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Abstract. The technique of nonmonotone line search has received
many successful applications and extensions in nonlinear optimization.
This paper provides some basic analyses of the nonmonotone line
search. Specifically, we analyze the nonmonotone line search methods
for general nonconvex functions along different lines. The analyses are
helpful in establishing the global convergence of a nonmonotone line
search method under weaker conditions on the search direction. We
explore also the relations between nonmonotone line search and R-lin-
ear convergence assuming that the objective function is uniformly con-
vex. In addition, by taking the inexact Newton method as an example,
we observe a numerical drawback of the original nonmonotone line
search and suggest a standard Armijo line search when the nonmono-
tone line search condition is not satisfied by the prior trial steplength.
The numerical results show the usefulness of such suggestion for the
inexact Newton method.

Key Words. Unconstrained optimization, uniform convexity, Armijo
line search, nonmonotone line search, R-linear convergence.

1. Introduction

The technique of nonmonotone line search was proposed first in Ref.
1 and has received many successful applications or extensions in both
unconstrained optimization and constrained optimization; for example, see
Refs. 2–13. Although promising in its current state of development, research
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on the topic of nonmonotone line search is still very much in infancy, as
pointed out in Ref. 12. The purpose of this paper is to provide some basic
analyses of the nonmonotone line search.

We consider the unconstrained optimization problem

min f (x), x ∈ Rn, (1)

where f is a smooth function and where its gradient gG∇ f (x) is available.
Suppose that the current approximation to the solution of (1) is xk. If
gkG∇ f (xk)≠0, then a line search method defines a search direction dk in
some way, finds a steplength α k by carrying out some line search along dk ,
and computes the next approximation xkC1 as follows:

xkC1GxkCα kdk . (2)

In obtaining the steplength α k , traditional line searches require the
function value to decrease monotonically at every iteration, namely,

f (xkC1)Ff (xk). (3)

For example, see the Armijo line search (Ref. 14) and the Wolfe line search
(Ref. 15). The nonmonotone line search does not impose the condition (3);
as a result, it is helpful to overcome the case where the sequence of iterates
follows the bottom of a curved narrow valley, a common occurrence in
difficult nonlinear problems. For some optimization methods that are not
one-step Q-linearly convergent in the objective function, but have some kind
of convergence properties, the nonmonotone line search is especially useful
in keeping the good properties of the methods, since they do not ensure a
descent in the objective function at every iteration. For example, see the
sequential quadratic programming method, that is known to be only two-
step superlinearly convergent.

Let 0Fλ 1Fλ 2 , σ∈ (0, 1), δ∈ (0, 1), and let M be a positive integer;
assume that, at the kth iteration, a prior trial steplength ᾱ k ∈ (λ 1 , λ 2) is
given. The nonmonotone line search is to choose the first nonnegative
integer hk such that the steplength

α kGᾱ kσhk (4)

satisfies

f (xkCα kdk)⁄ max
0⁄ j⁄m(k)

f (xkAj)Cδαkg
T
k dk , (5)

where

m(0)G0 and 0⁄m(k)⁄min[m(kA1)C1, MA1], k¤1.

If m(k) ≡ 0, the above nonmonotone line search reduces to the Armijo line
search.
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In this paper, results on the nonmonotone line search are obtained
from three aspects. First, we analyze the nonmonotone methods for general
nonconvex functions along different lines; see Section 2. The analyses are
helpful in establishing the global convergence of a nonmonotone line search
method even in the absence of the sufficient descent condition (16) or the
condition (17). Next, we explore the relations between nonmonotone line
search and R-linear convergence assuming that f is uniformly convex (see
Section 3). Then, by taking the inexact Newton method as an example, we
observe a numerical drawback of the nonmonotone line search in Ref. 1
and suggest a standard Armijo line search when the condition (5) is not
satisfied by the prior trial steplength ᾱ k; see Section 4. Our numerical results
show the usefulness of such a suggestion for the inexact Newton method.
Finally, discussions and conclusions are given in Section 5.

2. Analyses of Nonmonotone Methods for General Functions

At first, we have the following lemma for the nonmonotone line search,
where f(x) may be a general function.

Lemma 2.1. Suppose that f(x) is bounded below on Rn and that its
gradient ∇ f (x) is Lipschitz continuous; namely, there exists LH0 such that
��∇ f (y)Af (z) ��⁄L��yAz��, for any y, z ∈ Rn. Consider any iterative method
(2), where dk is a descent direction and α k is obtained by the nonmonotone
line search (4)–(5). Then, for any l¤1,

max
1⁄ i⁄M

f (xMlCi)

⁄ max
1⁄ i⁄M

f (xM(lA1)Ci)Cδ max
0⁄ i⁄MA1

[α MlCig
T
MlCidMlCi ]. (6)

Further, we have that

∑
l¤1

min
0⁄ i⁄MA1

{�gT
MlCidMlCi �, (gT

MlCidMlCi)
2���dMlCi ��2}FCS. (7)

Proof. To prove (6), it suffices to show that the following inequality
holds for jG1, . . . , M:

f (xMlCj)⁄ max
1⁄ i⁄M

f (xM(lA1)Ci)CδαMlCjA1g
T
MlCjA1dMlCjA1. (8)

Since the line search conditions (4)–(5) imply

f (xMlC1)⁄ max
0⁄ i⁄m(Ml )

f (xMlAi)CδαMlg
T
MldMl , (9)

it follows from this and

m(Ml )⁄MA1
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that (8) holds for jG1. Suppose that (8) holds for any 1⁄ j⁄MA1. With
the descent property of dk , this implies

max
1⁄ i⁄ j

f (xMlCi)⁄ max
1⁄ i⁄M

f (xM(lA1)Ci). (10)

By the line search conditions, the induction hypothesis,

m(MlCj )⁄MA1,

and (10), we obtain

f (xMlCjC1)⁄ max
0⁄ i⁄m(MlCj )

f (xMlCjAi)CδαMlCjg
T
MlCjdMlCj

⁄max� max
1⁄ i⁄M

f (xM(lA1)Ci),max
1⁄ i⁄ j

f (xMlCi)�
CδαMlCjg

T
MlCjdMlCj

⁄ max
1⁄ i⁄M

f (xM(lA1)Ci)CδαMlCjg
T
MlCjdMlCj .

Thus, (8) is also true for jC1. By induction, (8) holds for 1⁄ j⁄M. There-
fore, (6) holds.

Since f(x) is bounded below, it follows that

max
1⁄ i⁄M

f (xMjCi)HAS.

By summing (6) over l, we can get

∑
l¤1

min
0⁄ i⁄MA1

[−α MlCig
T
MlCidMlCi ]FCS. (11)

Suppose that (5) is false for the prior trial steplength ᾱ k . Then, we have

f (xkC(α k�σ)dk)H max
0⁄ j⁄m(k)

f (xkAj)Cδ(α k�σ)gT
k dk

¤ f (xk)Cδ(α k�σ)gT
k dk . (12)

By the mean-value theorem and the Lipschitz continuity of ∇ f, we can show
that

f (xkCα dk)Af (xk)

Gα gT
k dkC�

α

0

[∇ f (xkCtdk)Agk ]
Tdkdt

⁄α gT
k dkC�

α

0

tL��dk ��2dt

Gα gT
k dkC(1�2)Lα 2��dk ��2

⁄δαgT
k dk , for all α ∈ (0, [2(1Aδ)�L] · �gT

k dk ����dk ��2]. (13)
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It follows from (12)–(13) that

α k�σ¤ [2(1Aδ)�L]�gT
k dk ����dk ��2. (14)

If (5) is true for the prior trial steplength ᾱ k , then α kGᾱ k¤λ 1 . So, the
following relation holds for some constant cH0:

α k¤min{λ 1 , c�gT
k dk ����dk ��2}, (15)

which with (11) implies the truth of (7). �

From relation (6), we see that, for any nonmonotone line search
method, the sequence {max1⁄ i⁄M f (xMlCi)} is strictly monotonically
decreasing and the decrease can be estimated. As a result, this relation plays
an important role in the R-linear convergence analyses in Section 3. Since
the relation (7) concerns only the search directions {dk}, it is useful in ana-
lyzing the convergence properties of a nonmonotone line search method, as
will be shown subsequently.

Suppose that there exist constants c1 and c2 such that, for all k,

gT
k dk⁄Ac1 ��gk ��2, (16)

��dk ��⁄c2 ��gk ��. (17)

We can show easily the following convergence result via Lemma 2.1.

Theorem 2.1. Suppose that f(x) is bounded below on Rn and that its
gradient ∇ f (x) is Lipschitz continuous. Consider any iterative method (2),
where dk satisfies (16)–(17) and α k is obtained by the nonmonotone line
search (4)–(5). Then, there exists a constant c3 such that

��gkC1 ��⁄c3 ��gk ��, for all k. (18)

Further, we have that

lim
k→S

��gk ��G0. (19)

Proof. Noting that α k⁄λ 2 , by this, (2), and (17) we have that

��xkC1Axk ��⁄α k ��dk ��⁄c2λ 2 ��gk ��; (20)

this and the Lipschitz continuity of ∇ f (x) yield

��gkC1Agk ��⁄c2λ 2L��gk ��. (21)

Thus, (18) holds with

c3G1Cc2λ 2L.
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In addition, it follows by (7), (16), (17) that

lim
l→S

��gMlCφ(l )��G0, (22)

where

0⁄φ(l )⁄MA1.

By (18), we have that

��gM(lC1)Ci��⁄c2M
3 ��gMlCφ(l )��, for iG0, . . . , MA1. (23)

Therefore, it follows from (22)–(23) that (19) holds. �

In the case where the level set

L G{x ∈ Rn: f (x)⁄ f (x1)}

is bounded, the relation (19) implies that every cluster point of {xk} is a
stationary point of f(x). It follows from (19)–(20) that xkC1Axk tends to
zero as k→S. This shows that, if the number of the stationary points of f
in L is finite, the sequence {xk} converges.

Thus, we prove again the global convergence of nonmonotone line
search methods for general functions under the conditions (16)–(17). Com-
pared with the one in Ref. 1, here the proof is quite different. The Lipschitz
continuity of the gradient is required in our proof. However, with this
additional assumption, the useful relation (7) can be established, and hence
it makes possible to weaken the conditions (16) and�or (17) on the search
direction dk. For example, if ��dk ��2 increases at most linearly with k, namely,
it there exist some positive constants β and γ such that

��dk ��2⁄βCγk, for all k, (24)

and if the sufficient condition (16) still holds, then one can prove that the
method converges in the sense that

lim inf
k→S

��gk ��G0. (25)

Theorem 2.2. Suppose that f(x) is bounded below on Rn and that its
gradient ∇ f (x) is Lipschitz continuous. Consider any iterative method (2),
where dk satisfies (16) and (24), and where α k is obtained by the nonmono-
tone line search (4)–(5). Then, the method yields the convergence relation
(25).

Proof. We proceed by contradiction, assuming that the relation (25)
does not hold. Then, there exists some constant τH0 such that

��gk ��¤τ , for all k¤1. (26)
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This and (16) imply

�gT
k dk �¤c1τ 2. (27)

Then, it follows from (27) and (24) that

∑
l¤1

min
0⁄ i⁄MA1

{�gT
MlCidMlCi �, (gT

MlCidMlCi)
2���dMlCi ��2}

¤ ∑
l¤1

min
0⁄ i⁄MA1

{c1τ 2, c2
1τ 4�[βCγ (MlCi)]}

¤ ∑
l¤1

min{c1τ 2, c2
1τ 4�[βCγ (MlCMA1)]}

GCS. (28)

The above relation contradicts (7). The contradiction shows the truth of
(25). �

Reference 16 relaxed further the sufficient descent condition (16). In
Ref. 16, a nonmonotone conjugate gradient algorithm for solving (1) was
proposed, for which only the following relations are shown for all k:

−gT
k dk¤min{β, γ�1k}, (29)

(gT
k dk)

2���dk ��2¤τ �k, (30)

where β, γ , τ are some positive constants. It is obvious that the above
relations are weaker than the conditions (16) and (17), respectively. How-
ever, similarly to Theorem 2.2, we can prove without difficulty via the
relations (7), (29), (30) that the algorithm yields the convergence relation
(25).

3. Relations between Nonmonotone Line Search and R-Linear Convergence

In this section, we explore the relations between nonmonotone line
search and R-linear convergence assuming that f is uniformly convex and
dk satisfies (16)–(17). More precisely, we assume that there exist positive
constants η1 and η2 such that the following relation holds for any
y, z ∈ Rn:

η1 ��yAz��2⁄ (yAz)T[∇ f (y)A∇ f (z)]⁄η2 ��yAz��2. (31)

In this case, let x* be the unique minimizer of f, and let γ and γ̄ be positive
constants such that

γ ��∇ f (x) ��2⁄ f (x)Af (x*)⁄ γ̄ ��∇ f (x) ��2, for all x ∈ Rn. (32)
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The following theorem shows that any iterative method using the nonmono-
tone line search is R-linear convergent for uniformly convex functions.

Theorem 3.1. Suppose that f(x) is a smooth and uniformly convex
function. Consider any iterative method (2), where dk satisfies (16)–(17) and
α k is obtained by the nonmonotone line search (4)–(5). Then, there exist
constants c4H0 and c5 ∈ (0, 1) such that

f (xk)Af (x*)⁄c4c
k
5 [ f (x1)Af (x*)]. (33)

Proof. First, we have by (18) and (32) that

f (xkC1)Af (x*)⁄b[ f (xk)Af (x*)], for all k¤1, (34)

where

bGc2
3 γ̄ 2�γ 2H1.

For any l¤0, let ψ (l ) be any index in [MlC1, M(lC1)] for which

f (xψ (l ))G max
1⁄ i⁄M

f (xMlCi). (35)

By the definition of ψ (l ), and by (6) and (15)–(17), we can get that

f (xψ (l ))⁄ f (xψ (lA1))Ac6 min
0⁄ i⁄MA1

��gMlCi ��2, (36)

where

c6Gδmin{λ c1 , c
2
1c�c2

2}

is a positive constant. Let ξ (l ) and ζ (l ) be any indices in [MlC1, M(lC2)]
for which

��gξ (l )��G min
1⁄ i⁄2M

��gMlCi ��, (37)

f (xζ (l ))G max
1⁄ i⁄2M

f (xMlCi), (38)

and denote by c7 the constant

c7G[c6Cγ̄c8M
3 ]−1. (39)

Now, we define an infinite subsequence {ki : i¤0} ⊂ {1, 2, 3, . . .} as follows.
Pick k0Gψ (0). Suppose that kiGψ (l̄) is chosen for some l̄. If

��gξ (l̄C1)��2⁄c7 [ f (xψ (l̄))Af (x*)], (40)
we define

kiC1Gζ (l̄C1);

otherwise, we set

kiC1Gψ (l̄C3).
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For the subsequence {ki} defined as above, it is obvious that

kiC1Aki⁄4M. (41)

In addition, there must exist a constant c8 ∈ (0, 1) such that

f (xkiC1)Af (x*)⁄c8 [ f (xki)Af (x*)], for all i¤1. (42)

In fact, if (40) holds, it follows by (32), (18), the definition of kiC1 , and (40)–
(41) that

f (xkiC1)Af (x*) ⁄ γ̄ ��gkiC1��
2

⁄ γ̄c8M
3 ��gξ (l̄)��2

Fγ̄c8M
3 c7 [ f (xki)Af (x*)]. (43)

If

��gξ (l̄C1)��2Hc7 [ f (xψ (l̄))Af (x*)], (44)

we have by this and (36)–(37) that

f (xkiC1)Af (x*)⁄ (1Ac6c7)[ f (xki)Af (x*)]. (45)

Therefore by (45), (43), and the choice (39) of c7, we know that (42) holds
with

c8G1Ac6c7 .

For any k¤1, assume that

k ∈ [ki , kiC1), for some i.

Then, we have from (41) that

kAki⁄4M. (46)

By (41), we can get also

ki⁄k0C4Mi; (47)

Combination of (47) with 1⁄k0⁄M and (46) shows that

i⁄ (kiAk0)�4M

¤ (kA4MAk0)�4M

Gk�4MA5�4. (48)

Thus, by (34), (42), (46), (48), we obtain

f (xk)Af (x*)⁄bkAki[ f (xki)Af (x*)]

⁄b4Mci
8 [ f (xk0)Af (x*)]

⁄b4Mck�4MA5�4
8 [ f (ẋk0)Af (x*)]

⁄b5Mck�4MA5�4
8 [ f (x1)Af (x*)]. (49)
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Therefore, (33) holds with

c4Gb5Mc−5�4
8 , c5Gc1�4M

8 . �

From the above proof, we see that, when a nonmonotone line search
method is applied to minimize a uniformly convex function, there must exist
a Q-linear convergent subsequence {xki: i¤0} satisfying

kiC1Aki⁄M1 , for all i¤0, (50)

where M1 is some fixed positive integer.
Generally, a R-linearly or R-superlinearly method is not necessarily

such that the nonmonotone line search conditions are satisfied. For
example, we consider the gradient method dkG−gk for the 1-dimensional
function

f (x)G(1�2)x2, x ∈ R1. (51)

If x1≠0 and α k is chosen to be

α kG�1A2−k, if kGi2 for some integer i,

2, otherwise,
(52)

it is easy to show that {xk} is R-superlinearly convergent to the point
x*G0, but that condition (5) does not hold for any fixed M. Nevertheless,
if there exists some Q-linearly subsequence {xki} satisfying

kiC1Aki⁄M1 , for some M1 ,

it can be shown that condition (5) must hold for the given steplengths.

Theorem 3.2. Suppose that f(x) is a smooth, uniformly convex func-
tion, and that x1 is given. Consider some iterative method (2), where dk

satisfies (16)–(17) and α k satisfies

λ 2¤α k¤min{λ 1 , c�gT
k dk ����dk ��2}. (53)

Assume that there exists an infinite subsequence {ki : i¤0} satisfying (42)
and (50), where M1 is some integer and c8 ∈ (0, 1). Then, for any δ∈ (0, 1),
there must exist an integer M and a sequence m(k) satisfying

m(0)G0 and m(k)⁄min{m(kA1)C1, MA1}

such that

f (xkCα kdk)⁄ max
0⁄ j⁄m(k)

[ f (xkAj)]Cδαkg
T
k dk , for all k¤ M. (54)

Proof. Assume without loss of generality that

k0⁄M1 ; (55)
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otherwise, set

M1Gmax{k0 , M1}.

Note that (34) still holds due to (17) and (53). Similarly to the third
inequality in (49), we can prove by (34), (42), (50) that there exist constants
c9H0 and c10 ∈ (0, 1) such that

f (xkiCj)Af (x*)⁄c9c
j
10 [ f (xki)Af (x*)], for all i¤0 and j¤1. (56)

In addition, it follows from (17) that

gT
k dk¤Ac2 ��gk ��2, (57)

which with (16), (53), (32) implies

α kg
T
k dk¤Ac11( f (xk)Af (x*)), for all k, (58)

where

c11Gc2λ 2�γ .

Then, for any δ∈ (0, 1), since c10 ∈ (0, 1), there must exist some integer M2

such that

c9c
j
10 [c10Cδc11 ]⁄1, for all j¤ M2 . (59)

Let

MGM1CM2 .

For any k¤M, we know by (50) and (55) that there must be some integer
î¤0 such that

kî ∈ [kAMC1, kAM2 ]. (60)

From (60), it follows that

M2⁄kAkî⁄MA1. (61)

By (56) and (58)–(60), we obtain

f (xkC1)Af (x*)⁄c9c
M 2C1
10 [ f (xkî )Af (x*)]

⁄ (1Aδc9c11c
M 2
10 ) [ f (xkî )Af (x*)]

⁄ f (xkî )Af (x*)Cδαkg
T
k dk . (62)

Therefore, if we further choose

m(k)Gmin{k, MA1},

the relation (54) must hold due to (61)–(62). This completes our proof. �

Theorem 3.2 tells us for what optimization methods the nonmonotone
line search could be applied, whereas the good properties of the methods
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may be still preserved. For example, see the sequential quadratic program-
ming method, which is known to be two-step superlinearly convergent.
Another example is the Barzilai and Borwein gradient method (Ref. 17),
which is of the form

xkC1GxkA[��xkAxkA1 ��2�(gkAgkA1)
T(xkAxkA1)] gk , (63)

where x1, x2 are given initial points. For convex quadratic functions, such
a method is shown to be R-superlinearly convergent if the dimension is
nG2 (see Ref. 17). For convex quadratic functions of any dimension n, the
method is shown to be R-linearly convergent (see Ref. 18); specifically, it is
shown that there must exist some Q-linearly convergent subsequence
{ f (xki)} satisfying

kiC1Aki⁄M1 , for some M1 .

Thus, if a nonmonotone line search is applied, every point defined by the
Barzilai and Borwein gradient method may be accepted by the line search
as xk→x*, where x* satisfies ∇ f (x*)G0 and ∇ 2f (x*)H0, as is observed in
Ref. 10.

4. Modified Nonmonotone Line Search

As mentioned once in Section 1, the nonmonotone line search is helpful
to overcome the case where the sequence of iterates follows the bottom of
a curved narrow valley. However, in practical computations, it is always the
case that users do not know where there are curved narrow valleys. For
functions whose nonlinearity is not strong, one would prefer a monotone
line search to a nonmonotone one. For example, consider the Brown and
Dennis function. To satisfy the inequality (68), the inexact Newton method
with the nonmonotone line search (4)–(5) requires 22 iterations with 301
function evaluations. In contrast, the method using the standard Armijo
line search needs only 14 iterations and 90 function evaluations; see below
for details.

Suppose that, for some optimization method, the prior trial steplength
at the kth iteration is ᾱ k. For example, in the Newton method, ᾱ kG1. Since
this prior trial steplength has some good properties, it is reasonable
to accept it relatively easily; in other words, provided that the prior trial
steplength ᾱ k satisfies the condition (5), it seems reasonable for one to
accept it. However, in the case where the prior trial steplength ᾱ k does not
satisfy (5), it seems more reasonable to require the second candidate step-
length α̂ k to satisfy the standard Armijo condition

f (xkCα̂ kdk)⁄ f (xk)Cδα̂kg
T
k dk , (64)
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since α̂ k does not possess the good properties that the prior steplength ᾱ k

has.
The new nonmonotone strategy can be expressed as follows:

set α kGᾱ k , if (5) holds for ᾱ k; otherwise, obtain α k

by doing a standard Armijo line search along dk.

Since the Armijo condition is stronger than (5), the results obtained in
Sections 2–3 still hold for the above modified nonmonotone line search. In
addition, it is obvious that the modified nonmonotone line search can also
to a great extent overcome the case where the sequence of iterates follows
the bottom of some curved narrow valley. Further, for some optimization
methods, the modified nonmonotone line search is superior to the old non-
monotone line search, as will be shown below.

To show the usefulness of the new nonmonotone line search, we tested
the inexact Newton method,

dkG−H−1
k gk , (65)

where Hk is an approximation to the Hessian of f at the current point xk.
In our tests, we used a central difference technique to obtain Hk , namely,

(Hk)iG[∇ f (xkCγei)A∇ f (xkAγei)]�2γ. (66)

Here (Hk)i and ei mean the ith column of Hk and the unit matrix In , and γ
is the difference stepsize given by

γ Gmin{10−3, max{10−3��gk ��, 10−6}}. (67)

This choice for the difference stepsize is typical, for the numerical results
with smaller γ provide the same conclusion. We also used the safeguard in
Ref. 1; namely, we set

dkG−gk , if Hk is singular, or �gT
k dk �F10−5��gk ��2, or ��dk ��H105��gk ��.

In addition,

dkG−dk , if gT
k dkH0.

The initial guess ᾱ k is set to 1, and the constants δ and σ are 10−3 and 0.5,
respectively. The value of M is set to 10 and

m(k)Gmin[m(kA1), M].

We tested the above algorithm using the two nonmonotone line
searches with double precision in an SGI Indigo workstation. The codes
were written in the FORTRAN language. Our test problems and the initial
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Table 1. Numerical comparisons.

Method

Armijo Old New

Problem n Nf Ng Nf Ng Nf Ng

MGH5 2 8 16 19 27 19 27
MGH11 3 23 38 32 41 22 35
MGH14 4 38 55 29 32 34 54
MGH16 4 14 90 22 301 12 85
MGH20 9 12 13 12 13 12 13
MGH21 16 21 29 11 16 16 22
MGH21 100 21 29 11 16 16 22
MGH23 8 34 43 22 23 22 23
MGH23 100 36 106 48 205 31 98
MGH23 200 62 143 >999 >999 55 136
MGH24 3 31 39 11 12 11 12
MGH24 20 50 63 33 34 33 34
MGH25 20 5 76 >999 >999 5 76
MGH25 50 11 254 >999 >999 11 254
MGH26 20 7 12 9 13 9 13
MGH26 50 13 35 12 23 15 35
MGH26 100 36 80 20 58 20 44
MGH35 8 7 11 8 11 7 11
MGH35 20 17 30 28 46 18 26

points used are drawn from Ref. 19. For each problem, the limiting number
of function evaluations is set to 999, and the stopping condition is

��gk ��⁄10−6. (68)

We report our numerical results in Table 1, where ‘‘Armijo’’, ‘‘Old’’,
and ‘‘New’’ stand for the Armijo line search, the nonmonotone line search
(5), and the modified nonmonotone line search. The symbols n, Nf , Ng mean
the dimension of the problem, the number of iterations, and the number of
function evaluations.

The unconstrained optimization problems are numbered in the same way
as in Ref. 19. For example, MGH5 means Problem 5 in Ref. 19. From Table
1, we can see that, for some problems, both the old nonmonotone line
searchand the modified nonmonotone line search require fewer iterations and
function evaluations than the Armijo line search. However, for some prob-
lems, the old nonmonotone line search performs much worse than the Armijo
line search, whereas the modified nonmonotone line search performs as well
or better than the Armijo line search. Therefore, our numerical results show
that the use of the modified nonmonotone line search in the inexact Newton
method is superior to that of the old nonmonotone line search.



JOTA : VOL. 112, NO. 2, FEBRUARY 2002 329

5. Discussion and Conclusions

In this paper, we have provided some basic analyses of the nonmono-
tone line search in Ref. 1. First, we analyzed the nonmonotone methods for
general nonconvex functions along different lines. The analyses are helpful
in establishing the global convergence of a nonmonotone line search method
even in the absence of the sufficient descent condition (16) or the condition
(17). Next, we have explored the relations between nonmonotone line search
and R-linear convergence in the case where f is uniformly convex. From
Theorem 3.2, we know for what optimization methods the nonmonotone
line search could be applied, while preserving the good properties of the
methods. Then, by taking the inexact Newton method as an example, we
have observed a numerical drawback of the nonmonotone line search in
Ref. 1 and suggested a standard Armijo line search when the condition (5)
is not satisfied by the prior trial steplength ᾱ k. Numerical results have been
reported, which showed that the use of the modified nonmonotone line
search in the inexact Newton method is superior on average to that of the
original nonmonotone line search.

We should say that our numerical experiments for the modified non-
monotone line search are limited. For some optimization methods, if the
nonmonotone line search condition (5) is not satisfied by the prior trial
steplength, it may be better to require the second candidate steplength to
meet (5) with a relatively small MH0. Anyway, we believe that both the
theoretical and numerical analyses will be helpful in future studies on the
technique of nonmonotone line search.
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