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Abstract. The well-known interior point method for semidefinite progams can only be used to
tackle problems of relatively small scales. First-order methods such as the the alternating direction
method of multipliers (ADMM) have much lower computational cost per iteration. However, their
convergence can be slow, especially for obtaining highly accurate approximations. In this paper,
we present a practical and efficient second-order semismooth Newton type method based on solving
a fixed-point mapping derived from an equivalent form of the ADMM. We discuss a number of
techniques that can be used to improve the computational efficiency of the method and achieve
global convergence. Then we further consider the application in electronic structure calculations.
The ground state energy of a many-electron system can be approximated by an variational approach
in which the total energy of the system is minimized with respect to one- and two-body reduced
density matrices instead of many-electron wavefunctions. This problem can be formulated as a
semidefinite programming problem. Extensive numerical experiments show that our approach is
competitive to the state-of-the-art methods in terms of both accuracy and speed.
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1. Introduction. In this paper, we consider the following generic semidefinite
programming (SDP) problem. Let Sn = {X ∈ Rn×n | X> = X}. For two matrices
C,X ∈ Sn, the inner product between them is defined as 〈C,X〉 = tr(CX). For a
set of given matrices A1, · · · , Am ∈ Sn, we define a linear operator A : Sn → Rm by
AX = (〈A1, X〉 , · · · , 〈Am, X〉)T . The conjugate operator of A is defined by A∗y =∑m
p=1Apyp for y ∈ Rm. Using these notations for a given b ∈ Rm, we can formulate

a primal SDP as

(1.1)

max
X∈Sn

〈C,X〉

such that ( s.t.) AX = b,

X � 0.
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A4132 Y. LI, Z. WEN, C. YANG, AND Y. YUAN

The corresponding dual SDP is

min
y∈Rm,S∈Sn

bT y

s.t. S = A∗y − C,
S � 0.

(1.2)

We assume that m is significantly smaller than n2.
Although the SDP problems are solvable in polynomial time by interior point

methods [29, 30, 32], the computational cost is typically high due to the cost associ-
ated with assembling the Newton system and performing the Cholesky factorization
to obtain search directions. First-order methods, which have much lower complexity
per iteration, have gained wide acceptance in recent years. The well-known alternat-
ing direction multiplier method (ADMM) has been used to solve general SDPs in [31].
Although ADMM has relatively low complexity per iteration, it may converge slowly
and take thousands or tens of thousands iterations to reach high accuracy. Recently,
some new methods have been developed to speed up the solution of general SDPs.
An example is the Newton-CG augmented Lagrangian method (SDPNAL) proposed
in [35]. There are two loops in SDPNAL. The outer loop provides the augmented
Lagrangian framework and the Lagrangian multipliers are updated at each iteration.
In the inner loop, the semismooth Newton method is applied to minimize the aug-
mented Lagrangian function up to certain accuracy. An enhanced version of SDPNAL
called SDPNAL+ is developed in [34], which can further treat nonnegative SDP ma-
trices.

1.1. Our contribution. In this paper, we first review the ADMM method
since it serves as the foundation of the second-order method to be introduced below.
Applying the ADMM to the dual SDP formulation is equivalent to applying the
Douglas Rachford splitting (DRS) [11, 18, 13] method to the primal SDP formulation
of the problem. The DRS method can be viewed as a fixed-point iteration that yields
a solution of a system of semismooth and monotone nonlinear equations that coincides
with the solution of the corresponding SDP. The generalized Jacobian of this system
of nonlinear equations is positive semidefinite and bounded. Hence, our strategy is
to use the semismooth Newton method to solve this system of nonlinear equations.
Although an abstract form of the semismooth method has appeared in [33], the crit-
ical algorithmic framework for ensuring global convergence as well as several major
components are significantly different. Our main contributions are as follows.

• A new scheme is proposed to ensure the global convergence of the semi-
smooth Newton method. Compared with the methods shown in [33], the
projection step is removed. Moreover, by exploring the special structure of
the generalized Jacobian, we can compute the Newton step practically and
efficiently.

• We also take advantage of the connection between the ADMM and DRS to
modify the updates of the DRS and semismooth Newton method. The ad-
justments of the parameters in DRS and semismooth Newton method should
be constructed carefully. Otherwise, the performance may not be satisfactory.
A strategy for switching between ADMM and semismooth Newton steps is
designed to combine the strengths of first-order and second-order methods
and guarantee the global convergence.

• Our method solves a single system of nonlinear equations. It is different from
SDPNAL [35] and SDPNAL+ [34] which minimizes a sequence of augmented
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A SEMISMOOTH NEWTON METHOD FOR SDPs A4133

Lagrangian functions for the dual SDP by a semismooth Newton-CG method.
Based on the same key implementation details and subroutines of SDPNAL
[35], SDPNAL+ [34] and ADMM+ [28], we demonstrate that our semismooth
algorithm is competitive with SDPNAL and SDPNAL+ in terms of both
computational time and accuracy on electronic structure calculation.

Another contribution is the application to electronic structure calculations. The
molecular Schrödinger’s equation, which is a many-body eigenvalue problem, is a fun-
damental problem to solve in quantum chemistry. An alternative way to approximate
the ground state energy (i.e., the smallest eigenvalue), which does not involve approx-
imating the many-body eigenfunction directly, is to express the ground state energy
in terms of the so called one-body reduced density matrix (1-RDM) and two-body
reduced density matrix (2-RDM) that satisfy a number of linear constraints. The
process leads to a SDP and it is often referred to as the variational 2-RDM (v2-RDM)
or 2-RDM method in short. In this paper, a detailed derivation of the SDP formu-
lation is provided. We review how the ADMM method is used to solve the v2-RDM
given in [36]. To improve the computational efficiency for solving v2-RDM problem,
we exploit the special structures of matrices resulting from the 1-RDM and 2-RDM
constraints. The block diagonal and low rank structures of these matrices are related
to spin and spatial symmetry of the molecular orbitals [17, 24, 36]. We show how
they can be used to significantly reduce the computational costs in the semismooth
Newton method. Extensive numerical experiments on examples taken from [23] show
that our semismooth Newton method can indeed achieve higher accuracy than the
ADMM method. It can obtain accurate solutions similar to these reported in [23].

1.2. Organization. The rest of this paper is organized as follows. In sec-
tion 2, we review the DRS and the ADMM for solving general SDP problems. Our
semismooth Newton method is presented in section 3. In section 4, we provide some
background on electronic structure calculation, establish the notation, and introduce
the v2-RDM formulation. Numerical results are reported in section 5. Finally, we
conclude the paper in section 6.

2. The DRS and ADMM method. We now discuss the usage of the DRS
and the ADMM to solve the SDP formulations (1.1) and (1.2) since both of them will
play important roles in the design of our hybrid approach in section 3.

The DRS method, first introduced to solve nonlinear partial differential equa-
tions [11, 18, 13], can be used to solve the primal SDP. To describe the DRS method,
we first establish some notations and terminologies. Given a convex function f and a
scalar t > 0, the proximal mapping of f is defined by

(2.1) proxtf (X) := arg min
U

f(U) +
1

2t
‖U −X‖2F ,

where ‖ · ‖F is the Frobenius norm and U,X ∈ Rn×n. We also define an indicator
function on a convex set Ω as

1Ω(X) :=

{
0 if X ∈ Ω,

+∞, otherwise.

To use the DRS method to solve (1.1), we let

(2.2) f(X) = −〈C,X〉+ 1{AX=b}(X) and h(X) = 1K(X),
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where K = {X : X � 0}. Then each iteration of the DRS procedure for solving (1.1)
can be described by the following sequences of steps:

Xk+1 = proxth(Zk),

Uk+1 = proxtf (2Xk+1 − Zk),

Zk+1 = Zk + Uk+1 −Xk+1,

(2.3)

where {Uk} and {Zk} are two sets of auxiliary variables. It follows from some simple
algebraic rearrangements that the variables X and U can be eliminated in (2.3) to
yield a fixed-point iteration of the form

(2.4) Zk+1 = TDRS(Zk),

where

(2.5) TDRS := I + proxtf ◦ (2proxth − I)− proxth.

The ADMM can be applied to the dual formulation of the SDP (1.2). Let X be
the Lagrangian multiplier associated with the linear equality constraints of (1.2). The
augmented Lagrangian function is

(2.6) Lσ(y, S,X) = bT y + 〈X,S −A∗y + C〉+
σ

2
||S −A∗y + C||2F .

Applying the ADMM [5, 31] with ρ ∈ (0, 1+
√

5
2 ) to (1.2) yields the following sequence

of steps in the kth iteration:

yk+1 = arg minyLσ(y, Sk;Xk),

Sk+1 = arg minS�0Lσ(yk+1, S;Xk),

Xk+1 = Xk + ρσ(Sk+1 −A∗yk+1 + C).

(2.7)

We next make the following assumption.

Assumption 2.1. The operator A in (1.1) satisfies AA∗ = I, and the Slater con-
dition holds. That is, there exists y ∈ Rm and S � 0 such that A∗y − S = C.

The first part of the assumption implies that A has full row rank. It is satisfied
in many SDPs after a suitable transformation of A. The convergence of DRS and
ADMM has been studied in [15, 12, 2, 5, 31, 9, 28]. The following theorem provides
the convergence properties of the ADMM and DRS.

Theorem 2.2. Suppose the Assumption 2.1 holds.

(i) [5, Theorem 4.1] If ρ ∈ (0, 1+
√

5
2 ), then the sequence of variables (Xk, Sk, yk)

generated from the ADMM converge to a solution (X∗, S∗, y∗) of (1.1)–(1.2)
from any starting point.

(ii) If ρ = 1, the ADMM iteration for the dual SDP (1.2) is equal to the DRS for
the primal SDP (1.1). The sequence of variables Zk generated from the DRS
converge to a fixed-point solution of I−TDRS and the residual ‖Zk−TDRS(Zk)‖F
goes to 0 [9, Theorem 1].

3. The semismooth Newton method. Although the ADMM (and conse-
quently the DRS method due to its equivalence to the ADMM) converges from any
starting point on the SDP, the convergence can be slow, especially towards a highly
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accurate approximation to the solution of the SDP. In practice, we often observe a
rapid reduction in the objective function, infeasibility, and duality gap in the first
few iterations. However, the reduction levels off after the first tens or hundreds of
iterations. To accelerate convergence and obtain a more accurate approximation, we
consider a second-order method.

The DRS can be characterized as a fixed-point iteration (2.4) for solving a system
of nonlinear equations

(3.1) F (Z) = proxth(Z)− proxtf (2proxth(Z)− Z) = 0,

where Z ∈ Sn. Moreover, the solution of (3.1) is also an optimal solution to (1.1)
and vice versa. Hence, we will focus on more efficient ways to solve (3.1).

3.1. Generalized Jacobian. Before we discuss how to solve (3.1), let us first
examine the structure of the generalized Jacobian of F (Z). Using the definition of
f(x) and h(x) given in (2.2), we can write down the explicit forms of proxtf (Y ) and
proxth(Z) as

proxtf (Y ) = (Y + tC)−A∗(AY + tAC − b),
proxth(Z) = QαΣαQ

T
α ,

where

QΣQT =
(
Qα Qᾱ

)(Σα 0
0 Σᾱ

)(
QTα
QTᾱ

)
is the spectral decomposition of the matrix Z with Σ = diag(λ1, · · · , λn), α = {i|λi >
0}, and ᾱ = {1, . . . , n} \ α is the set of the indices of the positive and nonpositive
eigenvalues of Z.

Since F is locally Lipschitz continuous, it can be verified that F is almost differ-
entiable everywhere. We next introduce the concepts of generalized subdifferential.

Definition 3.1. Let F be locally Lipschitz continuous at X ∈ O, where O is an
open set. Let DF be the set of differentiable points of F in O. The B-subdifferential
of F at X is defined by

∂BF (X) :=

{
lim
k→∞

F ′(Xk)|Xk ∈ DF , X
k → X

}
.

The set ∂F (x) = co(∂BF (x)) is called Clarke’s generalized Jacobian, where co denotes
the convex hull.

Let I be an identity operator. It can be shown that

(3.2) D = I − A∗A

is the Jacobian matrix ∂proxtf (·) at the point (2proxth(Z)−Z) associated with the
second term of F (Z) in (3.1). Similar to the convention used in [35], we define a
generalized Jacobian operator M(Z) ∈ ∂proxth(Z) in terms of its application to an
n × n matrix S that yields

(3.3) M(Z)[S] = Q(Ω ◦ (QTSQ))QT for all S � 0,

where the ◦ symbol denotes a Hadamard product and

Ω =

[
Eαα kαᾱ
kTαᾱ 0
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with Eαα being a matrix of ones and kij = λi

λi−λj
, i ∈ α, j ∈ ᾱ. Usually, it is nontrival

to describe the generalized Jacobian ∂F (Z) exactly. We can define an alternative
form

(3.4) ∂̂F (Z) = ∂proxth(Z) +D(I − 2∂proxth(Z))

and choose an element J (Z) ∈ ∂̂F (Z):

(3.5) J (Z) =M(Z) +D(I − 2M(Z)).

It follows from [6, Corollory, page 75] that

(3.6) ∂̂F (Z)[S] = ∂F (Z)[S] for all S � 0.

We now introduce the definition of the semismoothness and monotoneness below.

Definition 3.2. Let F be a locally Lipschitz continuous function in a domain O.
We say that F is semismooth at x ∈ O if (i) F is directionally differentiable at x; (ii)
for any z ∈ O and J ∈ ∂F (x+ z),

(3.7) ‖F (x+ z)− F (x)− J [z]‖2 = o(‖z‖2) as z → 0.

The function F is said to be strongly semismooth if o(‖z‖2) in (3.7) is replaced by
O(‖z‖22). It is called monotone if 〈x− y, F (x)− F (y)〉 ≥ 0 for all x, y ∈ Rn.

The next lemma characterizes the fixed-point map given in (3.1) and its general-
ized Jacobian matrix.

Lemma 3.3. The function F in (3.1) is strongly semismooth and monotone. Each
element of Clarke’s generalized Jacobian ∂F (x) of F is positive semidefinite.

Proof. The strongly semismoothness of F follows from the derivation given in [26,
27] to establish the semismoothness of proximal mappings. In fact, the projection over
a polyhedral set is strongly semismooth [26, Example 12.31], and the projections over
symmetric cones are proved to be strongly semismooth in [27]. Hence, proxtf (·)
and proxth(·) are strongly semismooth. Since strongly semismoothness is closed
under scalar multiplication, summation, and composition, the function F is strongly
semismooth.

It has been shown in [18] that the operator TDRS is firmly nonexpansive. There-
fore, F is firmly nonexpansive, hence monotone [1, Proposition 4.2]. The positive
semidefiniteness simply follows from Lemma 3.5 in [33].

3.2. Computing the Newton direction. Using the expression given in (3.5),
we can now discuss how to compute the Newton direction efficiently. At a given iterate
Zk, we compute a Newton direction Sk by solving the equation

(3.8) (Jk + µkI)[Sk] = −F k,

where Jk ∈ ∂̂F (Zk), F k = F (Zk). The regularized parameter is defined as

(3.9) µk = κk‖F k‖2

with κk > 0. Equation (3.8) is well-defined since each element of B-subdifferential
∂BF (x) of F is positive semidefinite and the regularization term µkI is chosen such
that Jk + µkI is invertible. From a computational view, it is not practical to solve
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the linear system (3.8) exactly. Therefore, we seek an approximate step Sk by solving
(3.8) approximately so that

(3.10) ‖rk‖F ≤ τ min{1, κ‖F k‖F ‖Sk‖F },

where

(3.11) rk := (Jk + µkI)[Sk] + F k

is the residual and 0 < τ < 1 is some positive constant.
Since Jk in (3.8) is nonsymmetric and its dimension is large, we apply the

Sherman–Morrison–Woodbury (SMW) formula to transform (3.8) into a smaller sym-
metric system. If we vectorize the matrix S, then the operators M(Z) and D can be
expressed as matrices

M(Z) = Q̃ΛQ̃T and D = I −ATA,

respectively, where Q̃ = Q⊗Q, Λ = diag(vec(Ω)), I is the identity matrix and A is the
matrix form of A. Let W = I−2M(Z) = Q̃(I−2Λ)Q̃T and H = Q̃((µk+1)I−Λ)Q̃T .
Then the matrix form of Jk + µkI can be written as Jk + µkI = H − ATAW . It
follows from the SMW formula that

(Jk + µkI)−1 = (H −ATAW )−1

= H−1 +H−1AT (I −AWH−1AT )−1AWH−1.

Define

(3.12) T = Q̃LQ̃T ,

where L is a diagonal matrix with diagonal entries Lii = Λiiµk

µk+1−Λii
, where Λii is

the ith diagonal entry of Λ. By using the identities H−1 = 1
µk+1I + 1

µk(µk+1)T and

WH−1 = 1
1+µk

I − ( 1
µk

+ 1
µk+1 )T , we can further obtain

(Jk + µkI)−1(3.13)

=
µkI + T

µk(µk + 1)

(
I +AT

(
µ2
k

2µk + 1
I +ATAT

)−1

A

(
µk

2µk + 1
I − T

))
.

As a result, the solution of (3.8) can be obtained by first solving the following sym-
metric linear equation

(3.14)

(
µ2
k

2µk + 1
I +ATAT

)
ds = a,

where a = −A( µk

2µk+1I−T )vec(F k) and vec is the vectorized operator that transforms
a matrix to a verctor, by an iterative method such as the CG method or the symmetric
QMR method. Note that the size of the coefficient matrix of (3.14) is m ×m while
that of (3.8) is n2 × n2, where m usually is much smaller than n2. Then we use the
following expression to recover

Sk =
1

µk(µk + 1)
(µkI + T )[−F k +A∗ds],
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Algorithm 1. Solving the linear system (3.8).

1 Compute a = −A( µk

2µk+1I − T )F k ;

2 Use the CG or symmetric QMR method to solve (
µ2
k

2µk+1I +AT A∗)ds = a

inexactly, where the matrix-vector multiplication is computed by (3.15) ;

3 Compute the Newton direction Sk = 1
µk(µk+1) (µkI + T )(−F k +A∗ds).

where T is the operator form of T in (3.12). Specifically, applying T to a matrix S
yields

T (Z)[S] = Q(Ω0 ◦ (QTSQ))QT ∀ S � 0,

where

Ω0 =

[
Eαα lαᾱ
lTαᾱ 0

]
and lij =

µkkij
µk + 1− kij

.

Let Υ = T (Z)[S]. We can then use the same techniques used in [35] to express
Υ as multiplication:

(3.15) Υ = [QαQᾱ]

[
QTαSQα lαᾱ ◦QTαSQᾱ

lTαᾱ ◦QTᾱSQα 0

] [
QTα
QTᾱ

]
= G+GT ,

where G = Qα( 1
2 (UQTα) + lαᾱ ◦ (UQᾱ)) with U = QTαS. The number of floating point

operations (flops) required to compute Υ is 8|α|n2. If |α| is large, we can compute
Υ via the equivalent expression Υ = S − Q((E − Ω0) ◦ (QTSQ))QT , which requires
8|ᾱ|n2 flops.

Therefore, using the expression (3.15) allows us to obtain an approximate solution
to (3.8) efficiently whenever |α| or |ᾱ| is small. We summarize the procedure for solving
the Newton equation (3.8) approximately in Algorithm 1.

3.3. Switching between ADMM and semismooth Newton steps. A few
safeguard strategies are developed in order to stabilize the semismooth Newton step
and maintain global convergence. Let Uk = Zk + Sk be a new trial point from the
Newton step. Choose 0 < ν < 1 and a fixed integer ζ > 0. If the residual ‖F (Uk)‖F
is sufficiently decreased with respect to the last few steps, i.e.,

(3.16) ‖F (Uk)‖F ≤ ν max
max(1,k−ζ+1)≤j≤k

‖F (Zj)‖F ,

then we execute a Newton step, i.e., Zk+1 = Uk. Otherwise, we let Zk+1 = Zk and
mark it as a failed step. When the number Nf of failed steps reaches a fixed count
N̄f , we go to perform the ADMM iterations.

The parameter κk in (3.9) is an important parameter to control the quality of
Sk. When κk is large, Sk is close to the DRS direction F (Zk) and usually leads to a
reduction of ‖F (Uk)‖F . However, it may also lead to a slow convergent rate. When
κk is small, the convergence may be fast, but Sk may be a bad direction. We define
the ratio

(3.17) ρk =
−
〈
F (Uk), Sk

〉
‖Sk‖2F

to decide how to update κk. If ρk is small, it is usually a signal of a bad Newton step.
Then we increase κk. Otherwise, we decrease it.
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In summary, we set

(3.18) Zk+1 =

{
Uk if Uk satisfies (3.16) [Newton step],

Zk, otherwise [failed step].

Then the parameters κk+1 are updated as

(3.19) κk+1 =


max{κ, κ0κk} if ρk ≥ η2,

γ1κk if η1 ≤ ρk < η2,

min{κ̄, γ2κk}, otherwise,

where γ0 < 1, γ1, γ2 > 1 are chosen parameters and κ, κ̄ are two positive constants.
We next show our strategies for incorporating the ADMM and semismooth

Newton steps. The basic idea is to combine the advantages of first-order and second-
order methods. Note that we choose the ADMM rather than the DRS as our first-order
method since the primal and dual variables are explicilt available during the ADMM
iterations and some strategies in ADMM can be used to accelerate the convergent
speed, such as choosing ρ = 1.618. When the ADMM method converges slowly, we
switch to the semismooth Newton step. We mainly examine the reduced ratios of
primal and dual infeasibilities of the last few steps defined by

(3.20) ωkηp =
meank−5≤j≤kη

j
p

meank−25≤j≤k−20η
j
p

and ωkηq =
meank−5≤j≤kη

j
q

meank−25≤j≤k−20η
j
q

where the primal infeasibility ηp and the dual infeasibility ηd are defined by

(3.21) ηp =
‖A(X)− b‖2

1 + ‖b‖2
and ηd =

‖A∗y − C − S‖F
1 + ‖C‖F

.

If these reduced ratios are larger than some given constants, we say that the ADMM
performs bad and go to the semismooth Newton steps. Of course, the parameters
5, 20, 25 in (3.20) can be tuned to be other values as well. Similarly, we go from the
semismooth Newton steps to the ADMM steps if the reduced ratios are too large, and
if the number of iterations of solving the system of linear equations (3.14) is large but
there is not much progress.

In practice, the penalty parameter σ of the ADMM is often updated adaptively to
achieve faster convergence. One strategy is to tune σ to balance the primal infeasibility
ηp and the dual infeasibility ηd. In particular, the ηjp and ηjd denote the primal and

dual infeasibilities at the jth iteration. If the mean of {ηjp/ηjq} in a few steps is larger
(or smaller) than a constant δ, we decrease (or increase) the penalty parameter σ
by a multiplicative factor γ (or 1/γ) with 0 < γ < 1. To prevent σ from becoming
excessively large or small, an upper and lower bound are often imposed on σ. This
strategy has been demonstrated to be effective in [31].

Due to the switching between the ADMM and the semismooth Newton steps
based on the DRS, we next describe the recovery of the variables of the DRS (also
semismooth Newton steps) from these of the ADMM with ρ = 1 and vice versa. In
fact, the X variable produced in the kth step of DRS applied to (1.1) is exactly the
X variable produced in the kth step of ADMM applied to (1.2). The other variables
(Z and U) and the parameter t produced in DRS are related to the variables y, S
and parameter σ produced in the ADMM via

(3.22)

{
t = σ;

Zk = Xk+1 − σSk+1.
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If the DRS (2.3) is first executed, we can obtain the following relationship for the
ADMM as

(3.23)



σ = t;

Xk = proxth(Zk−1);

Sk =
1

t
(Xk − Zk−1);

A∗yk =
1

t
(Xk −Xk−1)− Sk + C.

The variable yk can be further computed from the last equation if the operator A
is of full row rank. Consequently, the strategies of the ADMM for updating σ can
be used in the DRS and Newton step for modifying t and vice versa. However, one
should be careful on computing the primal and dual infeasibilities of the DRS when
the parameter t is changed from t1 to t2 after one loop of the DRS (2.3). In this case,
the next immediate update of the DRS should be

Xk+1 = proxt1h
(
Zk
)
,

Uk+1 = proxt2f

(
Xk+1 − t2

t1
(Zk −Xk+1)

)
,

Zk+1 =
t2
t1

(Zk −Xk+1) + Uk+1.

(3.24)

Thereafter, the original iterations (2.3) can still be used for the fixed t2.
The complete approach to solve the SDP is summarized in Algorithm 2.
The following theorem establishes the global convergence of Algorithm 2.

Algorithm 2. A semismooth Newton method for SDP (SSNSDP).

1 Give ζ, N̄f > 0, 0 < τ, ν < 1, 0 < η1 ≤ η2 < 1 and γ0 < 1, γ1, γ2 > 1 ;
2 Choose Z0 and ε > 0. Set k = 0, Nf = 0 and doSSN = 0;
3 while not “converged” do
4 if doSSN == 1 then

5 Select Jk ∈ ∂̂F (Zk);

6 Solve the linear system (3.8) approximately such that Sk satisfies
(3.10);

7 Compute Uk = Zk + Sk ;

8 Update Zk+1 and κk+1 according to (3.18) and (3.19), respectively;
9 If (3.16) is not satisfied, set Nf = Nf + 1;

10 if Nf ≥ N̄f or the Newton step performs bad then
11 Set doSSN = 0; Set the parameters for the ADMM steps;

12 if doSSN == 0 then
13 Perform an ADMM step. Equivalently, it defines Zk+1 = Zk −F (Zk);
14 if the ADMM step performs bad then
15 Set doSSN = 1 and Nf = 0; Set the parameters of the Newton

steps;

16 Update the penalty parameter t;
17 Set k = k + 1;
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Theorem 3.4. Suppose that Assumption 2.1 holds and {Zk} is a sequence gen-
erated by Algorithm 2 with a fixed penalty parameter σ and ρ = 1 in the ADMM
and a fixed parameter t in (3.1). Then the residuals of {Zk} converge to 0, i.e.,
limk→∞ ||F (Zk)||F = 0.

Proof. For notational convenience, a consecutive ADMM (semismooth Newton)
steps between two Newton (ADMM) steps is called an ADMM (Newton) epoch. Then
in Algorithm 2, ADMM epochs and Newton epochs perform alternatively. If all steps
in a Newton epoch are failed steps, this epoch can be deleted directly. Without loss
of generality, we can assume that there exists at least one successful Newton step in
each Newton epoch.

If the number of Newton steps is finite, then the whole sequence is generated
from the ADMM after some iterations. Hence, the convergence holds due to the
convergence of the ADMM. Therefore, we only need to consider the case that the
number of Newton steps is infinite. Since the number of failed Newton steps is less
than N̄f and the number of successful Newton steps is at least one in each Newton
epoch, there must exists infinite successful Newton steps.

Firstly, we assert that the residual are nonincreasing for all steps in ADMM epochs
and all failed steps in Newton epochs, i.e., ‖F (Zk+1)‖F ≤ ‖F (Zk)‖F . This fact is
trivial for failed steps, and it follows from the firmly nonexpansiveness of TDRS [18]
and Theorem 1 in [8] for the ADMM steps. Define

F̄ k = max
k−ζ+1≤j≤k

‖F (Zj)‖F for all k ≥ ζ.

For the failed steps and ADMM steps, we have ‖F (Zk+1)‖F ≤ ‖F (Zk)‖F ≤ F̄ k. For
successful Newton steps in the Newton epochs, it holds ‖F (Zk+1)‖F ≤ vF̄ k. Thus,
we prove that F̄ k is nondecreasing since

F̄ k+1 ≤ max{‖F (Zk+1)‖F , F̄k} ≤ max{v, 1}F̄ k = F̄ k+1.

Finally, we prove the fact that F̄ k+ζ ≤ vF̄ k if a successful Newton step is per-
formed at the kth step. We only need to show that

(3.25) ‖F (Zk+j)‖F ≤ vF̄ k for all 1 ≤ j ≤ ζ.

When j = 1, the assertion (3.25) holds by the conditions of successful Newton steps.
When j = 2, we consider the following two cases. If a ADMM step or failed step is
performed at the (k + 1)th step, then

‖F (Zk+2)‖F ≤ ‖F (Zk+1)‖F ≤ vF̄ k.

If a success Newton step is executed at (k + 1)th step, then

‖F (Zk+2)‖F ≤ vF̄ k+1 ≤ vF̄ k,

where the last inequality is due to the nonincreasingness of F̄ k. This concludes that
the claim (3.25) holds for j = 2. Continuing this argument for all 2 < j ≤ ζ,
the assertion (3.25) holds. Combining with infiniteness of the successful Newton
steps and the nonincreasingness of F̄ k, we have that limk→∞ F̄ k = 0, which impiles
limk→∞ ‖F (Zk)‖F = 0.
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3.4. Comparisons with SDPNAL and SDPNAL+. In this subsection, we
compare our algorithm with the semismooth Newton type methods SDPNAL [35]
and SDPNAL+ [34]. Starting from X0, the augmented Lagrangian method solves the
dual problem (1.2) by

(3.26)
(yk+1, Sk+1) = arg min

S�0,y∈Rm
Lσ(y, S,Xk),

Xk+1 = Xk + σ(Sk+1 −A∗yk+1 + C),

where Lσ(y, S,X) is defined in (2.6). In SDPNAL, the variable S is eliminated due
to Sk+1 = ΠSn

+
(A∗yk+1 − C − Xk/σ), where ΠSn

+
is the projection on semidefinite

matrix cone. Consequently, SDPNAL solves an equivalent form of (3.26) as

yk+1 = arg min L̃σk(y,Xk),(3.27)

Xk+1 = ΠSn
+

(Xk − σ(A∗yk+1 − C)),(3.28)

where

(3.29) L̃σ(y,X) = bT y +
1

2σ
(||ΠSn

+
(X − σ(A∗y − C))||2F − ||X||2F ).

Then the subproblem (3.27) is minimized by using a semismooth Newton method to
certain accuracy. The gradient and an alternative element of the generalized Hessian
of (3.29) with respect to y is

∇yL̃σ(y,X) = b−AΠSn
+

(X − σ(A∗y − C)),(3.30)

V ∈ σA∂ΠSn
+

(X − σ(A∗y − C))A∗.(3.31)

For fixed y and X, the corresponding semismooth Newton step is

(3.32) (V + εI)d = ∇yLσ(y,X),

where ε is a small constant. The detailed computation in [35] shows that the left
hand sides of both (3.32) and (3.14) share certain similar structures but they are not
the same due to certain subtle differences. Their right hand sides are also different.
Hence, the two systems usually lead to different search directions. The linear system
of SDPNAL corresponds to the dual variable y, while ours relates to the variable Z.
These two linear systems are connected through the SMW formula. Therefore, the
core iteration processes of SDPNAL and SSNSDP are indeed different.

SDPNAL+ [34] is a much enhanced version of SDPNAL for SDPs with nonnega-
tive constraints. For standard SDPs, the Newton systems of SDPNAL and SDPNAL+
are essentially the same but some specific implementation details are different. We
should point out that switching rules between ADMM and Newton steps are also
implemented in SDPNAL+ and our rules are inspired by them. However, the most
recent rules of SDPNAL+ [34] are unknown since the source codes are not publicly
available.

4. Electronic structure calculations. We now discuss how the algorithm pre-
sented above can be used to approximate ground state energy of a molecular system.

4.1. The variational 2-RDM formulation. The electronic structure of a
molecule can be determined by the solution to an N -electron Schrödinger equation

(4.1) HΨ = EΨ,
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where Ψ : R3N ⊗ {±1
2}

3N → C is an N-electron antisymmetric wave function that
obeys the Pauli exclusion principle, E represent the total energy of the N -electron
system, and H is the molecular Hamiltonian operator defined by

(4.2) H =

N∑
i=1

−1

2
4i −

N∑
i=1

K∑
k=1

Zk
|Rk − ri|︸ ︷︷ ︸

one-body term

+
1

2

N∑
i,j=1,i6=j

1

|ri − rj |︸ ︷︷ ︸
two-body term

.

Here 4i denotes a Laplace operator with respect to the spatial coordinate of the ith
electrons, Rk, k = 1, . . . ,K, gives the coordinates of the kth nuclei with charge Zk,
and ri, i = 1, . . . , N , gives the coordinates of the ith electron. The smallest eigenvalue
of H, often denoted by E0, is called the ground state energy (4.1).

It is now well known that an alternative expression of the total energy of the
molecular system is

(4.3) E =

d∑
i,j

Ti,jγi,j +

d∑
i,j,k,l=1

Vij,klΓij,kl,

where γi,j and Γij,kl are elements of the so-called 1-RDM γ and 2-RDM Γ, respectively.
They are the unknowns to be determined. The matrix elements Ti,j and Vij,kl are
one- and two-body integrals of molecular orbitals associated with the one-body and
two-body terms in (4.2).

This alternative formulation of the many-body problem and the method developed
to solve the reformuated problem is known as the 2-RDM method. The development
of the 2-RDM method dates back to 1950s. Mayer [20] showed how the energy of a
many-body problem can be represented in terms of 1-RDM and 2-RDM, which can be
writen as a matrix and a 4-order tensor. However, since not all matrices or tensors are
RDMs associated with an N -electron wavefunction, one must add some constraints to
guarantee that the matrices and tensors satisfy the so called N -representability con-
dition, which was first proposed by Coleman [7] in 1963 and has been investigated for
nearly 50 years. The N -representability condition for the 1-RDM in the variational
problem has been solved in [7]. In 1964, Garrod and Percus [16] showed a sufficient
and necessary condition for the 2-RDM N -representability problem. It is theoretically
meaningful but computationally intractable. In 2007, Liu, Christandl, and Verstraete
showed that the N -representability problem of 2-RDM is QMA-complete [19]. Since
then a number of approximation conditions, including the P, Q, R, T1, T2, T2’ condi-
tions, have been proposed in [7, 16, 14, 36, 21, 3]. All these conditions are formulated
by keeping matrices whose elements are linear combinations of the components of
the 1-RDM and 2-RDM matrices positive semidefinite. As a result, the constrained
minimization of the total energy with respect to 1-RDM and 2-RDM becomes an SDP.

The practical use of the v2-RDM approach to solving the ground state electronic
structure is enabled, to some extent, by the recent advances in numerical methods
for solving large-scale SDPs. In [24], Nakata et al. solved the v2-RDM problem by
an interior point method. Zhao et al. reformulated the 2-RDM using the dual SDP
formalism and also applied the interior point method in [36]. The problem size of the
SDP formulation in [36] is usually smaller than the ones given in [24]. The boundary
point method (similar to the ADMM method) is developed by Mazziotti to solve the
v2-RDM in [22]. Rigorous error bounds for approximate solutions obtained from the
v2-RDM approach are discussed in [4].
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Note that the dimensions of γ and Γ are d × d, and d2 × d2, respectively, where
d is proportional to the number of electrons N . By treating the total energy E as
a function of γ and Γ, we can obtain an approximation to the ground state energy
by solving an optimization problem with O(N4) variables instead of an eigenvalue
problem of a dimension that grows exponentially with respect to N .

However, γ and Γ are not arbitrary matrices. They are said to be N -representible
if they can be obtained from some many-body wavefunction Ψ. N -representible matri-
ces are known to have a number of properties [21, 36] that can be used to constrain the
set of matrices over which the objective function (4.3) is minimized. These properties
include

γi,j = γj,i,Γij,kl = Γkl,ij ; Hermitian(4.4)

Γij,kl = −Γji,kl = −Γij,lk; antisymmetric(4.5)

tr(γ) = N and tr(Γ) =
N(N − 1)

2
; trace(4.6) ∑

k

Γik,jk =
N − 1

2
γij . partial trace(4.7)

However, the above conditions are not sufficient to guarantee γ and Γ to be
N -representible. A significant amount of effort has been devoted in the last few
decades to develop additional conditions that further constrain γ and Γ to be N -
representible [21, 36] without making use of Ψ explicitly. These conditions are collec-
tively called the N -representability conditions.

4.2. N-representability conditions. The N -representability conditions were
first introduced in [7]. It has been shown in [7] that γ is N-representable if and
only if 0 � γ � I. For 2-RDM, it is more difficult to write down a complete set
of the conditions under which Γ is N -representable. Liu, Christandl, and Verstraete
showed that the N -representability problem is QMA-complete in [19]. There has been
efforts to derive approximation conditions that are useful in practice. The well known
approximation conditions in [7, 16, 14, 36, 21, 3] define the so-called P,Q,G, T1, T2
variables whose elements can be expressed as a linear function with respect to the
elements of γ and Γ as follows:

Pij,i′j′ = Γij,i′j′ ,(4.8)

Qij,i′j′ = (δii′δjj′ − δij′δji′)− (δii′γjj′ + δjj′γii′)(4.9)

+(δij′γji′ + δji′γij′) + Γij,i′j′ ,

Gij,i′j′ = δjj′γii′ − Γij′,i′j ,(4.10)

T1ijk,i′j′k′ = A[ijk]A[i′j′k′]

(
1

6
δii′δjj′δkk′ −

1

2
δii′δjj′γk,k′ +

1

4
δii′Γjk,j′k′

)
,(4.11)

T2ijk,i′j′k′ = A[jk]A[j′k′]

(
1

2
δjj′δk,k′γii′ +

1

4
δii′Γj′k′,jk − δjj′Γik′,i′k

)
,(4.12)

where δ is the Kronecker delta symbol and A[ijk]f(i, j, k) = f(i, j, k) + f(j, k, i) +
f(k, i, j) − f(i, k, j) − f(j, i, k) − f(k, j, i). The T2 variable can be strengthened to
yield the T2′ variable described in [3, 21]. We should point out that each of (4.8)–
(4.12) is in fact a set of equations enumerating all possible indices i, j, k, i′, j′, and k′.
Since Γ is a Four-dimensional tensor satisfying (4.4) and (4.5), one can convert it to
a two-dimensional matrix Γ̃, i.e.,

Γij,i′j′ = Γ̃j−i+(2d−i)(i−1)/2,j′−i′+(2d−i′)(i′−1)/2.
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Similar properties hold for Q. Hence, Γ and Q can be transformed into d(d−1)
2 × d(d−1)

2
matrices. Because (4.5) is not satisfied on the Four-dimensional tensor G, it can
only be transformed into a d2 × d2 matrix. By the antisymmetric properties of the
six-dimensional tensors T1, T2 and T2′ [36, 3, 21], they can be transformed into
d(d−1)(d−2)

6 × d(d−1)(d−2)
6 , d2(d−1)

2 × d2(d−1)
2 , and d2(d−1)+2d

2 × d2(d−1)+2d
2 matrices,

respectively. For simplicity, we still use the notations Γ, P,Q,G, T1, T2, and T2′

to represent the matrices translated from these tensors. Finally, the corresponding
N -representability condition of (4.8)–(4.12) is to require each matrix to be positive
semidefinite.

4.3. The SDP formulations. Let b = (svec(T ), svec(V ))T ∈ Rm and y =
(svec(γ), svec(Γ))T ∈ Rm be vectorized integral and reduced density matrices that
appear in (4.3), respectively, where svec is used to turn a symmetric matrix U into a
vector according to

svec(U) = (U11,
√

2U12, U22,
√

2U13,
√

2U23, U33, . . . , Unn).

To simplify notations later, we rename matrices as S1 = γ, S2 = P , S3 = Q, S4 = G,
S5 = T1 and S6 = T2, and treat both y and {Sj} as variables in the SDP formulation.
Using the definition of y, we can rewrite the equation S1 = γ as a system of linear
equations

(4.13) S1 = A∗1y + C1,

where A∗1y =
∑m
p=1A1pyp ∈ Rs1×s1 with A1p ∈ Rs1×s1 and C1 ∈ Rs1×s1 . Obvi-

ously, s1 = d and C1 is a zero matrix. Similarly, each of (4.8)–(4.12) can be written
succinctly as

(4.14) Sj = A∗jy − Cj , j = 2, . . . , l = 6,

where A∗jy =
∑m
p=1Ajpyp with Ajp ∈ Rsj×sj and Cj ∈ Rsj×sj . The integer sj is

equal to the matrix size of Sj . The matrices Ajp are coefficients matrices of yp, and
Cj are constant matrices in the corresponding equation of (4.8)–(4.12).

Using these notations, we can formulate the constrained minimization of (4.3)
subject to N -representability conditions as an SDP:

min
y,Sj

bT y

s.t. Sj = A∗jy − Cj , j = 1, . . . , l,

BT y = c,

0 � S1 � I,
Sj � 0, j = 2, . . . , l,

(4.15)

where the linear constraints BT y = c follows from the conditions (4.6)–(4.7) and other
equality conditions introduced in [36]. If some of conditions in (4.8)–(4.12) are not
considered, then (4.15) can be adjusted accordingly. If the condition on T2 is replaced
by that of T2′, then we set S6 = T2′.

The SDP problem given in (4.15) is often known as the dual formulation. The
corresponding primal SDP of (4.15) is

D
ow

nl
oa

de
d 

04
/1

9/
20

 to
 1

24
.1

6.
14

8.
9.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A4146 Y. LI, Z. WEN, C. YANG, AND Y. YUAN

max
Xj ,U

l∑
j=1

〈Cj , Xj〉+ 〈c, x〉 − 〈C1 + I, U〉

s.t.

l∑
j=1

Aj(Xj) +Bx−A1(U) = b,

Xj � 0, j = 1, . . . , l,

U � 0,

(4.16)

where Xj ∈ Rsj×sj , U ∈ Rs1×s1 , Aj is the conjugated operator of A∗j and Aj(X) =

(〈Aj1, X〉 , . . . , 〈Ajm, X〉)T for any matrix X ∈ Rsj×sj .
Since the largest matrix dimension of Xj and Sj is of order O(d3) and m = O(d4),

(4.15) and (4.16) are large scale SDPs even for a moderate value d. However, the Sj in
(4.15) are block diagonal matrices due to the spatial and spin symmetries of molecules.
Hence, the computational cost for solving (4.15) can be reduced by exploiting such
block diagonal structures. In Table 4.1, we list the number of diagonal blocks and their
dimensions resulting from spin symmetries in each of γ, Γ, Q,G, T1, T2, T2′ matrices.

Table 4.1
The matrix dimensions of the block diagonal structures.

Sj matrix block dimension

γ d
2

, 2 blocks;

P , Q, Γ d2

4
, 1 blocks; d

4
( d
2
− 1), 2 blocks;

G d2

2
, 1 blocks; d2

4
, 2 blocks;

T1 d2

8
( d
2
− 1), 2 blocks; d2

12
( d
2
− 1)( d

2
− 2), 2 blocks;

T2 d2

8
( 3d

2
− 1), 2 blocks; d2

8
( d
2
− 1), 2 blocks;

T2′ d
2

+ d2

8
( 3d

2
− 1), 2 blocks; d2

8
( d
2
− 1), 2 blocks.

Spatial symmetry may lead to additional block diagonal structures within each
spin diagonal block listed in Table 4.1. These block diagonal structures can be clearly
seen within the largest spin block diagonal block of the T2 matrices associated with
the carbon atom and the CH molecules shown in Figure 4.1. These T2 matrices are
generated from spin orbitals obtained from the solution of the HF equation discretized
by a double-ζ local atomic orbital basis. The block diagonal structure shown in
Figure 4.1 is obtained by applying a suitable symmetric permutation to the rows
and columns of the T2 matrices. By representing the variables Sj as block diagonal
matrices whose sizes are much smaller, the off-diagonal parts of Sj are no longer
needed. Consequently, the length of y may be reduced and each of (4.13)–(4.14) may
be split into several smaller systems. Therefore, it is possible to generate a much
smaller SDP. Without loss of generality, we still consider the formulation (4.15) and
our proposed algorithm can be applied to the reduced problems as well.

In addition to exploiting the block diagonal structure in the Sj matrices that
appear in the dual SDP, we can also use the low rank structure of {Xi} and U to reduce
the cost for solving (4.16). The following theorem shows that {Xi}, i = 1, 2, . . . , l and
U in the primal (4.16) are indeed low rank as long as d is sufficiently large.

Theorem 4.1. Assume that there exists matrices X̂j � 0 and Û � 0 such that
the linear equality constraints of (4.16) are satisfied with them and the basis size d is
larger than 3. Then there exists an optimal solution {X1, . . . , Xl, U} of (4.16) such
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Fig. 4.1. The block diagonal structures within the largest spin blocks of the T2 matrices asso-
ciated with the carbon (C) atom and the CH molecule.

that r =
∑l
j=1 rj + ru ≤

√
3

8 (d2 + 6), where rj is the rank of Xj and ru is the rank of
U . Moreover, rj/sj = O(1/d) for j’s associated with the T1, T2, and T2’ conditions.

Proof. We first prove that there must exist a solution such that r ≤
√
m, where

m is the length of the dual variable y in (4.15). The primal SDP (4.16) can be written
as a standard SDP in the form of (1.1), where X is a block diagonal matrix whose

diagonal parts are U , Xj , and diag(x). Then the size of X is
∑l
j=1 sj + su + 2s.

Let the rank of X be r̃. It follows from the results shown in [25] that r̃(r̃+1)
2 ≤ m,

which implies r ≤
√
m. Since m = 3

64d
4 − 1

16d
3 + 9

16d
2 + 1

4d ≤ (
√

3
8 (d2 + 6))2 when

d ≥ 3, the first statement holds. The second statement follows from Table 4.1 that
the dimension of the Sj matrices associated with the T1, T2, T2’ conditions are on
the order of O(d3).

The ADMM has been successfully used to solve the 2-RDM problem in [22] where
the method is referred to as the boundary point method. To apply the ADMM to
solve (4.15), we first write the augmented Lagrangian function as

L(y, Sj ;Xj , x) = bT y +

l∑
j=1

〈
Xj , Sj −A∗jy + Cj

〉
+
〈
x, c−BT y

〉

+
σ

2

 l∑
j=1

‖Sj −A∗jy + Cj‖2F + ‖c−BT y‖22

 ,

(4.17)

where Xj and x are Lagrangian multipliers and σ > 0 is a penalty parameter. Then
the kth iteration of ADMM consists of the following sequence of steps:

yk+1 = arg minyL(y, Skj ;Xk
j , x

k),

Sk+1
1 = arg min0�S1�IL(yk+1, Sj ;X

k
j , x

k),

Sk+1
j = arg minSj�0L(yk+1, Sj ;X

k
j , x

k), j = 2, . . . , l,

Xk+1
j = Xk

j + σ(Sk+1
j −A∗jyk+1 + Cj), j = 1, . . . , l,

xk+1 = xk + σ(ck+1 −BT yk+1).

(4.18)
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Although our semismooth Newton method is introduced on standard SDP, it is easy
to extend it to the formula (4.16) without reducing (4.16) to the standard SDP. In
our implemention, this is useful to avoid increasing the cost of computation.

5. Numerical results. In this section, we demonstrate the effectiveness of the
semismooth Newton Algorithm 2 dubbed SSNSDP. We implemented the algorithm
mostly in MATLAB. The auxiliary parts (such as the user interface, various operations
on matrices, etc.) of our codes are built based on SDPNAL [35], SDPNAL+ [4], and
ADMM+ [28], and use the key implementation details and subroutines in these solvers.
Some parts of the code are written in the C Language and interfaced with MATLAB
through MEX-files. All experiments are performed on a single node of a PC cluster,
where each node has two Intel Xeon 2.40 GHz CPUs with 12 cores and 256 GB RAM.

The test dataset is provided by Professor Maho Nakata and Professor Mituhiro
Fukuta. The detailed information about the dataset such as the basis sets used to
discretize molecular orbitals, the geometries of the molecules, etc. can be found in
[23]. Since the original dataset only takes into account the spin symmetry, it does
not specify additional block diagonal structures introduced by spatial symmetry of
the molecular orbitals within each spin matrix block of the variables. We prepro-
cess the dataset to identify these diagonal blocks automatically through matrix re-
ordering. Our solver takes advantage of these block diagonal structures to reduce
the complexity of the computation as described in subsection 4.3. We applied the
semismooth Newton algorithm to the SDP formulation of the 2-RDM minimization
problem with four different groups of N -representability conditions labeled as PQG,
PQGT1, PQGT1T2, PQGT1T2’. The letters and numbers in each label simply indi-
cate the N -representability conditions included in the SDP constraints. For example,
PQGT1T2’ means that the P, Q, G, T1, T2’ conditions are included.

We compare SSNSDP with the state-of-the-art solvers SDPNAL and SDPNAL+
(version 1.0). The interior point methods are not included in the comparison because
they usually perform worse than SDPNAL and SDPNAL+. We measure accuracy by
examining four criteria: the primal infeasibility ηp and the dual infeasibility ηq that
are defined by (3.21), the gap ηg between the primal and dual objective functions

(5.1) ηg =
|bT y − tr(CTX)|

1 + |tr(CTX)|+ |bT y|
,

and the difference between the 2-RDM energy and full CI energy defined by

(5.2) err = bT y − energyfullCI,

where energyfullCI values are taken from [23]. The last criterion is often used in
quantum chemistry to assess the accuracy of an approximation model. It is used here
to assess the effectiveness of adding additional N-representability conditions in the 2-
RDM formulation. In the following tables, we use a short notation for the exponential
form. For example, -4.8-3 means −4.8× 10−3.

We stop SSNSDP, SDPNAL, and SDPNAL+ when max{ηp, ηd, ηk} < 10−6, where

(5.3) ηk = max

{
‖X −ΠSn

+
(X)‖F

1 + ‖X‖F
,
‖S −ΠSn

+
(S)‖F

1 + ‖S‖F
,

|tr(STX)|
1 + ‖S‖F + ‖X‖F

}
.

Note that SDPNAL and SDPNAL+ also implement a very complicated set of rules
to detect stagnation of the iterations and can stop earlier whenever there is not much
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progress. However, the comparison is fair since their performance will be worse if
these stagnation rules are removed. For solving the inner linear system in Algorithm
1 for SSNSDP, we use symmetric QMR method, which is also used in SDPNAL
and SDPNAL+. The stop criterion of QMR method in SSNSDP is set to ‖rk‖F ≤
max{min{0.1, 0.1 × ‖F k‖F }, 10−10} × 10−3 for simplicity. The stopping criteria of
QMR method in SDPNAL and SDPNAL+ are much more complicated in order to
achieve a faster convergence speed. Since ηk is usually very small in all three solvers,
we do not report it in our tables.

In Table 5.1, we compare the performance of SSNSDP when it is applied to the
orginal dataset provided in [23] and our preprocessed data that take advantage of
additional block diagonal structures through permutation. We can see that the CPU
time measured in seconds (the column labeled by “t” in Table 5.1) can be reduced by
at least a factor of three on most examples labeled with PQGT1T2 and PQGT1T2’.
For the C atom and F− system that exhibit a high spatial symmetry, the CPU time
can be reduced by a factor of roughly six for SDPs that include the PQGT1T2 and
PQGT1T2’ conditions. These experiments illustrate the importance of exploiting
spatial symmetry to identify block diagonal structures in the approximate solution
and consequently reduce the computational cost significantly. For the problems that
only include the PQG and PQGT1 conditions, the amount of improvement is less
spectacular, because the sizes of the diagonal blocks in these examples are small.
These small examples does not mainly focus on large scalability. In fact, the larger the
blocks in Table 4.1 is, the more significant effectiveness of the symmetry is. Thereafter,
all experiments are performed on the preprocessed data.

Table 5.1
The comparison of the performance on the original and preprocessed SDPs. The number −4.8−

3 means −4.8× 10−3.

Preprocessed SDP Original SDP
System Condition err ηp ηd ηg it t err ηp ηd ηg it t

C PQG -4.3-3 1.3-7 3.2-7 2.4-6 1046 51 -4.3-3 7.9-7 9.0-7 2.6-6 1042 65
C PQGT1 -3.5-3 4.4-7 5.0-7 1.8-6 614 62 -3.4-3 6.8-7 9.7-7 9.0-7 598 119
C PQGT1T2 -7.3-4 7.3-7 6.8-7 1.4-6 656 235 -7.4-4 6.1-7 8.1-7 1.4-6 654 1265
C PQGT1T2’ -3.4-4 4.4-7 7.7-7 2.0-6 636 214 -3.1-4 7.6-7 7.7-7 1.7-6 663 1395

CH PQG -1.3-2 7.3-7 4.6-7 6.0-7 585 67 -1.3-2 6.2-7 7.1-8 6.0-7 572 92
CH PQGT1 -9.9-3 3.9-7 8.9-7 1.7-6 1546 169 -9.9-3 3.9-7 8.9-7 1.7-6 1546 377
CH PQGT1T2 -2.0-3 7.8-7 4.0-7 3.0-6 617 1194 -2.0-3 6.7-7 4.3-7 3.0-6 614 3808
CH PQGT1T2’ -1.0-3 5.4-7 8.2-7 5.4-6 682 1199 -1.0-3 5.8-7 8.2-7 5.7-6 686 3973
F− PQG -1.2-2 9.8-7 3.3-7 5.2-7 983 44 -1.2-2 7.6-7 2.2-7 6.2-7 984 72
F− PQGT1 -9.6-3 6.4-7 7.2-7 8.8-6 560 137 -1.1-2 5.2-7 9.5-7 1.3-5 1697 1012
F− PQGT1T2 -1.2-3 6.0-7 3.0-7 1.9-6 659 1060 -1.2-3 6.9-7 3.4-7 1.7-6 668 9395
F− PQGT1T2’ -1.9-3 6.0-7 9.4-7 4.9-6 683 1078 -2.1-3 6.5-7 8.8-7 5.8-6 666 6922

H2O PQG -1.9-2 2.9-7 1.9-7 3.8-7 987 82 -1.9-2 6.3-7 2.8-7 5.4-7 974 105
H2O PQGT1 -1.1-2 9.2-7 6.5-7 2.1-6 569 262 -1.1-2 9.2-7 6.5-7 2.1-6 569 719
H2O PQGT1T2 -2.4-3 4.7-7 6.9-7 5.8-6 653 3579 -2.4-3 6.1-7 7.4-7 6.1-6 676 12839
H2O PQGT1T2’ -1.5-3 8.3-7 6.4-7 3.8-6 625 3255 -1.5-3 9.5-7 8.3-7 3.7-6 625 11105

In addition to identifying block diagonal structures in the N-representibility con-
straints, we can further improve the efficiency of SSNSDP by taking advantage of the
low rank structure of the variable matrices. Recall from Theorem 4.1 that the ratios
of the rank of the Xj matrix (denoted by rj) associated with the T2 condition over

the dimension of Xj (denoted by dj) should be bounded by (
√

3
8 (d2 +6))/(d

2

8 ( 3d
2 −1)).

For the C atom and CH molecule, d is 20 and 24, respectively. Thus, at the solu-
tion the ratios should be bounded by 0.06 and 0.05, respectively. In Figure 5.1, we
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Fig. 5.1. The percentage of the ranks of the first four largest blocks of the X in the C and CH
systems.

replace rj by the numerical rank computed from the eigenvalue decompositions of the
Xj variable and show the ratios for j’s that are associated with the four largest dj ’s
at each DRS iteration. We observe that these ratios can be relatively high in the
first few iterations. But they eventually become less than 0.1 after a few hundred
iterations. This property is useful for (3.15) in the DRS and the semismooth Newton
methods. It follows from (3.23) that the X variable is the projection of the Z variable
to semidefinite cone and |α| in (3.15) is equal to the rank of Xj in the case of 2-RDM.
Therefore, solving the Newton system (3.14) becomes much cheaper by using (3.15)
when |α| is small.

Figure 5.2 shows how the relative gap, primal infeasibility, and dual infeasibility
in ADMM and SSNSDP change with respect to the number of iterations when they
are applied to the BeO and C2 system. We tested both algorithms on SDPs with
the PQGT1T2’ N-representibility conditions. The convergence history of ADMM
and SSNSDP is shown in the subfigures (a)–(b) and (c)–(d), respectively. SSNSDP
is initiated from the solution produced by running some ADMM steps (501 steps in
subfigure (c) and 633 steps in subfigure (d)), which is marked by vertical lines. The
iteration history of ADMM in (a)–(b) and (c)–(d) is a little bit different since the
parameters of ADMM steps in the pure ADMM and these in SSNSDP are tuned
differently for their own performance, respectively. We can see that the ADMM can
produce a moderately accurate solution in a few hundred iterations and then becomes
slow. Many more iterations are required to reach a high accuracy. Starting from a
point at which ADMM almost stagnates, SSNSDP is able to obtain a more accurate
solution around 100 steps. Table 5.2 gives a detailed explanation on the acceleration of
semismooth Newton steps on a few selected examples that ADMM method spends too
many iterations. SSNSDP performs better on these examples in terms of the number
of iterations (the column labeled by “it”) and CPU time (the column labeled by “t”).
Note that the duality gap as well as the primal and dual infeasibilities curves shown
in (c)–(d) are highly oscillatory. The oscillation is due to the adaptive update of the
penalty parameter µ for achieving a faster overall convergence rate. If the penalty
parameter is fixed, these curves become much smoother, while more iterations are
needed to reach the desired accuracy.

D
ow

nl
oa

de
d 

04
/1

9/
20

 to
 1

24
.1

6.
14

8.
9.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A SEMISMOOTH NEWTON METHOD FOR SDPs A4151

0 1000 2000 3000 4000 5000 6000 7000

iter

10
-8

10
-6

10
-4

10
-2

10
0

10
2

e
rr

(a) ADMM on BeO (PQGT1T2’)

0 1000 2000 3000 4000

iter

10
-8

10
-6

10
-4

10
-2

10
0

10
2

e
rr

(b) ADMM on C2 (PQGT1T2’)

100 200 300 400 500 600

iter

10
-8

10
-6

10
-4

10
-2

10
0

10
2

e
rr

(c) SSNSDP on BeO (PQGT1T2’)

100 200 300 400 500 600 700

iter

10
-8

10
-6

10
-4

10
-2

10
0

10
2

e
rr

(d) SSNSDP on C2 (PQGT1T2’)

Fig. 5.2. Relative gap, primal infeasibility, and dual infeasibility.

Table 5.2
The comparison of the performance of ADMM and SSNSDP.

ADMM SSNSDP
System Condition err ηp ηd ηg it t err ηp ηd ηg it t

B2 PQGT1T2 -6.7-2 2.8-5 1.1-6 2.3-5 20000 10880 -6.6-2 4.5-7 4.4-7 4.9-6 724 2426
B2 PQGT1T2’ -6.4-2 8.5-7 1.1-6 1.4-6 14510 7883 -6.5-2 3.4-7 7.3-7 1.7-6 642 1969
BH PQGT1T2 -5.5-4 9.6-7 1.1-6 2.9-6 5758 3154 -6.5-4 9.6-7 9.4-7 3.8-6 676 1237
BH PQGT1T2’ -3.9-4 9.6-7 1.1-6 3.2-6 4362 2481 -5.3-4 8.5-7 9.3-7 6.7-6 650 1009

BH3O PQGT1T2 -2.0-3 9.8-7 8.8-7 3.1-6 5036 8541 -9.1-4 4.9-7 7.4-7 9.7-7 635 3555
BH3O PQGT1T2’ -1.4-3 9.8-7 8.8-7 1.2-6 2148 3954 -9.9-4 7.6-7 1.7-7 6.6-7 815 3924
BeO PQGT1T2 -1.9-3 8.6-7 1.1-6 2.2-7 10261 2003 -1.9-3 7.4-7 4.1-7 2.1-7 674 648
BeO PQGT1T2’ -2.0-3 9.8-7 1.0-6 8.0-7 7521 1492 -1.9-3 7.0-7 6.0-7 2.0-7 615 407
C2 PQGT1T2 1.7-2 9.3-3 1.9-6 8.1-4 20000 41694 -4.7-3 8.0-7 8.8-7 3.4-6 889 13987
C2 PQGT1T2’ -4.0-3 9.3-7 1.3-6 2.5-6 13363 28505 -3.7-3 8.0-7 5.1-7 1.2-6 710 10645
CH PQGT1T2 -2.0-3 9.7-7 1.1-6 1.9-6 12723 6292 -2.0-3 7.8-7 4.0-7 3.0-6 617 1194
CH PQGT1T2’ -7.5-4 9.7-7 1.1-6 2.5-6 3975 2140 -1.0-3 5.4-7 8.2-7 5.4-6 682 1199

In Table 5.3, we compare the accuracy and efficiency of SSNSDP, SDPNAL
and SDPNAL+. Due to space limitations, this table only shows the systems with
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Table 5.3
A summary of computational results of SSNSDP, SDPNAL, and SDPNAL+.

SSNSDP SDPNAL SDPNAL+
System err ηp ηd ηg it t err ηp ηd ηg it t err ηp ηd ηg it t

AlH -9.6-5 5.7-7 9.9-7 1.3-7 952 197 -5.3-4 4.8-6 5.1-7 2.8-6 175 410 -1.2-5 9.8-7 9.5-7 9.5-9 902 527
B2 -6.5-2 3.4-7 7.3-7 1.7-6 642 1969 -6.5-2 1.7-5 7.2-7 5.8-6 245 2226 -6.5-2 8.8-7 9.7-7 7.1-7 2044 3066
BF -5.8-4 5.3-7 5.9-7 6.8-7 1480 444 -7.9-4 7.7-6 6.0-7 6.7-6 195 458 -4.2-4 9.8-7 9.8-7 5.3-7 1211 643

BH+ -5.5-5 6.9-7 9.7-7 8.1-7 1198 25 -1.2-4 2.2-6 6.8-7 1.4-6 212 87 -1.4-4 3.2-7 1.0-6 1.2-6 1538 50
BH -5.3-4 8.5-7 9.3-7 6.7-6 650 1009 -6.1-4 8.0-5 6.9-7 5.9-5 272 1969 -6.9-4 7.8-12 1.0-6 5.0-6 4502 4347

BH3O -9.9-4 7.6-7 1.7-7 6.6-7 815 3924 -1.7-3 1.1-5 6.8-7 8.6-6 203 4696 -1.1-3 7.5-7 9.7-7 1.1-6 1230 6793
BN -2.7-3 3.7-7 3.8-7 1.1-7 803 599 -3.3-3 2.2-5 7.2-7 9.2-6 234 497 -3.0-3 7.9-7 9.9-7 7.0-8 1645 675
BO -1.2-3 8.1-7 5.6-7 5.2-7 556 397 -1.6-3 9.0-6 7.0-7 7.8-6 191 708 -1.2-3 8.8-7 7.9-7 5.7-7 1738 1252

Be(1) -1.3-5 9.4-7 2.2-7 6.2-7 739 9 -4.7-5 2.0-7 9.1-7 7.2-7 136 20 -4.8-5 8.8-8 1.0-6 6.2-7 1216 14
Be(2) -6.4-5 4.4-7 9.5-7 1.7-6 591 125 -1.6-4 6.9-5 6.9-7 2.9-6 241 238 -2.0-4 2.7-7 9.9-7 3.0-6 2694 344
BeF -3.4-4 5.1-7 7.6-7 6.2-7 1278 356 -6.6-4 1.2-5 6.5-7 8.7-6 197 480 -1.9-4 7.7-7 9.9-7 7.9-7 1035 560

BeH+ -5.8-6 9.1-7 9.6-7 1.3-7 1329 28 -7.3-5 8.5-6 5.4-7 2.2-6 218 90 -1.0-4 6.2-7 9.7-7 1.6-6 1840 56
BeH -2.4-5 9.3-7 9.2-7 4.9-7 1153 24 -8.5-5 6.0-6 7.3-7 2.3-6 221 95 -9.4-5 2.5-7 9.9-7 1.4-6 1332 44
BeO -1.9-3 7.0-7 6.0-7 2.0-7 615 407 -2.2-3 1.3-5 7.2-7 1.2-5 219 499 -2.1-3 7.1-7 9.1-7 8.2-7 3060 998
C(1) -3.4-4 4.4-7 7.7-7 2.0-6 636 214 -5.5-4 3.2-5 5.8-7 1.6-5 265 432 -1.2-3 3.5-14 2.1-6 6.8-6 20081 2482
C(2) -2.4-3 8.7-7 6.5-7 3.2-6 1463 250 -2.6-3 1.5-5 6.4-7 6.6-6 253 400 -2.8-3 3.7-7 9.9-7 5.2-6 1908 617

C−2 -2.1-3 5.3-7 4.8-7 1.7-7 624 273 -2.4-3 6.9-6 6.0-7 6.7-6 195 298 -2.5-3 3.3-7 9.5-7 1.3-6 1680 423
C2(1) -3.7-3 7.8-7 2.6-7 9.7-7 757 337 -4.2-3 5.1-6 7.6-7 2.6-6 204 314 -4.1-3 2.9-7 9.2-7 1.0-6 1775 426
C2(2) -3.7-3 8.0-7 5.1-7 1.2-6 710 10645 3.7-3 5.1-4 7.0-7 2.6-4 254 7246 -7.2-3 2.4-14 1.4-5 3.6-6 1965 10004
CF -7.1-4 5.6-7 7.1-7 4.0-7 1718 488 -8.8-4 8.4-6 5.0-7 5.6-6 188 442 -7.4-5 9.9-7 9.1-7 2.2-6 1628 845
CH -1.0-3 5.4-7 8.2-7 5.4-6 682 1199 -1.1-3 9.1-5 6.3-7 5.2-5 254 1879 -1.5-3 7.4-14 4.8-5 1.8-5 14048 10001
CH2 -1.2-3 4.8-7 6.9-7 6.1-6 720 4070 -1.3-3 1.3-4 6.4-7 1.2-4 261 4737 -1.5-3 1.1-11 1.1-6 5.9-6 3830 10001

CH+
3 -3.5-4 1.2-7 6.1-7 1.4-6 1196 108 -5.6-4 9.7-7 8.8-7 1.3-6 178 149 -5.0-4 7.4-7 9.5-7 9.9-7 965 144

CH3 -8.0-4 8.1-7 3.1-7 3.9-6 640 4327 -1.4-3 3.3-5 7.7-7 2.5-5 223 7691 -1.4-3 2.7-7 1.3-6 3.3-6 3348 10124
CH3N -1.7-3 3.7-7 7.0-7 1.4-6 564 2271 -2.0-3 9.0-6 6.3-7 5.7-6 190 4162 -1.8-3 9.9-7 8.4-7 3.0-7 1496 7354
CH4 -3.2-4 3.9-7 6.5-7 4.9-7 586 119 -7.5-4 9.0-7 8.8-7 1.8-6 168 165 -7.6-4 5.2-7 1.0-6 1.6-6 1328 199
CN -1.9-3 2.8-7 4.4-7 3.2-7 653 395 -2.2-3 1.2-5 5.4-7 9.8-6 205 468 -2.0-3 1.0-6 8.9-7 5.5-7 1908 705

CO+ -1.5-3 7.5-7 1.5-7 8.3-8 659 558 -2.0-3 1.0-5 7.8-7 8.9-6 194 445 -1.7-3 1.0-6 7.8-7 6.8-7 1786 730
CO -8.3-4 4.0-7 7.2-7 4.3-7 1183 288 -1.3-3 1.3-5 6.7-7 9.5-6 182 403 -1.1-3 6.7-7 8.0-7 1.2-7 1376 621

F− -1.9-3 6.0-7 9.4-7 4.9-6 683 1078 -2.0-3 8.7-5 5.1-7 7.3-5 258 1416 -2.4-3 1.0-6 8.5-7 8.0-6 2644 2800

FH+
2 -8.7-5 9.6-7 9.9-7 2.6-8 898 33 -2.3-4 1.1-6 6.3-7 1.1-6 166 91 -2.5-4 1.0-7 9.9-7 6.7-7 614 36

H2O -1.5-3 8.3-7 6.4-7 3.8-6 625 3255 -1.9-3 7.3-5 4.8-7 5.5-5 266 5663 -2.0-3 7.3-7 8.8-7 5.6-6 3420 9290
H3 -1.1-5 6.7-7 8.7-7 4.3-7 571 32 -3.3-5 7.2-7 9.2-7 3.3-6 163 51 -1.6-5 9.6-7 8.9-7 8.1-7 1026 39
HF -1.3-3 5.4-7 5.5-7 2.7-6 718 1534 -2.3-3 5.5-5 6.8-7 3.8-5 236 1732 -2.3-3 8.3-7 9.5-7 6.1-6 3062 3183

HLi2 -1.5-4 6.8-7 8.9-7 2.7-6 867 983 -2.8-4 1.7-5 7.6-7 1.1-5 260 1140 -9.7-5 1.1-13 1.0-6 9.8-8 3820 1941

HN+
2 -1.7-3 6.4-7 3.6-7 3.4-7 565 440 -2.2-3 8.3-6 7.8-7 5.4-6 187 725 -1.9-3 9.0-7 8.3-7 6.2-7 1532 883

HNO -1.1-3 4.4-7 4.6-7 1.8-8 704 1758 -1.5-3 1.4-5 7.0-7 1.1-5 213 1562 -1.2-3 8.5-7 9.2-7 9.0-7 1286 1778
Li -4.4-6 5.8-7 9.4-7 2.5-7 1440 18 -1.7-5 1.9-7 6.4-7 8.6-7 145 24 -2.4-5 4.5-7 1.0-6 1.1-6 1123 14
Li2 -1.5-4 4.2-7 8.1-7 3.0-6 824 376 -2.0-4 2.3-5 6.8-7 1.2-5 262 486 -2.4-4 3.0-8 1.0-6 4.3-6 5826 1305
LiF -3.8-4 9.8-7 8.1-7 1.5-7 614 461 -6.6-4 9.4-6 6.2-7 5.6-6 217 541 -3.5-4 1.0-6 9.0-7 7.5-7 1830 832

LiH(1) -4.7-5 6.0-7 5.6-7 1.5-6 906 1306 -1.2-4 2.4-5 7.3-7 8.3-6 253 1773 -2.7-4 8.1-14 5.4-6 1.7-5 17870 10001
LiH(2) -7.6-6 5.8-7 9.6-7 3.1-7 1252 26 -5.9-5 7.6-6 6.7-7 2.3-6 232 103 -7.1-5 3.8-7 9.4-7 2.1-6 1455 55
LiOH -6.7-4 8.8-7 2.9-7 1.8-7 634 901 -1.0-3 9.9-6 5.4-7 7.5-6 203 852 -6.7-4 7.7-7 6.9-7 3.5-7 2098 1472

N -2.2-4 8.7-7 5.7-7 5.8-7 628 223 -5.0-4 6.7-5 4.9-7 3.3-5 229 347 -1.1-3 3.7-7 1.4-6 5.3-6 20144 2735

N+
2 -2.3-3 5.3-7 1.1-7 1.6-7 649 328 -2.8-3 5.5-6 7.6-7 5.4-6 187 282 -2.8-3 7.5-7 1.0-6 1.0-7 3939 825

N2 -1.3-3 6.6-7 6.3-7 3.7-9 1138 209 -1.5-3 8.4-6 4.3-7 4.1-6 180 289 -2.0-3 5.1-14 1.5-6 1.6-6 20058 2587
NH(1) -1.3-3 4.6-7 8.3-7 3.5-6 750 1611 -1.3-3 4.4-5 5.0-7 3.6-5 264 2000 -1.5-3 1.6-13 1.0-6 4.1-6 3434 3590
NH(2) -7.1-4 3.9-7 5.9-7 2.7-6 706 1289 -9.7-4 1.1-4 5.2-7 8.1-5 253 1763 -7.8-4 6.8-13 9.4-7 1.4-6 4046 3956

NH−2 (1) -1.8-3 9.5-7 8.0-7 5.3-6 654 3654 -1.8-3 6.9-5 5.0-7 6.4-5 255 5413 -1.9-3 9.2-7 1.0-6 3.8-6 2602 8365

NH−2 (2) -8.5-5 9.3-7 9.9-7 1.9-7 1085 41 -1.6-4 1.4-6 4.8-7 9.1-7 171 93 -1.9-4 1.9-7 9.7-7 5.6-7 817 45

NH+
3 -2.1-4 4.1-7 2.7-7 3.5-7 1174 116 -3.7-4 1.2-6 5.5-7 8.5-7 195 173 -2.7-4 8.7-7 7.9-7 2.1-7 854 129

NH3 -1.1-3 4.6-7 7.9-7 2.7-6 686 7953 -1.6-3 9.4-6 5.8-7 8.4-6 259 13049 -2.0-3 1.3-6 3.9-6 1.1-6 307 11003

NH+
4 -4.0-4 4.4-7 2.4-7 4.8-7 870 132 -6.1-4 1.9-6 6.2-7 9.0-7 182 186 -6.8-4 4.5-7 9.6-7 1.2-6 1228 202

Na -2.4-4 1.0-6 9.6-7 7.9-7 1160 93 -5.2-4 4.4-6 6.4-7 1.9-6 184 174 -4.2-4 1.2-7 9.4-7 5.7-7 724 101
NaH -2.6-4 8.1-7 6.2-7 7.0-10 1134 307 -7.9-4 5.4-6 7.2-7 3.1-6 199 481 -3.9-4 6.3-7 8.3-7 1.4-7 1161 490
Ne -8.7-4 8.9-7 9.5-7 1.5-6 563 141 -2.5-3 2.0-5 7.6-7 1.7-5 208 314 -2.6-3 8.5-7 9.1-7 5.8-6 2370 490

O(1) -2.0-3 5.2-7 9.6-7 3.4-6 644 216 -2.0-3 2.1-5 4.5-7 1.4-5 216 318 -2.6-3 5.1-10 1.0-6 5.0-6 2651 710
O(2) -7.9-4 3.5-7 6.2-7 2.6-6 605 183 -1.2-3 7.3-5 5.5-7 4.5-5 217 323 -1.6-3 5.8-7 9.4-7 5.1-6 1661 532
O(3) -2.5-3 5.7-7 8.7-7 3.3-6 784 308 -2.5-3 1.7-5 5.2-7 1.0-5 235 339 -3.0-3 8.1-7 9.9-7 5.2-6 2696 715

O+
2 -2.2-3 5.0-7 7.1-7 1.8-7 1204 216 -2.4-3 4.4-6 5.6-7 3.3-6 172 282 -2.5-3 3.6-7 9.6-7 8.1-7 939 248

P -4.6-4 9.1-7 9.5-7 1.8-7 674 1232 -1.1-3 6.9-6 6.3-7 3.5-6 208 1140 -6.3-4 3.5-13 1.0-6 3.6-7 640 2143
SiH4 -2.6-4 6.4-7 2.2-7 1.5-7 768 1493 -1.0-3 5.6-6 5.1-7 2.3-6 185 1751 -3.1-4 3.5-13 1.0-6 8.8-7 817 2308
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Table 5.4
A statistic of computational results of SSNSDP, SDPNAL, and SDPNAL+.

SSNSDP SDPNAL SDPNAL+
Case Number Percentage Number Percentage Number Percentage

Success 276 100% 53 19.2% 265 96%
Fastest 202 73.2% 24 8.7% 50 18.1%

Fastest under success 222 80.4% 3 1.09% 51 18.5%
Not slower 1.2 times 233 84.4% 46 16.7% 78 28.3%

Not slower 1.2 times under success 244 88.4% 3 1.09% 79 28.6%

PQGT1T2’ constraints, i.e., the largest problem for every system. The statistics of
all examples are shown in Table 5.4. The columns labeled by “it” in Table 5.3 are
the summation of the number of Newton systems solved and the number of ADMM
steps. The columns labeled by “t” give the CPU time in seconds. From the table, we
can observe that SSNSDP is faster than SDPNAL and SDPNAL+ on most examples,
for achieving almost the same level of accuracy. In some examples, SDPNAL or SDP-
NAL+ may take less CPU time, but either the primal or dual infeasibilities is still
larger than the order 10−6 and that of SSNSDP. Table 5.4 gives a clearer explanation
on the comparisons. In the table, “success” means the primal and dual infeasibili-
ties are less than 2 × 10−6 (the factor 2 is used to avoid a small numerical error).
The case “fastest” means that the amount of the CPU time of the algorithm is the
smallest among three methods. The case “fastest under success” means the fastest
algorithm under the success condition. The case “not slower 1.2 times” means that
the amount of the CPU time of the algorithm is not 1.2 times slower than the fastest
algorithm. The last case corresponds to the “not slower 1.2 times” case under the
success condition. It can be seen that SSNSDP and SDPNAL+ reach the stop rule
on most examples, but SDPNAL is only success on around 19.2% examples. SSNSDP
converges fastest on around 80.4% examples, and it is not 1.2 times slower than the
two other solvers on around 88.4% examples under the success condition. The cor-
responding percentage of SDPNAL and SDPNAL+ seems to be further smaller than
SSNSDP.

We next compare the accuracy and efficiency of SSNSDP with that of SDPNAL
and SDPNAL+ using the the performance profiling method proposed in [10]. Let
tp,s be the number of iterations or CPU time required to solve problem p by the
sth solvers. Then one computes the ratio rp,s between tp,s over the smallest value

obtained by ns solvers on problem p, i.e., rp,s :=
tp,s

min{tp,s:1≤s≤ns} . For τ ≥ 0, the

value

πs(τ) :=
number of problems where log2(rp,s) ≤ τ

total number of problems

indicates that solver s is within a factor 2τ ≥ 1 of the performance obtained by the
best solver. Then the performance plot is a curve πs(τ) for each solver s as a function
of τ . In Figure 5.3, we show the performance profiles of four criteria max{ηp, ηd, ηg},
max{ηp, ηd}, err, and CPU time. In particular, the intercept point of the axis “ratio of
problems” of each subfigure is the percentage of the fastest one among three solvers,
which is also shown in the second row in Table 5.4. These figures show that the
accuracy and the CPU time of SSNSDP are better than SDPNAL and SDPNAL+ on
most problems.
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Fig. 5.3. The performance profiles of SSNSDP, SDPNAL, and SDPNAL+.

Finally, we report the accuracy of the solution produced by SSNSDP by comparing
the 2-RDM ground state energy with the FCI energy and calculating their differences
defined by (5.2) in Table 5.5. The last two columns labeled by n and m are the
total number of dimensions of the primal variable X and the dual variable y of the
standard form SDP under the PQGT1T2’ condition. To compute a very accurate
2RDM energy, the stopping rule of SSNSDP is adjusted as ηp < 2.5 × 10−5 and
ηd < 10−8. The primal infeasibility ηp is allowed to be larger so that the algorithm
converges more rapidly. The dual variables are required to be more accurate since
we ultimately retrieve the desired 1-RDM and 2-RDM from the dual variables. We
also choose proper parameters to make the penalty parameter µ larger so that the
stopping rules can be easier satisfied. We can see that more accurate solutions are
obtained from SSNSDP when more N -representability conditions are included in the
constraints. These results are similar to the ones reported in [23].
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Table 5.5
The error obtained by SSNSDP on various N-representability conditions: PQG, PQGT1,

PQGT1T2, and PQGT1T2’.

System State Basis PQG PQGT1 PQGT1T2 PQGT1T2’ n m

AlH 1Sigma+ STO6G -2.3-3 -7.8-4 -2.3-5 -1.7-5 5780 7230
B2 3Sigmag- STO6G -9.6-2 -8.5-2 -6.5-2 -6.4-2 5780 7230
BF 1Sigma+ STO6G -6.7-3 -3.5-3 -3.3-4 -3.2-4 4254 4743

BH+ 2Sigma+ STO6G -5.0-5 -3.1-5 -2.2-6 -7.9-7 5780 7230
BH 1Sigma+ DZ -6.5-3 -4.7-3 -7.9-5 -6.0-5 5780 7230

BH3O 1A1 STO6G -2.8-2 -1.2-2 -7.0-4 -7.1-4 1324 948
BN 3Pi STO6G -2.9-2 -1.7-2 -3.0-3 -2.7-3 9848 15018
BO 2Sigma+ STO6G -1.2-2 -6.7-3 -1.3-3 -1.0-3 12454 20709

Be(1) 1S STO6G -8.4-7 -5.7-7 -7.9-7 -8.0-7 5780 7230
Be(2) 1S SV -6.1-5 -5.6-5 -2.0-6 -2.5-7 5780 7230
BeF 2Sigma+ STO6G -3.2-3 -1.7-3 -2.8-4 -2.0-4 790 465

BeH+ 1Sigma+ STO6G -2.9-5 -2.8-5 -3.0-7 -2.5-7 4254 4743
BeH 2Sigma+ STO6G -5.2-5 -2.6-5 -1.1-6 -4.0-7 5780 7230
BeO 1Sigma+ STO6G -1.3-2 -9.5-3 -1.7-3 -1.8-3 5780 7230
C(1) 3P DZ -4.0-3 -3.1-3 -4.1-4 -5.0-5 1324 948
C(2) 3PSZ0 DZ -1.7-2 -1.4-2 -2.5-3 -2.0-3 1324 948

C−2 2Sigmag+ STO6G -2.6-2 -1.4-2 -2.4-3 -1.9-3 5780 7230
C2(1) 1Sigmag+ STO6G -4.6-2 -2.5-2 -3.5-3 -3.5-3 790 465
C2(2) 1Sigmag+ VDZ -5.3-2 -5.3-2 -3.2-3 -3.5-3 5780 7230

CF 2Pir STO6G -7.7-3 -5.8-3 -6.3-4 -4.9-4 790 465
CH 2Pir DZ -1.3-2 -9.6-3 -9.3-4 -3.1-4 5780 7230
CH2 1A1 DZ -1.9-2 -1.2-2 -3.7-4 -3.8-4 5780 7230

CH+
3 1Ep STO6G -1.3-2 -3.8-3 -1.7-4 -1.6-4 5780 7230

CH3 2A2pp VDZ -1.7-2 -1.0-2 -1.1-3 -3.1-4 25344 76554
CH3N 1A1 STO6G -3.9-2 -1.6-2 -1.0-3 -9.9-4 5780 7230
CH4 1A1 STO6G -1.9-2 -4.1-3 -2.2-4 -1.9-4 9848 15018
CN 2Sigma+ STO6G -2.4-2 -1.2-2 -2.1-3 -1.7-3 15484 27888

CO+ 2Sigma+ STO6G -1.8-2 -9.2-3 -1.8-3 -1.4-3 15484 27888
CO 1Sigma+ STO6G -1.2-2 -7.2-3 -8.7-4 -8.7-4 3024 2964
F− 1S DZ+d -1.2-2 -7.6-3 -3.8-4 -2.6-4 18970 36795

FH+
2 1A1 STO6G -1.1-3 -5.1-4 -2.1-5 -1.8-5 12454 20709

H2O 1A1 DZ -1.9-2 -1.1-2 -4.9-4 -3.9-4 4254 4743
H3 2A1p DZ -8.0-4 -5.8-4 -1.5-6 -1.1-8 5780 7230
HF 1Sigma+ DZ -1.2-2 -5.8-3 -3.6-4 -2.6-4 5780 7230

HLi2 2A1 STO6G -1.0-3 -6.6-4 -7.8-5 -1.1-5 5780 7230

HN+
2 1Sigma+ STO6G -2.5-2 -1.1-2 -1.5-3 -1.5-3 12454 20709

HNO 1Ap STO6G -1.9-2 -1.4-2 -8.9-4 -9.1-4 2058 1743
Li 2S STO6G -5.9-8 -3.7-8 -3.2-8 -1.5-8 15484 27888
Li2 1Sigmag+ STO6G -3.7-4 -2.9-4 -5.2-6 -4.7-6 1324 948
LiF 1Sigma+ STO6G -1.6-3 -1.3-3 -2.4-4 -2.5-4 9848 15018

LiH(1) 1Sigma+ DZ -3.5-4 -2.0-4 -9.4-7 -1.5-7 7634 10593
LiH(2) 1Sigma+ STO6G -3.6-5 -2.7-5 -1.3-7 -4.0-8 7634 10593
LiOH 1Sigma+ STO6G -8.6-3 -4.0-3 -5.8-4 -5.8-4 7634 10593

N 4S DZ -2.4-3 -9.1-4 -9.3-5 -1.1-5 790 465

N+
2 2Sigmag+ STO6G -3.1-2 -1.6-2 -2.7-3 -2.2-3 5780 7230

N2 1Sigmag+ STO6G -1.2-2 -8.9-3 -1.2-3 -1.2-3 5780 7230
NH(1) 1Delta DZ -1.7-2 -1.3-2 -5.0-4 -4.4-4 9848 15018
NH(2) 3Sigma- DZ -9.7-3 -5.2-3 -5.7-4 -1.4-4 1324 948

NH−2 (1) 1A1 DZ -2.4-2 -1.5-2 -6.6-4 -5.7-4 7634 10593

NH−2 (2) 1A1 STO6G -2.0-3 -1.3-3 -3.3-5 -2.6-5 5780 7230

NH+
3 2A2pp STO6G -9.8-3 -1.8-3 -2.1-4 -1.1-4 5780 7230

NH3 1A1 VDZ -2.3-2 -1.4-2 -5.0-4 -4.7-4 5780 7230

NH+
4 1A1 STO6G -1.7-2 -4.2-3 -2.5-4 -2.3-4 9848 15018

Na 2S STO6G -1.0-3 -5.0-4 -6.4-5 -4.9-5 9848 15018
NaH 1Sigma+ STO6G -3.5-3 -1.6-3 -9.3-5 -7.9-5 15484 27888
Ne 1S DZ -6.7-3 -2.6-3 -2.6-4 -1.5-4 2058 1743

O(1) 1D DZ -1.9-2 -1.4-2 -1.3-3 -1.2-3 3024 2964
O(2) 3P DZ -1.2-2 -6.3-3 -7.5-4 -2.4-4 18970 36795
O(3) 3PSZ0 DZ -2.3-2 -1.9-2 -3.0-3 -1.6-3 4254 4743

O+
2 2Pig STO6G -1.7-2 -1.5-2 -2.5-3 -2.1-3 4254 4743

P 4S 631G -8.7-4 -3.0-4 -6.8-5 -1.6-5 5780 7230
SiH4 1A1 STO6G -1.9-2 -3.6-3 -1.8-4 -1.7-4 5780 7230
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6. Conclusion. In this paper, we consider the v2-RDM model for approximat-
ing the solution to the molecular Schrödinger equation. Instead of computing the
smallest eigenvalue of the many-electron Schrödinger operator, we minimize the to-
tal energy of the many-electron system with respect to 1-RDM and 2-RDM subject
to some linear constraints imposed to enhance the N -representability of the deci-
sion variables. The minimization problem to be solved is an SDP. The solution of
the SDP can be obtained from the solution of a system of nonlinear equations that
can be derived from a fixed-point iteration of DRS applied to the original SDP. We
present a semismooth Newton type method for solving this set of nonlinear equations.
A switching strategy between first-order and second-order methods is developed to
improve the stability of the method and to achieve global convergence. We exploit
the block diagonal structure and low rank structure of the variables in the SDP to
improve the computational efficiency. The computational results show that the pro-
posed semismooth Newton method can achieve higher accuracy, and is competitive
with the Newton-CG augmented Lagrangian methods SDPNAL and SDPNAL+.

Several components of the proposed semismooth Newton method can be fur-
ther improved. For example, since eigenvalue decomposition is the most expensive
step in the procedure for computing the Newton direction, a more efficient eigen-
decomposition method needs to be investigated. A better global convergent technique
is also needed to improve the overall performance.
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