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Abstract The DFP method is one of the most famous numerical algorithms for unconstrained
optimization. For uniformly convex objective functions convergence properties of the DFP method are
studied. Sewveral conditions that can ensure the global convergence of the DFP method are given.
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1 DFP algorithm

The DFP algorithm is the first quasi-Newton method for unconstrained optimization.

min f(x). (1.1)

x€F"
The method was given by ref. [2], and then modified and stated as follows by reference

[5].
Algorithm 1.1 (The Davidon-Fletcher-Powell algorithm).

Step 0. Given x,€#"; B,€#"" positive definite;
k:=1.

Step 1. Compute g,=Vf(x);
if g,=0 then stop;
set.d,= —B,'g,

Step 2. Carry out a line search along d,, getting a,>0;
set X=X, toydy;

Step 3. Set

B.s.vT+v.s'B B T .
B;H.]:Bk_ !'rsk.ykr yﬂsk k +(1+ Sk'rksk ) y;yk , (1.2)
S Vi SV SeYVk
where
'?k=akdk’ (1.3)
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Y= Gk~ G (1.4)
Step 4. k:=k+1; go to Step 1.

The line search in Step 2 requires step lengths d, to satisfy certain line search condi-
tions. If exact line search is used, o, satisfies

f(xk+akdk)=nﬁ£1f (x, tad). ' (1.5)
For inexact line search, one normally rcquiresnthat
fx +od) <f(x)+codg, (1.6)
and
dIVf(x,+oud) = c,dlg,. (1.7)
where ¢, <c, are two constants in (0, 1). Usually ¢,<0.5. Condition (1.7) implies that
s> —(1=c)sig, (1.8)

The DFP method is one of the two most famous variable metric methods. The other
is the BFGS method, which is the same as the DFP method except that (1.2) is replaced
by
B,s,s, B, T VI
sy Bys, SV

(1.9)

Powell® showed that if f(x) is a convex function and if line searches are exact in all

B .,=B,—

iterations, then the DFP algorithm will either stop at a global minimum or generate a se-
quence that converges to a global minimum. For the inexact line search, Powell” showed
that the BFGS method is globally convergent. Byrd, Nocedal and Yuan!! showed the
global convergence of all methods in the convex Broyden family except the DFP method.
However, the global convergence of the DFP method with inexact line searches has been an
open question for the last twenty years. In this paper, several conditions are given to show
the global convergence of the DFP method. And it is hoped that our analyses will help us
to find the correct answer for the convergence of the DFP method.

For a general line search algorithm, one can show the following result:

Lemma 1.1. Let x, (k=1,'"") be generated by any line search algorithm in the form of
X =Xt d,. (1.10)

Assume that the inexact line search conditions (1.6) and (1.7) are satisfied in all iterations. If
f(x) are bounded below, then

Y —o,dlg, <. (1.11)

k=1

If x, are all in a closed convex set 2 in which Vf(x) is uniformly Lipschitz continuous, then

zlmszﬂkllgklli< o0, (1.12)
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where 0, is the angle between —g, and d,; namely,
“g:dk
cosf,= ————. (1.13)
¢ gl I,

Proof. It follows from (1.6) that
Z kgpz [ (xd =S (xs D]/ €4

<ci'[f () ~lim ()] <. (1.14)

Due to our assumptions, there exists a positive constant M such that
S S Mllsylf3, - (L15)

Thus, it follows from the above inequality and (1.7) that

2. cosByllgll;= X (signlisdl; < 2. M(s{g)/siv,

oo

— T oo
=, 2. = 5ig,< . (1.16)

<

Hence the lemma is true.
Line search conditions (1.6) and (1.7) are called weak Wolfe line search conditions.
Condition (1.6) and the following inequality
|df Vf(x,+o,d)|< —cd]g, (1.17)
are called strong Wolfe line search conditions. It is easy to see that (1.17) is stronger than
(1.7). A direct consequence of (1.17) is that

(-e)< -8 <(1+c). (1.18)
kgk

It can be easily shown that

H&kang + SiSt

H,.,=H- . 1.19
. ¢ .VEHJ‘J";: SkTyk ( )

For example see ref. [3]. From (1.2) and (1.19), we have

Sul By, $¢B,S, ) Il ydl3
tr(B,, ) =tr(B) —2 ——— +| 1+ —% | —=*= | 1.20
(Ber) =tr(B) = S Ve ( SV St Vi ( )
WH il | lsdl :
tr(H,, ) =tr(H,) — + iz 1.21
Hi) (Hy) yer}"k s{}’k ( )
It is well known that"
sTy,

Det(H,, )= Det(H,) £k (1.22)
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Throughout this paper we make the following assumptions.
Assumption 1.1.

(1) f(x) is twice continuously differentiable and uniformly convex. Namely, there exists
¢.>0 such that
AV (x)d=c)\d))s, Vd, x€ #". (1.23)
(i1) The line search conditions (1.6) and (1.7) are satisfied in all iterations.
Under the condition of Assumption 1.3, it can be shown that there exists a constant c,
such that

¢, < S < Ilyill3 <
(Is,/[3 A e (1.24)

From Assumption |.1 and Lemma 1.1 we have the following fundamental results.

Lemma 1.2. Let x, k=1, 2.} be generated by the DFP method. If the conditions in As-
sumption 1.1 are satisfied, then

glaky:Hk9k<"{'- (1.25)
and
(9:H.9)’
(1.26)
k; 13 ’

Proof. Assumption (1.23) implies that f(x) is bounded below. Therefore, (1.25)
tfollows from (1.11) and

d,=~Hg, (1.27)
It follows from inequality (1.23) that the set
Q={x|f(x)Sf(x), x€ 4"} (1.28)
] —_—
SIS — 2 c"fi"-‘— SHT (1.29)

3

Proof. 1t follows from (1.23) and (1.24) that

: ] .
(X ) 2Zf(x) +5;9k + 5 ¢sllsdla

t

S sy, (1.30)

Cyq

b | =

Zf(x) +slg,+
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Now (1.29) follows from the above inequality and (1.6).

2 Convergence analyses

Under extra conditions, we can use the trace relation (1.20) to prove the global
convergence of the DFP method.

;lgEHkgk<w' (2.1

If the theorem is not true, there exists a positive constant é such that ||g,||>J for all k.
From (1.20) we have :

lyk

k

o) = TH(B)) =gi(@ye go+(1+ P ) G, 22

kyk oy

From the Cauchy-Schwarz inequality, the sum

Y 61600, ~ 0 <+ gl llgl) @3)

is uniformly bounded above for all N=>1. The assumption that «, are bounded away from
zero and inequalities (1.18) and (1.24) implies that

i |+ i SiBysi ”Jﬁ;”z <Z 1+ SiBysi ) S
k=1 Skyk ak k=1 SIVR aﬁ

o T
_ SV T
=/} .C —3§,
gZ] 4( o, - kgk)

<c2+4¢) Y. —sTg, <. 2.4
k=1

Therefore, from (2.2)—(2.4) and Tr(B,,,) —Tr(B)=0 we have

an

SEn
) .

1) ~Tr(By) <. : (2.5)

k=1

Because

T, —_ — T
% Tr(B) > —(=c)sig ac’)s'cg* Tr(B)

k k
=(1~c)geH,g,Tr(B) Z(1-c)llgll;
Z(1~¢)6>0, (2.6)
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it follows from (2.5) that
~( Tr(B,,)) !
Y kil - -y .
L‘T’I( 7,1,1_(3&) | ) < (2.7)
Therefore

l-[ Tr(B, ) <

k=i Tr(By) (2.8)

and consequently tr(B,) are uniformly bounded. This contradicts (2.1) because [|g,|, are
bounded away from zero.

In order to continue our convergence analyses, we need to establish some lemmas.

Lemma 2.1. There exists a positive constant ¢, such that

tr(H,, ) <c.k. (2.9)
SOH Lyl -
s ek 2.1
,; v/'H.y ' (2.10)

Proof. It follows from (1.21) and (1.24) that

H', S sl
tr(H,,,)=tr(H)) - Z ” Il >3 'h’"]“:

R
=y THy o sy,

r P ]

k 112
<tr(H)-Y A3l

}.
i=1 rH 1

L Q.11)
C

The above inequality shows that (2.9) is true it c.=tr(H,) +1/¢;, From (2.11) it fol-
lows that

k
Z HHr ‘*'H-: -;.}:!".H[_l‘l &\:t‘:}‘ (212)
i=1
This completes our proof.
Lemma 2.2.
= (9uH, h} -
— 2.13
=1 wHWY, (2.13)
Proof. From (1.19), we have
| : (GeHy) | (98
I =g™H. g, — 2Lk kk ktl 2.14
GeoHigi = 9cH, 9, VH, v, STy, (2.14)

It follows from (1.8), (1.29) and (1.25) thal

= (G S0 (849" C
X : -;'i ;:I k +25,4, 1 5;5.1";

=t 5 k.h

>
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b 2(1—c¢)c
Z}[ 1_c)+2— ~(c—')—i}s{gk< . (2.15)
- 2 3
Therefore, we have
S (le AAN <g7 (gk+lsk)
+ 0, 2.16
k=1 .Vka Vi 9ithg “Z' Skyk ( )

Thus (2.13) is true.

Lemma 2.3. There exists a positive constant c, such that
1
_Z S <ck, (2.17)

Y >k/e, (2.18)
i=1
Proof. Tt follows from (1.8), (1.24) and (2.10) that

k

| k sy, 1 & s
1 S iJi — 151
:Zl o, izl —(1 —cl)a,tsfg,- l—c, 'Zl S?Btsi
< 1 v yHy Z H.y,
1—c, =1 8y, (1’(31) 3215
< Gy IHYIE o ce (2.19)

(I=c) = yHy, — (1-¢)
Hence (2.17) is true if c,=cecf (1—cy). (2.18) follows from (2.17) and the following
inequality

Yy % >k (2.20)

i=1 i=1

This completes our proof.
Theorem 2.2. Assume that the conditions in Assumption 1.3 hold. If the sequence x,
generated by the DFP algorithm satisfies

Gis il < Mgl (2.21)
for all large k, then x, converges to the unique minimum of f(x).

Proof. If the theorem is not true, x, (k=1, 2,--*) generated by the DFP algorithm
satisfies (2.21) for all large k and there exists a positive constant & such that
llgdl, =0 (2.22)
for all k. Without loss of generality, we assume that (2.21) holds for all k. Thus
:Bkyk=ak[“gk“§_ 9i9r) Z ol gi L 11gdl; = 1lges il =0. (2.23)
The above inequality, (1.20), (1.24) and (2.18) imply that
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K
tr(B,,,) <tr(B,) +c,| k+ 1_‘ Zal

I .-'\“
<tr(B,) +c4 J 2_‘ a,.

It follows from (2.22) and (1.25) that

o

&,

y s
3 (B
The above relation and inequality (2.24) indicate

ax
Y o, <0,
=

which contradicts (2.18). This shows that the theorem 1s true.

Lemma 2.4. There exists a positive constant c, such that

k —
;“dinz Sy ke

Proof. The lemma follows from the previous lemma and the inequality

i< [ Il s yH.y,
= ;=| _V.IH:'J’:' =l

T R ;
< [a / @)’ s [IHl:
\/ C, N Siy™H,y = y/Hyy,

F oSG

(,3 \ i=] PH}?

, c, (g/Hy)
¢= \/ \/ Z’: y'H.y,

is a finite number. Therefore, the lemma follows from (2.28) and (2.29).

It follows from (2.13) that

Corollary 2.1. There exists a positive constant ¢, such that
>
=t “ i”g C,

k a4
1 K
—
.-Z, Il

[

(2.24)

(2.25)

(2.26)

(2.27)

(2.28)

(2.29)

(2.30)

(2.31)

Proof. Inequality (2.30) follows directly from the previous lemma and the inequality
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p

2 d" anuw (232)

Using (2.30) and the inequality

k 2 -
1 <
— | <k (2.33)
(2’: il ) :z-:l iz’
we can obtain inequality (2.31).
Lemma 2.5. There exists a positive constant cs such that

tr(B,. ) “‘cs; 1)} -

Proof. From (1.20), (1.24) and (2.18) we have

(2.34)

iJi i=1

(B <is@) +3, 22l +2(1 N )q

Str(B,)+2q,/c;jc3ZWle +ekot o Y,
i=1 ith2 i=1

A c4[l+c6(1—cz)] d
<tr(B)+2y . 21 I|dllz o) i;ai, (2.35)

where 7 is the upper bound of {||Vf(x)||,, |x€€R2}, and Q is defined by (1.28). It follows
from (1.25), (1.29) and (1.24) that

lim|ls,/,=0, (2.36)
which implies that

<y | 2.37
Za Zns,uz nduz sz-%ud.-nz’ (2.37)

for all large k. The above inequality and relation (2.35) show that there exists a positive
constant ¢; such that (2.34) holds for all k.

Lemma 2.6. If ||g/l,Z6>0 for all k, there exists a positive constant c, such that

o = ud.nz (Z‘/;*) (2.55)
Proof. Define
__"k—'I l
D=2 Tai 2.39)

It follows from (1.24) that
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f—————-

f c R [
sq, [ —— 4 — = | = =5 d
—(I—¢c)sg I—¢, \ 9.H,9,

— i |
< f—""‘"i‘——« / S L S . 2.

(1 "Cl)é' V aktr(Bk) \/ (‘ _L"«_)O'. A" ika ( 40)

Therefore, by setting c,= o we have

> DY g 6= s
D,.,=D,+ L “QD&"‘(%;\—&.;B;- (2.41)
lld| '
which implies that

D SYD e (2.42)

Therefore the lemma 1s true.
Theorem 2.3. If
;wwm. | (2.43)
then the DFP algorithm converges to the solution.

Proof. If the theorem is not true, there exists a positive constant o such that
llg.Jl,=0 for all k. From (2.43) and (2.40) we have

o Ilfl'_— :
VA o, (2.44)

It follows from the above relation, (2.34) and (2.38) that

: Yo <o, (2.45)
B ;\f'f &

Therefore, we can show that
§J¥<i- (2.46)
which contradicts (2.18).

Finally we show that the DFP method is also globally convergent if inequality (2.47) holds
for all k.

Theorem 2.4. Assume that the conditions in Assumption 1.3 hold. Let the sequence
{X. k=1, 2,-") be generated by the DFP method. If
¥B,g, <0 (2.47)

for all k, then {x,} either terminates at the unigue minimum x* of f(x) or converges to x*.
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Proof . We prove the theorem by contradiction. If the theorem is not true, there ex-
~ ists a positive number é such that (2.22) holds for all k.

We consider the updating formula for B},,., From (1.2), we can easily obtain

T T T T
B, =B— Bbk)’kthJ’tsaBk +(l+ SthSg) B,;_})LJ’&
SiVk S Vi SV

_ B,s,y;B,+,5.B; 4 (B,swyi +,5:B)(B,s, i + s B)

St Vi (s’
_ (1 L 5B ) Byswyilydls + ysiBoywi
S (siy’?

+(I+ S¢B.S, ) A _(1+ S¢Bys; ).Vay{BkstI+“)’k"§Yk3:Bk

3:5’& S{Vt vaa (S:'yk)z
siBes, Y 1 ydlyoyi |
+1+***) 2707% 2.48
( )y | @49

This implies the following relation

T T ™ *
tr(B:,,) =tr(B) —4 ykﬁsk +2 (l + s"f"s“ ) ytfkyk
Sk Ve Sibk Si Yk

1o IBSIEVIE+(TBYY 4(1 4 SiBus, ) VBl yil
(siv)’ S Vi (siyD)’
siBs: Y il
+ kiSk 2 .
(1 g ) @)

Therefore, using the above relation and inequalities (1.24) we have

1 o C 1
+4’&——+4(l+——“—)c L
APTFITE 1-c, )" [, Tl
2 |
o
+(1+ -, )ci

S.(l + M)tr(ﬂﬂ

T
tr(B, ) <tr(B) —42’—*-?*-’—* +2c4(1 +
SV 1

)tr(B,)

(1—=ec)tr(B)
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T f
hBESk C4 C 400 ) 1
—4 = +4 —| e+ —— |-
SV ??\/ Cy (C‘.‘ I—c. / Hdl,

i %\,
+2ctr(B) +4n° — ——= +[ 1+ )L 2.50
AT+ 4 Cs lidul> ( l=¢, ] _ ( )
It follows from (2.25) that

< oc,‘tr(B,J
2.51
k=1 II'(B:) ( )
This inequality. (2.47) and (2.50) imply that there exists a positive constant c¢,, such that

: : - ) 1 1

tr(B;,,) Str(B)) +¢ |:tr B, +a;+(l+al(]+ + — | 2.52
(Bl SteB) ey 2| tr(B) +o+ (Lo 14 e |+ s 259

Due to ||s/l = 0, it 1s easy to see that

Z, aizzz sty gz _ﬂl..._:_ (2.53)

holds for all large k. Similarly

* sl < _l__
% i Zudn AT 2549

holds for all large k. Therefore, there exists a positive constant ¢, such that
tr(By.,) ﬁcll(zll‘(ﬁi) +Z “I’iaE“T ) (2.55)
i=) i=d itla
holds for all k. Thus, it follows that
(tr(Be, ) S (Ztr(ﬂ) Py 7 d” ) (2.56)
Define a positive sequence {D,, k=1, 2.-* | by
D, =tr(B,). (2.57)
_ YA
Dki 2: /;Hn:Z (l)J 'i’ "I“d—. ) . (2-58)
= { y .

Then it follows from (2.56) that
tr(B) <D, (2.59)

for all k. From (2.58) we see that ﬁk 1s monotonically increasing. Thus, it follows that

I)fﬁﬁcnnlk_ﬁh 1+fi1”: (2.60)

L
SNl

Therefore. one of the following two inequalities
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D}, ,<2c,nkD,,, (2.61)
and
k
D2, <2,y —— (2.62)
i=1 Iidffl:
must hold. If (2.62) does not hold, from (2.61) and (2.31) we have
k
1
< 4 2< 2 . i
D}, S4cink*<dcicint & TdE (2.63)
It follows from (2.62) or (2.63) that there exists a constant c,, such that
Di<c 2.64
el e 269
From the above inequality, (2.59), (1.26) and (2.22), we can show that
c l/Hdtl!z
;1 D? (2.65)
Now the above relation and inequality (2.64) imply that
o 1
—— <, 2.66
*Zl Hdtlli ( )

which contradicts (2.31). This shows that the theorem is true.

3 Discussion

We have shown that the DFP method is globaily convergent if the object function is uni-
formly convex, if line search conditions are weak Wolfe inexact line search conditions, and
if some extra conditions are satisfied. From our analyses, we can see that, if either

k
yIBISI
Zl 7 mcn'gla , 3.1
or
k T k
yi |S . ]-
52‘*:' Siryi H(’Ia‘fl “dullg (3'2)

holds, then the global convergence of the DFP method can be established. But we have
not yet been able to prove any of the above two inequalities.
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