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Abstract. In the present work, we explore a general framework for the
design of new minimization algorithms with desirable characteristics,
namely, supervisor-searcher cooperation. We propose a class of algo-
rithms within this framework and examine a gradient algorithm in the
class. Global convergence is established for the deterministic case in the
absence of noise and the convergence rate is studied. Both theoretical
analysis and numerical tests show that the algorithm is efficient for the
deterministic case. Furthermore, the fact that there is no line search
procedure incorporated in the algorithm seems to strengthen its robust-
ness so that it tackles effectively test problems with stronger stochastic
noises. The numerical results for both deterministic and stochastic test
problems illustrate the appealing attributes of the algorithm.
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1. Introduction

In practical applications, various types of noises are present in most
available data. Here, noises are understood in a broad sense. In some cases,
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noises can be ignored, but more often than not, they play an important role
in the mathematical modeling of applications. The purpose of this work is
to develop faster and reliable algorithms for unconstrained optimization
problems with stronger noise,

min f (x), where f (x)GF (x)C( ,

where F is the underlying exact mathematical model and either (i) or (ii)
below characterizes the noise ( :

(i) ( is stochastic noise, which may depend on x. In this case a desir-
able algorithm should be faster when (G0, and still able to solve
the problem with larger noises.

(ii) ( is some kinds of deterministic residual, e.g., from inexact com-
puting. In such case, it is possible that ( is negligible in function
value evaluation, but significant in gradient estimation. Again, a
desirable algorithm should be efficient when noises are smaller
and still able to solve the larger noise case.

We anticipate that a good algorithm has to be efficient when noise is
negligible and reliable when it is not, since it is difficult to control the exact
level of noise in applications.

In this paper, whenever we refer to the function value or gradient of f
at a point x ∈ Rn, we mean some estimation of the value of F or gradient of
F at the point x. When we refer to a minimizer of f, we really mean a
minimizer of F. When (G0, the estimators are assumed equal to the corre-
sponding exact values.

Before introducing our algorithms, we would like to explain the motiv-
ation behind them. Let us first assume (G0 and have a closer look at a
classical minimization algorithm: Given x0, t0, û0, compute

xkC1GxkAtkûk , kG0, 1, 2, . . . , (1)

where tk and ûk are the steplength and search direction. In many cases, the
following algorithm (search engine) is locally convergent:

xkC1GxkAûk .

To a large extent, it actually decides the speed of the algorithm (1). The
global convergence of the algorithm (1) is normally ensured by selecting the
steplengths {tk} via a line search procedure, for instance: (i) exact monotone
type; (ii) inexact monotone type, e.g., Armijo–Goldstein and Wolfe–Powell
(Refs. 1–2); (iii) inexact nonmonotone type, e.g., Grippo–Lampariello–
Lucidi (Ref. 3).

Most existing line search procedures are not found to be very robust
when applied to stochastic optimization, where strong noises may be present
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in the evaluation of the objective functions, or to nonsmooth optimization,
where the objective functions are in general only Lipschitz. For instance, in
stochastic optimization, an exact line search could prove to be very expen-
sive and unstable due to noises. Most existing inexact line search methods,
though may be less expensive, seem to have similar problems. For example,
in stochastic optimization, the estimated gradient contains normally much
stronger noises than those present in the measurement of an objective func-
tion. Hence, the line search results may not be consistent. As a matter of
fact, the existing line search procedures fail frequently, as it will be seen in
our numerical experiments. For nonsmooth objective functions, line search
methods are not applicable in general.

There has been extensive research in developing efficient algorithms for
the above noisy optimization problems. An obvious approach is to use

f̂(xk)G∑
n

1

f (xk)�n

to evaluate the objective function value, at least for the stochastic case. If the
noises have zero mean, this surely can increase the accuracy of estimation of
the function value. Then, existing deterministic optimization algorithms
may be applicable. However, this procedure is in general expensive. It will
not work for nonstochastic noises.

A very popular algorithm in engineering computation is the stochastic
approximation (SA) algorithm, which has been used widely in various appli-
cations with stronger (stochastic) noises since the 1950s. It starts from two
cornerstone papers (Refs. 4–5) and has received extensive references in the
literature; see for instance, Refs. 6–9 and the references cited therein. In this
algorithm, there is no line search at all. It uses a prefixed stepsize {tk}, e.g.,

tkG1�k, tkG1�k0.5, or tkG0.001.

SA proves to be very robust, and its global convergence has been established
under various assumptions on the noises. The most common criticisms are
that SA is in general very slow and that it is difficult to select suitable
{tk}, as it will be shown later on in some examples. For deterministic prob-
lems without noises, SA has been known to be very slow in comparison
with efficient gradient algorithms like the conjugate gradient (CG) method.

There have been many improvements on SA since the 1950s. For
example, a few adaptive or second-order SA methods were proposed (see
Refs. 6–9), though most seem either to be expensive or to bring only mar-
ginal improvements. There are also quasi-Newton type and trust-region type
algorithms (see the Uryas’ev work in Ref. 10 and trust-region methods in
Ref. 11), though the algorithms are in general quite expensive for larger
problems.
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There are also attempts to generalize the standard line search pro-
cedures to the stochastic case. For instance, in Ref. 12, an Armijo-type line
search with restarts is proposed. The basic idea is that the line search is
allowed to restart if it fails. Since the estimated objective function values
are in general different each time they are resampled, this line search should
eventually go through if the estimation of the gradient is quite accurate.
This idea has not yet been used widely in applications. In our experiments,
it was found that it may not work efficiently.

To illustrate our point, we present some numerical results for a very
simple stochastic quadratic minimization problem with

F (x)G∑
n

1

ix2
i C ∑

nA1

1

xixiC1 , nG50, (G0.1N(0, 1),

where N(0, 1) is the standard normal random variable. It is found that SA
with tkG0.001 takes on average 128 sec of CPU time to solve it and SA
with tkG0.1�k simply fails. It is found that the Grippo–Lampariello–Lucidi
line search (with 100 restarts) fails also. The stopping rule and more details
will be explained later on.

There are other methods which do not use derivatives of the objective
functions, e.g., the well-known response surface method (RSM); see Ref. 13
for some new developments and also see Ref. 14 for a survey of derivative-
free algorithms in the deterministic case. There is vast literature in this area;
for example, see Refs. 15–16 for stochastic problems. However, in general,
these algorithms are not as efficient as those using derivative information,
when available. Some techniques for optimizing stochastic discret-event sys-
tems via simulation are reviewed in Ref. 11.

In this and forthcoming papers, we propose a class of new algorithms
whose general principle will be discussed in the next section. Line search
procedures can be eliminated completely from these algorithms, and yet we
do not use prefixed steps all the time. It seems that this class of algorithms
can be both efficient and robust. In this paper, we examine in detail only
one algorithm from the class. Both theoretical analysis and numerical
experiments show that this algorithm is quite fast in the deterministic case
with low noise, comparable with the conjugate gradient algorithm, for
example. Furthermore, numerical tests show that the new algorithm is very
robust and can tackle many noisy optimization problems where SA fails.

The plan of this paper is as follows. In Section 2, we discuss the super-
visor and searcher cooperation framework within which our new algorithms
are formulated. In Section 3, a particular algorithm is proposed via this
framework. In Section 4, we establish some convergence theorems and ana-
lyze the speed of the algorithm for the deterministic case without noise. In
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Section 5, numerical test results are presented for both deterministic and
stochastic problems.

2. Supervisor-Searcher Cooperation

Let

fGFC( ,

where F is a continuous function on Rn and is bounded below. We are
interested in finding local minimizers of f, that is, F. For given
x0 , x1 , . . . , xm , assume that we have an iterative algorithm, called the search
engine (SE):

xkC1GxkAsek (xk , xkA1, . . . , xkAm, k, f ), kGm, mC1, . . . .

The particular form of sek means that it depends on k and the values of
{f (xkAi)}

m
iG0, {∇ f (xkAi)}

m
iG0, {H(xkAi)}

m
iG0, etc, where H(x) is the Hessian

matrix of f at the point x.
Suppose that (G0 and that this algorithm is convergent to a local

minimizer of f provided the starting points are very close to the minimizer.
To make the algorithm convergent globally, it is classic to introduce into it
a line search procedure, monotone or nonmonotone, exact or inexact. How-
ever, as mentioned before, a line search procedure is in general sensitive to
the smoothness of the function and the accuracy of evaluation of the func-
tion value. Therefore, the resulting algorithm, though convergent globally,
may not be robust enough to deal with stochastic or nonsmooth optimiz-
ation problems, which are becoming increasingly important in practical
applications.

The essential idea adopted here is to employ an alternative globally
convergent and robust iterative algorithm to supervise and therefore to safe-
guard the convergence of the SE algorithm. This supervising algorithm will
be referred to as the supervisor (SR). Then, one may obtain a globally con-
vergent and robust algorithm. Assume that the supervisor algorithm (SR)
reads as follows: Given x0 , x1 , . . . , xm , compute

xkC1GxkAsrk (xk , xkA1, . . . , xkAm, k, f ), kGm, mC1, . . . .

In general, an SR algorithm is slower but robust and an SE algorithm
is faster but only locally convergent. Therefore, they have to cooperate in
order to work efficiently. We propose a supervision principle based on
supervisor and searcher cooperation (SSC). According to this principle, the
supervisor intervenes only when it believes that the performance of the
search engine is not satisfactory, while the search engine undertakes most
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of the (solution) searching work. For the resulting algorithm, to a large
extent global convergence may be ensured by the supervisor, but the speed
is decided by the search engine.

There are various ways to implement the cooperation principle. The
following one is particularly simple. Assume f¤0. Given x0 , x1 , . . . , xm , for
kGm, mC1, mC2, . . . , define the following (SSC) algorithm:

xkC1G�xkAsrk, if T k f (xkAsrk)⁄ f (xkAsek ),

xkAsek, otherwise,

where {Tk} is a given sequence of nonnegative real numbers.
This new algorithm may be very different from the parent algorithms,

even when (G0. The algorithm actually switches between the two original
algorithms. For instance, assuming (G0 and assuming to use the Newton
search engine, then this algorithm takes only one step to find the minimizer
for a convex quadratic objective function when taking Tk ≡ 1. This may be
very different from the SR algorithm. On the other hand, it is not clear that
the well known n-step convergence property might still hold for the SSC
algorithm when using the conjugate gradient algorithm as search engine.

It is clear that the behaviors of an SSC algorithm depend not only on
these of the SR and SE algorithms, and but also on the degree of the super-
vision, which is decided by the sequence {Tk}. For instance, if we take
TkG0 or TkGS, there will be no action of search engine or supervisor,
assuming f (xkArk)H0. Also, by taking sekG0, the SSC algorithm becomes
the SR algorithm. We have little interest in such degenerate situations. How-
ever, this does indicate the wide range of algorithms covered by the SSC
algorithm. It seems clear that taking a larger Tk will force the SSC algorithm
to use more SE iterations, and therefore may increase the overall speed of
the SSC algorithm. However, if Tk is too large, the supervision may be too
weak, and therefore the SSC algorithm may not be robust or even conver-
gent globally. These issues will be examined more closely in the next section.
It is also possible to let the algorithm check the switch every two or more
iterations, to form a multistep SSC algorithm. Again, this could save much
computational work, but weakens the cooperation.

Remark 2.1. Note that as far as minimization is concerned, one can
always assume that f¤0 by adding a positive constant to the original func-
tion. Or one can use the following (SSC) algorithm for the general case:

xkC1G�xkAsrk , if T sign(f(xkAsrk))
k f (xkAsrk)⁄ f (xkAsek),

xkAsek , otherwise,
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where {Tk} is a given sequence of nonnegative real numbers. Then, all the
above observations apply to the general case.

There are many possible candidates for SR algorithms. In general, they
are expected to be simple and robust with global convergence property. As
for the SE algorithms, we may use various fast algorithms like the Newton
algorithm, BFGS algorithm, and a fast gradient methods like the conjugate
gradient method.

To motivate the investigation, we study only one pair of SR and SE
algorithm in this paper, and leave more general cases to subsequent papers.
In Section 3, we use the stochastic approximation algorithm as supervisor
and a fast gradient method as searcher.

It is clear that there are many other ways to design minimization algo-
rithms within the SSC framework. For instance, one can use the following
rule:

xkC1G�xkAsrk , if Tk [ f (xkAsrk)Af (xk)]⁄ f (xkAsek)Af (xk ),

xkAsek , otherwise,

where {Tk} is a given sequence of nonnegative real numbers. However, we
shall not examine these implementations in this paper.

3. SSC Gradient Algorithm without Line Search

In this section, we propose a SSC gradient algorithm to compute a
local minimizer of f. This algorithm uses a stochastic approximation (SA)
algorithm as SR and the Barzilai–Borwein (BB) gradient algorithm as SE.

Let {tk}, kG0, 1, 2. . .., be such that

(i) tkH0,
(ii) ∑S

kG1 tkGCS.

These conditions are assumed throughout the paper. It should be noted that
we do not assume that tk→0 as k→S.

In the following, we shall take

srkGtkgk , where gkG∇ f (xk),

that is, an estimate of ∇ F (xk). Therefore, the supervisor (SR) is the stochas-
tic approximation algorithm: for given x0,

xkC1GxkAtkgk , kG0, 1, 2, . . . .

It is well known that the SA method is simple but very robust: it has been
used widely for stochastic optimization problems. In general, it is too slow
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to achieve higher computational accuracy, and it is difficult to select the
sequence {tk} for a particular problem. The readers are referred to Refs. 6–
9 for more details.

The searcher is based on the following BB gradient algorithm: Given
x0, compute

xkC1GxkAα kgk , kG0, 1, 2, . . . ,

where α 0G1 and, for k¤1,

α kG�xkAxkA1 �2�(xkAxkA1)
t[∇ f (xk)A∇ f (xkA1)].

The steplength α k is referred to as the BB stepsize and was proposed first
by Barzilai and Borwein in Ref. 18 for problem with (G0. The BB algo-
rithm is further studied in Ref. 19. In computation, {�α k �} is normally forced
to be bounded.

When (G0, the BB algorithm has been shown to be locally convergent
and R-superlinear for two-dimensional convex quadratic functions, and
much faster than the steepest descent method. In Ref. 20, a nonmonotone
line search is added to the BB algorithm in order to make it globally conver-
gent. It is reported in Ref. 20 that, when (G0, the resulting algorithm GBB
algorithm is rather fast, comparable to the CG algorithm in many cases. In
fact, it is faster than the CG algorithm for some large scale convex optimiz-
ation problems. This motivates us to use the BB algorithm as the search
engine.

We are now in the position to define the SSC gradient algorithm. Let
x0 ∈ Rn and α 0G1 be given. Let Tk¤0 be given for kG0, 1, 2, . . . . Assume
that f¤0. Then, define the following gradient optimization algorithm (SSC-
SABB):

xkC1G�xkAtkgk , if Tk f (xkAtkgk)⁄ f (xkAα kgk), kG0, 1, 2, . . . ,

xkAα kgk , otherwise.

If f is not nonnegative, then the above definition may be modified as

xkC1G�xkAtkgk , if T sign
k ( f (xkAtkgk)) f (xkAtkgk)⁄ f (xkAα kgk),

xkAα gk , otherwise,

However, it was found that it is more efficient to add a positive constant to
the objective function to make it nonnegative.

It is important to note that there is no line search in the SSC-SABB
algorithm. The SSC-SABB algorithm switches between the two algorithms.
All the switching is decided by an extra evaluation of the objective function
value. This requires less computational work than an exact line search pro-
cedure and should be comparable to an inexact line search procedure. Since
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the extra evaluation off can be done easily in parallel, it should not cause
loss of speed in real computation.

It will be seen from Section 4 that, to a large extent, the supervisor
guarantees the global convergence of the SSC-SABB algorithm, while the
search engine decides the local convergence rate, at least when (G0. As far
as the supervisor is concerned, the gain is a possible increase of speed and
efficiency; as far as the search engine is concerned, it may obtain extra
robustness and global convergence.

4. Global Convergence and Convergence Rate of the SSC-SABB Algorithm

In this section, we examine the convergence and speed of the SSC-
SABB algorithm. We will assume that (G0 as mentioned in Section 1. The
analysis carried out here should pave the way for fuller theoretical investi-
gations on the algorithm. Due to the special selection of SR in SSC-SABB,
the resulting algorithm is always globally convergent for a wide selections
of {Tk}. In the SSC-SABB, algorithm, {Tk} adjusts the balance between
robustness and efficiency.

Theorem 4.1. Let f be twice continuously differentiable and bounded
below. Assume that ∇ f is Lipschitz with a global Lipschitz constant. Let
{xk} be generated by the SSC-SABB algorithm defined in Section 3. Assume
that Tk⁄1, for kG0, 1, 2, . . . . Then, there is an ( ( f )H0 such that
{∑k

0 tk �∇ f (xk) �2} is convergent as k→S for any sequence {tk} such that
there is an NH0 satisfying tk⁄( ( f ), for k¤N.

Proof. For ease of exposition, we assume that f¤0. It follows from
the definition of the algorithm that, for any k¤0,

f (xkC1)⁄max( f (xkAtkgk), Tkf (xkAtkgk))

Gmax (1, Tk) f (xkAtkgk)

⁄ f (xkAtkgk)

⁄ f (xk)Atkg
T
k gkCt2kg

T
k Hkgk�2,

where Hk is the Hessian matrix of f at a point θk in the line segment
[xk , xkC1 ]. Therefore, for k¤1,

f (xkC1)⁄ f (x0)A∑
k

0

tk �gk �2C∑
k

0

Ct2k �gk �2,

where C depends only on f. Then, there is an (H0 such that

tk (1ACtk)¤c′tk , for tk⁄( ,
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where c′H0 is a constant independent of k. Therefore, if there is a NH0
such that tk⁄( for k¤N, then ∑k

0 tk �gk �2 is convergent as k→S as f is
bounded below. �

It follows from the above proof that the SSC-SABB algorithm is
decreasing if Tk⁄1 and k is large enough. Consequently, we have

lim
k→S

f (xk)Gf (x*),

where x* is a stationary point of f if, for instance, the objective function
has bounded level sets. Therefore, we have

lim
k→S

xkGx*,

if, for example, the objective function is uniformly convex.
It seems that some convergence results can be established similarly for

the case where the noises are deterministic; that is, f and gk are only some
approximation of F and ∇ F. For instance, assume that ε is small in the
function value evaluation, but significant in the gradient estimation, e.g.,
when using a finite difference approximation scheme to estimate ∇ F. Then,
it follows from the proof that, if gk is only an approximation of ∇ F (xk),
global convergence will still hold provided that

�gk �⁄C�∇ F (xk) �, (gk , ∇ F (xk))¤c�∇ F (xk) �2,

where c, CH0 are independent of k. These conditions are quite light and
easy to meet. In fact, gk is allowed to be far away from ∇ F (xk), e.g., twice
as large as ∇ F (xk) with a 45 degree angle between them. This indicates the
strong robustness of the SSC-SABB algorithm.

Global convergence may not hold when TkH1, kG0, 1, 2, . . . , due to
a weaker supervision. We construct here a 1-dimensional counterexample.
For the one-dimensional case, we have that

skGbkgkG[gk�(gkAgkA1)]skA1 . (2)

For j sufficiently large, it is possible to choose the following steps and
gradients:

s4 jC1G1, s4 jC2G(15C1)�2, s4 jC3GA1, s4 jC4GA(15C1)�2,

g4 jC1GA1, g4 jC2GA(15A1)�2, g4 jC3G1, g4jC4G(15A1)�2.

It follows that the above steps and gradients satisfy (2) and

gT
4 jCi s4 jC1F0, ∑

4

iG1

s4jCiG0.
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Pick any value as x̄1 and let

x̄ jGx̄C ∑
j

iG1

xi .

Then, we construct a continuous function fr such that

fr(x̄i) ≡ 1 and ∇ fr(x̄i)Gg4jCi , for iG1, 2, 3, 4.

For this function, if k is large, if it happens that xkGx̄1 and xkC1Gx̄2 , and
if Tk ≡ TH1, the SSC-SABB algorithm will always use the search engine
and hence will cycle between the four points x̄i , iG1, 2, 3, 4. This counterex-
ample actually tells us that such a cycle may happen in any case where the
search engine is only locally convergent if Tk ≡ TH1.

Actually, the case where sometimes TkH1 is important, because this
could increase the efficiency of the resulting algorithm. There may be many
different ways to cure this nonconvergence problem. For instance, let
SkGmax(1, Tk). Then, it follows from the proof of the above theorem that
the global convergence still holds provided ∏ S

0 SkFS. Therefore, one can
always take a finite numbers of TkGTH1. Another simpler way to ensure
global convergence is to let a finite numbers of TkG1, and then let the rest
of TkGTH1. Global convergence can still be established, as it will be shown
in the following theorem. We also examine the convergence rate of the SSC
algorithm. For ease of exposition, we assume that tk→0 in the following
theorem, though it is not difficult to see that it holds for the case where tk
is very small after k is large enough, as in Theorem 4.1.

Theorem 4.2. Let fH0 be a three times continuously differentiable
function and strictly convex. Let x* be the minimizer of f. Let {xN

k } be
defined by the SSC-SABB algorithm of Section 3 with the following choice
of {Tk}. Let NH0 be a fixed integer and TH1 a fixed real number. Let
TkG1 for kG0, 1, 2, . . . , N and TkGTH1 for kHN. Then, there is a
N(x0 , f )H0 such that {xN

k } is convergent, whenever NHN(x0 , f ). Further-
more, the SSC-SABB algorithm is as fast as the BB algorithm locally, at
least R-linearly convergent, whenever NHN(x0 , f ).

Proof. The proof of the above theorem could be made rather techni-
cal, as we have to first prove that the BB algorithm is locally R-linearly
convergent. Although its local convergence has been proved for a quadratic
objective function in Ref. 19, R-linear convergence or even simply conver-
gence of the BB algorithm for general convex objective functions still needs
many extra tedious estimates to prove. On the other hand, the principle of
the proof is quite simple. Therefore, we skip some of the details for these
estimates.
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We show first the R-linear convergence of the BB algorithm, if xk is
sufficient close to x*, where xk is generated by the BB formula. For any k,
given x̂kGxk and x̂kC1GxkC1 , we define {x̂kCj : jG0, 1, 2, . . . } to be the
iterations generated by the BB algorithm for the quadratic function

f̂(x)Gf (x*)C(1�2)(xAx*)TH(xAx*),

where H is the Hessian matrix of f at x*. It follows from Ref. 19 that
{x̂kCj} converges to x* as j→S, if xk is very near x*.

Then, for any 1⁄ l⁄m, where m is some fixed integer, if

�x̂kCjAx*�¤c1 �x̂kAx*�, jG1, . . . , l,

where c1H0 is constant, we can prove by induction that there exists a posi-
tive constant c2H0Gc2(m, c1 , H ), independent of k, such that

�xkCjAx̂kCj �⁄c2 �xkAx*�2, jG1, . . . , l. (3)

Furthermore, it can be shown (see Ref. 21) that there exist a constant c3 ∈
(0, 1) and an integer m which depends only on c3 and H such that, for any
k¤2, there exists an integer l ∈ [1, m] such that

�x̂kClAx*�⁄c3 �x̂kAx*�. (4)

Now, let δG(1Ac3)�2c2 and let k0 be so large that

�xk0Ax*�⁄δ. (5)

For this k0, let x̂k0Gxk0 and x̂k0C1Gxk0C1, and denote by k1 the least index
for which

�x̂k1Ax*�⁄c3 �x̂k0Ax*�. (6)

It is obvious that k1Ak0⁄m. Then, by (3), (6), (5), and the choice of δ, we
can show that

�xk1Ax*�⁄ �x̂k1Ax*�C�xk1Ax̂k1�⁄c4 �xk0Ax*�,

where

c4G(1Cc3)�2F1.

Repeating this procedure, we can then obtain an infinite subsequence
{ki : iG1, 2, . . . } such that

kiC1Aki⁄m and �xkiC1Ax*�⁄c4 �xkiAx*�, iG1, 2, . . . . (7)

In addition, note that there exists a constant c5H0 such that the relation

�xkC1Ax*�⁄c5 �xkAx*� (8)
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holds for any large k. By (7) and (8), then we can prove that

�xk0CjAx*�⁄Mc j
6 �xk0Ax*�,

where

MGc−1
4 cmA1

5 and c1�m
6 Gc1�m

4 F1.

The above relation shows that the BB algorithm is R-linearly convergent.
In the following, we show that the SSC-SABB algorithm will take only

the BB stepsizes when it starts from a point very near the minimizer x*;
then, we prove that there is a subsequence of {xN

k } very close to x* provided
N is chosen large enough.

As f (x*)H0, there is a r0H0 such that

Tf (xAtk ∇ f (x))Hf (y), ∀ k¤0,

as long as

�xAx*�Fr0 and �yAx*�Fr0 ,

since TH1 and {tk} is bounded.
Now let {yk}, kG0, 1, 2, . . . , be generated by the SSC-SABB algorithm

with y0Gx0 and Tk ≡ 1. Then, from Theorem 4.1, there will be a k0H0,
depending on x0 and f, such that

�yk0Ax*�Fmin(r̄0 , δ)�M,

where r̄0⁄r0 and δ is defined above, since f is strictly convex. Let the
sequence {xN

k } be generated via the SSC-SABB algorithm from x0 by letting
TkG1 for kG1, 2, . . . , N and TkGTH1 for kGNC1, . . . . Let N0Gk0 .
Note that the first N0 elements {xN

0 , xN
1 , . . . , xN

N 0} of this sequence are ident-
ical with {y0 , y1 , . . . , yN 0} provided N¤N0 . Let xk0Ci , iG1, 2, . . . , be the
sequence generated by the BB algorithm from xN 0

k0 GxN 0
N 0GxN

N 0, N¤N0 .
Clearly, r̄0 can be made so small that

�xk0C1Ax*�Fmin(r0 , δ)�M.

Therefore,

�xk0CiAx*�⁄Mci
6 �xN 0

k0 Ax*�Fmin(r0 , δ), iG1, 2, . . . ,.

Hence, the SSC-SABB algorithm will use only the BB stepsizes after
k0GN0 according to its switching rule. Therefore, the sequence {xN

k }, gener-
ated via the SSC-SABB algorithm by letting TkG1 for kG1, 2, . . . , N and
TkGTH1 for kGNC1, . . . , is as fast as the BB algorithm, at least R-
linearly convergent for any N¤N0 .

In practical computation, Tk is often fixed to a constant TH1. In gen-
eral, the convergence rate of the SSC-SABB algorithm is much better than
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that of the SA algorithm, due to the faster search engine used in the algo-
rithm (the BB algorithm is sometimes R-superlinear). Indeed, this is con-
firmed in our numerical tests. The condition fH0 may be met by adding a
large positive number C to the original objective function.

The above analysis confirms our expectations, discussed in Section 2,
that is, that the global convergence is largely decided by the supervisor SR,
while efficiency of the algorithm depends much on the search engine SE. In
Section 5, we carry out some numerical tests for the SSC-SABB algorithm.

5. Numerical Tests

We present some numerical experiments for both deterministic and
stochastic test problems. The purpose of these tests is to see whether or not
the SSC algorithm is efficient in the lower noise case and robust in the
stochastic case.

5.1. Deterministic Case, ( Negligible. We use 22 test problems in the
deterministic experiments. Problems 1–18 are drawn from Moré, Garbow,
and Hillstrom (Ref. 22), which are well known and certainly not trivial;
most of them are not convex. Problems 19–20 are stated in the Raydan
paper (Ref. 20). We adopt the initial values used in the above works.

Problems 21–22 are described as follows:

(P21) f (x)Gx4Cx2C100, x ∈ R1, with x0G10,

(P22) f (x)G ∑
50

FiG1

ix2
i C ∑

49

iG1

xixiC1 , with x0G(1, 1, . . . , 1)T.

Problems 19–22 represent good or normal ones.
We compare Algorithm SSC-SABB with Algorithms SA and GBB. The

latter was chosen because it was reported to be rather efficient and because
it uses the BB stepsize as well. For GBB, we adopt all the recommended
restrictions and procedures given in Ref. 20. For SSC-SABB, we have no
restriction for α k. We take TkG5 in all the tests. We also tried TkG1 for a
few initial steps and then TkG5. However, there is not much difference. We
have used three different sequences of {tk} in our experiments:

tkGmin(1.5�k, 0.01), tkGmin(1.5�1k, 0.01), tkG0.01.

In Table 1 and 2, we report the number of iterations and number of function
evaluations, with the stopping rule

�∇ f (xk) �⁄10−6.
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Table 1. Comparing the GBB and SSC-SABB algorithms, number
of iterations.

P n GBB min(1.5�k, 0.01) min(1.5�1k, 0.01) 0.01

1 3 221 143 143 143
2 6 1073 45 45 45
3 3 4 5 5 5
4 2 H9999 H9999 H9999 H9999
5 3 266 14 14 14
6 6 12 19 19 19
7 9 H9999 H9999 H9999 H9999
8 8 145 H9999 H9999 H9999
9 3 14 20 20 20

10 2 H9999 H9999 H9999 H9999
11 4 50 128 128 128
12 3 H9999 1 1 1
13 20 82 92 92 92
14 14 75 415 289 289
15 16 H9999 402 320 320
16 2 44 48 48 48
17 4 914 668 1573 1573
18 8 56 68 68 68
19 100 7 7 7 7
20 100 105 104 104 104
21 1 14 17 17 17
22 50 113 101 101 101

Let us note that the number of gradient evaluations is just the number of
iterations plus one. The maximum number of function evaluations is set to
9999. It is found that SA fails for most test problems, so that it is not
included here.

From Tables 1–2, we see that, on average, SSC-SABB seems to be as
efficient as GBB in terms of the number of function and gradient evalu-
ations. It was found that SSC-SABB is faster than GBB in terms of CPU
time: SSC solves the commonly solved problems in 0.42 s, while GBB uses
0.78 s on a Sun UltraSparc 1 station. The GNU g77 compiler was used
without any optimization flags. This may be caused by the fact that, in two
cases, SSC finds different local minima, thus consuming less CPU time.
Also, the global GBB parameter setting may not be optimal for individual
problems. However, we are able to state that the overall performances of
these two algorithms are similar.

From Tables 1–2, one can also see that the performance of the SSC is
not very sensitive to the selection of {tk}.

In the deterministic case, it is not difficult to speed up SSC-SABB.
One can use, for example, the following rule: if �gk �⁄0.01, then only the
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Table 2. Comparing the GBB and SSC-SABB algorithms, number
of function evaluations.

P n GBB min(1.5�k, 0.01) min(1.5�1k, 0.01) 0.01

1 3 272 287 287 287
2 6 1458 91 91 91
3 3 6 11 11 11
4 2 H9999 H9999 H9999 H9999
5 3 352 29 29 29
6 6 18 39 39 39
7 9 H9999 H9999 H9999 H9999
8 8 150 H9999 H9999 H9999
9 3 17 41 41 41

10 2 H9999 H9999 H9999 H9999
11 4 61 257 257 257
12 3 H9999 3 3 3
13 20 87 185 185 185
14 14 107 831 579 579
15 16 H9999 805 641 641
16 2 51 97 97 97
17 4 1238 1337 3147 3147
18 8 67 137 137 137
19 100 8 15 15 15
20 100 119 209 209 209
21 1 18 35 35 35
22 50 128 203 203 203

BB step is used. Furthermore, we can use a line search in SE. The
resulting algorithm will be referred to as SAGBB; that is, we use SA with
tkGmin(1.5�1k, 0.01) as supervisor and the GBB algorithm as search
engine. The test results with these improvements are shown in Tables 3
and 4.

It can be seen from Tables 3–4 that the speed of SSC-SABB is further
increased. Particularly, SAGBB solves almost all the test problems. In fact,
it needs only an extra few tens of iterations to solve the only unsolved test
problem (Problem 7).

5.2. Stochastic Case. The purpose of our experiments here is to test
the robustness of SSC-SABB. We still use the above 22 problems as the
underlying exact models, but add the noise (G0.1 N (0, 1), where N(0, 1) is
the standard normal random variable. Therefore, the test setting reads

min[F (x)C( ].
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Table 3. Accelerating the SSC-SABB algorithm, number of iter-
ations.

P n GBB min(1.5�k, 0.01) min(1.5�1k, 0.01) 0.01

1 3 112 112 112 128
2 6 45 45 45 76
3 3 5 5 5 5
4 2 H9999 H9999 H9999 4
5 3 14 14 14 20
6 6 19 19 19 19
7 9 H9999 H9999 H9999 H9999
8 8 32 32 32 31
9 3 20 20 20 18

10 2 H9999 H9999 H9999 174
11 4 128 128 128 130
12 3 1 1 1 1
13 20 192 192 192 535
14 14 416 266 266 61
15 16 261 214 214 546
16 2 36 36 36 33
17 4 564 1537 1537 659
18 8 68 68 68 75
19 100 7 7 7 7
20 100 104 104 104 83
21 1 17 17 17 17
22 50 101 101 101 117

We then use F (x)C( to evaluate the function value and use ∇ [F (x)C( ] to
estimate the gradient. It is clear that the noise can be dominant in the gradi-
ent estimation when the approximation is near a solution, where ∇ FG0. In
fact, most noisy optimization problems are certainly not trivial to solve.

We compare SSC-SABB, SA, and GBB with 100 restarts at each iter-
ation. We use the following stopping rule:

�x̂kAx*�Feps, if x*is known,

� ( f̂k)AF (x*) �F(eps)2, otherwise,

where epsG0.01, x* is the minimizer, and

x̂kG∑
19

0

xkAi�20, f̂kG∑
19

0

f (xkAi)�20.

We test SA with tkGC�(kC1) and tkG0.001, GBB with 100 restarts, and
SSC-SABB with TkG1.0 and tkGC�(kC1), where in contrast to the deter-
ministic case, the value of C has to be adjusted according to the problem:
CG0.1 for most test problems; CG1.0 for Problems 19–23; CG0.001 for
Problems 3, 12, 17–18; CG0.000001 for Problems 4, 6, 10, 11; Although



JOTA: VOL. 111, NO. 2, NOVEMBER 2001376

Table 4. Accelerating the SSC-SABB algorithm, number of func-
tion evaluations.

P n GBB min(1.5�k, 0.01) min(1.5�1k, 0.01) 0.01

1 3 209 209 209 278
2 6 74 74 74 123
3 3 7 7 7 7
4 2 H9999 H9999 H9999 16
5 3 25 25 25 49
6 6 38 38 38 38
7 9 H9999 H9999 H9999 H9999
8 8 51 51 51 53
9 3 36 36 36 37

10 2 H9999 H9999 H9999 608
11 4 248 248 248 250
12 3 3 3 3 3
13 20 249 249 249 648
14 14 828 529 529 133
15 16 412 356 356 823
16 2 63 63 63 67
17 4 1092 2957 2957 1357
18 8 117 117 117 140
19 100 13 13 13 13
20 100 151 151 151 132
21 1 33 33 33 35
22 50 154 154 154 178

SSC-SABB is not very sensitive to the selection of {tk}, the starting value
of t0 is very important to ensure convergence, due to the stochastic nature
of the test problems. We emphasize again that these stochastic problems are
nontrivial and that the above adjustments are commonly used in engineering
computation in order to solve realistic problems.

The results are presented in Table 5, where:

HNMLS is GBB with 100 restarts;
SSC-SABB is similar to the SSC-SABB used in the deterministic case
with certain restrictions on the stepsizes (see Ref. 20);
SSC-SABB1 is a modified version of SSC-SABB; for the first 10 iter-
ations, it uses the nonmonotone line search with 10 restarts; if the line
search fails, it switches to SA steps.

Each test problem is given 10 runs, with different seed for the random
number generator in each one of them. In Table 5, the number of successful
runs is reported for these algorithms.

It was found that the SSC algorithm solves many more problems than
SA and GBB with restarts. In fact, there seems to be no existing algorithm



JOTA: VOL. 111, NO. 2, NOVEMBER 2001 377

Table 5. Comparing the SA, GBB, and SSC-SABB algorithms, stochastic case.

P SA (tkGC�(kC1)) SA (tkG0.001) HNMLS SSC-SABB SSC-SABB1

1 0 0 0 10 8
2 0 0 0 1 9
3 10 0 0 10 9
4 0 0 0 0 0
5 0 4 1 10 9
6 0 10 8 10 10
7 0 1 1 9 10
8 0 0 0 2 9
9 0 0 0 10 10

10 0 0 0 0 0
11 0 0 0 10 10
12 0 0 0 0 0
13 0 0 0 5 8
14 0 0 0 0 0
15 0 0 0 0 0
16 0 9 10 10 10
17 0 0 0 0 0
18 10 0 0 10 10
19 0 0 0 0 0
20 0 0 0 0 0
21 0 10 10 10 10
22 0 10 10 10 10

that can solve so many difficult noisy optimization problems. It is found
that increasing the maximum number of function evaluations (currently
9999) helps the SSC algorithms to solve even more problems, while this
makes little difference to the other algorithms. Central difference approxi-
mations have been used also to estimate the gradient and similar results
were observed. These results will be reported elsewhere.

We also analyzed the speed of the tested algorithms for the last quad-
ratic problem in Table 6. It can be seen that SSC-SABB is much faster than
SA in this classical test problem. We also tested a quadratic problem where

Table 6. Speed of the SA, GBB, and SSC-SABB algorithms, quadratic functions.

Number of Number of
Algorithms function evaluations gradient evaluations CPU (sec)

SA, tkG0.1�(kC1) H9999 H9999 —
SA, tkG0.1�1kC1 H9999 H9999 —
SA, tkG0.001 2207 2207 128
GBB, 100 restarts Line search failure Line search failure —
SSC-SABB, nG50 183 366 4
SSC-SABB, nG100 230 460 15
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stochastic noises are present in the coefficients, and similar results were
observed, though GBB and SA show improved performance since, in that
particular problem, the noises are diminishing when the approximation xk

is approaching the real solution.
We also tested a range of different values of Tk in algorithm SSC-

SABB. In all the tests, Tk was kept as a constant between 1 and 10. In the
deterministic case, it was found that for the good Problems 19–22 and for
Problems 3, 6, 9, the values of Tk do not seem to affect much the speed of
SSC-SABB as long as one keeps Tk¤1. For the other cases, we observed a
significant reduction in the iteration numbers needed to solve these problems
via SSC-SABB, when increasing the values of Tk from 1 toward 3. Clearly,
this is because the algorithm now used the search engine more frequently.
Then, such reduction was hardly observed when the values of Tk were taken
in the interval [4, 6]. Further increase in the values may actually increase
the iteration numbers needed to solve these problems via SSC-SABB. This
is probably due to the local convergence nature of the search engine. In
summary, it seems that one should take values of Tk in the interval [4, 6] in
the first place.

For the stochastic case, TkG1 or nearly 1 appears to be always a good
choice. This value seems to give a good balance between speed and robustness.

6. Conclusions

We investigated a general framework, that of supervisor-searcher co-
operation (SSC), which seems to offer a promising way to incorporate appeal-
ing attributes into the design of new optimization algorithms. A new class of
algorithms was proposed within this framework, and a particular example
from this class was examined thoroughly. Our theoretical results suggest
that SSC exhibits the desirable features of its parent algorithms. Further-
more, our numerical tests indicate that the algorithm is both efficient in
deterministic problems and robust in stochastic problems. The fact that
neither a line search nor fixed stepsizes are used may be the cause of this
desirable behavior. The computational work needed is also very light. In
a forthcoming paper, we shall examine other examples from this class of
algorithms.
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