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Combined with non-monotone line search, the Barzilai and Borwein (BB) gradient method
has been successfully extended for solving unconstrained optimization problems and is
competitive with conjugate gradient methods. In this paper, we establish the R-linear
convergence of the BB method for any-dimensional strongly convex quadratics. One
corollary of this result is that the BB method is also locally R-linear convergent for general
objective functions, and hence the stepsize in the BB method will always be accepted by
the non-monotone line search when the iterate is close to the solution.
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1. Introduction

Consider the problem of minimizing a strictly convex quadratic,

min f (x) = 1
2 xt Ax − bt x, (1.1)

where A ∈ Rn×n is a real symmetric positive definite matrix and b ∈ Rn . The Barzilai and
Borwein (BB) gradient method for solving (1.1) has the form

xk+1 = xk − α−1
k gk, (1.2)

where gk = ∇ f (xk) and αk is determined by the information achieved at the points xk−1
and xk . Denote sk−1 = xk − xk−1 and yk−1 = gk − gk−1. Since the matrix Dk = αk I is an
approximation to the Hessian of f at xk , Barzilai & Borwein (1988) so chose the stepsize
αk such that Dk has a certain quasi-Newton property

Dk = arg min
D=α I

‖Dsk−1 − yk−1‖2, (1.3)
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yielding

αk = sT
k−1sk−1

sT
k−1 yk−1

. (1.4)

Compared with the classical steepest descent method, which can be dated to Cauchy
(1847), the BB method often requires less computational work and speeds up the
convergence greatly (see Akaike, 1959 and Fletcher, 1990). A direct application of the
Barzilai and Borwein method in chemistry can be found in Glunt et al. (1993).

To extend the BB method to minimize a general smooth function,

min f (x), x ∈ Rn, (1.5)

Raydan (1997) considered the use of the non-monotone line search proposed by Grippo
et al. (1986). The resulting algorithm, called the global Barzilai and Borwein algorithm,
is proved to be globally convergent for general functions and is competitive with some
standard conjugate gradient codes (see Raydan, 1997). A successful application of
the global Barzilai and Borwein algorithm can be found in Birgin et al. (1999). The
idea of Raydan (1997) was further extended by Birgin et al. (2000) for minimizing
differentiable functions on closed convex sets, resulting in more efficient projected gradient
methods. Liu & Dai (1999) recently provided a powerful scheme for unconstrained
optimization problems with strong noises by combining the BB method and the stochastic
approximation method. Other work related to the BB method can be found in Birgin et
al. (2000) and Friedlander et al. (1999). To sum up, due to its simplicity and numerical
efficiency, the Barzilai and Borwein gradient method has now received a good deal of
attention in the optimization community.

In this paper, we are concerned with the convergence rate of the BB method. The
convergence analysis of the method is difficult and non-standard so that convergence
results are often provided for convex quadratics. For two-dimensional convex quadratics,
Barzilai & Borwein (1988) established the R-superlinear convergence of the method.
Raydan (1993) proved that the method can always give the unique solution x∗ = A−1b
of problem (1.1) for any-dimensional quadratics. Under a restrictive assumption, Molina
& Raydan (1996) established the Q-linear rate of convergence of the (preconditioned)
BB method. Assume that λ1 and λn are the minimal and maximal eigenvalues of A,
respectively. Their assumption says that

λn < 2λ1, (1.6)

that is very strong. By refining the analysis in Raydan (1993), we will establish in the
paper the R-linear convergence of the BB method for any-dimensional strictly convex
quadratics (see Section 2). No additional restriction is required by our result. One corollary
of this result is that, the method is also locally R-linearly convergent for general objective
functions, and hence the stepsize in the method will always be accepted when the iterate is
close to the solution if a non-monotone line search with suitable parameters are used (see
the discussions in Section 3).
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2. Convergence analysis

In this section, we establish the R-linear convergence of the BB method applied to any
quadratic function

f (x) = 1
2 xt Ax − bt x,

where A ∈ Rn×n is symmetric and positive definite. Our analysis will proceed with the
gradient sequence {gk}, whereas the analysis in Raydan (1993) proceeds with the sequence
{x∗ − xk} with x∗ = A−1b.

Let {xk} be the sequence generated by the BB method from initial vectors x0 and x1.
Then, using (1.2) and the fact that gk = Axk − b, we have for all k � 1,

gk+1 = 1

αk
(αk I − A)gk . (2.1)

Assume that the eigenvalues of A are λ1 � λ2 � · · · � λn and {v1, v2, . . . , vn} are
associated orthonormal eigenvectors. For any initial vector x1, there exist constants d1

1 ,
d1

2 , . . . , d1
n such that

g1 =
n∑

i=1

d1
i vi .

Using (2.1) we can obtain for any k � 1,

gk+1 =
n∑

i=1

dk+1
i vi , (2.2)

where

dk+1
i =

(
αk − λi

αk

)
dk

i =
k∏

j=1

(
α j − λi

α j

)
d1

i . (2.3)

First, we have the following lemma.

LEMMA 2.1 For all i = 1, . . . , n and k � 1, we have that

(dk+1
i )2 � δ2(dk

i )2 (2.4)

and

‖gk+1‖2 � δ‖gk‖2, (2.5)

where

δ = λn

λ1
− 1. (2.6)

Proof. By (2.1) and the fact that sk = − 1
αk

gk , we can write αk in (1.4) as

αk = gt
k−1 Agk−1

gt
k−1gk−1

. (2.7)
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Namely, αk is the Rayleigh quotient of A at vector gk−1. Hence,

λ1 � αk � λn for all k. (2.8)

From (2.8) and the first equality in (2.3), it is easy to obtain (2.4) if λi � αk . In the case
of λi < αk , from αk

λi
� λn

λ1
and (λ1 − λn)(λi − αk) � 0, it is straightforward to get

λi
αk

− 1 � 1 − λn
λ1

. This, together with the first equality in (2.3), implies (2.4). Therefore in
both cases, (2.4) holds. From (2.2) and the orthonormality of the eigenvectors {v1, . . . , vn},
we have

‖gk‖2
2 =

n∑
i=1

(dk
i )2. (2.9)

This, together with (2.4), implies (2.5). �

If δ < 1, then by (2.5) we immediately know that ‖gk‖2 is Q-linearly convergent
and hence R-linearly convergent. Since it follows from (1.6) that δ < 1, we re-obtain the
Q-linear convergence result of the BB method in Molina & Raydan (1996).

To establish the R-linear rate of convergence for the BB method, careful considerations
must be given for the case that δ � 1. For this purpose, we let c be the constant

c = 1 − λ1

λn
. (2.10)

Then it follows from δ � 1 that 1
2 � c < 1. For any number εl ∈ (0, 1

4 ] and positive
integer ml , we denote the positive integer ∆l as follows:

∆l =
⌈

log(2εlδ
−2(ml+1))

2 log c

⌉
. (2.11)

In addition, we introduce a useful quantity D(k, l):

D(k, l) =
l∑

i=1

(dk
i )2. (2.12)

Then it is easy to see that D(k, n) = ‖gk‖2
2. We now prove the following two lemmas for

the case that δ � 1.

LEMMA 2.2 Assume that δ � 1. For any integer 1 � l < n and k � 1, if there exist
positive number εl and positive integer ml such that

D(k + j, l) � εl‖gk‖2
2, for all j � ml , (2.13)

then there must exist some integer j0 ∈ [ml , ml + ∆l + 1] such that

(dk+ j0
l+1 )2 � 2εl‖gk‖2

2, (2.14)

where ∆l is given by (2.11).
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Proof. To prove this lemma, it suffices to show that if

(dk+ j
l+1 )2 > 2εl‖gk‖2

2, for all j ∈ [ml , ml + ∆l ], (2.15)

then we must have that

(dk+ml+∆l+1
l+1 )2 � 2εl‖gk‖2

2. (2.16)

Assume that (2.15) is true. For any k � 1, we have by (2.4) and (2.9) that

(dk+ml+1
l+1 )2 � δ2(ml+1)(dk

l+1)
2 � δ2(ml+1)‖gk‖2

2. (2.17)

On the other hand, it follows from (2.7) and (2.9) that

αk+1 =
∑n

i=1(d
k
i )2λi∑n

i=1(d
k
i )2

. (2.18)

By this, (2.13) and (2.15), we have that, for any j ∈ [ml , ml + ∆l ],

αk+ j+1 �
λl+1

∑n
i=l+1(d

k+ j
i )2

εl‖gk‖2
2 + ∑n

i=l+1(d
k+ j
i )2

� 2

3
λl+1, (2.19)

which, together with (2.8) and (2.3), indicates that

(dk+ j+2
l+1 )2 � c2(dk+ j+1

l+1 )2, for all j ∈ [ml , ml + ∆l ], (2.20)

where c is the constant in (2.10). Thus by (2.17), (2.20) and the definition (2.11) of ∆l , we
obtain

(dk+ml+∆l+1
l+1 )2 � c2∆l (dk+ml+1

l+1 )2 � c2∆l δ2(ml+1)‖gk‖2
2 � 2εl‖gk‖2

2.

This completes our proof. �

LEMMA 2.3 Assume that δ � 1. For any integer 1 � l < n and k � 1, assume
that there exist positive number εl and positive integer ml such that (2.13) holds. Denote
εl+1 = (1 + 2δ4)εl and ml+1 = ml + ∆l + 1. Then we must also have that

D(k + j, l + 1) � εl+1‖gk‖2
2, for all j � ml+1. (2.21)

Proof. Notice that

D(k + j, l + 1) = D(k + j, l) + (dk+ j
l+1 )2. (2.22)

Thus by (2.13) and the definition of εl+1, it suffices to prove that

(dk+ j
l+1 )2 � 2δ4εl‖gk‖2

2 (2.23)

holds for all j � ml+1. By Lemma 2.2, we know that there must exist some integer j0 ∈
[ml , ml +∆l +1] such that (2.14) holds. If (2.14) holds for all j � j0, then (2.23) naturally
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holds since δ � 1. Now, let us prescribe ĵ = j0 and denote j1 � ĵ to be the integer for
which

(dk+ j
l+1 )2 � 2εl‖gk‖2

2, for j0 � j � j1, (2.24)

but

(dk+ j1+1
l+1 )2 > 2εl‖gk‖2

2. (2.25)

Similar to (2.19), (2.20), we can get by (2.13) and (2.25) that

αk+ j1+2 � 2
3λl+1, (dk+ j1+3

l+1 )2 � c2(dk+ j1+2
l+1 )2.

Generally, if j � ml and (dk+ j+1
l+1 )2 > 2εl‖gk‖2

2, we have by this and (2.13) that

(dk+ j+3
l+1 )2 � c2(dk+ j+2

l+1 )2. Since c < 1, we know from this fact and (2.25) that there
exists an integer, j2 say, such that

(dk+ j+1
l+1 )2 > 2εl‖gk‖2

2, for j1 � j � j2 − 2 (2.26)

but

(dk+ j2
l+1 )2 � 2εl‖gk‖2

2. (2.27)

Relations (2.13) and (2.26) imply that

(dk+ j+3
l+1 )2 � c2(dk+ j+2

l+1 )2, for j1 � j � j2 − 2. (2.28)

In addition, by (2.4) and (2.24), it is obvious that

(dk+ j1+1
l+1 )2 � 2δ2εl‖gk‖2

2 (2.29)

and

(dk+ j1+2
l+1 )2 � 2δ4εl‖gk‖2

2. (2.30)

Since c < 1, we obtain from (2.30) and (2.28) that

(dk+ j+3
l+1 )2 < 2δ4εl‖gk‖2

2, for j1 � j � j2 − 2. (2.31)

Thus by (2.24), (2.29)–(2.31), we know that (2.23) holds for all j ∈ [ j0, j2]. Letting ĵ = j2
and repeating the above process, we can eventually obtain the result (2.23) for all j � j0.
This, with j0 � ml+1, completes our proof. �

Considering the cases δ < 1 and δ � 1 together, we now can provide the following
lemma.

LEMMA 2.4 Let f (x) be a strictly convex quadratic function. Let {xk} be the sequence
generated by the BB method. Then, there exists a positive integer m which depends only
on λ1 and λn such that

‖gk+m‖2 � 1
2‖gk‖2 for all k � 1. (2.32)
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Proof. If δ < 1, we have from Lemma 2.1 that (2.32) holds with

m =
⌈

− log 2

log δ

⌉
. (2.33)

Assume that δ � 1. For any 1 � l � n, we denote

εl = 1
4 (1 + 2δ4)l−n .

Let m1 = ⌈ log ε1
2 log c

⌉
, ml+1 = ml + ∆l + 1 for l = 1, . . . , n − 1 and m = mn , where c and

∆l are given by (2.10) and (2.11), respectively. It is easy to see that m depends only on λ1
and λn . In addition, note that ‖gk‖2

2 = D(k, n) and εn = 1
4 . Thus, to prove (2.32) for any

k, it suffices to show that the following relation holds for l = 1, . . . , n:

D(k + j, l) � εl‖gk‖2
2, for all j � ml . (2.34)

We show (2.34) by induction. By the first equality in (2.3) and (2.8), we have

(dk+1
1 )2 =

(
αk − λ1

αk

)2

(dk
1 )2 � c2(dk

1 )2. (2.35)

which, with D(k, 1) = (dk
1 )2, gives

D(k + j, 1) � c2 j (dk
1 )2 � c2 j‖gk‖2

2.

The above relation and the definition of m1 indicate that (2.34) holds for l = 1. Now
we suppose that (2.34) holds for some 1 � l � n − 1. Then we know by Lemma 2.3
that (2.34) also holds for l +1. Thus, by induction principle, (2.34) holds for all 1 � l � n.
This completes our proof. �

Now we are able to establish the R-linear convergence of the BB gradient method
applied to any strictly convex quadratic function.

THEOREM 2.5 Let f (x) be a strictly convex quadratic function. Let {xk} be the sequence
generated by the BB method. Then, either gk = 0 for some finite k, or the sequence {‖gk‖2}
converges to zero R-linearly.

Proof. We only need to consider the case that gk �= 0 for all k. By Lemma 2.4, we have
that there exists a positive integer m such that

‖gmj+1‖2 � 1
2‖gmj−m+1‖2, for all j � 1.

It follows that

‖gmj+1‖2 � ( 1
2 ) j‖g1‖2. (2.36)

For any k � 1, let k = mj + i , where j � 0 and i ∈ [1, m] are integers. It is obvious that
j � k/m − 1. By this, (2.5) and (2.36), we can obtain

‖gk‖2 � δi−1‖gmj+1‖2 � δi−1( 1
2 ) j‖g1‖2

� δm−1( 1
2 )

k
m −1‖g1‖2 � c1ck

2‖g1‖2, (2.37)

where c1 = 2δm−1 and c2 = 2− 1
m < 1 are constants. Therefore, the sequence {‖gk‖2}

converges to zero R-linearly. This completes our proof. �
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3. Some discussions

In this paper, by refining the analysis in Raydan (1993), we have established the R-linear
convergence of the BB gradient method for any-dimensional strictly convex quadratics.
No additional restriction is required by this result, whereas a restrictive assumption (1.6) is
needed for the result in Molina & Raydan (1996). Similar to Theorem 2.5, one can easily
draw the conclusion that the preconditioned BB method studied by Molina & Raydan
(1996) is R-linearly convergent, since its iterate can be regarded to be generated by the
BB method for a quadratic function with its Hessian being E−1 AE−t if C = E Et is the
preconditioner.

By regarding D−1
k as an approximation to the inverse Hessian of f at xk and choosing

D−1
k such that

D−1
k = arg min

D=α−1 I
‖sk−1 − D−1 yk−1‖2, (3.1)

Barzilai & Borwein (1988) also obtained the following choice for αk :

αk = st
k−1 yk−1

yt
k−1 yk−1

. (3.2)

The above choice often performs worse than (1.4) in practical computations. Nevertheless,
in a similar way, we can also prove that the method (1.2)–(3.2) is R-linearly convergent for
strongly convex quadratics. In addition, the result in the paper can also be easily extended
to those gradient methods with retards considered in Friedlander et al. (1999).

From a practical point of view, one can extend the result in this paper to explain the
fact that, for general unconstrained optimization problems, the stepsize in the BB method
can always be accepted by the non-monotone line search, as observed by Raydan (1997).
To do so, we should first note that the R-linear convergence result of the BB method has
been extended for general unconstrained optimization problems. See Liu & Dai (1999) for
the sketch of its proof. Suppose that f is a three times continuously differentiable function
and x∗ is a point for which ∇ f (x∗) = 0 and ∇2 f (x∗) > 0, and that the sequence {xk}
generated by the BB method converges to x∗. The idea of Liu & Dai (1999) is to consider
an additional iterate {x̂k} generated by the BB method for the quadratic function

f̂ (x) = f (x∗) + 1
2 (x − x∗)t∇2 f (x∗)(x − x∗), (3.3)

and then to compare ‖xk − x∗‖2 and ‖x̂k − x∗‖2. They were able to show that there exists
an infinite subsequence {ki } ⊂ {1, 2, . . . } such that the relations

ki+1 − ki � M1, (3.4)

‖xki+1 − x∗‖2 � c′‖xki − x∗‖2 (3.5)

hold for some constant c′ ∈ (0, 1) and positive integer M1, and hence the BB method is
also locally R-linearly convergent for general objective functions.

On the other hand, under the assumption that f (x) is uniformly convex and that the
search direction dk satisfies the conditions

gT
k dk � −τ1‖gk‖2 and ‖dk‖2 � τ2‖gk‖2, (3.6)
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Dai (2000) proved that the stepsize αk is always accepted by the Grippo et al. (1986)
non-monotone line search with suitable parameters if and only if the iterative method
xk+1 = xk + αkdk is such that relations (3.5) and (3.4) hold. (The non-monotone line
search in Grippo et al. (1986) is to choose the first non-negative integer hk such that the
stepsize αk = ᾱkσ

hk satisfies f (xk + αkdk) � max0� j�m(k)[ f (xk− j )] + δαk gT
k dk , where

ᾱk is the first trial stepsize, σ ∈ (0, 1), m(0) = 0 and 0 � m(k) � min[m(k−1)+1, M−1],
k � 1.) Since the negative gradient −gk clearly satisfies (3.6), and since the BB method
satisfies (3.4) and (3.5), we then know that the stepsize in the BB method will always be
accepted by the Grippo et al. non-monotone line search when xk is close to x∗.

Generally, like the steepest descent method and the conjugate gradient method, the
BB method becomes slow when a problem is more ill-conditioned: for example, see
Friedlander et al. (1999). Noting that δ = λn

λ1
− 1 = cond(A) − 1, it is easy to see that

the value of m in Lemma 2.4 is increasing with the condition number of A, and hence the

value c
− 1

m
2 will tend to 1. This explains to some extent why the BB method is also affected

by the problem condition.
Finally, we should note that the analysis in this paper can be further refined such that

the value of c2 in (2.37) becomes smaller. For example, in Lemma 2.2, we can obtain
from (2.3) and (2.19) that

(dk+ml+1
l+1 )2 � δ̄2(ml+1)(dk

l+1)
2 � δ̄2(ml+1)‖gk‖2

2, (3.7)

where

δ̄ = min

{
1

2
, 1 − λl+1

λn

}
. (3.8)

Hence, we may choose in Lemma 2.2

∆l =
⌈

log(2εl δ̄
−2(ml+1))

2 log c

⌉
, (3.9)

decreasing the values of m and c2 in case of δ̄ < δ (if δ̄ = δ, we know similar to (2.35)
that dk

l+1 converges Q-linearly). However, it is doubtful whether such analyses can lead to
a convergence result better than the steepest descent method even for three-dimensional
quadratics. The latter is known to be Q-linearly convergent. In other words, it still
remains under investigation whether there exists any theoretical evidence demonstrating
the numerical efficiency of the BB method over the classical steepest descent method.
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FRIEDLANDER, A., MARTÍNEZ, J. M, MOLINA, B. & RAYDAN, M. 1999 Gradient method with

retards and generalizations. SIAM J. Numer. Anal., 36, 275–289.
GLUNT, W., HAYDEN, T. L. & RAYDAN, M. 1993 Molecular conformations from distance

matrices. J. Comput. Chem., 14, 114–120.
GRIPPO, L., LAMPARIELLO, F. & LUCIDI, S. 1986 A nonmonotone line search technique for

Newton’s method. SIAM J. Numer. Anal., 23, 707–716.
LIU, W. B. & DAI, Y. H. 1999 Minimization algorithms based on supervisor and searcher co-

operation: I—faster and robust gradient algorithms for minimization problems with stronger
noises. Research Report (to appear in J. Optim. Theor. Appl.).

MOLINA, B. & RAYDAN, M. 1996 Preconditioned Barzilai–Borwein method for the numerical solu-
tion of partial differential equations. Numer. Algorithms, 13, 45–60.

RAYDAN, M. 1993 On the Barzilai and Borwein choice of steplength for the gradient method. IMA
J. Numer. Anal., 13, 321–326.

RAYDAN, M. 1997 The Barzilai and Borwein gradient method for the large scale unconstrained
minimization problem. SIAM J. Optim., 7, 26–33.


