm 1 The iterative algorithm (IA)

1: Input: Lf : The Lipschitz constant of ∇f ;

2: Step 0: Take x0 ∈ Rn;

3: Step k: (k > 1) Compute

xk = prox 1
Lf

g

(
xk−1 −

1

Lf
∇f(xk−1)

)
. (3.2)

Note that (3.2) can also be written as xk = PLf
(xk−1). In the next subsection, we shall derive the

convergence and the convergence rate of Algorithm 1.

3.2 Convergence analysis

Before establishing the convergence of Algorithm 1, we shall present a key result (see Lemma 3.3 below)

that will be crucial for the convergence analysis. First, we recall the fundamental property for a smooth

function in the class C1,1
Lf

(Rn) (see [30, Lemma 1.2.3]).

Lemma 3.1. Let f : Rn → R be a continuously differentiable function with Lipschitz continuous

gradient and Lipschitz constant Lf . Then, for any x,y ∈ Rn, we have

−Lf

2
∥x− y∥2 6 f(x)− f(y)− ⟨x− y,∇f(y)⟩ 6 Lf

2
∥x− y∥2.

We also need the following result which characterizes the optimality of PLf
(·) (see [1, Lemma 2.2]).

Lemma 3.2. For any y ∈ Rn, one has z = PLf
(y) if and only if there exists γ(y) ∈ ∂g(z), the

subdifferential of g(·), such that

∇f(y) + Lf (z − y) + γ(y) = 0.

We are now ready to give the promised key result as follows.

Lemma 3.3. Let y ∈ Rn. Then for any x ∈ Rn,

F (x)− F (PLf
(y)) > Lf

2
∥PLf

(y)− x∥2 − Lf∥x− y∥2.
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Proof. From Lemma 3.1, we have

F (PLf
(y)) 6 Q(PLf

(y),y).

Thus,

F (x)− F (PLf
(y)) > F (x)−Q(PLf

(y),y). (3.3)

Since Lemma 3.1 and g(x) is convex, we have

f(x) > f(y) + ⟨x− y,∇f(y)⟩ − Lf

2
∥x− y∥2,

g(x) > g(PLf
(y)) + ⟨x− PLf

(y), γ(y)⟩.

Summing the two inequalities up yields

F (x) > f(y) + g(PLf
(y)) + ⟨x− y,∇f(y)⟩+ ⟨x− PLf

(y), γ(y)⟩ − Lf

2
∥x− y∥2. (3.4)

On the other hand, by the definition of PLf
(y), one has

Q(PLf
(y),y) = f(y) + ⟨PLf

(y)− y,∇f(y)⟩+ Lf

2
∥PLf

(y)− y∥2 + g(PLf
(y)). (3.5)

Therefore, substituting (3.4) and (3.5) into (3.3) gives

F (x)− F (PLf
(y)) > ⟨x− PLf

(y),∇f(y) + γ(y)⟩ − Lf

2
∥x− y∥2 − Lf

2
∥PLf

(y)− y∥2

= Lf ⟨x− PLf
(y),y − PLf

(y)⟩ − Lf

2
∥x− y∥2 − Lf

2
∥PLf

(y)− y∥2

=
Lf

2
∥PLf

(y)− x∥2 − Lf∥x− y∥2,

where the first equality above comes from Lemma 3.2.

The following lemma shows that the sequence {xk} generated by Algorithm 1 converges to a stationary

point of (3.1) as ∥Lf (x
k − xk−1)∥2 decreases. It is served as a stopping criterion for Algorithm 1.

Lemma 3.4. Let {xk} be the sequence generated by Algorithm 1. If ∥Lf (x
k − xk−1)∥2 6 ϵ after k

iterations, then there exists γ(xk−1) ∈ ∂g(xk), such that

∥∇f(xk) + γ(xk−1)∥2 6 4ϵ.

Proof. Since {xk} is the sequence generated by Algorithm 1, we have xk = PLf
(xk−1). By Lemma 3.2

and the first-order optimality condition, we have

−∇f(xk−1)− Lf (x
k − xk−1) ∈ ∂g(xk).

Let γ(xk−1) = −∇f(xk−1)− Lf (x
k − xk−1). We have

∥∇f(xk) + γ(xk−1)∥2 6 4∥Lf (x
k − xk−1)∥2 6 4ϵ,

where the first inequality is taken from

∥∇f(xk) + γ(xk−1)∥ 6 ∥∇f(xk)−∇f(xk−1)∥+ Lf∥xk − xk−1∥ 6 2Lf∥xk − xk−1∥.

This completes the proof.

In what follows, we discuss the convergence and the convergence rate of Algorithm 1.

Theorem 3.5. Let {xk} be the sequence generated by Algorithm 1. Assume that {xk} is bounded.

Then the following statements hold:

(i)
∑∞

k=0 ∥xk+1 − xk∥2 <∞.

(ii) Any accumulation point of {xk} is a stationary point of F .
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Proof. Invoking Lemma 3.3 with x = y = xk, we obtain

F (xk)− F (xk+1) > Lf

2
∥xk+1 − xk∥2, ∀ k > 0, (3.6)

which implies that the sequence {F (xk)} is monotonically decreasing. Summing both sides of (3.6) from 0

to N , we have
N∑

k=0

Lf

2
∥xk+1 − xk∥2 6 F (x0)− F (xN+1). (3.7)

Since {xk} is bounded, together with the fact that {F (xk)} is monotonically decreasing, {F (xk)} is

convergent. Let N → ∞ in (3.7). We conclude

∞∑
k=0

Lf

2
∥xk+1 − xk∥2 <∞.

So this proves (i).

We now prove (ii). Let x∗ be an accumulation point of the sequence {xk}. Then, there exists a

subsequence {xki} such that limi→∞ xki = x∗. Using Lemma 3.2, we obtain

− Lf (x
ki+1 − xki) ∈ ∇f(xki) + ∂g(xki+1). (3.8)

Invoking ∥xki+1 − xki∥ → 0 from (i), together with the continuity of ∇f and the closeness of ∂g [35],

passing to the limit in (3.8), we have

0 ∈ ∇f(x∗) + ∂g(x∗).

It means that x∗ is a stationary point of F .

This completes the proof.

Based on Theorem 3.5, we know that ∥xk+1 − xk∥2 is a quantity to measure the convergence of the

sequence {xk} to a stationary point of F . In the following theorem, we present the convergence rate in

terms of ∥xk+1 − xk∥2.
Theorem 3.6. Let {xk} be the sequence generated by Algorithm 1. Assume that {xk} is bounded.

Then for any N > 1, there exists a constant M such that

min
k=0,...,N−1

∥Lf (x
k+1 − xk)∥2 6

2(N + 1)ML2
f

N(N − 1)
. (3.9)

Proof. Invoking Lemma 3.3 with y = xk, x = x∗, where x∗ is an accumulation point of {xk}, we
obtain

F (x∗)− F (xk+1) > Lf

2
∥xk+1 − x∗∥2 − Lf∥xk − x∗∥2. (3.10)

Since {F (xk)} is monotonically decreasing and {xk} is bounded, we have limk→∞ F (xk) = F (x∗) and

F (xk) > F (x∗), k > 0. Summing the inequality (3.10) over k = 0, 1, . . . , N − 1 gives

0 > NF (x∗)−
N−1∑
k=0

F (xk+1) > Lf

2
∥xN − x∗∥2 − Lf

2
∥x0 − x∗∥2 − Lf

2

N−1∑
k=0

∥xk − x∗∥2. (3.11)

Invoking Lemma 3.3 one more time with x = y = xk yields

F (xk)− F (xk+1) > Lf

2
∥xk+1 − xk∥2.

Multiplying the last inequality by k and summing over k = 0, 1, . . . , N − 1, we obtain

N−1∑
k=0

(kF (xk)− kF (xk+1)) > Lf

2

N−1∑
k=0

k∥xk+1 − xk∥2,
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which can be simplified to

−NF (xN ) +
N−1∑
k=0

(F (xk+1)) > Lf

2

N−1∑
k=0

k∥xk+1 − xk∥2. (3.12)

Adding (3.11) and (3.12), we get

0 > NF (x∗)−NF (xN )

> Lf

2
∥xN − x∗∥2 − Lf

2
∥x0 − x∗∥2 − Lf

2

N−1∑
k=0

∥xk − x∗∥2 + Lf

2

N−1∑
k=0

k∥xk+1 − xk∥2. (3.13)

By the assumption that {xk} is bounded, there exists a constant M such that

∥xk − x∗∥2 6M, ∀ k > 0,

and hence
N−1∑
k=0

k∥xk+1 − xk∥2 6 (N + 1)M.

Then (3.9) follows. This completes the proof.

It follows from (3.9) that after running Algorithm 1 for at most O(1/ϵ) iterations, we can obtain a

stationary point xk satisfying ∥Lf (x
k −xk−1)∥2 6 ϵ, i.e., ∥∇f(xk)+ γ(xk−1)∥2 6 4ϵ, γ(xk−1) ∈ ∂g(xk).

Remark 3.7. Some algorithms related to our proposed algorithm are the generalized gradient projec-

tion algorithm [6, 25], the general iterative shrinkage and thresholding algorithm [23], and the iterative

jumping thresholding algorithm [45]. Compared with the assumptions on the problem formulation, we

can find that the optimization problem considered in this paper is different from the problems studied

in [6, 23, 25, 45] (where they need the objective function values to be bounded from below). However,

there are many non-convex optimization problems whose objective function values are not bounded from

below, while the iterative points generated by the algorithm may be bounded.

The key of the convergence result for Algorithm 1 to solve the problem (PQA) relies on the boundedness

of the iterative points, which will be proved in the following subsections.

3.3 Solving the subproblem

When we use Algorithm 1 to solve the problem (PQA), it is necessary to solve a convex subproblem of

the following form at each iteration:

min
x

{
g(x) +

Lf

2

∥∥∥∥x−
(
xk−1 − 1

Lf
∇f(xk−1)

)∥∥∥∥2}.
This problem can be simplified as

min
1

t2
∥x− 2xk−1∥2 + 2

t
∥x∥1

subject to b = Ax,
(3.14)

where Lf = 2/t2. Let

ψ(x,xk−1) =
1

t2
∥x− 2xk−1∥2 + 2

t
∥x∥1.

The subproblem (3.14) is a strongly convex problem, whose Lagrange dual problem is unconstrained,

convex and differentiable.

In this subsection, we present the Lagrange dual problem of (3.14), and introduce Nesterov’s accelerated

gradient algorithm [30] to solve the dual problem.
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Since ∥x∥1 = max{xTz : z ∈ Rn, ∥z∥∞ 6 1} [27], the dual problem of (3.14) can be obtained as

min
x

{ψ(x,xk−1) : Ax = b} = min
x

max
y

{
1

t2
∥x− 2xk−1∥2 + 2

t
∥x∥1 − yT(Ax− b)

}
= min

x
max
y,z

{
1

t2
∥x− 2xk−1∥2 + 2

t
xTz − yTAx+ yTb : ∥z∥∞ 6 1

}
= max

y,z

{
min
x

1

t2
∥x− 2xk−1∥2 + 2

t
xTz − yTAx+ yTb : ∥z∥∞ 6 1

}
= −min

y,z

{
− bTy +

∥∥∥∥ t2ATy +
2

t
xk−1 − z

∥∥∥∥2 − 4

t2
∥xk−1∥2 : ∥z∥∞ 6 1

}
,

where the last equality comes from the fact that the optimal solution of the inner minimizing problem is

x = 2xk−1 + (t2/2)ATy − tz. Eliminating z from the last equation gives the following dual problem:

min
y

{
− bTy +

∥∥∥∥shrink( t2ATy +
2

t
xk−1

)∥∥∥∥2 − 4

t2
∥xk−1∥2

}
, (3.15)

where

[shrinkµ(w)]i =

{
wi − sign(wi)µ, if |wi| > µ,

0, otherwise,
∀w ∈ Rn, µ > 0

is the well-known shrinkage or soft-thresholding operator with parameter µ > 0. We omit µ when µ = 1.

Let x∗ and y∗ be the optimal solution to the primal problem (3.14) and the dual problem (3.15),

respectively. Since strong duality holds, the optimal duality gap is zero. Moreover, (3.15) has a vanishing

gradient at the optimal point y∗:

−b+ tA shrink

(
t

2
ATy∗ +

2

t
xk−1

)
= 0.

Then, the optimal solution x∗ of the problem (3.14) can be obtained from y∗,

x∗ = t shrink

(
t

2
ATy∗ +

2

t
xk−1

)
.

It is easier to obtain x∗ in this way than to directly solve (3.14). In particular, there exist many efficient

algorithms to solve (3.15) [27]. In this paper, we use Nesterov’s accelerated gradient algorithm [30].

3.4 Choosing the parameter t

In this subsection, we prove the boundedness of the iterative points generated by Algorithm 1 solving

the problem (PQA) and discuss how to appropriately choose the scaling parameter t.

Lemma 3.8. Let {xk} be the sequence generated by Algorithm 1 solving the problem (PQA). The initial

point is x0 (b = Ax0). Then, for any k > 0, ∥xk∥ 6 t/2, where t = max{2∥x0∥, 8∥AT(AAT)−1b∥1}.
Proof. The mathematical induction is used to prove this lemma.

First, it is obvious that ∥x0∥ 6 t/2.

Second, assume that ∥xk−1∥ 6 t/2. We shall prove ∥xk∥ 6 t/2, where xk is the optimal solution of

min
x

{
1

t2
∥x− 2xk−1∥2 + 2

t
∥x∥1 : Ax = b

}
. (3.16)

The dual problem of (3.16) is

min
y,z

{
− bTy +

∥∥∥∥ t2ATy +
2

t
xk−1 − z

∥∥∥∥2 − 4

t2
∥xk−1∥2 : ∥z∥∞ 6 1

}
. (3.17)
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Let yk and zk be the optimal solution of (3.17). Then

xk = 2xk−1 +
t2

2
ATyk − tzk, where ∥zk∥∞ 6 1. (3.18)

Multiplying (3.18) by A, we obtain (b = Axk−1, b = Axk)

AATyk =
2

t
Azk − 2

t2
b.

Since A is a matrix of full row rank, AAT and (AAT)−1 are positive definite. Then

yk =
2

t
(AAT)−1Azk − 2

t2
(AAT)−1b. (3.19)

Combining (3.19) and ∥zk∥∞ 6 1, we have

bTyk =
2

t
bT(AAT)−1Azk − 2

t2
bT(AAT)−1b 6 2

t
∥AT(AAT)−1b∥1. (3.20)

As ∥xk−1∥ 6 t/2, we can obtain −1 6 2xk−1
i /t 6 1. So∥∥∥∥shrink(2

t
xk−1

)∥∥∥∥2 = 0. (3.21)

Since y = 0 is the feasible solution of (3.17), we have

− bTyk +

∥∥∥∥shrink( t2ATyk +
2

t
xk−1

)∥∥∥∥2 − 4

t2
∥xk−1∥2 6

∥∥∥∥shrink(2

t
xk−1

)∥∥∥∥2 − 4

t2
∥xk−1∥2. (3.22)

Combining (3.20)–(3.22), we have

1

t2
∥xk∥2 =

∥∥∥∥shrink( t2ATyk +
2

t
xk−1

)∥∥∥∥2 6 bTyk 6 2

t
∥AT(AAT)−1b∥1.

Since ∥AT(AAT)−1b∥1 6 t/8, ∥xk∥ 6 t/2.

In conclusion, for any k > 0, ∥xk∥ 6 t/2, where t = max{2∥x0∥, 8∥AT(AAT)−1b∥1}.

By Lemma 3.8, we can obtain the following results:

1. The assumption on the boundedness of the iterative sequence {xk} in Theorems 3.5 and 3.6 is

satisfied. In other words, when we use Algorithm 1 to solve the problem (PQA), Algorithm 1 is convergent

and the complexity bound is O(1/ϵ).

2. The iterative points xk, k > 0 generated by (3.14) are in [−te, te], when the scaling parameter

t > max
{
2∥x0∥, 8∥AT(AAT)−1b∥1

}
. From the proof of Lemma 3.8, we can see that there may exist a

smaller t such that the iterative points xk, k > 0 generated by (3.14) are still in [−te, te].

4 Numerical experiments

To show the effectiveness of the proposed iterative algorithm for (PQA) (the IA-PQA for short), in this

section, two typical compressed sensing problems in signal recovery and image recovery are solved. For

comparison, we also apply the hard algorithm [4,5], soft algorithm [13,16], FISTA [1], ALM [42] and half

algorithm [38, 44] to solve these problems. The performance of the algorithm is measured by how many

measurements (samples) are used to recover a signal or an image. The fewer measurements required, the

better the corresponding algorithm is.

The numerical experiments are carried out using MATLAB 2012(b) and running on a PC with 2.50GHZ

CPU processor and 8GB RAM. The error precision is set to ϵ = 10−7. The iteration bound for the hard,

soft and half algorithms is set to be 3,000.
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Figure 3 Sparse signal with length n = 512 and sparsity k = 130

Table 1 Recovery results of a signal with different number of samples

m Algorithm MSE CPU time (s) m Algorithm MSE CPU time (s)

330

Hard 3.31E−07 0.04

270

Hard 5.61 0.06

Soft 2.37E−04 0.47 Soft 2.62 0.18

FISTA 4.11E−06 0.43 FISTA 2.62 0.16

ALM 1.64E−07 0.55 ALM 2.38 1.21

Half 4.29E−07 0.23 Half 1.01E−06 0.38

IA-PQA 5.98E−08 0.14 IA-PQA 8.54E−07 0.33

239

Hard 6.09 0.16

238

Hard 4.86 0.12

Soft 3.42 0.14 Soft 3.24 0.14

FISTA 3.42 0.24 FISTA 3.24 0.26

ALM 3.51 0.43 ALM 3.21 0.36

Half 4.03 0.22 Half 3.00 0.27

IA-PQA 4.39E−07 0.89 IA-PQA 0.72 1.47

4.1 Signal recovery

The signal recovery problem has been studied extensively in the past ten years [9, 17]. According to

Donoho [17], the problem can be formulated as the following L0 problem:

(CSS) min ∥x∥0
subject to b = Ax+ ε,

where A ∈ Rm×n is a sensing matrix, b is an observation, x is the signal to be recovered, and ε is the

observation noise. In this experiment, a white noise ε ∈ N(0, σ2) (σ = 0.1) is used.

In the following, we consider two experiments (signal without noise and signal with noise) to compare

the performance of L0, L1 and L1/2 regularizations and the (PQA) model. In the experiments, the hard

algorithm, soft algorithm, FISTA, ALM, half algorithm, and IA-PQA are tested. The sensing matrix A is

taken as the Gaussian random matrix, as suggested in [17]. For each case, the mean square error (MSE)

between the recovered signal and the original signal is computed, and the CPU time for all the algorithms

is recorded.

4.1.1 Signal without noise

We consider a real-valued n-length (n = 512) signal x without noise, shown as in Figure 3, where x

is k-sparse with k = 130. The experiment then aims to recover x ∈ R512 through m measurements

determined by b = Ax, where m is much less than 512. The six algorithms are applied with a variable

number (m) of measurements. Some of the numerical results are listed in Table 1.
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Table 2 Recovery results of a noisy signal with different number of samples

m Algorithm MSE Ratio CPU time (s) m Algorithm MSE Ratio CPU time (s)

330

Hard 3.98 1.64 0.09

300

Hard 3.73 1.33 0.06

Soft 3.73 1.54 0.08 Soft 2.90 1.04 0.09

FISTA 3.73 1.54 0.12 FISTA 2.90 1.04 0.13

ALM 3.93 1.62 1.48 ALM 3.11 1.11 1.52

Half 3.21 1.33 0.40 Half 2.82 1.01 0.32

IA-PQA 3.16 1.31 0.85 IA-PQA 2.77 0.99 0.67

Oracle 2.42 Oracle 2.80

280

Hard 4.36 1.33 0.06

265

Hard 6.07 1.70 0.06

Soft 3.48 1.06 0.10 Soft 4.44 1.24 0.12

FISTA 3.48 1.06 0.14 FISTA 4.44 1.24 0.14

ALM 3.60 1.10 1.39 ALM 4.60 1.28 1.43

Half 2.78 0.85 0.61 Half 4.40 1.23 0.54

IA-PQA 3.15 0.96 1.37 IA-PQA 4.03 1.13 1.79

Oracle 3.27 Oracle 3.58

240

Hard 6.35 1.46 0.09

238

Hard 7.37 1.62 0.12

Soft 4.97 1.14 0.10 Soft 5.36 1.18 0.10

FISTA 4.97 1.14 0.12 FISTA 5.36 1.18 0.17

ALM 5.03 1.15 0.44 ALM 5.57 1.22 0.49

Half 5.00 1.15 0.21 Half 5.94 1.30 0.26

IA-PQA 4.74 1.09 0.77 IA-PQA 4.98 1.09 0.65

Oracle 4.36 Oracle 4.56

It is clear from Table 1 that all the six algorithms can accurately recover the signal when m = 330,

and the IA-PQA attains the highest accuracy among the tested algorithms (this is true for all m > 330).

The hard algorithm, soft algorithm, FISTA, and ALM fail to recover the signal when m = 270, but the

half algorithm for L1/2 regularization and the iteration algorithm for (PQA) still succeed in recovering

the signal, and the IA-PQA still has the highest accuracy with a low computational cost. Furthermore,

when the measurements are reduced to 239, the IA-PQA is the only one that can accurately recover the

signal. When m is further reduced to 238, all the algorithms fail to recover the signal, nevertheless, the

solution obtained by the IA-PQA has the highest precision.

This experiment shows that the iterative algorithm for (PQA) outperforms all the other five algorithms.

4.1.2 Signal with noise

Now, let us consider the case of recovering signal with noise. The signal in Figure 3 is used again, but

with noise. In this experiment, we aim to assess the capability of the above six algorithms in recovering

the signal from a noisy circumstance.

In order to understand the effect of noise, we use the oracle MSE to examine the recovery capability of

the algorithms in the experiment. For each algorithm, we calculate the ratio between the MSE generated

by the algorithm and the oracle, listed as “Ratio” in Table 2. An algorithm with a ratio closer to 1 means

that it is better in terms of robustness.

The numerical results of the hard algorithm, soft algorithm, FISTA, ALM, half algorithm and IA-PQA

are shown in Table 2, as the number of measurements (m) decreases from 330 to 238. We can see from

Table 2 that the ratio of IA-PQA algorithm stays close to 1 regardless the value ofm. Observing the MSE

values in Table 2, we can find that the iterative algorithm for (PQA) always yields the most accurate

recovery results. This shows that the iterative algorithm for (PQA) provides the best signal recovery at

the same noise level, and yet requires the least number of samplings among the six algorithms.



200 Li Q et al. Sci China Math January 2019 Vol. 62 No. 1

4.2 Image recovery

We consider the problem of recovering realistic images, where two 256×256 pixel images and one 512×512

pixel image are selected. Each image can be denoted as an n-dimensional vector x, where the dimensions

are equal to 65,536, 65,536 and 262,144, respectively. The image x has a wavelet coefficient sequence α

that is compressible [15], where x = WTα, and W is the discrete orthogonal wavelet transform matrix.

We select the measurement matrix A as a random Fourier matrix. The experiment aims to recover the

wavelet coefficient sequence α through the following model:

(CSI) min ∥α∥0
subject to b = AWTα,

where A ∈ Rm×n is a random Fourier matrix, W ∈ Rn×n is a discrete orthogonal wavelet transform

matrix, b is an observation and α is the wavelet coefficient sequence of the image x.

(a) Original image (b) Soft (SNR=28.04) (c) Half (SNR=144.77) (d) IA-PQA (SNR=137.47)

Figure 4 Head plantom image reconstruction results under different algorithms (m/n = 0.18)

(a) Original image (b) Soft (SNR=16.89) (c) Half (SNR=16.58) (d) IA-PQA (SNR=21.30)

Figure 5 Cameraman image reconstruction results under different algorithms (m/n = 0.49)

(a) Original image (b) Soft (SNR=15.81) (c) Half (SNR=15.74) (d) IA-PQA (SNR=19.14)

Figure 6 Lifting body image reconstruction results under different algorithms (m/n = 0.27)



Li Q et al. Sci China Math January 2019 Vol. 62 No. 1 201

Table 3 Recovery results of images with different number of samples

Image m/n
Error SNR CPU time (s)

Soft Half IA-PQA Soft Half IA-PQA Soft Half IA-PQA

Head plantom

0.39 3.29E−05 6.68E−07 1.35E−06 124.42 158.26 152.13 168.46 26.55 27.47

0.23 0.84E−02 2.14E−06 5.65E−06 76.31 148.13 139.72 182.37 72.06 53.83

0.18 2.17 3.15E−06 7.30E−06 28.04 144.77 137.49 229.19 122.80 89.55

Cameraman

0.74 4.21 4.82 2.10 23.52 22.34 29.57 171.42 57.38 38.78

0.66 5.52 6.04 2.91 21.16 20.36 26.71 169.82 34.83 33.26

0.49 9.01 9.35 5.42 16.89 16.58 21.30 193.47 16.28 35.63

Lifting body

0.44 5.95 6.06 4.77 20.59 20.43 22.51 524.49 35.82 23.76

0.38 7.10 7.21 5.35 19.04 18.91 21.51 538.64 26.67 30.78

0.27 10.30 10.39 7.02 15.81 15.74 19.14 537.38 16.46 40.90

We use two 256× 256 images (head plantom and cameraman) and one 512× 512 image (lifting body)

to compare the performance of the soft algorithm, half algorithm, and IA-PQA. In each case, we compute

the error ∥x− x∥, the signal to noise ratio (SNR)

10 lg
∥x−mean(x)∥22

∥x− x∥22
,

and the CPU time (s), where x is the original image and x is the image recovered from the measurements

by an algorithm. The sampling rate is measured as m/n.

Figures 4–6 illustrate visual image recovery results obtained by three algorithms, respectively. We can

see from Figure 4 that when m/n = 0.18, the image recovery results on head plantom using the half

algorithm and the IA-PQA are much better than using the soft algorithm. The result of image recovery

using the IA-PQA is similar to that of the half algorithm. For the image of cameraman, whenm/n = 0.49,

the SNR of the soft and half algorithms, and IA-PQA are 16.89, 16.58, and 21.21, respectively. When

m/n = 0.27, for the image of lifting body, the SNR of the soft and half algorithms, and IA-PQA are

15.81, 15.74, and 19.14, respectively. We note from Figures 5 and 6 that the IA-PQA can achieve the

highest signal to noise ratio among the three tested algorithms.

The detailed results of image recovery under different sampling rates and different algorithms are listed

in Table 3. It is clear from Table 3 that more measurements lead to a better image recovery quality.

For the image of head plantom, by applying the half algorithm and the IA-PQA, both of the results can

provide an accurate reconstruction of the image. For cameraman and lifting body images, the IA-PQA

achieves the highest SNR among all the algorithms for different m/n. The computational time of the

IA-PQA is shorter than the soft algorithm under different images and different numbers of measurements.

According to Table 3, it is clear that the iterative algorithm for (PQA) outperforms the soft and the half

algorithms.

5 Phase diagram research

To further show the sparsity-promoting capability of (PQA) over L1 regularization and L1/2 regulariza-

tion, we conduct a phase transition analysis of the iterative algorithm for (PQA).

For the equivalence between L0 and L1 regularizations (L1/L0 equivalence), Donoho [17] first intro-

duced a phase diagram to illustrate how

sparsity =
number of nonzeros in x

number of rows in A
=

k

m

and

indeterminacy =
number of rows in A

number of columns in A
=
m

n
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Figure 7 Phase diagram of signal recovery using different algorithms

are related to L1 regularization. This diagram shows a performance measure of the solution as a function

of the levels of indeterminacy and sparsity. The performance of L1 regularization exhibits a two-phase

(success/failure) structure in this diagram by a phase transition curve. Above the phase transition curve,

the L1 solution is not an L0 solution, while below the curve the L1 solution is an L0 solution. For

this reason, the phase diagram provides a useful methodology to compare the abilities of various L1

algorithms. We use this methodology to study the equivalence between (PQA) and L0 regularization,

and compare different approximation approaches.

We consider the 512-length signal recovery problem in Section 4 as a prototype (thus n = 512) with

which the variable features of the problem could be constructed. More specifically, for each fixed m,

we vary k from 1 to m by considering 100 equidistributed values ki = im/100 (i = 1, 2, . . . , 100), and

then increase m from 0 to n in a way such that 100 discrete values mj = jn/100 (j = 1, 2, . . . , 100) are

considered. This constitutes a testing situation with 10,000 models. For each model, a fixed k-sparse

solution is computed by various tested algorithms. The abscissa runs from 0 to 1, and represents values

for δ = m/n. The ordinate is ρ = k/m, measuring the level of sparsity in the model.

We apply the iterative algorithm for (PQA). For comparison, we apply the soft algorithm for L1

regularization and the half algorithm for L1/2 regularization at the same time. The recovery is accepted

as a “success” whenever the normalized root-mean-square error (nRMSE), ∥x− x∥/∥x∥, is smaller than

10−5; otherwise, it is regarded as a “failure”, where x is the original signal and x is the signal recovered

from the fewer measurements. The dark black area indicates where the point is the case of “success”,

but the other area indicates “failure”. In this way, the phase diagram of each algorithm is shown below.

Figure 7 shows the phase diagrams of the IA-PQA, half, and soft algorithms, respectively. The com-

monly appearing dashed curves are the phase transition curves of L1 regularization, which consists of the

theoretical thresholds at which L1/L0 equivalence breaks down.

We can see from Figure 7 that the phase transition phenomenon does appear for all the algorithms.

The phase diagram of the soft algorithm almost coincides with the theoretical one. It is very pleasing to

observe that the phase diagrams of the IA-PQA and half algorithm in Figures 7(a) and 7(b) show that the

phase transition curves are all above the L1 curve. As expected, it shows the stronger sparsity-promoting

property of (PQA) and L1/2 regularization over L1 regularization. Moreover, the performance of (PQA)

is superior to L1/2 regularization over [0, 0.7], at least as well as L1/2 regularization over [0.7, 1].

6 Conclusions

In this paper, we have proposed a new piecewise quadratic approximation framework for solving sparsity

problems. The main contributions are the establishment of a piecewise quadratic approximation model,

and the iterative algorithm for (PQA).

Numerical experiments have shown that (PQA) can get the best sparse solutions of a problem and

recover a signal or an image from the fewest samplings, as compared with L1 and L1/2 regularizations,
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and the iterative algorithm is fast and effective for solving (PQA). In addition, we have conducted a

phase diagram analysis to further show the superiority of (PQA) over L1 and L1/2 regularizations.
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