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Summary. This paper provides several new properties of the nonlinear
conjugate gradient method in [5]. Firstly, the method is proved to have a
certain self-adjusting property that is independent of the line search and
the function convexity. Secondly, under mild assumptions on the objective
function, themethod is shown to beglobally convergentwith a variety of line
searches. Thirdly, we find that instead of the negative gradient direction, the
search direction defined by the nonlinear conjugate gradient method in [5]
can be used to restart any optimizationmethodwhile guaranteeing the global
convergence of the method. Some numerical results are also presented.
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1. Introduction

The object of this paper is to further analyze the properties of the nonlin-
ear conjugate gradient method in [5]. We will focus our attention on the
unconstrained optimization problem

min f(x), x ∈ Rn,(1.1)

wheref is smoothand its gradientg is available.Conjugategradientmethods
for solving (1.1) are iterative methods of the form

xk+1 = xk + αkdk,(1.2)
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whereαk is a steplength, anddk is a search direction. The initial search
directiond1 is always set to−g1, and fork ≥ 2, dk is recursively defined
by

dk = −gk + βkdk−1,(1.3)

wheregk = ∇f(xk), andβk is a scalar.
Since R. Fletcher and C. Reeves [9] first proposed the nonlinear conju-

gate gradient method, there have been many formulae for the scalarβk, for
example see [7–10,12,15,18–20]. Generally, in the analyses and implemen-
tations of these conjugate gradient methods, the steplengthαk is required
to satisfy the strong Wolfe conditions

f(xk + αkdk) − f(xk) ≤ δαkg
T
k dk,(1.4)

|g(xk + αkdk)Tdk| ≤ −σgTk dk,(1.5)

where0 < δ < σ < 1, or the sufficient descent condition

gTk dk ≤ −c‖gk‖2, for some constantc > 0.(1.6)

For example, under the conditions (1.4)-(1.5) or (1.6), reference [10] care-
fully analyzed the convergence properties of the methods related the
Fletcher-Reeves method and those related to the Polak-Ribière-Polyak and
Hestenes-Stiefel methods.

In [5], we proposed a newnonlinear conjugate gradientmethod, in which
βk has the form of

βk =
‖gk‖2

dT
k−1yk−1

,(1.7)

where‖ · ‖ means the two norm, andyk−1 = gk − gk−1. This method is
proved to produce a descent direction at each iteration and converge in the
sense that

lim inf
k→∞

‖gk‖ = 0,(1.8)

provided that the steplengthαk satisfies the standard Wolfe conditions,
namely, (1.4) and

g(xk + αkdk)Tdk ≥ σgTk dk.(1.9)

A recent reference [16] has listed the formula (1.7) as one of the four leading
contenders for the choice ofβk. For convenience, we call the method (1.2)–
(1.3) withβk computed by (1.7) as the method (1.7).

If the objective functionf is uniformly convex, reference [6] proved that
the method (1.7) with several kinds of line searches also produces a descent



New properties of a nonlinear conjugate gradient method 85

direction and converge globally. In this case, it was shown that the sufficient
descent condition (1.6) holds for allk ≥ 1.

In this paper, we will first study the method (1.7) for general objective
functions and without doing any line searches. We prove that, ifgTk dk < 0
for allk butlim infk→∞ ‖gk‖ /= 0, then the sufficient descent condition (1.6)
must hold for most of the iterates. More exactly, for anyp ∈ (0, 1) there
exists some constantc > 0 such that, for anyk, relationgTi di ≤ −c‖gi‖2

holds for at least[pk] values ofi ∈ [1, k]. Secondly, under mild assumptions
on f , the method is shown to be globally convergent with a variety of line
searches, including several typical line searches such as the standard Wolfe
line search, the Armijo line search and the one proposed in [13,11]. Thus
the result in [6] is extended to a great extent in this paper. Thirdly, we find
that, instead of the negative gradient direction, the search direction defined
by the method (1.7) can be used to restart any optimization method while
guaranteeing the global convergence of themethod. Some numerical results
are also done, which shows that the new restart direction may be superior
to the negative gradient direction. Conclusions are made in the last section.

2. Self-adjusting property

Throughout this paper, we assume that

gk /= 0, for all k ≥ 1,(2.1)

for otherwise a stationary point has been found.
To begin with, let us define two important quantities that are

qk =
‖dk‖2

(gTk dk)2
(2.2)

and

rk = − g
T
k dk

‖gk‖2 .(2.3)

The quantityqk shows the size ofdk, whereasrk is a quantity showing
the descent degree ofdk. In fact, if rk > 0, dk is a descent direction.
Furthermore, ifrk ≥ c for some constantc > 0, then the sufficient descent
condition (1.6) holds.

For themethod (1.7), we get bymultiplying (1.3) withgk and using (1.7)
that

gTk dk =
‖gk‖2

dT
k−1yk−1

gTk−1dk−1.(2.4)
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SincegTk dk < 0 follows gTk−1dk−1 < 0 if dT
k−1yk−1 > 0, and sincedT

1 g1 =
−‖g1‖2 < 0, a direct consequence of (2.4) is that, the method (1.7) with
the standard Wolfe line search produces a descent search direction at every
iteration. Due to relation (2.4), the formula (1.7) can be also written as

βk =
gTk dk

gTk−1dk−1
.(2.5)

On the other hand, we have from (1.3) thatdk + gk = βkdk−1. Hence

‖dk‖2 = β2
k‖dk−1‖2 − 2gTk dk − ‖gk‖2.(2.6)

Substituting (2.5) into (2.6), we can then obtain

‖dk‖2

(gTk dk)2
=

‖dk−1‖2

(gTk−1dk−1)2
− 2
gTk dk

− ‖gk‖2

(gTk dk)2
.(2.7)

This with the definitions ofqk andrk gives the relation

qk = qk−1 +
1

‖gk‖2
2
rk

− 1
‖gk‖2

1
r2k
.(2.8)

Wewill see that relation (2.8) plays an important role in the cominganalyses.
In fact, suppose that eachdk is a descent direction. Then the second term

on the right side of (2.8) increases the value ofqk−1, whereas the third term
decreases the value ofqk−1. Considering the two terms together, we see that
qk−1 increases if and only ifrk ≥ 1/2. If rk is close to zero, thenqk−1 will
be significantly reduced, since the order of1/rk in the second term is only
one but its order in the third term is two. This and the fact thatqk ≥ 0 for
all k imply that, in the case whenqk−1 is very small,rk must be relatively
large. Such observations make us be able to give an estimation to the lower
bound of the quantityrk. To do so, we still need assume that there exist
positive constantsγ andγ̄ such that

0 < γ ≤ ‖gk‖ ≤ γ̄, for all k ≥ 1.(2.9)

Theorem 2.1 Consider the method (1.2), (1.3) and (1.7) wheredk is a
descent direction. If (2.9) holds, there exist positive constantsδ1, δ2 andδ3
such that relations

−gTk dk ≥ δ1√
k
,(2.10)

‖dk‖2 ≥ δ2
k
,(2.11)
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and

rk ≥ δ3√
k

(2.12)

hold for all k ≥ 1.

Proof. Summing (2.8) over the iterates and noting thatd1 = −g1, we get
that

qk =
k∑

i=1

1
‖gi‖2

(
2
ri

− 1
r2i

)
.(2.13)

Sinceqk ≥ 0, it follows from (2.13) that

1
‖gk‖2

(
− 2
rk

+
1
r2k

)
≤

k−1∑
i=1

1
‖gi‖2

(
2
ri

− 1
r2i

)
,(2.14)

which with (2.9) and the fact that

2
ri

− 1
r2i

≤ 1(2.15)

yields the relation

1
r2k

− 2
rk

− γ̄2

γ2 (k − 1) ≤ 0.(2.16)

This with the assumption thatrk > 0 shows that

1
rk

≤ 1 +

√
1 +

γ̄2

γ2 (k − 1) ≤ 1 +
γ̄

γ

√
k ≤ 2γ̄

γ

√
k.(2.17)

Thus (2.12) holds withδ3 = γ/(2γ̄). Noting that

−gTk dk = ‖gk‖2 rk(2.18)

and that

‖dk‖ ≥ ‖gk‖ rk,(2.19)

we know from (2.12) and (2.9) that relations (2.10) and (2.11) hold with
δ1 = δ3γ2 andδ2 = δ23γ

2, respectively. This completes our proof. 
�
Relation (2.12) does not imply that the sufficient descent condition holds.

Under thesameassumption, however,wecanshow that thesufficient descent
condition must hold for most of the iterates.
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Theorem 2.2 Consider the method (1.2), (1.3) and (1.7) wheredk is a
descent direction. If (2.9) holds, then for anyp ∈ (0, 1) there exist constants
δ4 δ5, δ6 > 0 such that, for anyk, the relations

−gTi di ≥ δ4,(2.20)

‖di‖2 ≥ δ5,(2.21)

and

ri ≥ δ6(2.22)

hold for at least[pk] values ofi ∈ [1, k].

Proof. For anyp ∈ (0, 1), we chooseδ6 > 0 to be so small that

δ′ �
=

1
δ26

− 2
δ6γ

≥ γ̄2p

γ2(1 − p) .(2.23)

For thisδ6 and anyk, we define

Ik = {i ∈ [1, k] : ri ≥ δ6}(2.24)

and denote|Ik| to be the number of elements inIk. By (2.8), (2.9) and the
fact thatqk ≥ 0, we can get that

∑
i∈[1,k]\Ik

(
− 2
ri

+
1
r2i

)
≤ γ̄2

γ2

∑
i∈Ik

(
2
ri

− 1
r2i

)
.(2.25)

It follows from this, (2.15) and the definition ofIk that

δ′(k − |Ik|) ≤ γ̄2

γ2 |Ik|,(2.26)

whereδ′ is given in (2.23). The above relation and (2.23) imply that

|Ik| ≥ δ′γ2

δ′γ2 + γ̄2k ≥ pk ≥ [pk].(2.27)

Therefore, for anyp ∈ (0, 1), if we chooseδ6 > 0 satisfying (2.23),δ4 =
δ6γ

2 andδ5 = δ26γ
2, we know from (2.27), (2.18), (2.19) and (2.9) that this

theorem is true. 
�
Thus by Theorem 2.1 and 2.2, we expose the self-adjusting property

of the method (1.7), that is independent of the line search and the function
convexity. It is also interesting to note that Theorem2.2 is very similar to one
property of the BFGS variablemetric method. Assuming thatf is uniformly
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convex, [3] proved that for anyp ∈ (0, 1) there exists some positive constant
c such that, for anyk ≥ 1, the relation

cos θi =
−gTi di

‖gi‖‖di‖ ≥ c(2.28)

holds for at least[pk] values ofi ∈ [1, k]. The differences between the two
results are in that Theorem 2.2 needs not assume the uniform convexity of
the function, and that Theorem 2.2 considers about the sufficient descent
condition not the angle between−gk anddk.

3. Global convergence properties

In the above section, we have proved that the method (1.7) has certain self-
adjusting property that is independent of the line search and the function
convexity. In this section, we will make use of this property to establish the
global convergence for the method (1.7) using a variety of line searches.

Suppose that the objective function satisfies the following assumption.

Assumption 3.1 (i) The level setL = {x ∈ �n : f(x) ≤ f(x1)} is
bounded; (ii) In some neighborhoodN of L, f is differentiable and its
gradientg is Lipschitz continuous, namely, there exists a constantL > 0
such that

‖g(x) − g(x̃)‖ ≤ L‖x− x̃‖, for all x, x̃ ∈ N .(3.1)

Suppose also that the line search is such that the following relation holds:

fk − fk+1 ≥ cmin
{−gTk dk, ‖dk‖2, q−1

k

}
,(3.2)

wherec > 0 is constant, andqk is given in (2.2). Then we can show the
following general convergence result for the method (1.7). The proof given
below is by way of Theorem 2.1.

Theorem 3.2 Suppose thatx1 is a starting point for which Assumption 3.1
holds. Consider the method (1.2), (1.3) and (1.7) wheredk is a descent
direction. If the line search is such that relation (3.2) holds for allk, we
have that

lim inf
k→∞

‖gk‖ = 0.(3.3)

Proof. Assumption 3.1 implies thatf is bounded below. Thus we can get
by summing (3.2) over the iterates that∑

k≥1

min
{−gTk dk, ‖dk‖2, q−1

k

}
< +∞.(3.4)
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Nowweproceedby contradiction andassume that there exists someconstant
γ > 0 such that

‖gk‖ ≥ γ, for all k ≥ 1.(3.5)

Because Assumption 3.1 implies that there exists some constantγ̄ > 0 such
that

‖gk‖ ≤ γ̄, for all k ≥ 1,(3.6)

we know that (2.9) holds. Thus by Theorem 2.1, relations (2.10) and (2.11)
hold for some positive constantsδ1 andδ2. Using (2.15) and (3.5) in (2.13),
we can get that

qk ≤ qk−1 +
1
γ2 ,(3.7)

which with q1 = 1 implies that

q−1
k ≥ γ2

k
.(3.8)

It follows from (2.10), (2.11) and (3.8) that∑
k≥1

min
{−gTk dk, ‖dk‖2, q−1

k

}
= ∞.(3.9)

The above relation contradicts (3.4). Therefore this theorem is true.
�
The above theorem clearly extends [5]’s convergence result for the

method (1.7) using the standard Wolfe line search, since under Assump-
tion 3.1 onf , [21] proved that any descent method (1.2) with the standard
Wolfe line search give the relation

fk − fk+1 ≥ cq−1
k ,(3.10)

wherec > 0 is some constant.
Besides thestandardWolfe linesearch, relation (3.2) canalsobeachieved

by many other kinds of line searches. For example, the Armijo line seach
([1]) is to choose the smallest nonnegative integerm such that the relation
(1.4) holds withαk = λm, whereλ ∈ (0, 1) is constant. For this line search,
under Assumption 3.1 onf , one can show that

fk − fk+1 ≥ cmin
{−gTk dk, q

−1
k

}
.(3.11)

Another example is the line searchproposed in [13] and [11]. This line search
is to choose the smallest nonnegative integerm such that the steplength
αk = λm satisfies

f(xk + αkdk) − fk ≤ −δα2
k‖dk‖2,(3.12)
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whereλ, δ ∈ (0, 1) is constant. For this line search, one can establish the
relation

fk − fk+1 ≥ cmin
{||dk||2, q−1

k

}
.(3.13)

Thus the line search condition (3.2) also holds.
If the objective functionf is strictly convex, we can show that each

search direction generated by the method (1.7) must be downhill. Thus by
Theorem 3.2, we immediately have the following result.

Corollary 3.3 Suppose thatx1 is a starting point for which Assumption 3.1
holds. Consider the method (1.2), (1.3) and (1.7). Iff is strictly convex on
the level setL, namely,

(g(x) − g(x̃))T(x− x̃) > 0, for anyx, x̃ ∈ L, x /= x̃,(3.14)

then eachdk is a descent direction. Further, if the line search is such that
relation (3.2) holds, the method converges in the sense that (3.3) holds.

Proof. By Theorem 3.2, it suffices to show that

gTk dk < 0, for all k ≥ 1.(3.15)

In fact, sinced1 = −g1, (3.15) clearly holds fork = 1. Suppose that
gTk−1dk−1 < 0. It follows from (3.14) that

dT
k−1yk−1 > 0.(3.16)

Thus we know from (2.4) thatgTk dk < 0. Therefore by induction, (3.15) is
true. 
�

In contrast with Theorems 2.3 and 2.4 in [6], the above Corollary needs
not assume the uniform convexity of the objective function. For general
objective functions, the search direction generated by themethod (1.7) needs
not bedownhill if the linesearch isonly such that (3.2) holds.For this, instead
of the method (1.7), we may consider the corresponding method of

βk =
‖gk‖2

max{dT
k−1yk−1,−gTk−1dk−1}

.(3.17)

As is known, the conjugate descent method ([8]) computesβk as follows:

βk =
‖gk‖2

−gTk−1dk−1
.(3.18)

Therefore the method (3.17) can be regarded as a hybrid method of the
method (1.7) and the conjugate descent method. In the case that the line
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search satisfies (3.2), we can show the descent property and the global con-
vergence of this hybrid method for general objective functions. The proof
of this result can be achieved similarly to the results for the method (1.7),
and hence is omitted here.

Theorem 3.4 Suppose thatx1 is a starting point for which Assumption
3.1 holds. Consider the method (1.2), (1.3) and (3.17). Then eachdk is a
descent direction. Further, if the line search is such that relation (3.2) holds,
the method converges in the sense that (3.3) holds.

Interestingly enough, we may also consider the following variant of the
method (1.7):

dk = −d
T
k−1yk−1

‖gk‖2 gk + dk−1.(3.19)

If d1 = −g1, we have by direct calculations that
gTk dk = −||g1‖2, for all k ≥ 1,(3.20)

which implies that each search direction is downhill ifg1 /= 0. Similarly,
we can prove that such a variant of the method (1.7) is globally convergent
for general objective functions provided that the line search satisfies (3.2).

4. Property as a restart direction of optimization methods

In the implementations of many optimization methods, one may often meet
the difficulty that the search direction at some iteration is very poor. For
example, the Newton’s direction is not well defined if the Hessian of the
objective function is singular. Even if the Hessian is nonsingular but not
positive, the Newton’s direction is not necessarily a descent direction. An-
other example is the Polak-Ribiére-Polyak conjugate gradient method ([18,
19]). This method is now generally believed to be one of the most efficient
conjugate gradient methods. Even for strictly convex quadratic functions,
however, thePolak-Ribiére-Polyakmethodwith the strongWolfe line search
(1.4)–(1.5) may produce an uphill search direction ([4]).

In the case when the search directiondk is poor, a simple remedy is to
restart the method with the negative gradient direction−gk. Such a remedy
can easily guarantee the global convergence of the method, but has a major
defect, that is, the second derivative information obtained along the previous
directiondk−1 is discarded. A detailed description for this can be seen in
[17]. In the following, we will show that the search direction defined by
the method (1.7) can also be used to restart an optimization method while
ensuring the global convergence of the method. Since the direction defined
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by the method (1.7) includes the second derivative information that is found
alongdk−1, it is reasonable to expect that the new restart direction would
be more efficient than the negative gradient direction.

Now we denoted(1)
k to be the direction defined by some optimization

method, andd(2)
k to be the direction defined by the method (1.7). Thus we

can write

d
(2)
k = −gk +

‖gk‖2

dT
k−1yk−1

dk−1.(4.1)

Given an initial directiond1 satisfyinggT1 d1 < 0, for k ≥ 2we consider the
following direction:

dk =

{
d

(1)
k , if cos θ(1)

k ≥ cos θ(2)k ;

d
(2)
k , otherwise.

(4.2)

In the above relation,θ(1)k andθ(2)k stand for the angles between−gk and

d
(1)
k , and between−gk andd(2)

k , respectively. For the method (1.2) where
dk is given in (4.2), we can prove the following general result.

Theorem 4.1 Suppose thatx1 is a starting point for which Assumption 3.1
holds. Consider the method (1.2) and (4.2), whered

(1)
k is generated by any

optimization method andd(2)
k is defined in (4.1), and where the line search

satisfies the standard Wolfe conditions (1.4) and (1.9). Then ifgT1 d1 < 0,
we have that

gTk dk < 0, for all k ≥ 1.(4.3)

Further, we have thatlim infk→∞ ‖gk‖ = 0.

Proof. First, we show (4.3) by induction. The assumption thatgT1 d1 < 0
implies that (4.3) is true fork = 1. Suppose that

gTk−1dk−1 < 0.(4.4)

Then we have from the line search condition (1.5) that

dT
k−1yk−1 > 0.(4.5)

Then it follows from (4.4), (4.5) and (2.4) withdk replaced byd
(2)
k that

gTk d
(2)
k < 0.(4.6)

This together with the definition ofdk shows thatgTk dk < 0. Thus by
induction, (4.3) holds for allk ≥ 1.
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By the definition ofdk, we also have that

(gTk dk)2

‖dk‖2 ≥ (gTk d
(2)
k )2

‖d(2)
k ‖2

.(4.7)

For the directiond(2)
k given in (4.1), we have similarly to (2.7) that

‖d(2)
k ‖2

(gTk d
(2)
k )2

=
‖dk−1‖2

(gTk−1dk−1)
− 2

gTk d
(2)
k

− ‖gk‖2

(gTk d
(2)
k )2

,(4.8)

which implies that

‖d(2)
k ‖2

(gTk d
(2)
k )2

=
‖dk−1‖2

(gTk−1dk−1)
+

1
‖gk‖2


1 −

(
1 +

‖gk‖2

gTk d
(2)
k

)2



≤ ‖dk−1‖2

(gTk−1dk−1)
+

1
‖gk‖2 .(4.9)

Combining (4.7) and (4.9), we get that

‖dk‖2

(gTk dk)2
≤ ‖dk−1‖2

(gTk−1dk−1)
+

1
‖gk‖2 .(4.10)

Suppose that the theorem is not true and there exists a constantγ > 0 such
that

‖gk‖ ≥ γ, for all k ≥ 1.(4.11)

Then by summing (4.10), we can obtain

‖dk‖2

(gTk dk)2
≤ ‖d1‖2

(gT1 d1)2
+
k − 1
γ2 ,(4.12)

which shows that ∑
k≥1

(gTk dk)2

‖dk‖2 = ∞.(4.13)

This contradicts the Zoutendijk condition, since [21] showed that, under
Assumption 3.1 onf , any descent method (1.2) with the standard Wolfe
line search gives

∑
k≥1

(gTk dk)2

‖dk‖2 <∞.(4.14)

The contradiction shows thatlim infk→∞ ‖gk‖ = 0. 
�
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The above theorem shows that the direction defined by the method (1.7)
can be used to restart any optimization method while ensuring the descent
property and the global convergence of the method.

To compare the efficiency of using the new restart direction with that of
using thenegativegradient direction, somenumerical experimentshavebeen
done with double precisions on an SGI Indigo workstation. Our tests use
the memoryless BFGS method ([2]) to generate the directiond

(1)
k , namely,

d
(1)
k = −Pkgk,(4.15)

where

Pk = I − sTk−1yk−1 + yk−1s
T
k−1

sTk−1yk−1
+

(
1 +

‖yk−1‖2

sTk−1yk−1

)
sk−1s

T
k−1

sTk−1yk−1
,

(4.16)

and wheresk−1 = xk − xk−1, yk−1 = gk − gk−1. Besides the original
memoryless BFGS method, we also tested the method with two different
restart strategies. The first is to restart the method with the negative gradient
direction−gk if the angleθ(1) between−gk andd(1)

k is close to90o; more
exactly, we tested the method

d̄k =

{
d

(1)
k , if cos θ(1)k ≥ 0.1;

−gk, otherwise.
(4.17)

The second is to restart the method with the directiond(2)
k given in (4.1);

more exactly, we tested the method

d̂k =

{
d

(1)
k , if cos θ(1)k ≥ min{cos θ(2)k , 0.1};
d

(2)
k , otherwise,

(4.18)

whereθ(2)k still denotes theangle between−gk andd(2)
k . For convenience,we

call the above three versions of thememoryless BFGSmethod as Algorithm
1, Algorithm 2, and Algorithm 3, respectively.

The test problems are taken from Moré, Garbow and Hillstrom [14].
Our line search subroutine computes the steplengthαk such that the strong
Wolfe conditions (1.4)–(1.5) hold withδ = 0.01 andσ = 0.1. The stopping
condition is

‖gk‖2 ≤ 10−6.(4.19)

The numerical results are listed in Table 1. They are written in the form of
NI/NF/NG, where NI, NF, NG are numbers of iterations, function evalua-
tions, andgradient evaluations, respectively. In addition, column “P”denotes
the number of the test problem, and “n” the number of variables.
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Table 1. Testing different versions of memoryless BFGS method

P n Alg. 1 Alg. 2 Alg. 3

1 3 103/353/136 59/206/85 56/203/83
2 6 130/273/212 184/377/284 130/273/212
3 3 3/7/5 3/7/5 3/7/5
5 3 8/28/21 8/24/17 8/28/21
6 6 4/14/10 4/14/10 4/14/10
8 8 85/268/232 32/86/73 30/89/76
9 3 7/18/11 7/18/11 7/18/11
13 20 55/111/109 55/111/109 55/111/109
14 14 24/120/67 35/132/77 22/90/51
15 16 194/558/248 97/293/124 114/331/149
16 2 10/31/20 10/31/20 10/31/20
17 4 135/566/255 164/552/217 86/306/122
18 8 34/99/47 34/99/47 34/99/47

Table 2. Numerical comparisons

Alg. Alg. 1 Alg. 2 Alg. 3

NI 792 692 559
NF 2446 1950 1600
NG 1373 1079 916

From Table 1, we can see that the performances of the three algorithms
for seven of the test problems are the same. We can also see that Algorithm
2 sometimes performs worse than Algorithm 1, for example for Problem 2
and 14, whereas Algorithm 3 performs not worse than Algorithm 1 for all
the test problems. Nevertheless, Algorithm 3 does not perform uniformly
better than Algorithm 2, for example for Problem 15.

For further comparisons, we sum all the numerical results for each of
the three algorithms. See Table 2, in whichNI, NF , NG denote the to-
tal numbers of iterations, function evaluations, and gradient evaluations,
respectively. From Table 2, we can clearly find that Algorithm 3 is better
than Algorithm 2. Therefore our numerical results show that instead of the
negative gradient direction, the direction defined by the method (1.7) can
be used to restart an optimization method and the numerical performances
may be better.

5. Conclusions

Wehave further analyzed the nonlinear conjugate gradientmethod in [5] and
exposed several new properties of the method. Specifically, we have found
that the method has a certain self-adjusting property. Such a property is
independent of the line search and the function convexity, and is very useful
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in the convergence analyses of the method. Under mild assumptions on the
objective function, the method is shown to be globally convergent with a
variety of line searches. We have also found that instead of the negative
gradient direction, the direction defined by the method in [5] can be used to
restart any optimization method while guaranteeing the global convergence
of themethod. Some numerical results aremade, which showed that the new
restart direction may be better than the negative gradient direction.
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