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Sum Rate Maximization for Non-Regenerative
MIMO Relay Networks

Cong Sun, Member, IEEE, Eduard Axel Jorswieck, Senior Member, IEEE, and Ya-xiang Yuan

Abstract—A multiple-antenna amplify-and-forward (AF) two-
hop interference network with multiple links and multiple relays
is considered. In this paper, we optimize the transmit precoders,
the receiver decoders, and the relay AF matrices to maximize the
achievable sum rate. First, the total signal to total interference plus
noise ratio (TSTINR) maximization approach is proposed to ap-
proximate the sum rate maximization problem as a lower bound.
Under individual user and individual relay transmit power con-
straints, an efficient alternating direction algorithm is proposed to
maximize the TSTINR. Then, we modify our TSTINR model as
well as the algorithm to guarantee multiple data stream transmis-
sion, by requiring the precoding matrices to have a certain number
of orthogonal columns. We propose the stream selection for prepro-
cessing, and prove that the stream selection problem to maximize
the sum rate is NP-hard. Simulation results show that our pro-
posed stream selection TSTINR model achieves much higher sum
rate compared to the existing model with the same computational
cost; the proposed algorithm solves the problems efficiently, and
the computation time is significantly reduced.

Index Terms—MIMO AF relay network, sum rate maximization,
stream selection, total signal to total interference plus noise ratio.

I. INTRODUCTION

MULTIPLE input multiple output (MIMO) networks have
been thoroughly investigated in the modern communi-

cation theory. Recently, MIMO networks assisted by relays are
popular, because relays provide coverage extension, reliability
enhancement and sum rate improvement [1]. The Amplify-and-
Forward (AF) mode, also known as non-regenerative relaying,
is simple to implement with low complexity.

Many works investigate the fundamental limits of the MIMO
relay AF networks, and some of them are listed in Table I. Many
studies focus on the specific networks, with a single user pair,
with a single relay, or with single antenna nodes. A variety of
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techniques, such as Matched Filter (MF) [37], Zero Forcing (ZF)
[31], [36], [37], Dirty Paper Coding (DPC) [42], Interference
Alignment (IA) [28], [32] and discrete Fourier transform [31]
are considered. Among them, the Minimum Mean Square Error
(MMSE) technique is the most popular, where some works min-
imize the MSE constrained by power budgets [11], [15], [20],
[38], [39], [41], some adopt the MMSE filter as the relay AF
matrix or the receiver filter [24], [31], [37], and some introduce
the weighted MMSE (WMMSE) model to approximate the sum
rate maximization problem as they share the same KKT points
[32], [43]. Various optimization methods, such as semi-definite
relaxation [26], [30], [38], sequential quadratic programming
[15], [27], [33], second order cone programming [5], KKT
system analysis [7], [15], [20], [24], [34], [35], [38], [42], [43]
and gradient method [20]–[22] are applied. Some works solve or
simplify the problems by diagonolization. The analysis of relay
AF matrices and precoding matrices to diagonalize the channels
often works to maximize the mutual information [4], [16],
[23], minimize the MSE [9], [15], [18] or optimize their lower
bounds [12], [14], [24]. The alternating direction method, also
known as the block coordinate descent method, is frequently
used, to decompose the problem into simpler subproblems and
to lower the computational cost [17], [32], [35], [38], [39], [43].

For general MIMO relay networks, [36] applies the coop-
erative ZF technique. Both [38] and [39] minimize the MSE,
and propose different methods to solve the subproblems. Re-
cent work [32] provides algorithms to jointly optimize users’
precoders, decoders and relay AF matrices. Total leakage inter-
ference plus noise (TLIN) minimization and WMMSE models
are proposed. The WMMSE model works well generally, but
the computational cost is quite high. In this paper, we propose
a new approximation for the sum rate maximization problem,
and propose efficient algorithms which achieve higher or similar
performance with significantly lower complexity.

Sometimes too many active data streams lead to a saturation
of the sum rate [45]. Stream selection has been discussed in
MIMO networks [45]–[51]. [46] applies the ZF receiver and
selects streams independently from a set of parallel channels.
For MIMO BC, [47] and [48] select streams greedily by mini-
mizing the noise amplification and minimizing the interference,
respectively. [49] studies spatially correlated MIMO networks,
and selects streams by maximizing the Signal to Leakage plus
Noise Ratio (SLNR). [50] treats the problem as a Degree of
Freedom (DoF) feasibility problem, and selects streams while
keeping them interference free. We propose a stream selection
algorithm based on the new approach for MIMO relay networks,
as the preprocess to maximize the sum rate.

The main contributions of the paper are listed as follows.
1) A new approach to approximate the sum rate maximiza-

tion problem is proposed.
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TABLE I
REFERENCES ABOUT MIMO RELAY AF NETWORKS

1Broadcast Channel/Multiple Access Channel.

2) An efficient algorithm is developed for solving the new
model, and is applied to the WMMSE model, which sig-
nificantly reduces the computation time.

3) The new model and the proposed algorithm are further
modified to support multiple data stream transmission.
The stream selection problem to maximize the sum rate is
proved to be NP-hard. Preprocessing by stream selection
is introduced. The new model preprocessed by stream se-
lection achieves much higher sum rate than the WMMSE
model with the same computational cost.

Parts of the work were reported in [33]–[35] and [52]. Com-
pared to them, the system models are more practical and better
motivated. Furthermore, Section III-B3 for the novel algorithm
is completely new. Finally, detailed proofs are provided for all
theoretical results. Our paper is organized as follows. The sys-
tem model is introduced in Section II. In Section III we set
up the TSTINR maximization model to approximate the sum
rate, under individual user and individual relay transmit power
constraints. For this model we propose an efficient algorithm,
which also applies to the WMMSE model proposed by [32]. To
support multiple data streams, we develop the multiple stream
TSTINR model in Section IV. Furthermore, a stream selection
algorithm for preprocessing is also introduced. Simulation re-
sults are shown in Section V. It shows that the proposed new
model achieves much higher sum rate than the WMMSE model
with the same computational cost; the proposed new algorithm
solves the WMMSE model with significantly reduced compu-
tation time.

Notation: Lowercase and uppercase boldface represent vec-
tors and matrices, respectively. Re(a) and Im(a) mean the real
part and the imaginary part of scalar a, respectively. Id rep-
resents the d × d identity matrix. ⊗ represents the Kronecker
product. vec(A) is a column vector consisting of the columns
of A. Diag{A1 , . . . ,An} represents the block diagonal matrix,
where Ai , i = 1, . . . , n are its diagonal. diag{A} is a vector
with elements as the diagonal elements of matrix A. {0, 1}n

is the n-dimensional binary vector set; en is an n-dimensional
vector with all the components being 1. K and R represent the
set of the user indices {1, 2, . . . ,K} and that of the relay indices
{1, 2, . . . , R}, respectively. And we use E(·) to denote the sta-
tistical expectation. (a)+ means max(a,0) componentwisely.
νd

min(A) is composed of the eigenvectors of A corresponding
to its d smallest eigenvalues.

II. SYSTEM MODEL

Consider a two hop half-duplex interference channel with K
user pairs and R relays, as shown in Fig. 1. Suppose Transmitter
k, Receiver k and Relay r have Mk , Nk and Lr antennas,

Fig. 1. MIMO relay AF network.

respectively, for any k ∈ K and r ∈ R. User k transmits dk

parallel data streams, and the data signal vector is denoted as
sk ∈ Cdk×1 , where E(sksH

k ) = Idk
. Here we suppose that there

are no direct links between user pairs.
The communication process includes two time phases. In the

first phase, each transmitter sends the precoded signal Uksk

to all relays, where Uk ∈ CMk×dk is the precoding matrix of
User k. Each relay receives xr =

∑
k∈K GrkUksk + nr . Here

Grk ∈ CLr×Mk is the channel matrix between Transmitter k
and Relay r, and nr is the noise at Relay r, with zero mean and
variance matrix σ2

r ILr
. In the second phase, Relay r multiplies

the received signal with its own AF matrix Wr ∈ CLr×Lr , and
transmits tr = Wrxr to all receivers. By multiplying the de-
coding matrix Vk ∈ CNk×dk to the received signal, Receiver k
finally obtains

ỹk = VH
k Tkksk

︸ ︷︷ ︸
desired signal

+
∑

q∈K,q �=k

VH
k Tkqsq

︸ ︷︷ ︸
interference

+
∑

r∈R
VH

k HkrWrnr + VH
k zk

︸ ︷︷ ︸
noise

.

Here Hkr ∈CNk×Lr is the channel coefficient matrix be-
tween Relay r and Receiver k, and zk is the noise at Re-
ceiver k with zero mean and variance matrix μ2

kINk
. Denote

the effective channel from Transmitter q to Receiver k by
Tkq =

∑
r∈RHkrWrGrqUq . Suppose all the transmit signals

and noises in the system are independent of each other. The
transmit powers of User k and Relay r are PU

k =‖Uk‖2
F , PR

r =∑
k∈K‖WrGrkUk‖2

F + σ2
r ‖Wr‖2

F , respectively.
In the following two sections we propose new efficient

algorithms to design system precoders {U} = {Uk , k ∈ K},
decoders {V} = {Vk , k ∈ K} and relay AF matrices {W} =
{Wr , r ∈ R}. Let {W−r} = {W1 , . . . ,Wr−1 ,Wr+1 , . . . ,
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WR} and similarly define {U−k}. We predefine some sym-
bols: Ḡrk = GrkUk , W̄rk = WrGrk , H̄kr = HkrWr and
V̄kr = VH

k Hkr , for all k ∈ K and r ∈ R.

III. TOTAL SIGNAL TO TOTAL INTERFERENCE PLUS NOISE

RATIO MAXIMIZATION

In this section, a new TSTINR maximization model is devel-
oped to approximate the sum rate maximization problem.

A. Optimization Problem Formulation

First, we introduce a new variable, defined as

TSTINR =
PS

P I + PN
=

∑
k∈K PS

k∑
k∈K(PI

k + PN
k )

,

where the desired signal power, the noise power and the leakage
interference at Receiver k, respectively, are expressed as
PS

k = E(‖VH
k Tkksk‖2

F ) = ‖VH
k

∑
r∈R HkrWrGrkUk‖2

F ,
PN

k = E(‖
∑

r∈R VH
k HkrWrnr + VH

k zk‖2
F ) = μ2

k‖Vk‖2
F +

∑
r∈Rσ2

r‖VH
k HkrWr‖2

F and PI
k = E(‖

∑
q∈K,q �=kV

H
k Tkqsq‖2

F )
=

∑
q∈K,q �=k‖VH

k

∑
r∈RHkrWrGrqUq‖2

F . Our aim is to
design the precoders {U}, decoders {V} and relay AF
matrices {W}, in order to maximize the sum rate

Rsum =
1
2

∑

k∈K
log2det(INk

+ F−1
k TkkTH

kk ) (1)

with Fk =
∑

q �=k,q∈K TkqTH
kq +

∑
r∈R σ2

r H̄krH̄H
kr + μ2

kINk
.

It is complicated to optimize the sum rate directly. Here we
approximate the sum rate by the newly introduced TSTINR and
maximize the TSTINR instead.

If the decoding matrices Vk , for all k ∈ K, scale with a
nonzero constant, the value of the TSTINR remains the same.
To simplify the receive processing and to bound Vk , we require
that Vk has orthogonal columns. Consequently the decoding
subproblems in Section III-B1 are well-defined. Furthermore,
the following theorem holds:

Theorem 1: For any {U}, {W} and any {V} satisfy-
ing VH

k Vk = Idk
, k ∈ K, it holds that 1

2 log2 [1 + TSTINR
({U}, {V}, {W})] ≤ Rsum({U}, {W}).

The detailed proof is shown in Appendix-A. Maximizing the
TSTINR provides a guaranteed system throughput. There are
transmit power constraints for each user and each relay, where
pU

k and pR
r are their power budgets, for all k ∈ K and r ∈ R.

The corresponding optimization problem becomes:

max
{U},{V},

{W }

TSTINR =
∑

k∈K PS
k∑

k∈K(PI
k + PN

k )
(2a)

s.t. VH
k Vk = Idk

, k ∈ K, (2b)

‖Uk‖2
F ≤ pU

k , k ∈ K, (2c)
∑

k∈K
‖WrGrkUk‖2

F + σ2
r ‖Wr‖2

F ≤ pR
r , r ∈ R.

(2d)

Since the objective function is a fraction, there is a lack of
efficient methods. Stimulated by Dinkelbach’s work [56], we

use a parameter C to combine the denominator and the nu-
merator together as a new objective function1. Problem (2) is
reformulated as:

max
{U},{V},

{W }

f({U}, {V}, {W};C) = C(PI + PN ) − PS

=
∑

k∈K
[C(PI

k + PN
k ) − PS

k ] (3a)

s.t. (2b) − (2d). (3b)

In each iteration we solve (3), and then update C as:

C =
PS ({U}, {V}, {W})

PI ({U}, {V}, {W}) + PN ({U}, {V}, {W}) . (4)

The following theorem shows that problem (3) has a close
relationship with (2) (The proof is shown in Appendix-B):

Theorem 2: If (3a) reduces in each iteration, then TSTINR
is monotonically increasing. Any KKT point of (3) is a KKT
point of (2).

B. Alternating Direction Algorithm

Problem (3) is a nonconvex nonlinear matrix optimization
problem with many coupled variables. It is difficult to solve
all the variables jointly. Here the precoders {U}, the decoders
{V} and the relay AF matrices {W} are solved alternatively.
For each subproblem, we develop efficient methods.

1) Subproblem for the Decoding Matrix: First, we fix {U}
and {W}, then all the decoding matrices are independent of
each other. The decoding subproblem reads:

min
X∈CN k×d k

tr (XH A0X) s.t. XH X = Idk
, (5)

whereX representsVk , andA0 = CFk − TkkTH
kk . The closed

form solution of (5) is X∗ = νdk

min(A0).
2) Subproblem for the Relay AF Matrix: Given the index

r ∈ R, we fix {U}, {V} and {W−r}. Thus the optimization
subproblem for Wr is:

min
X∈CL r×L r

∑

k∈K
tr
[
X(Pk

rr + Cσ2
r ILr )XH V̄H

krV̄kr

]

+ 2Re

[
∑

k∈K

∑

l �=r,

l∈R

tr(XPk
rlW

H
l V̄H

klV̄kr )

]

s.t. tr

[

X
( ∑

k∈K
ḠrkḠH

rk + σ2
r ILr

)

XH

]

≤ pR
r , (6)

where Pk
rl = C

∑
q �=k,q∈K ḠrqḠH

lq − ḠrkḠH
lk , for any k ∈ K

and r, l ∈ R. Problem (6) is equivalent to:

min
p

pH B̄1p + b̄H p + pH b̄ s.t. pH p ≤ pR
r . (7)

Here p= Q · vec(Wr ), B̄1 = Q−H B1Q−1 and b̄= Q−1b;
B1 =

∑
k∈K(Pk

rr + Cσ2
r ILr

)T ⊗ (V̄H
krV̄kr ), b = vec(

∑
k∈K∑

l �=r,l∈R V̄H
krV̄klWl(Pk

rl)
H ); Q � 0 is computed by the

1The conclusions in [56] for convex sets cannot be applied to (2) directly,
because its feasible set is nonconvex.
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eigenvalue decomposition of B2 = (
∑

k∈K ḠrkḠH
rk + σ2

r

ILr
)T ⊗ IL as B2 = QH Q. Let2 p(λ) = −(B̄1 + λI)−1 b̄,

where B̄1 + λI 	 0. If B̄1 	 0 and ‖p(0)‖2 ≤ pR
r , then p(0)

is the optimal solution of (7); otherwise, the optimal Lagrange
multiplier λ is calculated by Newton’s root-finding method3

from ‖p(λ)‖2
2 = pR

r [57, Chapter 6.1.1].
3) Subproblem for the Precoding Matrix: For User k, Uk ,

we fix {V}, {W} and {U−k} to form the subproblem below.

min
X∈CMk × d k

tr(XH LkX)

s.t. ‖X‖2
F ≤ pU

k ; tr(XHW̄H
rkW̄rkX)≤ηr , r∈R. (8)

Here X represents Uk , Lk =
∑

r∈R
∑

l∈RW̄H
rk (C

∑
q �=k,q∈K

V̄H
qrV̄q l − V̄H

krV̄kl)W̄lk and ηr = pR
r − σ2

r ‖Wr‖2
F −

∑
q �=k,q∈K ‖W̄rqUq‖2

F .
a) Problem reformulation: In the following, algorithms are

proposed for a more general problem. This format is applied
to subproblem (8), and also the precoding subproblems of the
WMMSE models in [32].

min
x∈Cn ×1

f(x) = xH Q0x + gH x + xH g (9a)

s.t. Ci(x) = xH Qix − 1 ≤ 0, i = 1, . . . , m, (9b)

where Qi 	 0, i = 1, . . . , m, and Q0 is indefinite. Therefore
(9) is a nonconvex Quadratic Constrained Quadratic Program-
ming (QCQP). Problem (9) is equivalent to (8) with n=Mkdk ,
m=R + 1, x=vec(X), Q0 =Idk

⊗Lk , g=0, Q1 = 1
pU

k

In and

Qr+1 = 1
ηr

Idk
⊗ (W̄H

rkW̄rk ) for all r ∈ R.
To solve (9), first we propose the Feasible Shrinkage (FS)

method to obtain a good interior point. Then by using it as
the initialization, we apply the nonconvex Sequential Quadratic
Programming (SQP) method to achieve the KKT point of (9).

Remark 1: If we apply the Semi-Definite Relaxation (SDR)
method to (9), when m > 4 (here the relay number R is greater
than 3) it is not guaranteed to recover its optimal solution [58].
The classic SQP method approximates the constraints by lin-
earization, which is not proper for (9b). If we apply it directly
and the initial point is not close to the KKT point, by experimen-
tal evidence, it leads to very short stepsizes, and thus influences
the convergence and reduces the efficiency.

b) Feasible shrinkage method: The main idea of the FS
method is to approximate the feasible region by an interior ellip-
soid in each iteration. First, we solve the following subproblem
to obtain the initial point of the FS method:

min
x∈Cn ×1

xHQ0x + gH x + xH g s.t. xH
m∑

i=1

Qix ≤ 1. (10)

Since all Qi are positive semi-definite, it holds that

xH Qix ≤
m∑

i=1

xH Qix = xH
m∑

i=1

Qix ≤ 1, i = 1, . . . , m.

(11)

2If B̄1 + λI is not invertible, p(λ) = −(B̄1 + λI)−†b̄ + v. Here−†means
pseudo-inverse, and v is a vector that belongs to the nullspace of B̄1 + λI,
satisfying ‖p(λ)‖2

2 = pR
r .

3From the computational point of view, 1
‖p (λ)‖2

2
= 1

pR
r

is solved [57].

Therefore by solving (10) we obtain a feasible point of (9),
and use it as the initialization of the FS method. Next we generate
the iterative step d0 and further update the iterative point x0 . In
each iteration, the following subproblem is solved:

min
d∈Cn ×1

dH Q0d + ḡH d + dH ḡ s.t. dH Q̄d ≤ 1, (12)

where ḡ = g + Q0x0 , Q̄ =
∑m

i=1 ρi(Qi + ρiQix0xH
0 Qi) and

ρi = 2
1−xH

0 Q i x0
, i = 1, . . . , m. Both (10) and (12) have the

same structure as (7), and the same method is applied.
Theorem 3: If x0 is an interior feasible point of (9) and d0

is the optimal solution of (12), then x0 + d0 is also feasible for
problem (9).

The detailed proof is shown in Appendix-C. Algorithm 1
presents the proposed FS method for (9).

c) Nonconvex sequential quadratic programming method:
The FS method generates a good interior point for problem
(9). Initialized from this point, we apply the nonconvex SQP
algorithm to get a KKT point of (9).

First, we turn (9) into the real domain:

min
x̂∈R2 n ×1

f(x̂) = x̂H Q̂0 x̂ + 2ĝT x̂ (13a)

s.t. Ci(x̂) = x̂H Q̂i x̂ − 1 ≤ 0, i = 1, . . . ,m, (13b)

where x̂ = (Re(xT ), Im(xT ))T , ĝ = (Re(gT ), Im(gT ))T ,

Q̂0 =

(
Re(Q0) −Im(Q0)

Im(Q0) Re(Q0)

)

, Q̂i =

(
Re(Qi) −Im(Qi)

Im(Qi) Re(Qi)

)

,

for i = 1, . . . ,m. In the tth iteration, suppose the current itera-
tive point is x̂t . Then the following subproblem is solved:

min
d̂∈R2 n ×1

d̂T W̃d̂ + 2g̃T d̂ s.t. AT d̂ + C ≤ 0. (14)

Here W̃ = Q̂0 +
∑m

i=1 λiQ̂i is the Hessian matrix of the
Lagrangian function of problem (13), where λ = (λ1 , λ2 ,

. . . , λm )T is the Lagrange multiplier; g̃ = Q̂0 x̂t + ĝ; the con-
straint here represents the linearization of (13b) at the point x̂t ,
where the columns of A consist of Q̂i x̂t , for i = 1, . . . , m and
C = (C1(x̂t), C2(x̂t), . . . , Cm (x̂t))T .

As W̃ may be indefinite, (14) is possibly nonconvex or
even unbounded.4 If (14) is bounded, the active set method
[57, Algorithm 9.4.2] is applied, and its optimal solution d̂t

4This is different from the classical SQP method, where the Hessian matrices
in the objective functions of the subproblems are updated by the Quasi-Newton
formula and the subproblems are always convex.
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is achieved; otherwise, a direction d̂t is found, which satis-
fies AT d̂t ≤ 0, g̃T d̂t ≤ 0 and d̂T

t W̃d̂t ≤ 0. Let P (x̂, u) =
f(x̂) + u

∑m
i=1 max{Ci(x̂), 0} be the merit function of (13),

where u > 0 is the parameter. It is straight forward to prove that
in both bounded and unbounded cases the achieved d̂t is a de-
scendent direction of the merit function (See [57, Lemma 12.2.1]
and [27] for the proof.). The stepsize αt is achieved by line-
search, so that P (x̂t + αt d̂t , u) < P (x̂t , u). The framework of
the nonconvex SQP method is shown as Algorithm 2.

The Lagrange multiplier λ is first updated by the the same
strategy as in [27], and then projected as λ := (λ)+ . The penalty
parameter u is updated by u := max{u, ‖λ‖∞}. Since the
merit function value reduces in each iteration, similar to [57,
Theorem 12.2.3], we can prove that as long as the algorithm
converges, the iterative point converges to a KKT point of (9).
In our experiments, the nonconvex SQP always converges in
several iterations (usually less than 20 iterations), because a
good initialization is provided by the FS method.

d) Hybrid algorithm for the precoding subproblem: The hy-
brid algorithm framework to solve the equivalent subproblem (9)
is summarized in Algorithm 3.

Remark 2: The constraint in subproblem (12) acts as the
weighted quadratic approximation of the m constraints in (9).
This forces the iterative point to go towards the boundary of
the feasible region. But, in the FS method, it can never reach
the boundary. Then from this point, we start the nonconvex
SQP method, to achieve a KKT point of (9) locally. In our
experiments, the hybrid algorithm converges very fast. See
Section V for more details of the numerical illustrations.

We apply the hybrid algorithm to solve (9) and update the
precoding matrices. In our TSTINR model, either the output
of the FS method or the precoding matrix from the previous
alternating iteration, which has lower objective function value,
is used as the initial point of the nonconvex SQP method. This

guarantees the reduction of (3a) in each iteration. Numerically,
the initial point is always set as the output of the FS method.

C. Algorithm for the TSTINR Model

According to the above analysis, the framework of the algo-
rithm to solve (2) is concluded as Algorithm 4.

The objective function reduces in each subproblem, so the
value “TSTINR” converges (Theorem 2). However, as the al-
ternating direction method is applied, there is no theoretical
guarantee that the algorithm converges to a KKT point of (2).

The algorithm framework for the TSTINR is applicable to the
TLIN model in [32]. (3a) is the linear combination of PI + PN

and PS , while the TLIN model in [32] only minimizes PI +
PN . From the sum rate point of view, our TSTINR model is
better motivated. This is verified by simulation results, where
the TSTINR always outperforms the TLIN. A similar objective
function has been discussed in [59].5 Our algorithm is also
applicable to the WMMSE model [32], and saves significant
computation time compared to other classical algorithms, which
will be shown in Section V-A.

IV. MULTIPLE STREAM TRANSMISSION

Multiple data streams increase the data rate of single-hop net-
works in medium to high SNR scenarios [60]. This conclusion
carries over to the two-hop case, by treating the network as an
equivalent single-hop network between users and assuming the
same power at relays and transmitters. In this section, we in-
vestigate the model to support the transmission of multiple data
streams. We also propose an algorithm to determine the number
of data streams of each user pair as a preprocessing step.

A. Analysis of the Existing Model

In simulations, we observe that the achieved precoding ma-
trices by the TSTINR have rank one. This means only one data
stream for each user pair is supported. The following theorem
provides the theoretical evidence for the rank one phenomenon.6

See Appendix-D for the proof.
Theorem 4: There always exists a rank one optimal solution

for the precoding subproblem (8).
If the sum rate maximization problem is solved directly, the

optimal solution should support multiple streams in high SNR

5In [59] the leakage interference is aimed to be aligned perfectly, thus the
parameter C approaches to infinity. In our paper, P I + P N might not reduce
to zero, and consequently C might not grow to infinity.

6Although we cannot prove that the solution of (8) must be rank one, we
always observe the rank one solution, no matter which algorithm or what initial
point we use to solve (8).
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scenarios. The approximation models and the used algorithms
lead to the rank one precoding phenomenon. Thus in high SNR
we should require the models to transmit multiple streams, in
order to achieve high sum rate.

B. Multiple Stream TSTINR Model

As motivated above, the precoding matrices should have in-
dependent columns, in order to support multiple data streams.
Without loss of generality all precoding matrices are required to
have orthogonal columns. In our new model, we assume User k
transmits with the full power pU

k , and requires equal power allo-
cation among dk parallel data streams, for all k ∈ K. This cor-
responds to the optimal power allocation scheme to maximize
the sum rate in high SNR scenarios [61]. Our new optimization
problem reads:

max
{U},{V},

{W }

TSTINR =
∑

k∈K PS
k∑

k∈K(PI
k + PN

k )

s.t. UH
k Uk =

pU
k

dk
Idk

, k ∈ K; (2b), (2d). (15)

Similar to the model in Section III, the objective function is
reformulated with the parameter C, and the alternating direc-
tion algorithm is applied. The subproblems for the decoding
matrices and the relay AF matrices are the same as (5) and (6),
respectively. The subproblem for the precoding matrix Uk has
the following expression.

min
X∈CM k×d k

tr(XH D0X) (16a)

s.t. XH X = ρIdk
, (16b)

tr(XH DrX) ≤ ηr , r ∈ R, (16c)

where X represents the matrix variable Uk . ρ = pU
k

dk
, D0 = Lk

and Dr = W̄H
rkW̄rk , where Lk and ηr are defined below (8).

Because of the orthogonality constraint (16b), subproblem (16)
is more complicated and more difficult to analyze than (8).

Suppose that μ = (μ1 , μ2 , . . . , μR )T is the Lagrange multi-
plier for (16c). The dual problem of (16) is7 [62]:

min
μ

h(μ) =
∑

r∈R
μrηr

− min
X∈CM k×d k ,

XH X=ρId k

tr

[

XH

(

D0 +
∑

r∈R
μrDr

)

X

]

s.t. μ ≥ 0. (17)

Without loss of generality, we assume ρ = 1. The second
part of h(μ) is the sum of the smallest dk eigenvalues of
D0 +

∑
r∈R μrDr . From [63], we derive that the subgradient of

h(μ) is y = (y1 , y2 , . . . , yR )T , where yr = ηr − tr(XH DrX),
for any r ∈ R, and X = νdk

min(D0 +
∑

r∈R μrDr ), satisfying
XH X = Idk

. Let μj and yj be the iterative point and its subgra-
dient in the jth iteration, respectively. The projected subgradi-
ent method is summarized in Algorithm IV-B, which is weakly

7We have converted the maximization into the minimization by multiplying
the objective function with −1.

convergent [64]. Here we stop the algorithm by measuring the
distance between two consecutive iterative points, because this
distance converges to zero as the iteration number j goes to
infinity, due to the fact that the subgradient yj is bounded.

Theorem 5: If μ∗ is the optimal solution of (17), then X∗

is a feasible point of (16). Furthermore, if h(μ) is smooth at
μ = μ∗, then X∗ is the optimal solution of (16).

The detailed proof is given in Appendix-E. It shows that
Algorithm IV-B achieves the optimal solution of problem (16) as
long as the dual objective function is smooth at the optimal dual
variable.8 In simulations, it works well to obtain the effective
precoding matrices. We summarize the algorithm to solve the
multiple stream TSTINR model in Algorithm 6.

C. Stream Selection Algorithm

In MIMO relay networks, different number of data streams
lead to different achievable sum rates [34]. In this subsection, we
formulate the stream selection models, to maximize the sum rate
by determining {dk , k ∈ K}. We first prove that even selecting
only one stream from the simplified network is NP-hard. Then
a stream selection algorithm based on the TSTINR model is
proposed.

a) Computational Complexity: Consider a MIMO relay net-
work, where each user node has single antenna. Selecting one
stream is equivalent to supporting one user pair. For each
user pair, we solve the following rate maximization problem
with user and individual relay transmit power constraints; and
we support the user transmitting with the highest rate. As
Mk = Nk = 1 for all k ∈ K, the precoding matrix Uk is in-
deed a scalar, which is denoted as uk . Similarly, Hkr and Grk

8Similar to the discussion in Section IV-B, the nonsmoothness of the dual
function in [35] should also be considered. Then the projected gradient method
should be modified as the projected subgradient method; Theorem 1 in [35] is
corrected as Theorem 5 here. The WMMSE implementation for [32] and the
corresponding simulation results are also corrected.
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are denoted by hkr and grk , respectively.

max
uk ,{W }

log

(

1 +
|
∑

r∈R hkrWrgrkuk |2
μ2

k +
∑

r∈R hkrWrWH
r hH

kr

)

s.t. |uk |2 ≤ pU
k ; ‖Wrgrkuk‖2

2 + σ2
r ‖Wr‖2

F ≤ pR
r , r ∈ R.

(18)

Theorem 6: Problem (18) is NP-hard.
This theorem is proved in Appendix-F. It provides the theo-

retical evidence that the stream selection problem to maximize
the sum rate is very difficult. Furthermore, the problem is highly
nonlinear and difficult to simplify. Thus we propose the stream
selection algorithm based on the TSTINR model for general
MIMO relay networks.9

b) Stream Selection Algorithm: Consider the general MIMO
relay network introduced in Section II. User k could transmit
at most lk = min(Mk,Nk ,

∑
r Lr ) data streams. Suppose dk

out of lk data streams are actively loaded by User k. First,
we introduce yk = (y1

k , . . . , ylk
k )T ∈ {0, 1}lk to represent the

status of the data streams of User k. If the ith stream is active
(selected), yi

k = 1; otherwise yi
k = 0. Then dk =

∑lk
i=1 yi

k . Let
Yk = Diag{yk}. The precoding and decoding vectors of the
ith data stream are the ith column of Uk ∈ CMk×lk and that of
Vk ∈ CNk×lk , respectively. For User k, the precoding and the
decoding matrices consisting of the active streams are UkYk

and VkYk , respectively. Plugging in the new variables into
the multiple stream TSTINR model, the optimization problem
reads:

max
{Y},{U},
{V},{W }

P̃ S

P̃ I + P̃ N
=

∑
k∈K P̃ S

k∑
k∈K(P̃ I

k + P̃ N
k )

(19a)

s.t. UH
k Uk =

pU
k

dk
Ilk , k ∈ K, (19b)

VH
k Vk = Ilk , k ∈ K, (19c)

Yk = Diag{yk},yk ∈ {0, 1}lk , k ∈ K, (19d)
∑

k∈K
‖WrGrkUkYk‖2

F + σ2
r ‖Wr‖2

F ≤ pR
r , r ∈ R.

(19e)

The expressions of P̃ S
k , P̃ I

k and P̃ N
k are the same as PS

k , PI
k

and PN
k in Section II, where Uk and Vk are replaced by UkYk

and VkYk , respectively. Here we require all the columns of
Uk to be orthogonal, so that the precoding vectors of the active
data streams are orthogonal. In (19b), Uk is coupled with Yk

through dk . This makes the problem difficult, and the alternating
direction method does not work well. To simplify the problem,
we suppose that the transmit power of User k is equally allocated
over all data streams, where dk is replaced by the constant lk in
(19b). By introducing parameter C [56], the following problem

9The computational complexity of the sum rate maximization problem for
general MIMO relay network is clearly more interesting, and is more challeng-
ing, which is left as our future work.

is considered instead of (19).

max
{Y},{U},
{V},{W }

C(P̃ I + P̃ N ) − P̃ S

s.t. UH
k Uk =

pU
k

lk
INk

, k ∈ K; (19c) − (19e). (20)

Using the alternating direction method, we fix {U}, {V},
{W}. The subproblem on {Y} is equivalent to the following
0-1 quadratic programming problem. The detailed transforma-
tion process is shown in Appendix-G.

min
z∈{0,1}l

zT Az + zT a (21a)

s.t. BT z ≤ c, (21b)

Here z = (yT
1 ,yT

2 , . . . ,yT
K )T and lmax =

∑
k∈K lk . A =

(L̃kq )K×K ; L̃kq = CLkq for all q �= k, q ∈ K and L̃kk =
−Lkk , for all k ∈ K. Each component of Lkq is the square abso-
lute value of the corresponding component in Skq = VH

k Tkq .
a = (aT

1 ,aT
2 , . . . ,aT

K )T , where ak = C · diag(
∑

r∈R Dkr +
μ2

kIlk ). B has R columns, and the rth column br =
(wT

r1 ,w
T
r2 , . . . ,w

T
rK )T , where wrk = diag{UH

k W̄H
rkW̄rk

Uk}. c is an R × 1 vector consisting of pR
r − σ2

r ‖Wr‖2
F ,

r ∈ R. Due to the NP-hardness, it is costly to solve (21).
Furthermore, the solution of (21) relies much on the choice of
{U}, {V}, {W}.

Rather than solving (21) directly, we solve the following much
easier subproblem.

min
z=(z1 ,z2 ,...,zl )T

(z0 − z)T A(z0 − z) + (z0 − z)T a

s.t. z ∈ {0, 1}l ,

l∑

i=1

zi = 1. (22)

Here the dimension l first equals to lmax , and reduces in each
iteration, which is discussed in the next paragraph. z0 = el rep-
resents the supported stream set, which means all the l streams
are supported; z with only one nonzero component being 1, rep-
resents the stream to be deleted from the l streams. Since all the
precoders, decoders and relay AF matrices are fixed, deleting
one data stream reduces the relays’ transmit power. Thus (21b)
is automatically satisfied. Consequently it is omitted in (22). As
(22) has only l feasible points, it is solved by exhaustive search.

Remark 3: (21) selects several streams out of the lmax
streams; subproblem (22) deletes one stream from l streams,
where first l = lmax , and after each iteration l := l − 1. The
main idea is that we delete streams one by one rather than se-
lecting several streams at the same time. We first support all
streams, and then delete one stream in each iteration to lower
the objective function of (21).

After solving (22) and determining the stream to be deleted,
we update the precoding, the decoding and the relay AF ma-
trices accordingly: first we delete the precoding and decoding
vectors of the corresponding stream; then {U}, {V}, {W} and
C are updated to increase the utility function “TSTINR” by
({U}, {V}, {W}, C) := Up({U}, {V}, {W}), as one itera-
tion of Algorithm IV-B.

In this way, we delete streams one by one, until the
achieved sum rate does not increase any more. To improve the
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performance, we combine the greedy idea with multiple initial-
ization technique. In the first iteration, rather than selecting one
stream to be deleted, we try every stream. This leads to lmax

possibilities. For each possibility, we continue searching by the
greedy method. Then we get lmax transmission schemes, and
choose the best scheme with the highest achieved sum rate. This
stream selection algorithm is described in Algorithm 7.

Similarly we can design the algorithm to add streams one by
one, which is omitted here. Although the stream selection algo-
rithm is based on the TSTINR model, it serves as preprocessing
for any algorithm to maximize the sum rate, which provides
good initial settings.

V. SIMULATIONS

In this section, we evaluate the performances of our proposed
models and algorithms, where both the single stream and the
multiple stream cases are considered. Each element of Grk

and Hkr obeys the complex Gaussian distribution of CN (0, 1);
the noise variances are set as σ2

r = σ2 = 1 and μ2
k = μ2 = 1,

for all r ∈ R and k ∈ K. Initial values of {U} and {W} are
randomly generated. For the same instance we generate one
random initialization for all considered models.

The parameters in the FS and the SQP methods are set to ε0 =
10−6 , ε1 = 10−4 and ε2 = 10−8 . For each plotted point, 100
random realizations are generated to approximate the average
performances. Without specific explanation, the TSTINR model
runs until the achieved sum rate does not increase any more, and
the WMMSE model runs until the sum rate converges. Here we

define SNR as SNR = pU
k

μ2 = pR
r

σ 2 , thus for all r ∈ R and k ∈ K,

pU
k = pR

r = SNR. The sum rate is used as the Quality of Service
(QoS) measure.

A. Single Stream Case

In this subsection, we analyze the proposed TSTINR model as
well as the algorithm in Section III. All the considered networks
have dk = 1 to transmit single stream.

First, we consider the (2 × 4, 1)4 + 24 MIMO relay system.10

For each realization, we apply our proposed TSTINR model as

10Denote (N × M, d)K + LR as the network with K user pairs and R
relays, where each transmitter, each receiver and each relay have M , N and L

Fig. 2. Achieved sum rate for (2 × 4, 1)4 + 24 network.

Fig. 3. Convergence of the achieved sum rate and TSTINR value.

well as the TLIN and the WMMSE models proposed in [32].
The average achieved sum rate of the three models with respect
to different SNR values is shown in Fig. 2. The TSTINR model
always achieves higher sum rate than the TLIN model. For SNR
greater than 25 dB, the TSTINR model achieves higher sum rate
than the WMMSE model.

Second, we depict the convergence curves of the TSTINR
model considering the (3 × 3, 1)3 + 33 MIMO relay system.
Fig. 3 shows the achieved sum rate over the iterations of the
proposed algorithm with SNR = 5, 15, 30 dB, representing
different SNR scenarios. In all the three scenarios, the achieved
sum rate converges in tens of iterations. Moreover, we plot the
curves representing the corresponding “TSTINR” value, to show
the gap between the sum rate and the TSTINR value. For the
same SNR value, the TSTINR curve is always below that of the
sum rate, which validates the statement in Theorem 1.

antennas, respectively, and each user pair transmits d data streams. Similarly
we denote (N × M )K + LR .
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TABLE II
COMPARISON OF THE PROPOSED ALGORITHM AND THE ALGORITHM IN [32]

Fig. 4. Comparison between stream selected TSTINR and WMMSE:
“WMMSE (truncated),” “S-TSTINR” has same computation time.

Third, we compare our proposed algorithm with other
algorithms to show its efficiency. For the (2 × 4, 1)4 + 44 net-
work, we solve the WMMSE model. As shown in [32], the
precoding, decoding, relay AF matrices as well as the weight
matrices are solved alternatively. The subproblems for the de-
coding matrices and the relay AF matrices are solved by the
methods shown in Sections III-B1 and III-B2, respectively. The
convex precoding subproblems are solved by both our proposed
hybrid method Algorithm III-B3 and the software SeDuMi [66]
(interior method which is suggested by [32]). The algorithms
are represented by “Proposed Algorithm” and “Algorithm [32],”
respectively. We stop both algorithms after 50 iterations, in or-
der to compare their performances with constant complexity. In
Table II, the achieved sum rate and the computation time of the
two algorithms are listed with respect to different SNR values.
Compared to “Algorithm [32],” “Proposed Algorithm” achieves
almost the same sum rate, and costs less than 15% of the com-
putation time. This shows the high efficiency of our proposed
algorithm.

B. Multiple Stream Case

We investigate the multiple stream transmission models. The
multiple stream TSTINR model preprocessed by the stream se-
lection algorithm (“S-TSTINR”) is compared with the WMMSE
model [32] (“WMMSE”). In Fig. 4, the (3 × 3)3 + 33 network
is considered. Here the WMMSE model is solved by our pro-

TABLE III
AVERAGE COMPUTATION TIME VERSUS SNR

posed algorithm from Section III-B; each user pair transmits
the maximum number of data streams (dk = 3, for all k ∈ K),
to achieve the highest sum rate. “S-TSTINR” achieves similar
sum rate as “WMMSE” generally, but the computation time is
much less, which is shown in Table III. We also depict the curve
of “WMMSE (truncated),” representing the achieved sum rate
by the WMMSE model using the same computation time as
“S-TSTINR.” “S-TSTINR” significantly improves the achieved
sum rate, compared to “WMMSE (truncated).” For instance,
at SNR = 25 dB, the sum rate achieved by “S-TSTINR” has
5 bps/Hz gain in sum rate. This indicates that our proposed
model well balances between the QoS and the computational
cost.

Remark 4: There are two reasons for the low complexity of
the stream selection TSTINR model. First, the complexity of
each iteration is lower, due to the projected subgradient method
to update the precoders. Second, the number of iterations is
usually smaller than that of the WMMSE model.

VI. CONCLUSION

This paper considers the general K × R × K MIMO re-
lay AF network. For the sum rate maximization problem,
we propose a new approximation model called TSTINR model.
With individual user and individual relay transmit power con-
straints, we propose an efficient algorithm to solve the TSTINR
model. Next, we propose the multiple stream TSTINR model
by adding the orthogonality constraints for precoders, to avoid
the possible phenomenon of rank one precoding matrices. The
algorithm is modified to solve the multiple stream model, where
the precoding subproblem is solved by the projected subgra-
dient method. Furthermore, the stream selection algorithm is
proposed as the preprocess, and the stream selection problem
to maximize the sum rate is proved to be NP-hard. The simula-
tion results indicate that our proposed stream selection TSTINR
model achieves much higher sum rate than the existing WMMSE
model with the same computational cost; compared to the ex-
isting algorithm, the proposed algorithm uses less than 15%
computation time, and achieves almost the same sum rate.
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APPENDIX

A. Proof of Theorem 1

First we introduce two lemmas for the proof.
Lemma 1: [65, Theorem 3.2.2]

A =

(
A11 A12

A21 A22

)

	 0,B =

(
B11 B12

B21 B22

)

	 0

are two Hermitian matrices with the same dimensions. A11 � 0
and B11 � 0 also have the same dimensions. Then

det(A + B)
det(A11 + B11)

≥ det(A)
det(A11)

+
det(B)

det(B11)
≥ det(B)

det(B11)
.

(23)
So this derives:

det(A + B)
det(B)

≥ det(A11 + B11)
det(B11)

.

Lemma 2: [65, Theorem 6.8.1] Suppose C,B are two Her-
mitian matrices. C 	 B � 0. Then the following inequality
holds:

det(C)
det(B)

≥ tr(C)
tr(B)

.

Let Ak = TkkTH
kk , Bk =

∑
q∈K,q �=k TkqTH

kq +
∑

r∈R σ2
r

H̄krH̄H
kr + μ2

kIN and Ck = Ak + Bk , k ∈ K. Without loss of
generality we set σ2

r = μ2
k = 1 for all k ∈ K and r ∈ R. Then

1 + TSTINR = 1 +
∑

k∈K VH
k AkVk

∑
k∈K VH

k BkVk
=

∑
k∈K VH

k CkVk
∑

k∈K VH
k BkVk

,

Rsum =
∑

k∈K
log2 det(B−1

k Ck ).

From the definitions we conclude that Bk � 0, Ck � 0 and
Ck 	 Bk , k ∈ K.

1) We prove that for any k ∈ K,

det(B−1
k Ck ) ≥ det[(VH

k BkVk )−1(VH
k CkVk )]. (24)

For simplicity we omit the subscript k. Let V⊥ ∈ CN ×(N −d)

be the bases of the complementary subspace of the subspace
spanned by the columns of V. That is, Q = [V,V⊥] ∈ CN ×N

is a unitary matrix. Then we deduce that

det(B−1C) =
det(QH CQ)
det(QH BQ)

≥ det(VH CV)
det(VH BV)

.

The inequality is deduced from Lemma 1, C = A + B and

QH CQ =

(
VH CV VH CV⊥

VH
⊥ CV VH

⊥ CV⊥

)

.

2) Ck 	 Bk implies VH
k CkVk 	 VH

k BkVk . Lemma 2
shows that

det(VH
k CkVk )

det(VH
k BkVk )

≥ tr(VH
k CkVk )

tr(VH
k BkVk )

. (25)

From (24) and (25), it is concluded that

Rsum =
∑

k∈K
log2 det(B−1

k Ck )

≥
∑

k∈K
log2 det[(VH

k BkVk )−1(VH
k CkVk )]

≥
∑

k∈K
log2

tr(VH
k CkVk )

tr(VH
k BkVk )

. (26)

3) Finally we prove that:

∑

k∈K
log2

tr(VH
k CkVk )

tr(VH
k BkVk )

≥ log2

∑
k∈K tr(VH

k CkVk )
∑

k∈K tr(VH
k BkVk )

.

(27)

With any scalar tk ≥ 1 and the fact that tr(VH
k BkVk ) ≥

0, k ∈ K, it is deduced that:
( ∏

k∈K
tk

) ∑

k∈K
tr(VH

k BkVk ) ≥
∑

k∈K
tk tr

(
VH

k BkVk

)
.

Let tk = tr(VH
k Ck Vk )

tr(VH
k Bk Vk ) , k ∈ K, divide

∑
k∈K tr(VH

k Bk

Vk ) and take logarithm for both sides, and thus we have (27).
Combining (26) and (27) we prove Theorem 1.

B. Proof of Theorem 2

Let {X} represent the set of the iterative points
{{U}, {V}, {W}}. Suppose {Xi} are the feasible points
achieved from the ith iteration. Define PI+N = PI + PN .
Then the expression of parameter C used in the ith iteration
as well as the TSTINR achieved in the (i − 1)th iteration is:

Ci = TSTINRi−1 =
PS ({Xi−1})

PI+N ({Xi−1}) .

Since in the ith iteration the objective function (3a) reduces,
it holds that

f({Xi};Ci) = CiP I+N ({Xi}) − PS ({Xi})
≤ f({Xi−1};Ci) = 0,

Then TSTINRi = P S ({X i })
P I + N ({X i }) ≥ Ci = TSTINRi−1 . Thus

the value of TSTINR increases monotonically.
Suppose {X∗} � {{U∗}, {V∗}, {W∗}} are the KKT points

of (3) and λr ≥ 0 is the Lagrange multiplier of hr ({X}) =
(
∑

k∈K ‖WrGrkUk‖2
F + σ2

r ‖Wr‖2
F ) − pR

r ≤ 0, for all r ∈
R. From {X∗} and the KKT conditions of (3), we shall construct
the corresponding Lagrange multipliers and the KKT conditions
of (2), to show that {X∗} is also a KKT point of (2). The first
order optimality conditions of the problem (3) with respect to
Wr are:

C
∂PI+N ({X∗})

∂Wr
− ∂PS ({X∗})

∂Wr
− λr

∂h({X∗})
∂Wr

= 0; (28)

λrhr ({X∗}) = 0. (29)
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Letting C = P S ({X∗})
P I + N ({X∗}) in (28) and dividing −PI+N on

both sides, we obtain

1
[PI+N ({X∗})]2

[

PI+N ({X∗})∂PS ({X∗})
∂Wr

−PS ({X∗})∂P I+N ({X∗})
∂Wr

]

− λ̃r
∂h({X∗})

∂Wr
= 0, (30)

where λ̃r = − 1
P I + N ({X∗}) λr . λ̃rhr ({X∗}) = 0 and (30) con-

sist of the first order optimality conditions of (2) with respect to
Wr , for any r ∈ R, where λ̃r is the Lagrange multiplier corre-
sponding to the constraint (2d). Similarly, we are able to achieve
the first order optimality conditions of (2) with respect to other
variables. Thus {X∗} is the KKT point of (2).

C. Proof of Theorem 3

First we show Lemma 3 and prove it.
Lemma 3: x ∈ Cn×1 and A 	 0, such that xH Ax < 1, then

B = {y|(y − x)H (A + ρAxxH A)(y − x) ≤ 1
ρ } is the subset

of A = {y|yH Ay ≤ 1}, where ρ = 2
1−xH Ax .

For any y ∈ B, it holds that

(y − x)H (A + ρAxxH A)(y − x) = yH Ay − (yH Ax

+xH Ay)(1 + ρxH Ax) + ρ(yH Ax)(xH Ay)

+ (xH Ax)(1 + ρxH Ax) = yH Ay

+
∣
∣
∣
∣
√

ρyH Ax − 1 + ρxH Ax
√

ρ

∣
∣
∣
∣

2

− 1
ρ
− xH Ax ≤ 1

ρ
. (31)

From (31) and the definition of ρ, we obtain

yH Ay ≤ yH Ay +
∣
∣
∣
∣
√

ρyH Ax − 1 + ρxH Ax
√

ρ

∣
∣
∣
∣

2

≤ 2
ρ

+ xH Ax = 1.

This completes the proof of Lemma 3.
Since d0 is optimal for (12), the corresponding constraint

holds: dH
0 Q̄d0 = dH

0
[ ∑m

i=1 ρi(Qi + ρiQix0xH
0 Qi)

]
d0 ≤ 1.

Similar to (11), for all i = 1, . . . , m, it holds that dH
0 (Qi +

ρiQix0xH
0 Qi)d0 ≤ 1

ρi
. As x0 is an interior feasible point of

(9), for any i = 1, . . . , m, we have xH
0 Qix0 < 1. Now take

x0 , x0 + d0 and Qi as the “x,” “y” and “A” in Lemma 3,
respectively. We have (x0 + d0)H Qi(x0 + d0) ≤ 1, for any
i = 1, . . . , m, that is, x0 + d0 is a feasible point of (9).

D. Proof of Theorem 4

For convenience we abstract problem (8) as the following
general form:

min
X∈Cn ×d

tr(XH AX) s.t. tr(XH BiX) ≤ ai, i = 1, 2, . . . , m.

(32)
We shall prove that, as long as Bi 	 0 and ai > 0, for all

i = 1, 2, . . . ,m, (32) has a rank one solution. Suppose x∗ is the
optimal solution of the following problem:

min
x∈Cn ×1

xH Ax s.t. xH Bix ≤ ai, i = 1, 2, . . . ,m. (33)

Let

X∗ =
1√
d
(x∗,x∗, . . . ,x∗
︸ ︷︷ ︸

d columns

).

Obviously X∗ has rank one. Next we prove that X∗ is an
optimal solution of problem (32) by contradiction.

If X∗ is not optimal for (32), there must exist a feasi-
ble point X0 = (x1 ,x2 , . . . ,xd) such that tr(XH

0 AX0) =
∑d

j =1 xH
j Axj < tr[ (X∗)H AX∗ ] =

∑d
j =1

1
d (x∗)H Ax∗ =

(x∗)H Ax∗. Hence, there exists j0 ∈ {1, 2, . . . , d} such
that xH

j0
Axj0 < (x∗)H Ax∗. Suppose j0 = 1. Since X0 is

a feasible point of (32) and Bi 	 0, we can deduce that
xH

1 Bix1 ≤
∑d

j=1 xH
j Bixj = tr(XH

0 BiX0) ≤ ai , for all
i = 1, 2, . . . ,m. Therefore x1 is a feasible point of problem
(33), and it has smaller objective function value than x∗.
This contradicts with the fact that x∗ is the optimal solution
of (33).

So X∗ must be an optimal solution of problem (32).

E. Proof of Theorem 5

The Lagrangian function of (17) is L(μ, t) = h(μ) − μT t,
and let t∗ = (t∗1 , t

∗
2 , . . . , t

∗
R )T be the optimal Lagrange multi-

plier. The KKT conditions are listed below.

KKT1. μ = μ∗ is the first order stationary point of
minμ L(μ, t∗): ηr − tr[(X∗)H DrX∗] − t∗r ≥ 0, for all
r ∈ R.

KKT2. The complementary conditions hold: for all r ∈ R,
μ∗

r t
∗
r = 0.

KKT3. The feasibility conditions hold: for all r ∈ R, μ∗
r ≥ 0,

t∗r ≥ 0.

The condition KKT1 is due to the nonsmoothness of L(μ, t)
[57, Lemma 14.1.4]. From KKT1 and KKT3, it is easy to
deduce ηr − tr[(X∗)H DrX∗] ≥ 0, for all r ∈ R. This proves
that X∗ is a feasible point of (16).

If the objective function of (17), h(μ), is smooth at μ = μ∗,
then its subgradient becomes gradient, and the condition KKT1
becomes:

Enhanced-KKT1. The gradient of the Lagrangian function
with respect to μ = μ∗ is 0:

ηr − tr[(X∗)H DrX∗] − t∗r = 0, for all r ∈ R.
In this case, we will prove that there is zero duality gap

between (16) and (17). The duality gap is

tr[(X∗)H D0X∗] + h(μ∗)

= tr[(X∗)H D0X∗] +
∑

r∈R
μ∗

r ηr − g(μ∗)

= tr[(X∗)H D0X∗] +
∑

r∈R
μ∗

r{tr[(X∗)H DrX∗] + t∗r}

− tr

[

(X∗)H

(

D0 +
∑

r∈R
μ∗

rDr

)

X∗
]

=
∑

r∈R
μ∗

r t
∗
r = 0.

The second and the last equality follow from conditions
Enhanced-KKT1 and KKT2, respectively. The duality gap
equals 0, and consequently X∗ is the optimal solution of (16).
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F. Proof of Theorem 6

Omit the index k for simplicity, then (18) is equivalent to

max
u,{W }

|
∑

r∈R hrWrgr |2 |u|2
μ2 +

∑
r∈R hrWrWH

r hH
r

s.t. |u|2 ≤ pU ; |u|2‖Wrgr‖2
2 + σ2

r ‖Wr‖2
F ≤ pR

r , r ∈ R.

(34)

Treat p = |u|2 ≥ 0 as a variable instead of u. In the following,
we prove that the optimal p equals pU , that is, the transmitter
should transmit signals with the full power.

Let W̌r = Wr (p · grgH
r + σ2

r I)
1
2
√

pR
r

√
αr . Then problem

(34) is equivalent to:

max
p ;{W̌ };
αr ,r∈R

p|
∑

r∈R hrW̌r (p · grgH
r + σ2

r I)
− 1

2 gr (pR
r αr )−

1
2 |2

μ2+
∑

r∈R(pR
r αr )−1hrW̌r (p · grgH

r +σ2
r I)−1W̌H

r hH
r

s.t. p ≤ pU ; 0 ≤ αr ≤ 1, r ∈ R. (35)

The numerator of the objective function is equivalent to
|
∑

r∈R hrW̌r (·grgH
r + p−1σ2

r I)
− 1

2 gr (pR
r αr )−

1
2 |2 . It is easy

to observe that the numerator is the monotone increasing func-
tion of p and the denominator is its monotone decreasing func-
tion. Thus the objective function is the monotone increasing
function of p. The optimal p should be p∗ = pU . This conclu-
sion is similar to the discussion in [7, Section III-A], where the
same conclusion is analyzed for networks with single antenna
relays.

By replacing |u|2 with pU , we reformulate problem (34) into
the following form:

max
x

xH Q̃x
μ2 + xH D̃x

s.t. xH
r xr ≤ pR

r , r ∈ R. (36)

Here x = (xT
1 ,xT

2 , . . . ,xT
R )T , xr = J

1
2
r · vec(Wr ) and

wr = vec(Wr ); Q̃ = JQJ, D̃ = JDJ and J = Diag{J− 1
2

1 ,

. . . ,J− 1
2

R }; Q = pU tH t, t = ((g1 ⊗ hT
1 )T , . . . , (gR ⊗ hT

R )T ),
D = Diag(IL1 ⊗ hH

1 h1 , . . . , ILR
⊗ hH

R hR ) and Jr = (pU gr

gH
r + σ2

r ILr
)T ⊗ ILr

, for all r ∈ R. We derive J
1
2
r =

UJ Λ
1
2
J UH

J from the eigenvalue decomposition of Jr 	 0:
Jr = UJ ΛJ UH

J .
In the following, we shall prove that the decision problem of

(36) is NP-hard. The decision problem of (36) is to check the
feasibility of the following inequalities, given η > 0 [53].

xH Q̃x
μ2 + xH D̃x

≥ η; xH
r xr ≤ pR

r , r ∈ R. (37)

The decision problem is equivalent to solving problem (38):

max
x

xH B̃ x s.t. xH
r xr ≤ pR

r , r ∈ R. (38)

Here B̃ = Q̃ − ηD̃. We have omitted the term −ημ2 in the
objective function, because it is irrelevant of the variable x.

Consider a special case of (38), where xr = qreLr
, and qr ∈

C is a scalar, for all r ∈ R. It becomes a quadratic programming

problem with box constraints:

max
q=(q1 ,q2 ,...,qR )T

qH Eq s.t. |qr |2 ≤ pR
r

Lr
, r ∈ R, (39)

where E = (eij )R×R is an R × R matrix, eij = eT
Li

B̃ijeLj
and

B̃ij is the ith row, jth column submatrix of the block matrix
B̃, which is partitioned in the same way as x. Problem (39) is
generally NP-hard [54]. Then the more general problem (38)
is also NP-hard. From the definition of NP-hardness [53], we
deduce that problem (36) and consequently problem (34) are
both NP-hard.

G. Deduction of Subproblem (21)

Let Skq = VH
k Tkq ∈ Clk×lq . Lkq is constructed from Skq ,

where each component is the square absolute value of the cor-
responding component in Skq . Then we can deduce that ‖YH

k

VH
k TkqYq‖2

F = tr(YH
k SkqYqYH

q SH
kqYk ) ∗= tr(YH

k SkqYq

SH
kq ) = yT

k Lkqyq . The equality with ∗ is due to the fact
that Yk = YH

k and Yk = YkYH
k for all k ∈ K. Let

S̃kr = σrVH
k H̄kr , and denote Dkr as the diagonal matrix,

where its diagonal elements come from diag(S̃kr S̃H
kr ). Then

σ2
r ‖YH

k VH
k H̄kr ‖2

F = tr (YH
k S̃kr S̃H

krYk ) = yH
k Dkr yk =

[diag(Dkr )]T yk .
The objective function (21a) is formulated as:

C(P̃ I + P̃ N ) − P̃ S

= C
∑

k∈K

( ∑

q∈K,q �=k

‖YH
k VH

k TkqYq‖2
F + μ2

k‖VkYk‖2
F

+
∑

r∈R
σ2

r ‖YH
k VH

k H̄kr‖2
F

)

−
∑

k∈K
‖YH

k VH
k TkkYk‖2

F

=
∑

k∈K

[

C
∑

q∈K,q �=k

yH
k Lkqyq − yH

k Lkkyk

+CyT
k diag

( ∑

r∈R
Dkr + μ2

kIlk

)]

= zT Az + zT a,

where z, A and a are defined below problem (21). Similarly,
the constraints (21b) are reformulated as BT z ≤ c.
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