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Summary. This paper provides several new properties of the nonlinear
conjugate gradient method in [5]. Firstly, the method is proved to have a
certain self-adjusting property that is independent of the line search and
the function convexity. Secondly, under mild assumptions on the objective
function, the method is shown to be globally convergent with a variety of line
searches. Thirdly, we find that instead of the negative gradient direction, the
search direction defined by the nonlinear conjugate gradient method in [5]
can be used to restart any optimization method while guaranteeing the global
convergence of the method. Some numerical results are also presented.
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1. Introduction

The object of this paper is to further analyze the properties of the nonlin-
ear conjugate gradient method in [5]. We will focus our attention on the
unconstrained optimization problem

(1.2) min f(x), =€ R",

wheref is smooth and its gradiepis available. Conjugate gradient methods
for solving (1.1) are iterative methods of the form

(1.2) Th1 = Tk + apdy,
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whereqy is a steplength, and;, is a search direction. The initial search
directiond; is always set to-g1, and fork > 2, d;. is recursively defined

by
(1.3) di, = — gk + Brdi—1,

whereg, = V f(x), andjy is a scalar.

Since R. Fletcher and C. Reeves [9] first proposed the nonlinear conju-
gate gradient method, there have been many formulae for the ggafar
example see [7-10,12,15,18-20]. Generally, in the analyses and implemen-
tations of these conjugate gradient methods, the steplengis required
to satisfy the strong Wolfe conditions

(1.4) far + agdy) — f(2g) < daggy dy,
(1.5) \g(zr + ardy) Vdi| < —ogldy,

where0 < ¢ < o < 1, or the sufficient descent condition
(1.6) gid, < —c|lgr||?, for some constant > 0.

For example, under the conditions (1.4)-(1.5) or (1.6), reference [10] care-
fully analyzed the convergence properties of the methods related the
Fletcher-Reeves method and those related to the PolakiRiBPiolyak and
Hestenes-Stiefel methods.

In[5], we proposed a new nonlinear conjugate gradient method, in which
0k has the form of

lgx|?
dgflyk—l ’

(1.7) Br =

where|| - || means the two norm, angk_; = gx — gx—1. This method is
proved to produce a descent direction at each iteration and converge in the
sense that

(1.8) liminf ||gg|| = 0,
k—ro0

provided that the steplengthy; satisfies the standard Wolfe conditions,
namely, (1.4) and

(19) g(xk + Oékdk)Tdk > Uggdk.

Arecent reference [16] has listed the formula (1.7) as one of the four leading
contenders for the choice @f,. For convenience, we call the method (1.2)—
(1.3) with B, computed by (1.7) as the method (1.7).

If the objective functiory is uniformly convex, reference [6] proved that
the method (1.7) with several kinds of line searches also produces a descent
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direction and converge globally. In this case, it was shown that the sufficient
descent condition (1.6) holds for &> 1.

In this paper, we will first study the method (1.7) for general objective
functions and without doing any line searches. We prove thaf,df, < 0
forall k butlim infy,_, « ||gx|| # 0, thenthe sufficient descent condition (1.6)
must hold for most of the iterates. More exactly, for ang (0, 1) there
exists some constant> 0 such that, for any, relationg!d; < —c|g;|?
holds for at leasipk]| values ofi € [1, k]. Secondly, under mild assumptions
on f, the method is shown to be globally convergent with a variety of line
searches, including several typical line searches such as the standard Wolfe
line search, the Armijo line search and the one proposed in [13,11]. Thus
the result in [6] is extended to a great extent in this paper. Thirdly, we find
that, instead of the negative gradient direction, the search direction defined
by the method (1.7) can be used to restart any optimization method while
guaranteeing the global convergence of the method. Some numerical results
are also done, which shows that the new restart direction may be superior
to the negative gradient direction. Conclusions are made in the last section.

2. Self-adjusting property

Throughout this paper, we assume that
(2.1) g #0, forallk>1,

for otherwise a stationary point has been found.
To begin with, let us define two important quantities that are

(gL di)?
and
T
d
(2.3) r, = — 2k Ck
9w

The quantityg, shows the size ofl;,, whereasr; is a quantity showing
the descent degree df.. In fact, if r, > 0, d, is a descent direction.
Furthermore, ifr, > ¢ for some constant > 0, then the sufficient descent
condition (1.6) holds.

For the method (1.7), we get by multiplying (1.3) withand using (1.7)
that

2
(2.4) grdy = A" g
quykz—l
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Sinceg} dj, < 0follows g ,dy,—1 < 0if d}_,yx—1 > 0, and sincel{ g; =
—|lg1]|* < 0, a direct consequence of (2.4) is that, the method (1.7) with
the standard Wolfe line search produces a descent search direction at every
iteration. Due to relation (2.4), the formula (1.7) can be also written as

g di
91371(11:—1

(2.5) B =

On the other hand, we have from (1.3) thHat- g, = Brdi_1. Hence
(2.6) 1 dill® = BRlldr—1]1* — 295 di. — l|gel>-
Substituting (2.5) into (2.6), we can then obtain

e Il il 2l

(grdi)?  (9f1di—1)®  gidr  (grdp)*

This with the definitions of, andr; gives the relation

1 2 1 1
(2.8) Qe = qr—1 + = — —.
lorll> e lgell? 72

We will see that relation (2.8) plays an important role inthe coming analyses.
In fact, suppose that eadh is a descent direction. Then the second term
on the right side of (2.8) increases the valueg;of;, whereas the third term
decreases the value @f_;. Considering the two terms together, we see that
qr—1 increases if and only if, > 1/2. If 4 is close to zero, thegq,_; will
be significantly reduced, since the ordergf, in the second term is only
one but its order in the third term is two. This and the fact that 0 for
all & imply that, in the case wheq),_; is very small,r, must be relatively
large. Such observations make us be able to give an estimation to the lower
bound of the quantity,. To do so, we still need assume that there exist
positive constants andy such that

(2.9) 0<~y<l|gkl| <%, forallk>1.

Theorem 2.1 Consider the method (1.2), (1.3) and (1.7) whéjeis a
descent direction. If (2.9) holds, there exist positive const&nt®s andds
such that relations

01
2.10 —gid, > —,
( ) 9 O = \/E
(2.11) 2 > 2

?a
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and

(2.12) >

hold for all &k > 1.

Proof. Summing (2.8) over the iterates and noting ttiat= —g;, we get
that

k
1 2 1
i=1 ’ J

lgill® ;

Sinceq; > 0, it follows from (2.13) that

k-1
1 2 1 1 (2 1
2.14 _+)§Z <_>
NS PA ( re i) T S lgillP \ri

)

which with (2.9) and the fact that

2 1
(2.15) —— =<1
T ’I“,L-
yields the relation
1 2 7
2.16 ——-———-=(k-1)<0.
(2.16) U

This with the assumption thaj, > 0 shows that

1 ~2 — 95
217) = <1441+ L(k—1)<1+ Vi< IV,
Tk gl gl gl

Thus (2.12) holds witlis = ~/(2%). Noting that

(2.18) —gi di, = || gkll”
and that
(2.19) Ndell > llgell 7%,

we know from (2.12) and (2.9) that relations (2.10) and (2.11) hold with
61 = 6372 anddy = 62+2, respectively. This completes our proof. O

Relation (2.12) does not imply that the sufficient descent condition holds.
Underthe same assumption, however, we can show that the sufficient descent
condition must hold for most of the iterates.
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Theorem 2.2 Consider the method (1.2), (1.3) and (1.7) whégeis a
descent direction. If (2.9) holds, then for gny (0, 1) there exist constants
04 05, ¢ > 0 such that, for anyt, the relations

(2.20) —gid; > da,
(2.21) d;||* > 6,
and

(222) T > 56

hold for at leastpk| values ofi € [1, k].

Proof. For anyp € (0, 1), we chooség > 0 to be so small that

A1 2 '72p
2.23 M N —
( ) 5525 dey — ’72(1 - D)

For thisdg and anyk, we define
(2.24) I ={ie[l,k]: r; > &)}

and denoteély| to be the number of elements Ip. By (2.8), (2.9) and the
fact thatg, > 0, we can get that

2 1 72 2 1

(2.25) > <—.+2><2§:<A—2>-
. T T Yo A T T
7,6[1,16}\11€ g 1€y, g

It follows from this, (2.15) and the definition df, that
;},2
(2.26) &' (k — [ Ii]) < ?|Ik|7

whered’ is given in (2.23). The above relation and (2.23) imply that

5/,}/2

2.27 1| > —————=k > pk > .

(2.27) \k\_(g,v“ﬁgk_pk_[pk]

Therefore, for any € (0,1), if we choosels > 0 satisfying (2.23)), =
5672 andd; = 52+2, we know from (2.27), (2.18), (2.19) and (2.9) that this
theorem is true. O

Thus by Theorem 2.1 and 2.2, we expose the self-adjusting property
of the method (1.7), that is independent of the line search and the function
convexity. Itis also interesting to note that Theorem 2.2 is very similar to one
property of the BFGS variable metric method. Assuming thiatuniformly
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convex, [3] proved that for any € (0, 1) there exists some positive constant
¢ such that, for any: > 1, the relation
—a¥d.

(2.28) cos; = 9 % >c

gl Il sl
holds for at leasfpk] values ofi € [1, k]. The differences between the two
results are in that Theorem 2.2 needs not assume the uniform convexity of
the function, and that Theorem 2.2 considers about the sufficient descent
condition not the angle betweery;, anddy,.

3. Global convergence properties

In the above section, we have proved that the method (1.7) has certain self-
adjusting property that is independent of the line search and the function
convexity. In this section, we will make use of this property to establish the
global convergence for the method (1.7) using a variety of line searches.
Suppose that the objective function satisfies the following assumption.

Assumption 3.1 (i) The level set. = {z € R" : f(zx) < f(x1)}is
bounded; (ii) In some neighborhooll” of £, f is differentiable and its
gradientg is Lipschitz continuous, namely, there exists a consfant 0
such that

(3.1) lg(x) — g(X)|| < L||x —X||, forall z, X € N.
Suppose also that the line search is such that the following relation holds:

(3.2) fr = fer1 > cmin {—gi dy, [|del®, q; '}

wherec > 0 is constant, andy, is given in (2.2). Then we can show the
following general convergence result for the method (1.7). The proof given
below is by way of Theorem 2.1.

Theorem 3.2 Suppose that; is a starting point for which Assumption 3.1
holds. Consider the method (1.2), (1.3) and (1.7) whérds a descent
direction. If the line search is such that relation (3.2) holds for/allwe
have that

(3.3) liminf ||gx|| = 0.
k—ro00

Proof. Assumption 3.1 implies that is bounded below. Thus we can get
by summing (3.2) over the iterates that

(3.4) > min {~gFdy, ldp|?, gg*} < +oo.
E>1
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Now we proceed by contradiction and assume that there exists some constant
~ > 0 such that

(3.5) lgll >, forallk > 1.

Because Assumption 3.1 implies that there exists some constartsuch
that

(3.6) lgell <75, forallk >1,

we know that (2.9) holds. Thus by Theorem 2.1, relations (2.10) and (2.11)
hold for some positive constanfisandds. Using (2.15) and (3.5) in (2.13),
we can get that

1
(3.7) % < k-1t =5,
Y
which withg; = 1 implies that
2
. >
(3.8) q =z L
It follows from (2.10), (2.11) and (3.8) that
(3.9) > min {—gidy, [lde®, '} = oc.
k>1

The above relation contradicts (3.4). Therefore this theorem is trued

The above theorem clearly extends [5]'s convergence result for the
method (1.7) using the standard Wolfe line search, since under Assump-
tion 3.1 onf, [21] proved that any descent method (1.2) with the standard
Wolfe line search give the relation

(3.10) T — fot1 > ngl,

wherec > 0 is some constant.

Besides the standard Wolfe line search, relation (3.2) can also be achieved
by many other kinds of line searches. For example, the Armijo line seach
([1]) is to choose the smallest nonnegative integesuch that the relation
(1.4) holds withny, = A™, where) € (0, 1) is constant. For this line search,
under Assumption 3.1 ofi, one can show that

(3.11) fx = fr41 = cmin {fg;fdk, q,;l} .

Another example isthe line search proposedin [13]and[11]. Thisline search
is to choose the smallest nonnegative integesuch that the steplength
o = A" satisfies

(3.12) flag + ardy) — fr < —dag||dk?,
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where), 0 € (0, 1) is constant. For this line search, one can establish the
relation

(3.13) fr = fep1 > cmin {||dg||*, ;" }

Thus the line search condition (3.2) also holds.

If the objective functionf is strictly convex, we can show that each
search direction generated by the method (1.7) must be downhill. Thus by
Theorem 3.2, we immediately have the following result.

Corollary 3.3 Suppose that; is a starting point for which Assumption 3.1
holds. Consider the method (1.2), (1.3) and (1.7Y. i$ strictly convex on
the level seLZ, namely,

(3.14) (g9(z) — g(X)"(z —%) >0, foranyz,Xec L,z +¥X,

then eachi, is a descent direction. Further, if the line search is such that
relation (3.2) holds, the method converges in the sense that (3.3) holds.

Proof. By Theorem 3.2, it suffices to show that
(3.15) grd, <0, forallk > 1.

In fact, sinced; = —g¢1, (3.15) clearly holds fok = 1. Suppose that
gt di—1 < 0. It follows from (3.14) that

(3.16) di_1ye_1 > 0.

Thus we know from (2.4) thajt,fdk < 0. Therefore by induction, (3.15) is
true. O

In contrast with Theorems 2.3 and 2.4 in [6], the above Corollary needs
not assume the uniform convexity of the objective function. For general
objective functions, the search direction generated by the method (1.7) needs
not be downhillifthe line search is only such that (3.2) holds. For this, instead
of the method (1.7), we may consider the corresponding method of

gkl
max{d} |yk—1,—gr dk—1}

(3.17) Bk =
As is known, the conjugate descent method ([8]) compptess follows:

(3.18) B = M
*ng_ldk—l

Therefore the method (3.17) can be regarded as a hybrid method of the
method (1.7) and the conjugate descent method. In the case that the line
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search satisfies (3.2), we can show the descent property and the global con-
vergence of this hybrid method for general objective functions. The proof
of this result can be achieved similarly to the results for the method (1.7),
and hence is omitted here.

Theorem 3.4 Suppose that; is a starting point for which Assumption
3.1 holds. Consider the method (1.2), (1.3) and (3.17). Then éatha
descent direction. Further, if the line search is such that relation (3.2) holds,
the method converges in the sense that (3.3) holds.

Interestingly enough, we may also consider the following variant of the
method (1.7):

dg_lykfl

If dy = —g1, we have by direct calculations that
(3.20) grdi = —|lg1]*, forallk > 1,

which implies that each search direction is downhilyif # 0. Similarly,
we can prove that such a variant of the method (1.7) is globally convergent
for general objective functions provided that the line search satisfies (3.2).

4. Property as a restart direction of optimization methods

In the implementations of many optimization methods, one may often meet
the difficulty that the search direction at some iteration is very poor. For
example, the Newton’s direction is not well defined if the Hessian of the
objective function is singular. Even if the Hessian is nonsingular but not
positive, the Newton’s direction is not necessarily a descent direction. An-
other example is the Polak-Rére-Polyak conjugate gradient method ([18,
19]). This method is now generally believed to be one of the most efficient
conjugate gradient methods. Even for strictly convex quadratic functions,
however, the Polak-Ribre-Polyak method with the strong Wolfe line search
(1.4)—(1.5) may produce an uphill search direction ([4]).

In the case when the search directignis poor, a simple remedy is to
restart the method with the negative gradient directig. Such a remedy
can easily guarantee the global convergence of the method, but has a major
defect, that is, the second derivative information obtained along the previous
directiondy_4 is discarded. A detailed description for this can be seen in
[17]. In the following, we will show that the search direction defined by
the method (1.7) can also be used to restart an optimization method while
ensuring the global convergence of the method. Since the direction defined
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by the method (1.7) includes the second derivative information that is found
alongd_1, it is reasonable to expect that the new restart direction would
be more efficient than the negative gradient direction.

Now we denotecl,(j) to be the direction defined by some optimization

method, andi,(f) to be the direction defined by the method (1.7). Thus we
can write

Il gr.||?
(4.1) d? = g+ 2L_g, )
b drlg_lykfl

Given an initial directionl; satisfyinggfdl < 0, for k > 2 we consider the
following direction:

d(l) if cos 9(1) > cos 9(2);
(4.2) dp =14 ) Bom ok
d,f) , otherwise.

In the above relatiorﬂ,il) and 9,&2) stand for the angles betweery, and

d,(:), and between-g; and d,(f), respectively. For the method (1.2) where
di is given in (4.2), we can prove the following general result.

Theorem 4.1 Suppose that; is a starting point for which Assumption 3.1
holds. Consider the method (1.2) and (4.2), whéjé is generated by any

optimization method ano],iz) is defined in (4.1), and where the line search
satisfies the standard Wolfe conditions (1.4) and (1.9). Thehdf < 0,
we have that

(4.3) gid, <0, forall k> 1.

Further, we have thalim inf_, ||gx|| = 0.

Proof. First, we show (4.3) by induction. The assumption t#gt; < 0
implies that (4.3) is true fok = 1. Suppose that

(4.4) gi 1dj_1 < 0.

Then we have from the line search condition (1.5) that

(4.5) di_1yk—1 > 0.

Then it follows from (4.4), (4.5) and (2.4) wiilh. replaced byif) that
(4.6) grd? <o.

This together with the definition of, shows thatg,?dk < 0. Thus by
induction, (4.3) holds for alt > 1.
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By the definition ofdy, we also have that

(98di)? _ (9dy)?
ldill* a2

4.7

For the directiord,(f) givenin (4.1), we have similarly to (2.7) that
1212 Dl 2 gl
(ggd,(f))z (gg_ldk—l) ggdl(f) (ggdl(f))z

which implies that

2 2
[ Y g |12
@~ (gT S PATER Rl oy
(gidy”)? (gh_1dk-1)  llgwll gid;
| dr—1|? 1
~ (g ydk—1)  llgell?
Combining (4.7) and (4.9), we get that
[ dy||? | dg—1]? 1 ‘
(98di)? = (9f (dk—1) gkl

Suppose that the theorem is not true and there exists a constaftsuch
that

(4.8)

(4.9)

(4.10)

(4.12) lgkl| >, forallk > 1.
Then by summing (4.10), we can obtain

|| ||? [di|> | k-1
(ghdi)? = (gfdr)? %7

(4.12)

which shows that

(4.13) S d)S

2
2 i

This contradicts the Zoutendijk condition, since [21] showed that, under
Assumption 3.1 onf, any descent method (1.2) with the standard Wolfe
line search gives

(4.14) Z (ggdk)2 < 00

2
2]

The contradiction shows théin infy_, ||gx|| = 0. 0
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The above theorem shows that the direction defined by the method (1.7)
can be used to restart any optimization method while ensuring the descent
property and the global convergence of the method.

To compare the efficiency of using the new restart direction with that of
using the negative gradient direction, some numerical experiments have been
done with double precisions on an SGI Indigo workstation. Our tests use

the memoryless BFGS method ([2]) to generate the dire@%}m namely,

(4.15) d,(cl) = —DPygr,
where
L SEaYk—1 HYke1sh lye—1l1? \ sr—154_1
Py=1- T 1+ 7 T )
Sp—1Yk—1 Sp_1Yk—1 ) Sp_1Yk—1
(4.16)

and wheres,_1 = xp — Tp_1, Ys—1 = 9 — gr—1. Besides the original
memoryless BFGS method, we also tested the method with two different
restart strategies. The first is to restart the method with the negative gradient

direction—gj, if the angled!) between—g; andd,(fl) is close t090°; more
exactly, we tested the method

(4.17) d. — iV, if cos0l) > 0.1;
. : —gr, Otherwise.

The second is to restart the method with the directif;% given in (4.1);
more exactly, we tested the method

dg), if cos 0,(:) > min{cos 0,&2), 0.1};
dff), otherwise,

(4.18)  dj = {
wheree,(f) still denotes the angle betweemy, andd,(f). For convenience, we
call the above three versions of the memoryless BFGS method as Algorithm
1, Algorithm 2, and Algorithm 3, respectively.

The test problems are taken from MoiGarbow and Hillstrom [14].
Our line search subroutine computes the stepleagtbuch that the strong
Wolfe conditions (1.4)—(1.5) hold with = 0.01 ando = 0.1. The stopping
condition is

(4.19) gl < 107°.

The numerical results are listed in Table 1. They are written in the form of
NI/NF/NG, where NI, NF, NG are numbers of iterations, function evalua-
tions, and gradient evaluations, respectively. In addition, column “P” denotes
the number of the test problem, and “n” the number of variables.
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Table 1. Testing different versions of memoryless BFGS method

P n Alg. 1 Alg. 2 Alg. 3

1 3 103/353/136  59/206/85 56/203/83

2 6 130/273/212 184/377/284 130/273/212

3 3 3/7/5 3/7/5 3/7/5

5 3 8/28/21 8/24/17 8/28/21

6 6 4/14/10 4/14/10 4/14/10

8 8 85/268/232 32/86/73 30/89/76

9 3 7/18/11 7/18/11 7/18/11
13 20 55/111/109 55/111/109 55/111/109
14 14 24/120/67 35/132/77 22/90/51
15 16 194/558/248 97/293/124  114/331/149
16 2 10/31/20 10/31/20 10/31/20
17 4 135/566/255 164/552/217  86/306/122
18 8 34/99/47 34/99/47 34/99/47

Table 2. Numerical comparisons

Alg. Alg.1 Alg.2 Alg.3

NI 792 692 559
NF 2446 1950 1600
NG 1373 1079 916

From Table 1, we can see that the performances of the three algorithms
for seven of the test problems are the same. We can also see that Algorithm
2 sometimes performs worse than Algorithm 1, for example for Problem 2
and 14, whereas Algorithm 3 performs not worse than Algorithm 1 for all
the test problems. Nevertheless, Algorithm 3 does not perform uniformly
better than Algorithm 2, for example for Problem 15.

For further comparisons, we sum all the numerical results for each of
the three algorithms. See Table 2, in whidtt, NF', NG denote the to-
tal numbers of iterations, function evaluations, and gradient evaluations,
respectively. From Table 2, we can clearly find that Algorithm 3 is better
than Algorithm 2. Therefore our numerical results show that instead of the
negative gradient direction, the direction defined by the method (1.7) can
be used to restart an optimization method and the numerical performances
may be better.

5. Conclusions

We have further analyzed the nonlinear conjugate gradient method in [5] and
exposed several new properties of the method. Specifically, we have found
that the method has a certain self-adjusting property. Such a property is
independent of the line search and the function convexity, and is very useful
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in the convergence analyses of the method. Under mild assumptions on the
objective function, the method is shown to be globally convergent with a
variety of line searches. We have also found that instead of the negative
gradient direction, the direction defined by the method in [5] can be used to
restart any optimization method while guaranteeing the global convergence
of the method. Some numerical results are made, which showed that the new
restart direction may be better than the negative gradient direction.
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