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We study the convergence properties of several conjugate gradient methods for nonlinear optimization under
the assumptions that the objective function is bounded below and its gradient is Lipschitz continuous.
Specifically, we strengthen the existing convergence result of the Polak–Ribière–Polyak method with
constant stepsizes. For the method of shortest residuals, we establish global convergence of both the
Fletcher–Reeves version and the Polak–Ribière–Polyak version using constant stepsizes. A numerical
example is also presented.

Keywords: unconstrained optimization; nonconvex; conjugate gradient method; method of shortest
residuals; descent property; global convergence

AMS Classifications: 49M37; 65K05; 90C30

1. Introduction

Consider the unconstrained optimization problem

min f (x), x ∈ Rn, (1)

where f is smooth and its gradient ∇f (x) is available. It is generally difficult to seek the global
minimizer of f if the function has no particular properties, e.g. convexity. We are only interested
in calculating a local minimizer of f , or even seeking an iterate {xk} satisfying the following
property

lim
k→∞ ‖gk‖ = 0, (2)

where gk = ∇f (xk). The convergence relation (2) means that any cluster point of {xk} is a
stationary point of f . Instead of (2), sometimes we use the slightly weaker relation

lim inf
k→∞ ‖gk‖ = 0, (3)

which means that at least one cluster point of {xk} is a stationary point if {xk} is bounded.
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896 Y.-H. Dai

In this paper, we consider conjugate gradient methods for solving (1). They are suitable for
large-scale problems since they do not need to store any matrices. The methods are of the form

xk+1 = xk + αk dk, (4)

dk =
{

−g1, for k = 1;
−gk + βk dk−1, for k ≥ 2,

(5)

in which αk is a stepsize obtained by some method and βk is the so-called conjugate gradient
parameter. Two well-known formulae for βk are Fletcher–Reeves (FR) [7] and Polak–Ribière–
Polyak (PRP) [13,14], and are given by

βFR
k = ‖gk‖2

‖gk−1‖2
(6)

and

βPRP
k = gT

k yk−1

‖gk−1‖2
, (7)

respectively, where yk−1 = gk − gk−1 and ‖ · ‖ is the Euclidean norm.
For general nonconvex functions, the FR method with exact or inexact line searches is shown

to be globally convergent [1,3]. The PRP method performs much better than the FR method in
practical computations. However, even with the exact line search, the PRP method needs not
to converge, see Powell’s [16] counter-examples. To change this unbalanced state, Gilbert and
Nocedal [8] established the global convergence of the PRP method with the restriction βPRP

k ≥ 0.
Later, Grippo and Lucidi [9] designed an Armijo-type line search with which the original PRP
method is shown to converge for general nonconvex functions. Sun and Zhang [19] established
the convergence of the PRP method with the fixed stepsize

αk = − δgT
k dk

dT
k Qkdk

. (8)

They assumed that the positive-definite matrix Qk in (8) satisfies νmin‖d‖2 ≤ dTQkd ≤ νmax‖d‖2

for all d ∈ Rn and k ≥ 1 and the constant δ ∈ (0, νmin/L). Here and below, the word ‘fixed
stepsize’ indicates ‘without line search’, i.e. ‘without additional function evaluation’. The value
L is the Lispchitz constant describing the gradient continuity (11). Some other results on the PRP
method can be found in [6].

The Armijo-type line search designed for the PRP method in [9] seems somewhat complicated.
By some further analysis, one can show that the Armijo-type line search in [9] is such that

γ ≤ αk ≤ γ̄ , for all k ≥ 1, (9)

where 0 < γ < γ̄ are some positive constants. This nice property of the line search motivates us
to consider the question: if constant stepsizes are used, namely,

αk ≡ η, (10)

where η > 0 is some constant, does the PRP method converge? A part of the answer to this
question is given in the Chinese monograph [5] by Dai and Yuan. If η < 1/(4L), they show that
the PRP method converges in the sense that (2) holds. In the next section, we will further show
that if η = 1/(4L), the PRP method provides the weak convergence relation (3). By considering
two neighbouring iterations together (such a technique was once used in [4] to analyse the FR
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Optimization Methods & Software 897

method), we can also prove the strong convergence relation (2) for the case that η = 1/(4L).
A counter-example is constructed showing that the PRP method may fail due to generating an
uphill search direction provided that η > 1/(4L). In Section 3, we will discuss the convergence
properties of another class of conjugate gradient methods: the method of shortest residuals (SRs).
The introduction of the SR method is presented in Section 3. Specifically, if η < 2/L, we are able
to establish the convergence relation (3) for its FR version (FRSR), and (1.2) for its PRP version
(PRPSR). Our analyses are made under the assumptions that the objective function is bounded
below and its gradient is Lipschitz continuous. A numerical example is presented in Section 4 and
some discussion is given in the last section.

2. Convergence of PRP method with constant stepsizes

We give the following basic assumption on the objective function.

Assumption 2.1 (1) f (x) is bounded below. (2) In a neighbourhood N of the level set L = {x ∈

n: f (x) ≤ f (x1)}, where x1 is the starting point, f (x) is differentiable and its gradient g(x) is
Lipschitz continuous, namely, there exists a constant L > 0 such that

‖∇f (x) − ∇f (x̃)‖ ≤ L‖x − x̃‖, for any x, x̃ ∈ N . (11)

First, we provide the following lemmas for the PRP method. In [5], two important relations
(3.5.5) and (3.5.6) are established to prove the convergence result withη < 1/(4L). These relations
are no longer true if η = 1/(4L). However, when η ∈ (0, 1/(4L)], we can establish the stronger
relations (17) and (18). They enable us to prove the convergence for the case of η = 1/(4L).

Here we should mention that the stepsize αk is fixed to some constant value in (0, 1/(4L)]
in the following analysis. The following results can therefore be extended to the case when
αk ∈ [τ, 1/(4L)] for some τ > 0 and all large k. Further, as mentioned in Section 5, the PRP
method gives the weak convergence relation (3) provided that αk ∈ (0, 1/(4L)] is such that∑

k≥1 αk = +∞. This provides us with the possibility of designing some dynamic strategy for
choosing αk , for example, asking αk to depend on the quantity dk, gk , etc.

Lemma 2.2 Assume that η is some constant in (0, 1/(4L)]. Define the sequence {ξk} as follows:
ξ1 = 1; ξk+1 = 1 + Lηξ 2

k , k ≥ 1. (12)

Then we have that

1 ≤ ξk < c, for all k ≥ 1, (13)

where c is the constant

c = 2
(

1 + √
1 − 4Lη

)−1
, (14)

that satisfies

1 < c ≤ 2. (15)

Proof We show (13) by induction. Since ξ1 = 1, we have that 1 ≤ ξ1 < c. Assume that 1 ≤ ξk <

c for some k. It follows from (12)–(15) that

1 ≤ ξk+1 = 1 + Lηξ 2
k < 1 + Lηc2 = c. (16)

Thus, by induction, (13) is true. �
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898 Y.-H. Dai

We see from the above proof that the condition η ≤ 1/(4L) enables us to derive a uniform
upper bound for the sequence ξk in (12). Otherwise, if η exceeds 1/(4L), the constant c in (14)
fails its definition and we cannot derive an upper bound for ξk any more.

Lemma 2.3 Suppose that Assumption 2.1 holds. Consider the PRP method (4), (5) and (7) with
constant stepsizes (10), where η ∈ (0, 1/(4L)]. Then we have for all k ≥ 1,

(2 − ξk)‖gk‖2 ≤ −gT
k dk ≤ ξk‖gk‖2, (17)

(2 − ξk)‖gk‖ ≤ ‖dk‖ ≤ ξk‖gk‖, (18)

where ξk is the sequence defined in (12). Further, each search direction dk is downhill, namely,

gT
k dk < 0, for all k ≥ 1. (19)

Proof Since d1 = −g1 and ξ1 = 1, (17) and (18) clearly hold for k = 1. Assume that (17) and
(18) hold for some k. Then by (5), (7), the Cauchy-Schwartz inequality, (11), (10) and the induction
assumption, we can get that

‖dk+1 + gk+1‖ = ‖βPRP
k+1 dk‖

≤ ‖gk+1 − gk‖‖dk‖
‖gk‖2

‖gk+1‖

≤ Lαk‖dk‖2

‖gk‖2
‖gk+1‖

≤ Lηξ 2
k ‖gk+1‖. (20)

By the triangular inequality and relation (20), we obtain

‖dk+1‖ ≤ ‖dk+1 + gk+1‖ + ‖gk+1‖ ≤ (1 + Lηξ 2
k )‖gk+1‖ (21)

and

‖dk+1‖ ≥ ‖gk+1‖ − ‖dk+1 + gk+1‖ ≥ (1 − Lηξ 2
k )‖gk+1‖. (22)

The above relations and the definition of {ξk} in (12) indicate that (18) holds for k + 1. By (20)
and the Cauchy–Schwartz inequality, we have that

|gT
k+1dk+1 + ‖gk+1‖2| ≤ ‖gk+1‖‖dk+1 + gk+1‖ ≤ Lηξ 2

k ‖gk+1‖2. (23)

Similarly, by (23), the triangular inequality and definition (12), we know that (17) holds for k + 1.
Therefore, by induction, (17) and (18) hold for all k ≥ 1.

The descent property (19) then follows the first inequality in (13), (15) and (17). �

Again, we see that the condition that η ≤ 1/(4L) is essential. It enables us to derive a uniform
upper bound for the sequence ξk , with which we can deduce the descent property of the search
direction and obtain the bounds for the search direction. Further analysis implies that the sequence
{−gT

k dk} is summable (Lemma 2.4). An illustrative example is given at the end of this section,
showing that the method may generate an uphill search direction if η > 1/(4L).

Lemma 2.4 Suppose that Assumption 2.1 holds. Consider the PRP method (4), (5) and (7) with
constant stepsizes (10) where η ∈ (0, 1/(4L)). Then we have that

∞∑
k=1

gT
k dk > −∞. (24)
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Optimization Methods & Software 899

Proof By the mean value theorem, (4) and (11), we have that

f (xk+1) − f (xk) =
∫ 1

0
g(xk + tαkdk)

T(αkdk)dt

= αkg
T
k dk +

∫ 1

0
[g(xk + tαkdk) − gk]T(αkdk)dt

≤ αkg
T
k dk +

∫ 1

0
Ltα2

k‖dk‖2dt

≤ αkg
T
k dk + 1

2
Lα2

k‖dk‖2. (25)

Now we estimate an upper bound of the quantity ‖dk‖2 for the method. Relation (5) indicates that

dk + gk = βkdk−1. (26)

By (12), (13), (15), (20) with k + 1 replaced by k and (26), we have that

β2
k ‖dk−1‖2 ≤ (Lηξ 2

k−1)
2‖gk‖2 = (ξk − 1)2‖gk‖2 ≤ ‖gk‖2. (27)

By squaring the norm of (26), we can also obtain

‖dk‖2 = −‖gk‖2 − 2gT
k dk + β2

k ‖dk−1‖2. (28)

Then it follows by (27) and (28) that

‖dk‖2 ≤ −2gT
k dk. (29)

Now, by (10), (25) and (29), we get that

f (xk+1) − f (xk) ≤ (η − Lη2)gT
k dk. (30)

Summing (30) over k and noting that η − Lη2 > 0, we obtain

k∑
i=1

gT
i di ≥ (η − Lη2)−1(f (xk+1) − f (x1)). (31)

Since by (30), f (xk) is monotonically decreasing, we have that {xk} ⊂ L. Further, we know by
Assumption 2.1 that {f (xk)} is bounded below. Thus, (24) follows from (31). �

We are now ready to establish the convergence of the PRP method using constant stepsizes.
Part (i) of Theorem 2.5 has been obtained in [6].

Theorem 2.5 Suppose that Assumption 2.1 holds. Consider the PRP method (4), (5) and (7)
with constant stepsizes (10), where η ∈ (0, 1/(4L)]. Then

(i) if 0 < η < 1/(4L), relation (2) holds. Thus every cluster point of {xk} is a stationary point
of f ;

(ii) if η = 1/(4L), relation (3) holds. Thus, at least one of the cluster points of {xk} is a stationary
point of f .
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900 Y.-H. Dai

Proof (i) Since 0 < η < 1/(4L), we have by (13), (15) and (17) that

−gT
k dk ≥ (2 − c)‖gk‖2. (32)

Then we get from (15), (32) and Lemma 2.4 that

∞∑
k=1

‖gk‖2 < +∞. (33)

Therefore, limk→∞ gk = 0, which implies that every cluster point of {xk} is a stationary point
of f .

(ii) Define τk = 2 − ξk . Then it follows from (12) and η = 1/(4L) that

τk+1 = τk

(
1 − 1

4
τk

)
. (34)

Since τ1 = 1, we have that

0 < τk ≤ 1, for all k ≥ 1. (35)

We now prove that

τk ≥ k−1, for all k ≥ 1. (36)

In fact, since ξ1 = 1, it is obvious that τ1 = 2 − ξ1 ≥ 1. Assume that τk ≥ k−1. Noting that τk(1 −
(1/4)τk) is monotonically increasing with τk in [0, 1], we have from (34), (35) and the induction
assumption that

τk+1 ≥ k−1

[
1 − 1

4
k−1

]
≥ (k + 1)−1. (37)

Thus, by induction, (36) holds. We now proceed by contradiction, assuming that (3) does not hold.
Then there exists some constant δ > 0 such that

‖gk‖ ≥ δ, for all k ≥ 1. (38)

By (38), the first inequality in (17) and (36), we can get that

∞∑
k=1

gT
k dk ≤ −δ2

∞∑
k=1

k−1 = −∞, (39)

which contradicts Lemma 2.4. The contradiction shows that lim infk→∞ ‖gk‖ = 0, which
completes our proof. �

From relation (32) in the above proof, we see that if η < 1/(4L), the PRP method with constant
stepsizes (10) is such that the sufficient descent condition

gT
k dk ≤ −c̄ ‖gk‖2, for all k ≥ 1 (40)

holds with c̄ = 2 − c > 0. At the same time, we have from (13) and (18) that

c̄ ‖gk‖ ≤ ‖dk‖ ≤ c ‖gk‖. (41)

The above relation implies that the size of ‖dk‖ relative to ‖gk‖ is both upper and lower bounded.
Further, letting θk be the angle between dk and −gk , we have from the definition of θk , (13), (18)
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Optimization Methods & Software 901

and (40) that

cos θk = − gT
k dk

(‖gk‖‖dk‖) ≥ c̄

c
. (42)

Thus, in this case, the angle θk is not greater than some angle θ < π/2. If in addition the objective
function is uniformly convex, it is not difficult to establish the linear convergence rate of the
method by (30) and (42).

In the case that η = 1/(4L), we have by (14) that c = 2. Thus, we cannot deduce the sufficient
descent condition from (17). Nevertheless, we have from (36) that

gT
k dk ≤ −k−1‖gk‖2, for all k ≥ 1, (43)

with which a weaker convergence relation can be established. Further, we still have from (18) and
c = 2 that ‖dk‖ ≤ 2‖gk‖. By this and (43), we can get the following relation for the angle θk:

cos θk ≥ 1

2k
. (44)

The previous analysis was to estimate the quantity

γk = − gT
k dk

‖gk‖2
(45)

for every iteration. For the case that η = 1/(4L), if we consider two neighbouring steps together
(such technique was once used in [4] to analyse the FR method), we can establish the relation

max(γk, γk+1) ≥ 2

3
, for any k ≥ 1. (46)

This relation means that the sufficient descent condition −gT
k dk ≥ 2/3‖gk‖2 holds for at least one

of any neighbouring iterations. Along this line, we can prove the strong convergence relation (2)
for the case that η = 1/(4L). Further, by (41) and (46), we could establish the two-step linear
convergence result in this case.

Theorem 2.6 Suppose that Assumption 2.1 holds. Consider the PRP method (4), (5) and (7)
with constant stepsizes (10) where η ≡ 1/(4L). Then the relation (46) holds. Further, the method
gives the convergence relation (2), which means that every cluster point of {xk} is a stationary
point of f .

Proof By the definition of γk and relation (29), we have that

‖dk‖2 ≤ 2 γk ‖gk‖2. (47)

From the proofs of relations (20) and (23), we can see that

|gT
k+1dk+1 + ‖gk+1‖2| ≤ ‖gk+1‖‖dk+1 + gk+1‖ ≤ Lαk‖dk‖2

‖gk‖2
‖gk+1‖2. (48)

Therefore, using (47) and η = 1/(4L), it follows from the above relation that

−gT
k+1dk+1 ≥

(
1 − γk

2

)
‖gk+1‖2, (49)

or, equivalently,

γk+1 ≥ 1 − γk

2
. (50)

If γk ≤ 2/3, we must have by (50) that γk+1 ≥ 2/3. Thus, relation (46) always holds.
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902 Y.-H. Dai

To show (2), we note from γk > 0 and (50) that

γk + γk+1 ≥ 1

2
(γk + 2γk+1) ≥ 1. (51)

By Lemma 2.4, (29) and the definition of γk , we get that

∞∑
k=1

(γk‖gk‖2 + γk+1‖gk+1‖2) ≤ 2
∞∑

k=1

(−gT
k dk) < +∞. (52)

On the other hand, by Lipschitz condition (11), relation (18), ξk ≤ 2 and η = 1/(4L), we can get
that

‖gk+1‖ ≤ ‖gk‖ + αkL‖dk‖ ≤
(

1 + 1

4
ξk

)
‖gk‖ ≤ 3

2
‖gk‖. (53)

Thus, we have that

γk‖gk‖2 + γk+1‖gk+1‖2 ≥
(

4

9
γk + γk+1

)
‖gk+1‖2 ≥ 4

9
(γk + γk+1)‖gk+1‖2 ≥ 4

9
‖gk+1‖2. (54)

Therefore, by (52) and (54), we know that (2) is true. �

If the parameter η is greater than 1/(4L), we can construct a one-dimensional counter-example
showing that the PRP method may fail due to generating an uphill search direction. Suppose that
L = 1 and η is any constant greater than 1/4. Consider the sequence {ξk} defined in (12). Since
in this case Lη > 1/4, it is easy to show that ξk tends to +∞ with k. Then we can pick a positive
integer K ≥ 1 such that

ξK >
max{3, 1 + 2η}

η
. (55)

The desired counter-example is based on the one-dimensional function

f (x) = −1

2
x2, x ∈ [0, xK ], (56)

where xK is the Kth iteration generated by the PRP method with the starting point x1 = 1 and
constant stepsizes αk ≡ η. Since xk+1 = xk + ηdk and gk = −xk , we have that gk+1 = gk − ηdk .
Noting this and the dimension n = 1, we can see that

dk+1 = −gk+1 − η

(
d2

k

g2
k

)
gk+1. (57)

Define ξk = −dk/gk . The above relation and d1 = −g1 implies that {ξk} has the same recursive
relation as (12). Consequently, we have that xk+1 = xk − ηξkgk = (1 + ηξk)xk , which with x1 = 1
yields

xK =
K−1∏
i=1

(1 + ηξi). (58)
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Optimization Methods & Software 903

On other hand, by the choice of integer K and the definition of ξk ,

−dK

gK

>
max{3, 1 + 2η}

η
. (59)

Now we define f in the interval [xK, xK + ηdK ] so that

f (xK) = −1

2
x2

K; ∇f (xK) = gK; ∇2f (xK + ηtdK) = −1 + 2
√

t, for t ∈ (0, 1]. (60)

Then we will have that

∇f (xK + ηtdK) = gK +
∫ t

0
∇2f (xK + ητdK)ηdK dτ = gK +

(
−t + 4

3
t3/2

)
ηdK (61)

and

f (xK + ηtdK) = f (xK) +
∫ t

0
∇f (xK + ητdK)ηdK dτ

= f (xK) + ηgKdKt − 1

2
η2d2

Kt2 + 8

15
η2d2

Kt5/2. (62)

Letting t = 1 in (61) and noticing (59) and gK = −xK < 0 that

gK+1 = gK + η

3
dK = gK

(
1 + η

3

dK

gK

)
> 0. (63)

At the same time, we know by

dK+1 = −gK+1 + 1

3
η

(
d2

K

g2
K

)
gK+1, (64)

the relation (59) and η > 1/4 that dT
K+1gK+1 > 0 and hence dK+1 is an uphill search direction.

To complete the structure of f , we define f for x ≥ xK+1 as follows:

f (x) = 1

2
x2 + (gK+1 − xK+1)x +

(
fK+1 − gK+1xK+1 + 1

2
x2

K+1

)
(65)

so that ∇2f (x) = 1 for x ≥ xK+1 and the whole function f is twice-differentiable at the point
xK+1. The convexity of f over the interval [xK+1, +∞) and gK+1 > 0 implies that the minimizer
of f over [0, +∞) lies in the interval (xK, xK+1). However, some direct calculations show that

dk+1

gk+1
= −1 + η

d2
k

g2
k

, k ≥ K + 1. (66)

By (59), (64) and considering the two cases η ∈ (1/4, 1] and η > 1, we can obtain

dK+1

gK+1
> −1 + η

3

[max{3, 1 + 2η}]2

η2
>

1 + √
1 + 4η

2η
. (67)

It follows from (66) and (67) that dk+1/gk+1 tends to +∞ monotonically. Meanwhile, noting that
∇2f (x) = 1 now, we have that xk+1 = xk + ηdk for k ≥ K + 1. Therefore, dk is always an uphill
search direction for k ≥ K + 1 and xk+1 goes to +∞.

It is not easy to see that the above-defined function satisfies Assumption 2.1 with L = 1.
However, the PRP method with the starting point x1 = 1 and constant stepsize η > 1/4 fails to
provide or converge to any stationary point. This counter-example shows that the bound η =
1/(4L) is strict.
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904 Y.-H. Dai

3. Convergence of PRPSR and FRSR with constant stepsizes

In this section, we discuss the convergence properties of another class of conjugate gradient
methods: the method of SRs. The SR method was presented by Hestenes in his monograph [10]
on conjugate direction methods and it can be viewed as a special case of conjugate subgradient
method developed in Wolfe [20] and Lemaréchal [12] for minimizing a convex function. Pytlak
[17] generalized the SR method and considered the following family of methods:

dk = −Nr{gk, −βkdk−1}, (68)

where Nr{a, b} is defined as the point from a line segment spanned by the vectors a and b which
has the smallest norm, namely,

‖Nr{a, b}‖ = min{‖λa + (1 − λ)b‖: 0 ≤ λ ≤ 1}. (69)

In (68), we still use the symbol βk to differentiate variants of the SR method. If gT
k dk−1 = 0, the

above family with

βk ≡ 1 (70)

reduces to the SR method described by Hestenes [10]. Further, if the function is quadratic, the
vector dk can be proved to be the SR in the (k − 1)-simplex whose vertices are −g1, −g2, . . . ,−gk .
Another choice for the scalar βk is that

βk = ‖gk‖2

gT
k yk−1

, (71)

where yk−1 = gk − gk−1 as before. In case of exact line searches, the family with the choices (70)
and (71) produce the same search directions for general objective functions as the FR method
and the PRP method, respectively. In this paper, we describe the family of methods (4) and (68)
as method of SRs, and the corresponding methods with (70) and (71) as FRSR and PRPSR. In
[4,17], the choice βk = ‖gk‖2/|gT

k yk−1| is also considered for the PRPSR method. It is easy to
see that the following analysis of PRPSR applies to this choice.

By solving (69) without the restriction 0 ≤ λ ≤ 1, Dai and Yuan [4] obtain the following
direction

dk = −(1 − λk)gk + λkβkdk−1, (72)

where

λk = ‖gk‖2 + βkg
T
k dk−1

‖gk + βkdk−1‖2
. (73)

By direct calculations, we can obtain the following two important relations for (72) and (73) [4]:

−gT
k dk = ‖dk‖2 (74)

and

‖dk‖2 = β2
k

(‖gk‖2‖dk−1‖2 − (gT
k dk−1)

2
)

‖gk + βkdk−1‖2
. (75)

Relation (74) shows that dk is a descent direction unless dk = 0. However, it is possible that
dk = 0 if gk and dk−1 are collinear. For convenience, we assume in this paper that dk 
= 0 and the
denominator of (71) gT

k yk−1 
= 0 so that the method is well defined.
To present our convergence results for FRSR and PRPSR using the constant stepsize (10) with

η ∈ (0, 2/L), we give the following lemma for the SR method at first.
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Optimization Methods & Software 905

Lemma 3.1 Suppose that Assumption 2.1 holds. Consider the SR method (4) and (72), that takes
d1 = −g1 and constant stepsizes (10) with 0 < η < 2/L. Then we have that

|gT
k dk−1| ≤ c1‖dk−1‖2, (76)

where c1 = 1 + ηL is constant, and ∑
k≥1

‖dk‖2 < +∞. (77)

Proof By the triangle inequality, (10), (11) and (74), we have that

|gT
k dk−1| = |(gk − gk−1)

Tdk−1 + gT
k−1dk−1|

≤ ‖gk − gk−1‖‖dk−1‖ + |gT
k−1dk−1|

≤ αk−1L‖dk−1‖2 + ‖dk−1‖2

≤ (1 + ηL)‖dk−1‖2. (78)

Thus, (76) holds with c1 = 1 + ηL. In addition, note that the relation (25) still holds. By this, (10)
and (74), we get that

f (xk+1) − f (xk) ≤ η

(
−1 + L

2
η

)
‖dk‖2. (79)

Summing (79) over k and noting that η(1 − (L/2)η) > 0, we obtain

k∑
i=1

‖di‖2 ≤
[
η(1 − L

2
η)

]−1

(f (x1) − f (xk+1)). (80)

Since by (79), f (xk) is monotonically decreasing, we have that {xk} ⊂ L. Further, we know by
Assumption 2.1 that {f (xk)} is bounded below. Thus, (77) follows (80). �

Next, we prove the following theorem for the FRSR method.

Theorem 3.2 Suppose that Assumption 2.1 holds. Consider the FRSR method (4) and (72) where
βk is given by (70). If constant stepsizes (10) with 0 < η < 2/L are used, the method converges
in the sense that (3) holds.

Proof From (70) and (75), we can get that

1

‖dk‖2
= 1

‖dk−1‖2
(1 + rk), (81)

where

rk = ‖dk−1‖2 + 2gT
k dk−1 + (gT

k dk−1)
2/‖dk−1‖2

‖gk‖2 − (gT
k dk−1)2/‖dk−1‖2

. (82)

The recursive use of (81) yields

1

‖dk‖2
= 1

‖d1‖2

k∏
i=2

(1 + ri). (83)
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906 Y.-H. Dai

By (77) in Lemma 3.1, we know that

lim
k→∞ ‖dk‖ = 0. (84)

If the statement of this theorem is not true, there must exist some constant δ > 0 such that

‖gk‖ ≥ δ, for all k ≥ 1. (85)

By (76), there exists an integer k1 such that ‖dk‖ ≤ δ/2c1 for all k ≥ k1. It then follows from (82),
(84) and (85) that

rk ≤ c2‖dk−1‖2, for all k ≥ k1 + 1, (86)

where c2 = 4(1 + c1)
2/3δ2 is constant. The above relation and (77) imply that

∑
k≥1 rk < +∞

and hence the product

∏
k≥2

(1 + rk) = exp

(∑
k≥2

log(1 + rk)

)
≤ exp

(∑
k≥2

rk

)
< +∞. (87)

The above relation and (83) indicate that ‖dk‖ is bounded away from zero, a contradiction to (84).
Therefore, this theorem is true. �

Finally, we establish the following convergence result for the PRPSR method.

Theorem 3.3 Suppose that Assumption 2.1 holds. Consider the PRPSR method (4) and (72)
where βk is given by (71). If constant stepsizes (10) with 0 < η < 2/L are used, the method
converges in the sense that (2) holds.

Proof By the choice (10), (11), and (71), we have that

‖βkdk−1‖ = ‖gk‖2‖dk−1‖
|gT

k (gk − gk−1)| ≥ ‖gk‖2‖dk−1‖
L‖gk‖αk−1‖dk−1‖ ≥ (Lη)−1‖gk‖. (88)

By (75) and (88), for k sufficiently large, we have that

1

‖dk‖2
=

( ‖gk + βkdk−1‖2

β2
k ‖gk‖2‖dk−1‖2

) (
1 − (gT

k dk−1)
2

‖gk‖2‖dk−1‖2

)−1

≤
(

1

‖βkdk−1‖ + 1

‖gk‖2

)2 (
1 − (gT

k dk−1)
2

‖gk‖2‖dk−1‖2

)−1

≤ (1 + Lη)2

‖gk‖2

(
1 − (gT

k dk−1)
2

‖gk‖2‖dk−1‖2

)−1

. (89)

Assuming ‖gk‖2 ≥ 2c1‖dk−1‖2, we can get by (89) and (76) that

‖gk‖2 ≤ (1 + Lη)2‖dk‖2

(
1 − c1‖dk−1‖2

‖gk‖2

)−1

≤ 2(1 + Lη)2‖dk‖2. (90)

Therefore we always have

‖gk‖2 ≤ max{2c1‖dk−1‖2, 2(1 + Lη)2‖dk‖2}. (91)

The above relation with (77) indicates the truth of this theorem. �
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4. A numerical example

The following objective function is used for our preliminary numerical tests,

f (x) = 1

2
xTHx, x ∈ R5, (92)

where the Hessian H is the Hilbert matrix with entries Hi,j = 1/(i + j − 1), i, j = 1, . . . , 5. In
this case, the condition number of H is 4.7661e + 5. The tight Lipshitz constant for the objective
function is the maximal eightvalue of H , that is L = 1.5671 in four digits decimal precision. In
all tests, we use the initial point x1 = √

5/5(1, −1, 1, −1, 1)T and the stopping condition is

‖gk‖ ≤ 10−4‖g1‖. (93)

We tested the following seven methods: (1) steepest descent (SD) method; (2) FR method; (3)
PRP method; (4) FRSR, defined by (70), (72), and (73); (5) PRPSR, defined by (74)–(76); (6)
SDFR, where dk is the SD direction and the FR direction alternatively; (7) SDPRP, where dk is
the SD direction and the PRP direction alternatively. For these methods, we used the constant
stepsize of the form

αk ≡ μ

L
, (94)

where μ ∈ (0, 2) is some fixed parameter. In our tests, nine values are used (Table 1). The iteration
number for each method to achieve (93) is listed in Table 1.

From Table 1, we see that the FRSR and PRPSR methods with different values of μ in (0, 2)

successfully solved the given example, as predicted by Theorems 3.2 and 3.3. This theoretical
property can also be extended to the SD method. In fact, if dk = −gk and αk is given by (94) with
μ ∈ (0, 2), and if Assumption 2.1 holds, we can establish some relations similar to (20) and (79)
and finally

f (xk+1) − f (xk) ≤ −μ(2 − μ)

L
‖gk‖2. (95)

By summing (95)) over k, we can easily see that
∑

k≥1 ‖gk‖2 < +∞, which gives the convergence
relation limk→∞ ‖gk‖ = 0. This extends the result in Armijo [2], which shows the convergence
of the SD method when μ ∈ (0, 1/2).

Although Theorems 2.5 and 2.6 only guarantee the global convergence of the PRP method
when μ ∈ (0, 1/4], we see from Table 1 that the PRP method with large values of μ requires
fewer iterations to achieve the same stopping condition. Nevertheless, it was found that the PRP
directions in the SDPRP method with μ = 1.75 or 1.90 are always uphill. This leads to the failure

Table 1. Numerical results for different methods with (94).

Method

μ SD FR PRP FRSR PRPSR SDFR SDPRP

0.10 8739 390 8748 9351 17466 5829 8744
0.25 3495 244 3503 4313 6980 2333 3500
0.50 1747 170 1755 2558 3484 1167 1751
0.75 1165 135 1172 1192 2320 779 1168
1.00 873 116 880 3424 1739 586 877
1.25 699 106 703 730 1596 500 700
1.50 582 101 584 649 931 456 561
1.75 499 92 492 476 715 470 Failed
1.90 459 88 412 462 673 488 Failed
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908 Y.-H. Dai

Table 2. Numerical results for different methods with αk = 1/Lk .

Method SD FR PRP FRSR PRPSR SDFR SDPRP
# Iter 870 99 876 902 1729 584 873

of the SDPRP method due to numerical overflows. Similarly, although Table 1 shows that the FR
and SDFR methods perform much better than the SD method for the given problem, we have not
presented any convergence results for the FR and the SDFR methods. Considerable efforts are still
required to establish efficient numerical algorithms based on the methods in both deterministic
optimization and stochastic approximation.

We can also see from Table 1 that for each method the choice of μ influences its numerical
performance significantly. Particularly, when μ is relatively small, they always require quite many
iterations to achieve the stopping condition. In practice, to ensure that the SD method works, a
small value for the stepsize is preferred, since it is difficult to know the value of the Lipschitz
constant L. In the deterministic case, one may estimate the value of L, for example, in the following
way

L1 = 0.01; Lk = max

{‖yk−i‖
‖sk−i‖ ; i = 1, . . . , k − 1

}
, for k ≥ 2. (96)

In (96), yk−1 = gk − gk−1 as before and sk−1 = xk − xk−1. With this estimation, we tested the
seven methods again and listed the iteration numbers required for achieving (93) in Table 2.

5. Discussion

One advantage of the PRP method over the FR method in practical computations is that [15], if
a small step is generated far away from the solution point, the direction in the PRP method will
tend to the negative gradient direction. In this paper, we use this property and establish the global
convergence of the PRP method with constant stepsizes. Hence, the result of this paper provides
some further insights into the convergence theory of the PRP method and a better understanding
of the convergence result in [9].

Sun and Zhang [19] established the global convergence of the FR method with fixed stepsize
αk = c3(|gT

k dk|/‖dk‖2), where c3 is some positive constant. Nevertheless, it is difficult to analyse
that the FR method with constant stepsizes may produce an uphill direction since in this case ‖dk‖
may increase linearly with k. Comparing the result in [19] for the FR method and Theorem 3.2,
which shows the global convergence of the FRSR method using constant stepsizes, we can see
that the method of SRs has better convergence properties than the standard conjugate gradient
method in the form (4) and (5).

In a recent paper, Pytlak and Tarnawski [18] strengthened the convergence relation (3) by Dai
andYuan [4] to (2) for the PRPSR method with strong Wolfe line searches (or Wolfe line searches
and αk ≤ M). Since (76)) is true in these cases, the analysis of this paper can be also used to
establish the strong convergence result for the PRPSR method. More results of the SR method
with the restriction 0 ≤ λ ≤ 1 can be found in [17,18].

Under Assumption 2.1, we can show that the PRP method gives the weak convergence relation
(3) provided that αk ∈ (0, 1/(4L)) is such that∑

k≥1

αk = +∞. (97)

Here we provide a sketch of the proof by (25) and the related results in Section 2. Assume that
there is an infinite sequence {ki} such that αki

∈ [τ, 1/(4L)] for some τ > 0. Then in at least
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Optimization Methods & Software 909

one of the ki th and (ki + 1)th iterations the objective function can achieve a descent, which is
proportional to ‖gî‖2 where î = ki or ki + 1. As the summation of the achieved descents is finite,
we know that the subsequence ‖gî‖ tends to zero. Otherwise, we have that limk→∞ αk = 0. In
this case, we will eventually have gT

k dk ≈ −‖gk‖2 and ‖dk‖2 ≈ ‖gk‖2 with k. Thus, the second
term in the right-hand side of (25) is an infinitesimal of higher order comparing with the first term
and the objective function can achieve a descent proportional to αk‖gk‖2. Therefore, we have that∑

k≥1 αk‖gk‖2 < +∞. By this, the condition
∑

k≥1 αk = +∞ and the contradiction principle,
we know that lim infk→∞ ‖gk‖ = 0. Thus in either cases, (3) is true.

As is well known, the steepest descent method is widely used in stochastic approximation [11],
where the stepsize is usually chosen to be a tiny constant or satisfy

αk > 0,

∞∑
k=1

αk = +∞,

∞∑
k=1

α2
k < +∞. (98)

The results of this paper enable the possible use of the conjugate gradient method in this field.
We wonder whether there exist more efficient stochastic approximation algorithms based on the
conjugate gradient method.
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