
1 23

Computational and Applied
Mathematics

ISSN 0101-8205

Comp. Appl. Math.
DOI 10.1007/s40314-014-0201-4

A derivative-free trust-region algorithm for
composite nonsmooth optimization

Geovani Nunes Grapiglia, Jinyun Yuan
& Ya-xiang Yuan

1 23

Your article is protected by copyright and

all rights are held exclusively by SBMAC -

Sociedade Brasileira de Matemática Aplicada e

Computacional. This e-offprint is for personal

use only and shall not be self-archived

in electronic repositories. If you wish to

self-archive your article, please use the

accepted manuscript version for posting on

your own website. You may further deposit

the accepted manuscript version in any

repository, provided it is only made publicly

available 12 months after official publication

or later and provided acknowledgement is

given to the original source of publication

and a link is inserted to the published article

on Springer's website. The link must be

accompanied by the following text: "The final

publication is available at link.springer.com”.

Comp. Appl. Math.
DOI 10.1007/s40314-014-0201-4

A derivative-free trust-region algorithm for composite
nonsmooth optimization

Geovani Nunes Grapiglia · Jinyun Yuan ·
Ya-xiang Yuan

Received: 24 September 2014 / Revised: 27 October 2014 / Accepted: 28 October 2014
© SBMAC - Sociedade Brasileira de Matemática Aplicada e Computacional 2014

Abstract The derivative-free trust-region algorithm proposed by Conn et al. (SIAM
J Optim 20:387–415, 2009) is adapted to the problem of minimizing a composite function
Φ(x) = f (x)+ h(c(x)), where f and c are smooth, and h is convex but may be nonsmooth.
Under certain conditions, global convergence and a function-evaluation complexity bound
are proved. The complexity result is specialized to the case when the derivative-free algo-
rithm is applied to solve equality-constrained problems. Preliminary numerical results with
minimax problems are also reported.

Keywords Nonsmooth optimization · Nonlinear programming · Trust-region methods ·
Derivative-free optimization · Global convergence · Worst-case complexity

Mathematics Subject Classification 49J53 · 90C30 · 58C15 · 49M37 · 90C56 · 68Q25

Communicated by José Mario Martínez.

G. N. Grapiglia (B) · J. Yuan
Departamento de Matemática, Universidade Federal do Paraná,
Centro Politécnico, Cx. Postal 19.081, Curitiba, Paraná 81531-980, Brazil
e-mail: geovani_mat@outlook.com

J. Yuan
e-mail: jin@ufpr.br

G. N. Grapiglia
The Capes Foundation, Ministry of Education of Brazil, Cx. Postal 250, Brasília,
Distrito Federal 70.040-020, Brazil

Y. Yuan
State Key Laboratory of Scientific/Engineering Computing,
Institute of Computational Mathematics and Scientific/Engineering Computing,
Academy of Mathematics and Systems Science, Chinese Academy of Sciences,
Zhong Guan Cun Donglu 55, Beijing 100190, People’s Republic of China
e-mail: yyx@lsec.cc.ac.cn

123

Author's personal copy

G. N. Grapiglia et al.

1 Introduction

We consider the composite nonsmooth optimization (NSO) problem

min
x∈Rn

Φ(x) ≡ f (x)+ h(c(x)), (1)

where f : R
n → R and c : R

n → R
r are continuously differentiable and h : R

r → R

is convex. The formulation of (1) with f = 0 includes problems of finding feasible points
of nonlinear systems of inequalities (where h(c) ≡ ‖c+‖p , with c+

i = max {ci , 0} and
1 ≤ p ≤ +∞), finite minimax problems (where h(c) ≡ max1≤i≤r ci), and best L1, L2

and L∞ approximation problems (where h(c) ≡ ‖c‖p , p = 1, 2,+∞). Another interesting
example of problem (1) is the minimization of the exact penalty function

Φ(x, σ) = f (x)+ σ‖c(x)‖, (2)

associated to the equality-constrained optimization problem

min f (x),

s.t. c(x) = 0. (3)

There are several derivative-based algorithms to solve problem (1), which can be clas-
sified into two main groups.1 The first group consists of methods for general nonsmooth
optimization, such as subgradient methods (Shor 1978), bundle methods (Lemaréchal 1978),
and cutting plane methods (Kelly 1960). If the functionΦ satisfies suitable conditions, these
methods are convergent in some sense. But they do not exploit the form of the problem,
neither the convexity of h nor the differentiability of f and c. In contrast, the second group of
methods is composed by methods in which the smooth substructure of the problem and the
convexity of h are exploited. Notable algorithms in this group are those proposed by Fletcher
(1982a, b), Powell (1983), Yuan (1985a), Bannert (1994) and Cartis et al. (2011b).

An essential feature of the algorithms mentioned above is that they require a subgradient
ofΦ or a gradient vector of f and a Jacobian matrix of c at each iteration. However, there are
many practical problems where the derivative information is unreliable or unavailable (see,
e.g., Conn et al. 2009a). In these cases, derivative-free algorithms become attractive, since
they do not use (sub-)gradients explicitly.

In turn, derivative-free optimization methods can be distinguished into three groups. The
first one is composed by direct-search methods, such as the Nelder–Mead method (Nelder
and Mead 1965), the Hooke–Jeeves pattern search method (Hooke and Jeeves 1961) and the
mesh adaptive direct-search (MADS) method (Audet and Dennis 2006). The second group
consists of methods based on finite-differences, quasi-Newton algorithms or conjugate direc-
tion algorithms, whose examples can be found in Mifflin (1975), Stewart (1967), Greenstadt
(1972) and Brent (1973). Finally, the third group is composed by methods based on interpo-
lation models of the objective function, such as those proposed by Winfield (1973), Powell
(2006) and Conn et al. (2009b).

Within this context, in this paper, we propose a globally convergent derivative-free trust-
region algorithm for solving problem (1) when the function h is known and the gradient
vectors of f and the Jacobian matrices of c are not available. The design of our algo-
rithm is strongly based on the derivative-free trust-region algorithm proposed by Conn et al.
(2009b) for unconstrained smooth optimization, and on the trust-region algorithms proposed
by Fletcher (1982a), Powell (1983), Yuan (1985a) and Cartis et al. (2011b) for composite

1 By derivative-based algorithm, we mean an algorithm that uses gradients or subgradients.

123

Author's personal copy

A derivative-free trust-region algorithm for composited NSO

NSO. To the best of our knowledge, this work is the first one to present a derivative-free
trust-region algorithm with global convergence results for the composite NSO problem, in
which the structure of the problem is exploited.2 We also investigate the worst-case function-
evaluation complexity of the proposed algorithm. Specializing the complexity result for the
minimization of (2), we obtain a complexity bound for solving equality-constrained opti-
mization problems. At the end, we also present preliminary numerical results for minimax
problems.

The paper is organized as follows. In Sect. 2, some definitions and results are reviewed
and provided. The algorithm is presented in Sect. 3. Global convergence is treated in Sect. 4,
while worst-case complexity bounds are given in Sects. 5 and 6. Finally, the numerical results
are presented in Sect. 7.

2 Preliminaries

Throughout this paper, we shall consider the following concept of criticality.

Definition 1 (Yuan 1985b, page 271) A point x∗ is said to be a critical point of Φ given in
(1) if

f (x∗)+ h(c(x∗)) ≤ f (x∗)+ ∇ f (x∗)Ts + h(c(x∗)+ Jc(x
∗)s), ∀s ∈ R

n, (4)

where Jc denotes the Jacobian of c.

Based on the above definition, for each x ∈ R
n , define

l(x, s) ≡ f (x)+ ∇ f (x)Ts + h(c(x)+ Jc(x)s), ∀s ∈ R
n, (5)

and, for all r > 0, let

ψr (x) ≡ l(x, 0)− min‖s‖≤r
l(x, s). (6)

Following Cartis et al. (2011b), we shall use the quantity ψ1(x) as a criticality measure for
Φ. This choice is justified by the lemma below.

Lemma 1 Let ψ1 : R
n → R be defined by (6). Suppose that f : R

n → R and c : R
n → R

r

are continuously differentiable, and that h : R
r → R is convex and globally Lipschitz. Then,

(a) ψ1 is continuous;
(b) ψ1(x) ≥ 0 for all x ∈ R

n; and
(c) x∗ is a critical point of Φ ⇐⇒ ψ1(x∗) = 0.

Proof See Lemma 2.1 in Yuan (1985a). ��
Our derivative-free trust-region algorithm will be based on the class of fully linear models

proposed by Conn et al. (2009b). To define such class of models, let x0 be the initial iterate

2 For the finite minimax problem, which is a particular case of (1), a derivative-free trust-region algorithm
was proposed by Madsen (1975), where the convergence to a critical point was proved under the assumption
that the sequence of points {xk } generated by the algorithm is convergent. On the other hand, if the functionΦ
is locally Lipschitz, then problem (1) can be solved by the trust-region algorithm of Qi and Sun (1994), which,
in theory, may not explicitly depend on subgradients or directional derivatives. However, this algorithm does
not exploit the structure of the problem.

123

Author's personal copy

G. N. Grapiglia et al.

and suppose that the new iterates do not increase the value of the objective functionΦ. Then,
it follows that

xk ∈ L(x0) ≡ {
x ∈ R

n : Φ(x) ≤ Φ(x0)
}
, for all k. (7)

In this case, if the sampling to form the models is restricted to the closed balls B[xk;Δk],
andΔk is supposed bounded above by a constant Δ̄ > 0, thenΦ is only evaluated within the
set

Lenl(x0) =
⋃

x∈L(x0)

B[x; Δ̄]. (8)

Now, considering the sets L(x0) and Lenl(x0), we have the following definition.

Definition 2 (Conn et al. 2009b, Definition 3.1) Assume that f : R
n → R is continuously

differentiable and that its gradient ∇ f is Lipschitz continuous on Lenl(x0). A set of model
functions M = {

p : R
n → R | p ∈ C1

}
is called a fully linear class of models if:

1. There exist constants κ j f , κ f , κl f > 0 such that for any x ∈ L(x0) and Δ ∈ (0, Δ̄]
there exists a model function p ∈ M , with Lipschitz continuous gradient ∇ p and
corresponding Lipschitz constant bounded above by κl f , and such that

‖∇ f (y)− ∇ p(y)‖ ≤ κ j fΔ, ∀y ∈ B[x;Δ], (9)

and

| f (y)− p(y)| ≤ κ fΔ
2, ∀y ∈ B[x;Δ]. (10)

Such a model p is called fully linear on B[x;Δ].
2. For this class M , there exists an algorithm called “model-improvement” algorithm, that

in a finite, uniformly bounded (with respect to x and Δ) number of steps can either
establish that a given model p ∈ M is fully linear on B[x;Δ], or find a model p̃ ∈ M
that is fully linear on B[x;Δ].

Remark 1 Interpolation and regression linear models of the form

p(y) = c + gT y (11)

are examples of fully linear models when the set of sample points is chosen in a convenient
way (see Section 2.4 in Conn et al. 2009a). Furthermore, under some conditions, one can
also prove that (interpolation or regression) quadratic models of the form

p(y) = c + gT y + 1

2
yT H y (H ∈ R

n×n symmetric) (12)

are fully linear models (see Section 6.1 in Conn et al. 2009a). On the other hand, Algo-
rithms 6.3 and 6.5 in Conn et al. (2009a) are examples of model-improvement algorithms
(see Sections 6.2 and 6.3 in Conn et al. 2009a).

Remark 2 Let c : R
n → R

r be continuously differentiable with Jacobian function Jc Lip-
schitz continuous on Lenl(x0). If qi : R

n → R is a fully linear model of ci : R
n → R

on B[x;Δ] for each i = 1, . . . , r , then there exist constants κ jc, κc, κlc > 0 such that the
function q ≡ (q1, . . . , qr) : R

n → R
r satisfies the inequalities

‖Jc(y)− Jq(y)‖ ≤ κ jcΔ, ∀y ∈ B[x;Δ], (13)

123

Author's personal copy

A derivative-free trust-region algorithm for composited NSO

and

‖c(y)− q(y)‖ ≤ κcΔ
2, ∀y ∈ B[x;Δ]. (14)

Moreover, the Jacobian Jq is Lipschitz continuous, and the corresponding Lipschitz constant
is bounded by κlc. In this case, we shall say that q is a fully linear model of c on B[x;Δ]
with respect to constants κ jc, κc and κlc.

The next lemma establishes that if a model q is fully linear on B[x;Δ∗] with respect to
some constants κ jc, κc and κlc, then it is also fully linear on B[x;Δ] for any Δ ∈ [Δ∗, Δ̄]
with the same constants.

Lemma 2 Consider a function c : R
n → R

r satisfying the assumptions in Remark 2. Given
x ∈ L(x0) and Δ∗ ≤ Δ̄, suppose that q : R

n → R
r is a fully linear model of c on B[x;Δ∗]

with respect to constants κ jc, κc and κlc. Assume also, without loss of generality, that κ jc

is no less than the sum of κlc and the Lipschitz constant of Jc. Then, q is fully linear on
B[x;Δ], for any Δ ∈ [Δ∗, Δ̄], with respect to the same constants κ jc, κc and κlc.

Proof It follows by the same argument used in the proof of Lemma 3.4 in Conn et al. (2009b).
��

From here, consider the following assumptions:

A1 The functions f : R
n → R and c : R

n → R
r are continuously differentiable.

A2 The gradient of f , ∇ f : R
n → R

n , and the Jacobian of c, Jc : R
n → R

r×n , are
globally Lipschitz on Lenl(x0), with Lipschitz constants L f and Lc, respectively.

A3 The function h : R
r → R is convex and globally Lipschitz continuous, with Lipschitz

constant Lh .

Given functions p : R
n → R and q : R

n → R
r continuously differentiable, for each x ∈ R

n

define

l̃(x, s) = f (x)+ ∇ p(x)Ts + h(c(x)+ Jq(x)s), ∀s ∈ R
n . (15)

and, for all r > 0, let

ηr (x) ≡ l̃(x, 0)− min‖s‖≤r
l̃(x, s). (16)

The theorem below describes the relation between ψ1(x) and η1(x) when p and q are fully
linear models of f and c around x .

Theorem 1 Suppose that A1–A3 hold. Assume that p : R
n → R is a fully linear model of

f with respect to constants κ j f , κ f and κl f , and that q : R
n → R

r is a fully linear model of
c with respect to constants κ jc, κc and κlc, both on the ball B[x;Δ]. Then,

|ψ1(y)− η1(y)| ≤ κsΔ, ∀y ∈ B[x;Δ], (17)

with κs = κ j f + Lhκ jc.

Proof Let y ∈ B[x;Δ]. Since p and q are fully linear models of f and c, respectively, on
the ball B[x;Δ], it follows that

‖∇ f (y)− ∇ p(y)‖ ≤ κ j fΔ and ‖Jc(y)− Jq(y)‖ ≤ κ jcΔ. (18)

Consider s̃ ∈ B[0; 1] such that

min‖s‖≤1
l(y, s) = l(y, s̃). (19)

123

Author's personal copy

G. N. Grapiglia et al.

Then, from A3, (18) and (19), it follows that

ψ1(y)− η1(y) =
(

l(y, 0)− min‖s‖≤1
l(y, s)

)
−

(
l̃(y, 0)− min‖s‖≤1

l̃(y, s)

)

= min‖s‖≤1
l̃(y, s)− min‖s‖≤1

l(y, s)

= min‖s‖≤1
l̃(y, s)− l(y, s̃)

≤ l̃(y, s̃)− l(y, s̃)

= (∇ p(y)− ∇ f (y))T s̃ + [
h(c(y)+ Jq(y)s̃)− h(c(y)+ Jc(y)s̃)

]

≤ ‖∇ p(y)− ∇ f (y)‖ + Lh‖Jq(y)− Jc(y)‖
= (

κ j f + Lhκ jc
)
Δ. (20)

Similarly, considering s̄ ∈ B[0; 1] such that

min‖s‖≤1
l̃(y, s) = l̃(y, s̄), (21)

we obtain the inequality

η1(y)− ψ1(y) ≤ (
κ j f + Lhκ jc

)
Δ. (22)

Hence, from (20) and (22), we conclude that (17) holds. ��

3 Algorithm

Considering the theory discussed above, in this section, we present an algorithm to solve (1)
without derivatives. The algorithm is an adaptation of Algorithm 4.1 in Conn et al. (2009b)
for unconstrained smooth optimization, and contains elements of the trust-region algorithms
of Fletcher (1982a), Powell (1983), Yuan (1985a) and Cartis et al. (2011b) for composite
NSO.
Algorithm 1 (Derivative-Free Trust-Region Algorithm for Composite NSO)

Step 0 Choose a class of fully linear models for f and c (e.g., linear interpolation models)
and a corresponding model-improvement algorithm (e.g., Algorithm 6.3 in Conn
et al. 2009a). Choose x0 ∈ R

n , Δ̄ > 0, Δ∗
0 ∈ (0, Δ̄], H0 ∈ R

n×n symmetric,
0 ≤ α0 ≤ α1 < 1 (with α1 �= 0), 0 < γ1 < 1 < γ2, εc > 0, μ > β > 0 and
ω ∈ (0, 1). Consider a model p∗

0(x0 + d) for f (with gradient at d = 0 denoted by
g∗

0) and a model q∗
0 (x0 + d) for c (with Jacobian matrix at d = 0 denoted by A∗

0).
Set k := 0.

Step 1 Compute

η∗
1(xk) = l∗(xk, 0)− l∗(xk, sk),

where

sk = arg min‖s‖≤1
l∗(xk, s), (23)

and

l∗(xk, s) = f (xk)+ (g∗
k)

Ts + h(c(xk)+ A∗
k s).

If η∗
1(xk) > εc, then set η1(xk) = η∗

1(xk), pk = p∗
k (gk = g∗

k), qk = q∗
k (Ak = A∗

k),
Δk = Δ∗

k , and go to Step 3.

123

Author's personal copy

A derivative-free trust-region algorithm for composited NSO

Step 2 Call the model-improvement algorithm to verify if the models p∗
k and q∗

k are fully
linear on B

[
xk;Δ∗

k

]
. If Δ∗

k ≤ μη∗
1(xk) and the models p∗

k and q∗
k are fully linear

on B[xk;Δ∗
k], set η1(xk) = η∗

1(xk), pk = p∗
k (gk = g∗

k), qk = q∗
k (Ak = A∗

k) and
Δk = Δ∗

k . Otherwise, apply Algorithm 2 (described below) to construct a model
p̃k(xk +d) for f (with gradient at d = 0 denoted by g̃k) and a model q̃k(xk +d) for c
(with Jacobian matrix at d = 0 denoted by Ãk), both fully linear (for some constants
which remain the same for all iterations of Algorithm 1) on the ball B[xk; Δ̃k], for
some Δ̃k ∈ (0, μη̃1(xk)], where Δ̃k and η̃1(xk) are given by Algorithm 2. In such
case, set η1(xk) = η̃1(xk), pk = p̃k (gk = g̃k), qk = q̃k (Ak = Ãk) and

Δk = min
{

max
{
Δ̃k, βη̃1(xk)

}
,Δ∗

k

}
. (24)

Step 3 Let D∗
k be the set of solutions of the subproblem

min
d∈Rn

mk(xk + d) ≡ f (x)+ gT
k d + h (c(xk)+ Akd)+ 1

2
dT Hkd (25)

s.t. ‖d‖ ≤ Δk (26)

Compute a step dk for which ‖dk‖ ≤ Δk and

mk(xk)− mk(xk + dk) ≥ α2
[
mk(xk)− mk(xk + d∗

k)
]
, (27)

for some d∗
k ∈ D∗

k , where α2 ∈ (0, 1) is a constant independent of k.
Step 4 Compute Φ(xk + dk) and define

ρk = Φ(xk)−Φ(xk + dk)

mk(xk)− mk(xk + dk)
.

If ρk ≥ α1 or if both ρk ≥ α0 and the models pk and qk are fully linear on B[xk;Δk],
then xk+1 = xk + dk and the models are updated to include the new iterate into the
sample set, resulting in new models p∗

k+1(xk+1 +d) (with gradient at d = 0 denoted
by g∗

k+1) and q∗
k+1(xk+1 + d) (with Jacobian matrix at d = 0 denoted by A∗

k+1).
Otherwise, set xk+1 = xk , p∗

k+1 = pk (g∗
k+1 = gk) and q∗

k+1 = qk (A∗
k+1 = Ak).

Step 5 If ρk < α1, use the model-improvement algorithm to certify if pk and qk are fully
linear models on B[xk;Δk]. If such a certificate is not obtained, we declare that pk

or qk is not certifiably fully linear (CFL) and make one or more improvement steps.
Define p∗

k+1 and q∗
k+1 as the (possibly improved) models.

Step 6 Set

Δ∗
k+1 ∈

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

[
Δk,min

{
γ2Δk, Δ̄

}]
if ρk ≥ α1,

{γ1Δk} if ρk < α1 and pk

and qk are fully linear,
{Δk} if ρk < α1 and pk

or qk is not CFL.

(28)

Step 7 Generate Hk+1, set k := k + 1 and go to Step 1.

Remark 3 The matrix Hk in (25) approximates the second-order behavior of f and c around
xk . For example, as suggested by equation (1.5) in Yuan (1985b), one could use Hk =
∇2 pk(xk) + ∑r

i=1 ∇2(qk)i (xk). Moreover, if h is a polyhedral function and ‖.‖ = ‖.‖∞,
then subproblem (25)–(26) reduces to a quadratic programming problem, which can be solved
by standard methods.

123

Author's personal copy

G. N. Grapiglia et al.

In the above algorithm, the iterations for whichρk ≥ α1 are said to be successful iterations;
the iterations for which ρk ∈ [α0, α1) and pk and qk are fully linear are said to be acceptable
iterations; the iterations for which ρk < α1 and pk or qk is not certifiably fully linear are
said to be model-improving iterations and; the iterations for which ρk < α0 and pk and qk

are fully linear are said to be unsuccessful iterations.
Below we describe the Algorithm 2 used in Step 2, which is an adaptation of the Algo-

rithm 4.2 in Conn et al. (2009b).
Algorithm 2 This algorithm is only applied if η∗

1(xk) ≤ εc and at least one of the following
holds: the model p∗

k or the model q∗
k is not CFL on B

[
xk;Δ∗

k

]
or Δ∗

k > μη∗
1(xk). The

constant ω ∈ (0, 1) is chosen at Step 0 of Algorithm 1.
Initialization: Set p(0)k = p∗

k , q(0)k = q∗
k and i = 0.

Repeat Set i := i + 1.
Use the model-improvement algorithm to improve the previous models p(i−1)

k and

q(i−1)
k until they become fully linear on B

[
xk;ωi−1Δ∗

k

]
(by Definition 2, this can

be done in a finite, uniformly bounded number of steps of the model-improvement
algorithm). Denote the new models by p(i)k and q(i)k . Set Δ̃k = ωi−1Δ∗

k , p̃k = p(i)k ,

g̃k = ∇ p̃k(xk), q̃k = q(i)k and Ãk = Jq̃k (xk). Compute

η
(i)
1 (xk) = l̃(xk, 0)− l̃(xk, s̃k),

where

s̃k = arg min‖s‖≤1
l̃(xk, s), (29)

and

l̃(xk, s) ≡ f (xk)+ (g̃k)
Ts + h(c(xk)+ Ãks).

Set η̃1(xk) = η
(i)
1 (xk).

Until Δ̃k ≤ μη
(i)
1 (xk).

Remark 4 When h ≡ 0, then Algorithms 1 and 2 are reduced to the corresponding algorithms
in Conn et al. (2009b) for minimizing f without derivatives.

Remark 5 If Step 2 is executed in Algorithm 1, then the models pk and qk are fully linear on
B[xk; Δ̃k] with Δ̃k ≤ Δk . Hence, by Lemma 2, pk and qk are also fully linear on B[xk;Δk]
(as well on B[xk;μη1(xk)]).

4 Global convergence analysis

In this section, we shall prove the weak global convergence of Algorithm 1. Thanks
to Theorem 1, it can be done by a direct adaptation of the analysis presented by
Conn et al. (2009b). In fact, the proof of most of the results below follows by simply chang-
ing the criticality measures (gk and ∇ f (xk) in Conn et al. (2009b) to η1(xk) and ψ1(xk),
respectively). Thus, in these cases, we only indicate the proof of the corresponding result in
Conn et al. (2009b).

The first result says that unless the current iterate is a critical point, Algorithm 2 will not
loop infinitely in Step 2 of Algorithm 1.

123

Author's personal copy

A derivative-free trust-region algorithm for composited NSO

Lemma 3 Suppose that A1–A3 hold. If ψ1(xk) �= 0, then Algorithm 2 will terminate in a
finite number of repetitions.

Proof See the proof of Lemma 5.1 in Conn et al. (2009b). ��
The next lemma establishes the relation between ηr (x) and η1(x).

Lemma 4 Suppose that A3 holds and let r > 0. Then, for all x

ηr (x) ≥ min {1, r} η1(x). (30)

Proof It follows as in the proof of Lemma 2.1 in Cartis et al. (2011b). ��
Lemma 5 Suppose that A3 holds. Then, there exists a constant κd > 0 such that the inequal-
ity

mk(xk)− mk(xk + dk) ≥ κdη1(xk)min

{
Δk,

η1(xk)

1 + ‖Hk‖
}
. (31)

holds for all k.

Proof From inequality (27) and Lemma 4, it follows as in the proof of Lemma 11 in Grapiglia
et al. (2014). ��

For the rest of the paper, we consider the following additional assumptions:

A4 There exists a constant κH > 0 such that ‖Hk‖ ≤ κH for all k.
A5 The sequence {Φ(xk)} is bounded below by Φlow.

Lemma 6 Suppose that A1–A4 hold. If pk and qk are fully linear models of f and c,
respectively, on the ball B[xk;Δk], then

Φ(xk + dk)− mk(xk + dk) ≤ κmΔ
2
k, (32)

where κm = (L f + 2κ j f + Lh Lc + 2Lhκ jc + κH)/2.

Proof In fact, from Assumptions A1–A4, it follows that

Φ(xk + dk)− mk(xk + dk) = f (xk + dk)+ h(c(xk + dk))− f (xk)− ∇ pk(xk)
Tdk

−h(c(xk)+ Jqk (xk)dk)− 1

2
dT

k Hkdk

≤ f (xk + dk)− f (xk)−∇ f (xk)
Tdk + (∇ f (xk)−∇ pk(xk))

T dk

+h(c(xk + dk))− h(c(xk)+ Jqk (xk)dk)+ 1

2
κH ‖dk‖2

≤ L f

2
Δ2

k + κ j f Δ
2
k + Lh‖c(xk + dk)− c(xk)− Jc(xk)dk‖

+Lh‖(Jc(xk)− Jqk (xk))dk‖ + 1

2
κHΔ

2
k

≤ 1

2

(
L f + 2κ j f + Lh Lc + 2Lhκ jc + κH

)
Δ2

k .

��
The proof of the next lemma is based on the proof of Lemma 5.2 in Conn et al. (2009b).

123

Author's personal copy

G. N. Grapiglia et al.

Lemma 7 Suppose that A1–A4 hold. If pk and qk are fully linear models of f and c,
respectively, on the ball B[xk;Δk], and

Δk ≤ min

{
1

1 + κH
,
κd(1 − α1)

κm

}
η1(xk), (33)

then, the k-th iteration is successful.

Proof Since ‖Hk‖ ≤ κH and Δk ≤ η1(xk)/(1 + κH), it follows from Lemma 5 that

mk(xk)− mk(xk + dk) ≥ κdη1(xk)Δk . (34)

Then, by Lemma 6 and (33), we have

1 − ρk = (mk(xk)− mk(xk + dk))− (Φ(xk)−Φ(xk + dk))

mk(xk)− mk(xk + dk)

= Φ(xk + dk)− mk(xk + dk)

mk(xk)− mk(xk + dk)

≤ κmΔk

κdη1(xk)

≤ 1 − α1. (35)

Hence, ρk ≥ α1, and consequently iteration k is successful. ��
The next lemma gives a lower bound on Δk when η1(xk) is bounded away from zero. Its

proof is based on the proof of Lemma 5.3 in Conn et al. (2009b), and on the proof of the
lemma on page 299 in Powell (1984).

Lemma 8 Suppose that A1–A4 hold and let ε > 0 such that η1(xk) ≥ ε for all k = 0, . . . , j,
where j ≤ +∞. Then, there exists τ̄ > 0 independent of k such that

Δk ≥ τ̄ , for all k = 0, . . . , j. (36)

Proof We shall prove (36) by induction over k with

τ̄ = min

{
βε,Δ∗

0,
γ1ε

1 + κH
,
γ1κd(1 − α1)ε

κm

}
. (37)

From equality (24) in Step 2 of Algorithm 1, it follows that

Δk ≥ min
{
βη1(xk),Δ

∗
k

}
, for all k. (38)

Hence, since η1(xk) ≥ ε for k = 0, . . . , j , we have

Δk ≥ min
{
βε,Δ∗

k

}
, for all k = 0, . . . , j. (39)

In particular, (39) implies that (36) holds for k = 0.
Now, we assume that (36) is true for k ∈ {0, . . . , j − 1} and prove it is also true for k + 1.

First, suppose that

Δk ≤ min

{
ε

1 + κH
,
κd(1 − α1)ε

κm

}
. (40)

Then, by Lemma 7 and Step 5, the k-th iteration is successful or model improving, and so
by Step 6 Δ∗

k+1 ≥ Δk . Hence, (39), the induction assumption and (37) imply that

Δk+1 ≥ min
{
βε,Δ∗

k+1

} ≥ min {βε,Δk} ≥ min {βε, τ̄ } = τ̄ . (41)

123

Author's personal copy

A derivative-free trust-region algorithm for composited NSO

Therefore, (36) is true for k + 1. On the other hand, suppose that (40) is not true. Then, from
(28), (39) and (37), it follows that

Δ∗
k+1 ≥ γ1Δk > min

{
γ1ε

1 + κH
,
γ1κd(1 − α1)ε

κm

}
≥ τ̄

�⇒ Δk+1 ≥ min
{
βε,Δ∗

k+1

} ≥ min {βε, τ̄ } = τ̄ .

Hence, (36) holds for k = 0, . . . , j . ��

Lemma 9 Suppose that A1–A5 hold. Then,

lim
k→+∞Δk = 0. (42)

Proof See Lemmas 5.4 and 5.5 in Conn et al. (2009b). ��

The proof of the next result is based on the proof of Lemma 5.6 in Conn et al. (2009b).

Lemma 10 Suppose that A1–A5 hold. Then,

lim inf
k→+∞ η1(xk) = 0. (43)

Proof Suppose that (43) is not true. Then, there exists a constant ε > 0 such that

η1(xk) ≥ ε, for all k. (44)

In this case, by Lemma 8, there exists τ̄ > 0 such that Δk ≥ τ̄ for all k, contradicting
Lemma 9.

The lemma below says that if a subsequence of {η1(xk)} converges to zero, so does the
corresponding subsequence of {ψ1(xk)}.

Lemma 11 Suppose that A1–A3 hold. Then, for any sequence {ki } such that

lim
i→∞ η1(xki) = 0, (45)

it also holds that

lim
i→∞ψ1(xki) = 0. (46)

Proof See Lemma 5.7 in Conn et al. (2009b). ��

Now, we can obtain the weak global convergence result.

Theorem 2 Suppose that A1–A5 hold. Then,

lim inf
k→+∞ ψ1(xk) = 0. (47)

Proof It follows directly from Lemmas10 and 11. ��

By Theorem 2 and Lemma 1(a), at least one accumulation point of the sequence {xk}generated
by Algorithm 1 is a critical point of Φ (in the sense of Definition 1).

123

Author's personal copy

G. N. Grapiglia et al.

5 Worst-case complexity analysis

In this section, we shall study the worst-case complexity of a slight modification of Algo-
rithm 1 following closely the arguments of Cartis et al. (2011a, b). For that, we replace (28)
by the rule

Δ∗
k+1 ∈

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

[
Δk,min

{
γ2Δk, Δ̄

}]
if ρk ≥ α1,

{γ1Δk} if ρk < α1 and pk

and qk are fully linear,
{γ0Δk} if ρk < α1 and pk

or qk is not CFL,

(48)

where 0 < γ1 < γ0 < 1 < γ2. Moreover, we consider εc = +∞ in Step 0. In this way, Step
2 will be called at all iterations and, consequently, the models pk and qk will be fully linear
for all k.

Definition 3 Given ε ∈ (0, 1], a point x∗ ∈ R
n is said to be an ε-critical point of Φ if

ψ1(x∗) ≤ ε.

Let {xk} be a sequence generated by Algorithm 1. Since the computation ofψ1(xk) requires
the gradient ∇ f (xk) and the Jacobian matrix Jc(xk) [recall (5) and (6)], in the derivative-free
framework we cannot test directly whether an iterate xk is ε-critical or not. One way to detect
ε-criticality is to test η1(xk) based on the following lemma.

Lemma 12 Suppose that A1–A3 hold and let ε ∈ (0, 1]. If

η1(xk) ≤ ε

(κsμ+ 1)
≡ εs, (49)

then xk is an ε-critical point of Φ.

Proof Since the models pk and qk are fully linear on a ball B[xk;Δk] with Δk ≤ μη1(xk),
by Theorem 1, we have

|ψ1(xk)− η1(xk)| ≤ κsΔk ≤ κsμη1(xk). (50)

Consequently, from (49) and (50), it follows that

|ψ1(xk)| ≤ |ψ1(xk)− η1(xk)| + |η1(xk)| ≤ (κsμ+ 1)η1(xk) ≤ ε, (51)

that is, xk is an ε-critical point of Φ. ��

Another way to detect ε-criticality is provided by Algorithm 2. The test is based on the
lemma below.

Lemma 13 Suppose that A1–A3 hold and let ε ∈ (0, 1]. Denote by i1 + 1 the number of
times that the loop in Algorithm 2 is repeated. If

i1 ≥ 1 + log

(
ε

(κs + μ−1)Δ̄

)
/ log(ω), (52)

then the current iterate xk is an ε-critical point of Φ.

123

Author's personal copy

A derivative-free trust-region algorithm for composited NSO

Proof Let I1 = {i ∈ N | 0 < i ≤ i1}. Then, we must have

μη
(i)
1 (xk) < ωi−1Δ∗

k , (53)

for all i ∈ I1. Since the models p(i)k and q(i)k were fully linear on B[xk;ωi−1Δ∗
k], it follows

from Theorem 1 that

|ψ1(xk)− η
(i)
1 (xk)| ≤ κsω

i−1Δ∗
k , (54)

for each i ∈ I1. Hence,

|ψ1(xk)| ≤ |ψ1(xk)− η
(i)
1 (xk)| + |η(i)1 (xk)| ≤ (κs + μ−1)ωi−1Δ∗

k ≤ (κs + μ−1)ωi−1Δ̄,

(55)

for all i ∈ I1. On the other hand, since ω ∈ (0, 1), by (52), we have

i1 ≥ 1 + log

(
ε

(κs + μ−1)Δ̄

)
/ log(ω)

�⇒ i1 − 1 ≥ log

(
ε

(κs + μ−1)Δ̄

)
/ log(ω)

�⇒ (i1 − 1) log(ω) ≤ log

(
ε

(κs + μ−1)Δ̄

)

�⇒ log(ωi1−1) ≤ log

(
ε

(κs + μ−1)Δ̄

)

�⇒ ωi1−1 ≤ ε

(κs + μ−1)Δ̄

�⇒ (κs + μ−1)ωi1−1Δ̄ ≤ ε. (56)

Hence, from (55) and (56), it follows that ψ1(xk) ≤ ε, that is, xk is an ε-critical point of Φ.
��

In what follows, the worst-case complexity is defined as the maximum number of function
evaluations necessary for criterion (49) to be satisfied. For convenience, we will consider the
following notation:

S = {k ≥ 0 | k successful} , (57)

S j = {k ≤ j | k ∈ S} , for each j ≥ 0, (58)

U j = {k ≤ j | k /∈ S} for each j ≥ 0, (59)

S′ = {k ∈ S | η1(xk) > εs = εs(ε)} , ε > 0, (60)

where S j and U j form a partition of {1, . . . , j}, |S j |, |U j | and |S′| will denote the cardinality
of these sets, and εs = εs(ε) is defined in (49). Furthermore, let S̃ be a generic index set such
that

S̃ ⊆ S′, (61)

and whose cardinality is denoted by |S̃|.
The next lemma provides an upper bound on the cardinality |S̃| of a set S̃ satisfying (61).

123

Author's personal copy

G. N. Grapiglia et al.

Lemma 14 Suppose that A3 and A5 hold. Given any ε > 0, let S′ and S̃ be defined in (60)
and (61), respectively. Suppose that the successful iterates xk generated by Algorithm 1 have
the property that

mk(xk)− mk(xk + dk) ≥ θcε
p, for all k ∈ S̃, (62)

where θc is a positive constant independent of k and ε, and p > 0. Then,

|S̃| ≤ ⌈
κpε

−p⌉ , (63)

where κp ≡ (Φ(x0)−Φlow)/(α1θc).

Proof It follows as in the proof of Theorem 2.2 in Cartis et al. (2011a). ��
The next lemma gives a lower bound on Δk when η1(xk) is bounded away from zero.

Lemma 15 Suppose that A1–A4 hold and let ε ∈ (0, 1] such that η1(xk) ≥ εs for all
k = 0, . . . , j, where j ≤ +∞ and εs = εs(ε) is defined in (49). Then, there exists τ > 0
independent of k and ε such that

Δk ≥ τε, for all k = 0, . . . , j. (64)

Proof It follows from Lemma 8. ��
Now, we can obtain an iteration complexity bound for Algorithm 1. The proof of this

result is based on the proof of Theorem 2.1 and Corollary 3.4 in Cartis et al. (2011a).

Theorem 3 Suppose that A1–A5 hold. Given any ε ∈ (0, 1], assume that η1(x0) > εs and
let j1 ≤ +∞ be the first iteration such that η1(x j1+1) ≤ εs, where εs = εs(ε) is defined in
(49). Then, Algorithm 1 with rule (48) and εc = +∞ takes at most

Ls
1 ≡ ⌈

κs
c ε

−2⌉ (65)

successful iterations to generate η1(x j1+1) ≤ εs and consequently (by Lemma 12)
ψ1(x j1+1) ≤ ε, where

κs
c ≡ (Φ(x0)−Φlow) /(α1θc), θc = κd min {τ, 1/(1 + κH)} /(κsμ+ 1)2. (66)

Furthermore,

j1 ≤ ⌈
κwε

−2⌉ ≡ L1, (67)

and Algorithm 1 takes at most L1 iterations to generate ψ1(x j1+1) ≤ ε, where

κw ≡
(

1 − log(γ−1
2)

log(γ−1
2)

)

κs
c + (κsμ+ 1)Δ∗

0

τ log(γ−1
2)

. (68)

Proof The definition of j1 in the statement of the theorem implies that

η1(xk) > εs, for k = 0, . . . , j1. (69)

Thus, by Lemma 5, Assumption A4, Lemma 15 and the definition of εs in (49), we obtain

mk(xk)− mk(xk + dk) ≥ κdεs min

{
Δk,

εs

1 + κH

}

≥ κd

(κsμ+ 1)2
εmin

{
τε,

ε

1 + κH

}

123

Author's personal copy

A derivative-free trust-region algorithm for composited NSO

= κd

(κsμ+ 1)2
min {τ, 1/(1 + κH)} ε2

= θcε
2, for k = 1, . . . , j1, (70)

where θc is defined by (66). Now, with j = j1 in (58) and (59), Lemma 14 with S̃ = S j1 and
p = 2 provides the complexity bound

|S j1 | ≤ Ls
1, (71)

where Ls
1 is defined by (65).

On the other hand, from rule (48) and Lemma 15, it follows that

Δ∗
k+1 ≤ γ2Δk ≤ γ2Δ

∗
k , if k ∈ S j1 ,

Δ∗
k+1 ≤ γ0Δk ≤ γ0Δ

∗
k , if k ∈ U j1 ,

Δ∗
k ≥ Δk ≥ τ

κsμ+ 1
ε, for k = 0, . . . , j1.

Thus, considering ωk ≡ 1/Δ∗
k , we have

c1ωk ≤ ωk+1, if k ∈ S j1 , (72)

c2ωk ≤ ωk+1, if k ∈ U j1 , (73)

ωk ≤ ω̄ε−1, for k = 0, . . . , j1, (74)

where c1 = γ−1
2 ∈ (0, 1], c2 = γ−1

0 > 1 and ω̄ = (κsμ + 1)/τ . From (72) and (73), we
deduce inductively

ω0c
|S j1 |
1 c

|U j1 |
2 ≤ ω j1 .

Hence, from (74), it follows that

c
|S j1 |
1 c

|U j1 |
2 ≤ ω̄ε−1

ω0
, (75)

and so, taking logarithm on both sides, we get

|U j1 | ≤
[
− log(c1)

log(c2)
|S j1 | + ω̄

ω0 log(c2)
ε−1

]
. (76)

Finally, since j1 = |S j1 | + |U j1 | and ε−2 ≥ ε−1, the bound (67) is the sum of the upper
bounds (71) and (76). ��
Remark 6 Theorem 3 also implies limit (47), which was established in Theorem 2. However,
note that Theorem 2 was proved for εc > 0, while to prove Theorem 3 we needed the stronger
assumption εc = +∞.

Corollary 1 Suppose that A1–A5 hold and let ε ∈ (0, 1]. Furthermore, assume that the
model-improving algorithm requires at most K evaluations of f and c to construct fully
linear models. Then, Algorithm 1 with rule (48) and εc = +∞ reaches an ε-critical point of
Φ after at most

O
(
K

[| log(ε)| + | log(κu)|
]
ε−2) (77)

function evaluations (that is, evaluations of f and c), where κu = (κs + μ−1)Δ̄.

123

Author's personal copy

G. N. Grapiglia et al.

Proof In the worst case, Algorithm 2 will be called in all iterations of Algorithm 1, and in
each one of this calls, the number of repetitions in Algorithm 2 will be bounded above by

∣
∣
∣
∣
∣
∣
∣
∣

log

(
ε

κu

)

log(ω)

∣
∣
∣
∣
∣
∣
∣
∣

, (78)

such that the ε-criticality criterion (52) in Lemma 13 is not satisfied. Since in each one of
these repetitions the model-improving algorithm requires at most K evaluations of f and c
to construct fully linear models, it follows that each iteration of Algorithm 1 requires at most

K

∣
∣
∣
∣
∣
∣
∣
∣

log

(
ε

κu

)

log(ω)

∣
∣
∣
∣
∣
∣
∣
∣

(79)

function evaluations. Hence, by Theorem 3, Algorithm 1 takes at most

K

∣
∣
∣
∣
∣
∣
∣
∣

log

(
ε

κu

)

log(ω)

∣
∣
∣
∣
∣
∣
∣
∣

κwε
−2 (80)

function evaluations to reduce the criticality measure ψ1(x) below ε. ��
Corollary 2 Suppose that A1–A5 hold and let ε ∈ (0, 1]. Furthermore, assume that Algo-
rithm 6.3 in Conn et al. (2009a) is used as model-improving algorithm. Then, Algorithm 1
with rule (48) and εc = +∞ reaches an ε-critical point of Φ after at most

O
(
(n + 1)

[| log(ε)| + | log(κu)|
]
ε−2) (81)

function evaluations (that is, evaluations of f and c), where κu = (κs + μ−1)Δ̄.

Proof It follows from the fact that Algorithm 6.3 in Conn et al. (2009a) takes at most K =
n + 1 evaluations of f and c to construct fully linear models. ��

To contextualize the results above, it is worth to review some recent works on worst-
case complexity in nonconvex and nonlinear optimization. Regarding derivative-based algo-
rithms, Cartis et al. (2011b) have proposed a first-order trust-region method3 and a first-order
quadratic regularization method for minimizing (1), for which they proved a worst-case com-
plexity bound of O

(
ε−2

)
function evaluations to reduce ψ1(xk) below ε. On the other hand,

in the context of derivative-free optimization, Cartis et al. (2012) have proved a worst-case
complexity bound of

O
(
(n2 + 5n)

[
1 + | log(ε)|] ε− 3

2

)
(82)

function evaluations for their adaptive cubic regularization (ARC) algorithm applied to
unconstrained smooth optimization, where derivatives are approximated by finite differ-
ences. Furthermore, for the minimization of a nonconvex and nonsmooth function, Nesterov

3 Algorithm 1 with Hk = 0 for all k can be viewed as a derivative-free version of the first-order trust-region
method proposed in Cartis et al. (2011b).

123

Author's personal copy

A derivative-free trust-region algorithm for composited NSO

(2011) has proposed a random derivative-free smoothing algorithm for which he has proved
a worst-case complexity bound of

O
(
n(n + 4)2ε−3) (83)

function evaluations to reduce the expected squared norm of the gradient of the smoothing
function below ε. Finally, still in the nonsmooth case, Garmanjani and Vicente (2013) have
proposed a class of smoothing direct-search methods for which they proved a worst-case
complexity bound of

O
(

n
5
2
[| log(ε)| + log(n)

]
ε−3

)
(84)

function evaluations to reduce the norm of the gradient of the smoothing function below ε.
Comparing the worst-case complexity bound (81) with the bounds of (82) and (83), we

see that (81) is better in terms of the powers of n and ε. However, in such comparison, we
must take into account that these worst-case complexity bounds were obtained for different
criticality measures.

6 A derivative-free exact penalty algorithm

Let us now consider the equality-constrained optimization problem (3), where the objective
function f : R

n → R and the constraint function c : R
n → R

r are continuously dif-
ferentiable. One way to solve such problem consists of solving the related unconstrained
problem

min
x∈Rn

Φ(x, σ), (85)

where

Φ(x, σ) ≡ f (x)+ σ‖c(x)‖ (86)

is an exact penalty function and ‖.‖ is a polyhedral norm. More specifically, an exact penalty
algorithm for problem (3) can be stated as follows.
Algorithm 3 (Exact Penalty Algorithm - see, e.g., Sun and Yuan 2006)

Step 0 Given x0 ∈ R
n , σ0 > 0, λ > 0 and ε > 0, set k := 0.

Step 1 Find a solution xk+1 of problem (85) with σ = σk and starting at xk (or at x0).

Step 2 If ‖c(xk+1)‖ ≤ ε, stop. Otherwise, set σk+1 = σk + λ, k := k + 1 and go to Step 1.

As mentioned in Sect. 1, problem (85) is a particular case of problem (1). For this problem,
the criticality measure ψ1(x) becomes

ψ1(x) = f (x)+ σ‖c(x)‖ − min‖s‖≤1

{
f (x)+ ∇ f (x)Ts + σ‖c(x)+ Jc(x)s‖

} ≡ Ψσ (x),

(87)

and we have the following result.

Theorem 4 Suppose that A1, A2 and A4 hold, and assume that { f (xk)} is bounded below.
Then, for any ε ∈ (0, 1], Algorithm 1 applied to problem (85) will generate a point x(σ)
such that

Ψσ (x(σ)) ≤ ε. (88)

123

Author's personal copy

G. N. Grapiglia et al.

Proof It follows directly from Theorem 2 (or from Theorem 3 when (48) is used and εc =
+∞). ��

By the above theorem, we can solve approximately subproblem (85) in Step 1 of Algo-
rithm 3 by applying Algorithm 1. The result is the following derivative-free exact penalty
algorithm.
Algorithm 4 (Derivative-Free Exact Penalty Algorithm)

Step 0 Given x0 ∈ R
n , σ0 > 0, λ > 0 and ε > 0, set k := 0.

Step 1 Apply Algorithm 1 to solve subproblem (85) with σ = σk . Start at xk (or at x0) and
stop at an approximate solution xk+1 for which

Ψσk (xk+1) ≤ ε,

where ψσk (xk+1) is defined in (87) with σ = σk and x = xk+1.
Step 2 If ‖c(xk+1)‖ ≤ ε, stop. Otherwise, set σk+1 = σk + λ, k := k + 1 and go to Step 1.

Definition 4 Given ε ∈ (0, 1], a point x ∈ R
n is said to be a ε-stationary point of problem

(3) if there exists y∗ such that

‖∇ f (x)+ Jc(x)
T y∗‖ ≤ ε. (89)

If, additionally, ‖c(x)‖ ≤ ε, then x is said to be a ε-KKT point of problem (3).

The next result, due to Cartis et al. (2011b), establishes the relation between ε-critical
points of Φ(., σ) and ε-KKT points of (3).

Theorem 5 Suppose that A1 holds and let σ > 0. Consider minimizing Φ(., σ) by some
algorithm and obtaining an approximate solution x such that

Ψσ (x) ≤ ε, (90)

for a given tolerance ε > 0 (that is, x is a ε-critical point of Φ(., σ)). Then, there exists
y∗(σ) such that

‖∇ f (x)+ Jc(x)
T y∗(σ)‖ ≤ ε. (91)

Additionally, if ‖c(x)‖ ≤ ε, then x is a ε-KKT point of problem (3).

Proof See Theorem 3.1 in Cartis et al. (2011b). ��
The theorem below provides a worst-case complexity bound for Algorithm 4.

Theorem 6 Suppose that A1, A2 and A4 hold. Assume that { f (xk)} is bounded below. If
there exists σ̄ > 0 such that σk ≤ σ̄ for all k, then Algorithm 4 (where Algorithm 1 in Step 1
satisfies the assumptions in Corollary 1) terminates either with an ε-KKT point or with an
infeasible ε-stationary point of (3) in at most

σ̄K

λ

∣
∣
∣
∣
∣
∣
∣
∣

log

(
ε

κ̄u

)

log(ω)

∣
∣
∣
∣
∣
∣
∣
∣

⌈
κ̄wε

−2⌉ (92)

function evaluations, where κ̄u and κ̄w are positive constants dependent of σ̄ , but are inde-
pendent of the problem dimensions n and r.

123

Author's personal copy

A derivative-free trust-region algorithm for composited NSO

Proof Using Corollary 1, it follows as in the proof of part (i) of Theorem 3.2 in Cartis et al.
(2011b). ��

For constrained nonlinear optimization with derivatives, Cartis et al. (2011b) have pro-
posed a first-order exact penalty algorithm, for which they have proved a worst-case complex-
ity bound of O(ε−2) function evaluations. Another complexity bound of the same order was
obtained by Cartis et al. (2014) under weaker conditions for a first-order short-step homotopy
algorithm. Furthermore, the same authors have proposed in Cartis et al. (2013) an short-step
ARC algorithm, for which they have proved an improved worst-case complexity bound of
O

(
ε−3/2

)
function evaluations. However, despite the existence of several derivative-free

algorithms for constrained optimization (see, e.g., Bueno et al. 2013; Conejo et al. 2013,
2014; Diniz-Ehrhardt et al. 2011; Martínez and Sobral 2013), to the best of our knowledge,
(92) is the first complexity bound for constrained nonlinear optimization without derivatives.

7 Numerical experiments

To investigate the computational performance of the proposed algorithm, we have tested a
MATLAB implementation of Algorithm 1, called “DFMS”, on a set of 43 finite minimax
problems from Luksǎn and Vlček (2000) and Di Pillo et al. (1993). Recall that the finite
minimax problem is a particular case of the composite NSO problem (1) where f = 0 and
h(c) = max1≤i≤r ci , namely

min
x∈Rn

Φ(x) ≡ max
1≤i≤r

ci (x). (93)

In the code DFMS, we approximate each function ci by a linear interpolation model of the
form (11). The interpolation points around xk are chosen using Algorithm 6.2 in Conn et al.
(2009a). As model-improvement algorithm, we employ Algorithm 6.3 in Conn et al. (2009a).
Furthermore, as h(c) = max1≤i≤r ci is a polyhedral function, we consider ‖.‖ = ‖.‖∞ and
Hk = 0 for all k. In this way, subproblems (23), (25), (26) and (29) are reduced to linear
programming problems, which are solved using the MATLAB function linprog. Finally, we
use (28) to update Δ∗

k .
First, with the purpose of evaluating the ability of the code DFMS to obtain accurate

solutions for the finite minimax problem, we applied this code on the test set with a maximum
number of function evaluations to be 2550 and the parameters in Step 0 as Δ̄ = 50,Δ∗

0 = 1,
α0 = 0, α1 = 0.25, γ1 = 0.5, γ2 = 2, εc = 10−4, μ = 1, β = 0.75 and ω = 0.5. Within the
budget of function evaluations, the code was terminated when any one of the criteria below
was satisfied:

Δk < 10−4 or Φ(xk) > 0.98Φ(xk−10), k > 10. (94)

A problem was considered solved when the solution x̄ obtained by DFMS was such that

Φ-Error ≡ |Φ(x̄)−Φ∗|
max {1, |Φ(x̄)|, |Φ∗|} ≤ 10−2, (95)

where Φ∗ is the optimal function value provided by Luksǎn and Vlček (2000) and Di Pillo
et al. (1993).

Problems and results are reported in Table 1, where “n”, “r” and “nΦ” represent the
number of variables, the number of subfunctions and the number of function evaluations,
respectively. Moreover, an entry “F” indicates that the code stopped due to some error.

123

Author's personal copy

G. N. Grapiglia et al.

Table 1 Numerical results for finite minimax problems

Problem n r Φ∗ nΦ Φ-error

01. CB2 2 3 1.9522E+00 55 6.5961E−04

02. WF 2 3 0.0000E+00 373 2.1934E−08

03. Spiral 2 2 0.0000E+00 121 7.7601E−02

04. EVD52 3 6 3.5997E+00 109 1.8400E−04

05. Rosen-Suzuki 4 4 −4.4000E+01 281 3.8277E−09

06. Polak 6 4 4 −4.4000E+01 431 1.4373E−09

07. PBC 3 3 42 4.2021E−03 88 3.4122E−05

08. Bard* 3 30 5.0816E−02 104 5.0416E−05

09. Kowalik–Osborne* 4 22 8.0844E−03 150 9.4040E−05

10. Davidon 2 4 40 1.1571E+02 261 4.2693E−04

11. OET5 4 42 2.6360E−03 316 8.2882E−05

12. OET6 4 42 2.0161E−03 150 7.6847E−05

13. Gamma 4 61 1.2042E−07 70 9.9999E−01

14. EXP 5 21 1.2237E−04 F F

15. PBC 1 5 60 2.2340E−02 444 1.7848E−05

16. EVD61 6 102 3.4905E−02 280 4.8678E−02

17. Transformer 6 11 1.9729E−01 344 3.5529E−01

18. Filter 9 82 6.1853E−03 381 1.1538E−01

19. Wong 1 7 5 6.8063E+02 121 5.4263E−03

20. Wong 2 10 9 2.4306E+01 375 2.5243E−02

21. Wong 3 20 18 1.3373E+02 862 5.3498E−03

22. Polak 2 10 2 5.4598E+01 199 1.2651E−04

23. Polak 3 11 10 2.6108E+02 289 2.6148E−03

24. Watson* 20 62 1.4743E−08 294 9.9999E−01

25. Osborne 2 11 130 4.8027E−02 600 9.7441E−05

26. Crescent 2 2 0.0000E+00 132 5.9209E−08

27. CB3 2 3 2.0000E+00 79 2.7993E−03

28. DEM 2 3 −3.0000E+00 366 9.2632E−07

29. QL 2 3 7.2000E+00 49 4.4769E−06

30. LQ 2 2 −1.4142E+00 520 1.1270E−08

31. Shor 5 10 2.2600E+01 97 1.4379E−04

32. Maxquad 10 5 −8.4141E−01 155 8.4141E−01

33. Gill 10 3 9.7858E+00 551 1.0000E+00

34. Maxq 20 20 0.0000E+00 1,135 1.4524E−08

35. Maxl 20 40 0.0000E+00 504 1.5809E−13

36. MXHILB 50 100 0.0000E+00 F F

37. Polak 1 2 2 2.7183E+00 301 3.0213E−06

38. Char.-Conn 1 2 3 1.9522E+00 52 5.3573E−04

123

Author's personal copy

A derivative-free trust-region algorithm for composited NSO

Table 1 continued

Problem n r Φ∗ nΦ Φ-error

39. Char.-Conn 2 2 3 1.9522E+00 79 2.7993E−03

40. Demy-Malo. 2 3 −3.0000E+00 366 9.2632E−07

41. Hald-Madsen 1 2 4 0.0000E+00 54 8.4185E−08

42. Hald-Madsen 2 5 42 1.2200E−04 F F

43. El Attar 6 102 3.4900E−02 238 9.9953E−01

Fig. 1 Data profiles for the finite minimax problems show the percentage of problems solved as a function of
a computational budget of simplex gradients. Here, we have the graphs for tolerances τ = 10−1 and τ = 10−3

The results given in Table 1 show that DFMS was able to solve most of the problems in
the test set (30 of them), with a reasonable number of function evaluations. The exceptions
were problems 3, 13, 16–18, 20, 24, 32, 33 and 43, where criterion (95) was not satisfied,
and problems 14, 36 and 42, in which the code stopped due to some error.

123

Author's personal copy

G. N. Grapiglia et al.

Fig. 2 Data profiles for the finite minimax problems show the percentage of problems solved as a function of
a computational budget of simplex gradients. Here, we have the graphs for tolerances τ = 10−5 and τ = 10−7

To investigate the potentialities and limitations of Algorithm 1, we also compare DFMS
with the following codes:

• NMSMAX: a MATLAB implementation of the Nelder–Mead method (Nelder and Mead
1965), freely available from the Matrix Computation Toolbox;4 and

• NOMAD (version 3.6.2): a MATLAB implementation of the MADS algorithm (Le Diga-
bel 2011), freely available from the OPTI Toolbox.5

We consider the data profile of Moré and Wild (2009). The convergence test for the codes
is:

Φ(x0)−Φ(x) ≥ (1 − τ) (Φ(x0)−ΦL) , (96)

where τ > 0 is a tolerance, x0 is the starting point for the problem, and ΦL is computed for
each problem as the smallest value of Φ obtained by any solver within a given number μΦ

4 http://www.maths.manchester.ac.uk/~higham/mctoolbox.
5 http://www.i2c2.aut.ac.nz/Wiki/OPTI/index.php/Main/HomePage.

123

Author's personal copy

http://www.maths.manchester.ac.uk/~higham/mctoolbox
http://www.i2c2.aut.ac.nz/Wiki/OPTI/index.php/Main/HomePage

A derivative-free trust-region algorithm for composited NSO

of function evaluations. Since the problems in our test set have at most 50 variables, we set
μΦ = 2550 so that all solvers can use at least 50 simplex gradients. The data profiles are
presented for τ = 10−k with k ∈ {1, 3, 5, 7}.

Despite the simplicity of our implementation of Algorithm 1, the data profiles in Figs. 1
and 2 suggest that DFMS is competitive with NMSMAX and NOMAD on finite minimax
problems. This result is not so surprising, since DFMS exploits the structure of the finite
minimax problem, which is not considered by codes NMSMAX and NOMAD.

8 Conclusions

In this paper, we have presented a derivative-free trust-region algorithm for composite NSO.
The proposed algorithm is an adaptation of the derivative-free trust-region algorithm of
Conn et al. (2009b) for unconstrained smooth optimization, with elements of the trust-region
algorithms proposed by Fletcher (1982a), Powell (1983), Yuan (1985a) and Cartis et al.
(2011b) for composite NSO. Under suitable conditions, weak global convergence was proved.
Furthermore, considering a slightly modified update rule for the trust-region radius and
assuming that the models are fully linear at all iterations, we adapted the argument of Cartis
et al. (2011a, b) to prove a function-evaluation complexity bound for the algorithm reducing
the criticality measure below ε. This complexity result was then specialized to the case
when the composite function is an exact penalty function, providing a worst-case complexity
bound for equality-constrained optimization problems, when the solution is computed using
a derivative-free exact penalty algorithm. Finally, preliminary numerical experiments were
done, and the results suggest that the proposed algorithm is competitive with the Nelder–
Mead algorithm (Nelder and Mead 1965) and the MADS algorithm (Audet and Dennis 2006)
on finite minimax problems.

Future research includes the conducting of extensive numerical tests using more sophis-
ticated implementations of Algorithm 1. Further, it is worth to mention that the mechanism
used in Algorithm 2 for ensuring the quality of the models is the simplest possible, but not
necessarily the most efficient. Perhaps, the self-correcting scheme proposed by Scheinberg
and Toint (2010) can be extended to solve composite NSO problems.

Acknowledgments This work was partially done while the G. N. Grapiglia was visiting the Institute of
Computational Mathematics and Scientific/Engineering Computing of the Chinese Academy of Sciences. He
would like to register his deep gratitude to Professor Ya-xiang Yuan, Professor Yu-hong Dai, Dr. Xin Liu and
Dr. Ya-feng Liu for their warm hospitality. He also wants to thank Dr. Zaikun Zhang for valuable discussions.
Finally, the authors are very grateful to the anonymous referees, whose comments have significantly improved
the paper. G.N. Grapiglia was supported by CAPES, Brazil (Grant PGCI 12347/12-4). J. Yuan was partially
supported by CAPES and CNPq, Brazil. Y. Yuan was partially supported by NSFC, China (Grant 11331012).

References

Audet C, Dennis JE Jr (2006) Mesh adaptive direct search algorithms for constrained optimization. SIAM J
Optim 17:188–217

Bannert T (1994) A trust region algorithm for nonsmooth optimization. Math Program 67:247–264
Brent RP (1973) Algorithms for minimization without derivatives. Prentice-Hall, Englewood Cliffs
Bueno LF, Friedlander A, Martínez JM, Sobral FNC (2013) Inexact restoration method for derivative-free

optimization with smooth constraints. SIAM J Optim 23:1189–1213
Cartis C, Gould NIM, Toint PhL (2011a) Adaptive cubic regularisation methods for unconstrained optimiza-

tion. Part II: worst-case function—and derivative—evaluation complexity. Math Program 130:295–319

123

Author's personal copy

G. N. Grapiglia et al.

Cartis C, Gould NIM, Toint PhL (2011b) On the evaluation complexity of composite function minimization
with applications to nonconvex nonlinear programming. SIAM J Optim 21:1721–1739

Cartis C, Gould NIM, Toint PhL (2012) On the oracle complexity of first-order and derivative-free algorithms
for smooth nonconvex minimization. SIAM J Optim 22:66–86

Cartis C, Gould NIM, Toint PhL (2013) On the evaluation complexity of cubic regularization methods for
potentially rank-deficient nonlinear least-squares problems and its relevance to constrained nonlinear
optimization. SIAM J Optim 23:1553–1574

Cartis C, Gould NIM, Toint PhL (2014) On the complexity of finding first-order critical points in constrained
nonlinear optimization. Math Program 144:93–106

Conn AR, Scheinberg K, Vicente LN (2009a) Introduction to derivative-free optimization. SIAM, Philadelphia
Conn AR, Scheinberg K, Vicente LN (2009b) Global convergence of general derivative-free trust-region

algorithms to first and second order critical points. SIAM J Optim 20:387–415
Conejo PD, Karas EW, Pedroso LG, Ribeiro AA, Sachine M (2013) Global convergence of trust-region

algorithms for convex constrained minimization without derivatives. Appl Math Comput 20:324–330
Conejo PD, Karas EW, Pedroso LG (2014) A trust-region derivative-free algorithm for constrained optimiza-

tion. Technical Report. Department of Mathematics, Federal University of Paraná
Di Pillo G, Grippo L, Lucidi S (1993) A smooth method for the finite minimax problem. Math Program

60:187–214
Diniz-Ehrhardt MA, Martínez JM, Pedroso LG (2011) Derivative-free methods for nonlinear programming

with general lower-level constraints. Comput Appl Math 30:19–52
Fletcher R (1982a) A model algorithm for composite nondifferentiable optimization problems. Math Program

17:67–76
Fletcher R (1982b) Second order correction for nondifferentiable optimization. In: Watson GA (ed) Numerical

analysis. Springer, Berlin, pp 85–114
Garmanjani R, Vicente LN (2013) Smoothing and worst-case complexity for direct-search methods in non-

smooth optimization. IMA J Numer Anal 33:1008–1028
Grapiglia GN, Yuan J, Yuan Y (2014) On the convergence and worst-case complexity of trust-region and

regularization methods for unconstrained optimization. Math Prog. doi:10.1007/s10107-014-0794-9
Greenstadt J (1972) A quasi-Newton method with no derivatives. Math Comput 26:145–166
Hooke R, Jeeves TA (1961) Direct search solution of numerical and statistical problems. J Assoc Comput

Mach 8:212–229
Kelly JE (1960) The cutting plane method for solving convex programs. J SIAM 8:703–712
Le Digabel S (2011) Algorithm 909: NOMAD: Nonlinear optimization with the MADS algorithm. ACM

Trans Math Softw 37:41:1–44:15
Lemaréchal C (1978) Bundle methods in nonsmooth optimization. In: Lemaréchal C, Mifflin R (eds) Non-

smooth optimization. Pergamon, Oxford, pp 79–102
Luksǎn L, Vlček J (2000) Test problems for nonsmooth unconstrained and linearly constrained optimization.

Technical Report 198, Academy of Sciences of the Czech Republic
Madsen K (1975) Minimax solution of non-linear equations without calculating derivatives. Math Program

Study 3:110–126
Martínez JM, Sobral FNC (2013) Derivative-free constrained optimization in thin domains. J Glob Optim

56:1217–1232
Mifflin R (1975) A superlinearly convergent algorithm for minimization without evaluating derivatives. Math

Program 9:100–117
Moré JJ, Wild SM (2009) Benchmarking derivative-free optimization algorithms. SIAM J Optim 20:172–191
Nelder JA, Mead R (1965) A simplex method for function minimization. Comput J 7:308–313
Nesterov Y (2011) Random gradient-free minimization of convex functions. Technical Report 2011/1, CORE
Powell MJD (1983) General algorithm for discrete nonlinear approximation calculations. In: Chui CK, Schu-

maker LL, Ward LD (eds) Approximation theory IV. Academic Press, New York, pp 187–218
Powell MJD (1984) On the global convergence of trust region algorithms for unconstrained minimization.

Math Program 29:297–303
Powell MJD (2006) The NEWUOA software for unconstrained optimization without derivatives. In: Di Pillo

G, Roma M (eds) Large nonlinear optimization. Springer, New York, pp 255–297
Qi L, Sun J (1994) A trust region algorithm for minimization of locally Lipschitzian functions. Math Program

66:25–43
Scheinberg K, Toint PhL (2010) Self-correcting geometry in model-based algorithms for derivative-free uncon-

strained optimization. SIAM J Optim 20:3512–3532
Shor NZ (1978) Subgradient methods: a survey of the Soviet research. In: Lemaréchal C, Mifflin R (eds)

Nonsmooth optimization. Pergamon, Oxford

123

Author's personal copy

http://dx.doi.org/10.1007/s10107-014-0794-9

A derivative-free trust-region algorithm for composited NSO

Stewart GW (1967) A modification of Davidon’s minimization method to accept difference approximations
of derivatives. J Assoc Comput Mach 14:72–83

Sun W, Yuan Y (2006) Optimization theory and methods: nonlinear programming. Springer, Berlin
Winfield D (1973) Function minimization by interpolation in a data table. J Inst Math Appl 12:339–347
Yuan Y (1985a) Conditions for convergence of trust region algorithms for nonsmooth optimization. Math

Program 31:220–228
Yuan Y (1985b) On the superlinear convergence of a trust region algorithm for nonsmooth optimization. Math

Program 31:269–285

123

Author's personal copy

	A derivative-free trust-region algorithm for composite nonsmooth optimization
	Abstract
	1 Introduction
	2 Preliminaries
	3 Algorithm
	4 Global convergence analysis
	5 Worst-case complexity analysis
	6 A derivative-free exact penalty algorithm
	7 Numerical experiments
	8 Conclusions
	Acknowledgments
	References

