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Abstract

Several fast algorithms are proposed for the problem of projecting
a point onto a general ellipsoid. To avoid the direct estimation of the
spectral radius in the Lin-Han algorithm, we provide the maximal 2-
dimensional inside ball algorithm and the sequential 2-dimensional pro-
jection algorithm. However, we find that the solution procedure of the
former algorithm may tend to some 2-dimensional reduced ellipsoid and
the latter algorithm may produce zigzags. Therefore we investigate the
hybrid use of the two algorithms. Our numerical experiments show
that all the algorithms, even the hybrid algorithms, are suitable for
large-scale problems and much faster than the Lin-Han algorithm. Lin-
ear convergence of the algorithms is established. Possible extensions of
the algorithms are also discussed.

1. Introduction

The problem of projection on a general convex set

min d(a,x)
s.t. x ∈ C, (1.1)

where d(·, ·) is some distance function and C is some convex set in Rn, is
one of the fundamental problems in convex analysis. It is also an important
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inertia of projection methods for nonlinear programming, variational inequal-
ity problem, etc. For example, Birgin, Mart́ınez, and Raydan [1] established
efficient spectral projected gradient algorithms for optimization over convex
sets. Evidently, the performance of their algorithms is very related to the sub
projection algorithm on the convex set. Although the problem (1.1) has been
well studied in theory, it is little known about how to solve the problem except
when C is some special set such as a ball, a box, a box with a singly linear
constraint (for example see [12, 2]), or an order simplex (for example see [6]).

In this paper, we consider the following problem of projecting a point onto
a general ellipsoid

min d(a,x) = ‖x − a‖
s.t. x ∈ E := {x ∈ Rn : q(x) ≤ α}, (1.2)

where a ∈ Rn is a point to be projected, q(x) = xTAx+ 2bTx, A is a positive
definite matrix in Rn×n and ‖ · ‖ means the 2-norm. Note that the convex set
C can be usually written as

C = ∩m
i=1{x ∈ Rn : gi(x) ≤ 0}, (1.3)

where m is some positive integer and gi(x)(i = 1, . . . , m) is some concave
function in Rn. Since a suitable local approximation to a nonlinear function is
a quadratic function, the problem (1.2) is fundamental in solving the problem
(1.1) with C given by (1.3). If the problem with m = 1 is well solved, one can
then use the methods in [4] and [7] etc. to solve the general problem with any
m. The problem (1.2) with b = 0 is also related to the trust region subproblem
in nonlinear optimization.

To solve the problem (1.2), Lin and Han [9] proposed a simple and geo-
metric algorithm for the problem (1.2) with b = 0 with attractive convergence
properties. Suppose that the current iteration is xk that belongs to the bound-
ary of E . The basic idea of their algorithm is to construct an n-dimensional
ball that lies inside the ellipsoid E and is tangent to the boundary of E at xk,
and then take xk+1 to be the intersection of the boundary of E and the line
segment connecting a and the center of the ball ck. Consequently, they have
to estimate the spectral radius of A in some way. As analyzed in Section 3,
however, a lower estimate to this quantity may deteriorate the performance of
the algorithm greatly. Nevertheless, if we consider the choice of xk+1 on the
2-dimensional linear manifold Sk = xk + Span{a − xk, Axk + b}, then much
faster algorithms can be obtained.

The rest of this paper is organized as follows. In the next section, we present
a general framework for all the algorithms considered in this paper. In Section
3, a numerical analysis on the Lin-Han algorithm is provided. Two new al-
gorithms, namely, maximal 2-dimensional inside ball algorithm and sequential
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2-dimensional projection algorithm, are proposed in Sections 4 and 5, respec-
tively. In Section 6, we investigate the hybrid use of the two algorithms and
propose the simple hybrid projection algorithm and the general hybrid projec-
tion algorithm. Linear convergence result is established in Section 7 for the
general hybrid projection algorithm, that has the Lin-Han algorithm, maximal
2-dimensional inside ellipsoid algorithm, and sequential 2-dimensional projec-
tion algorithm as its special cases. Numerical results with the algorithms are
reported in Section 8. Discussion is made in the last section.

2. The General Algorithm

Throughout this paper, we assume that q(a) > α for otherwise the projec-
tion of a on the ellipsoid E is itself. We also assume that

α > min{q(x) : x ∈ Rn} = −bTA−1b, (2.1)

so that E exists and is not a singleton. In this section, we describe a general
algorithm whose diagram is shown in Figure 1. This algorithm requires a
feasible initial point x0 and generates a sequence {xk} ⊂ Ω(E), where Ω(E) is
the boundary of E ,

Ω(E) = {x ∈ Rn : q(x) = α}. (2.2)

Suppose that a feasible point xk is obtained at the k-th iteration. Denote
uk = ∇q(xk)/2 = Axk +b. The algorithm calculates an intermediate point ck

along the negative gradient of q at xk:

ck = xk − γkuk, (2.3)

where γk > 0 is so chosen that ck ∈ E , namely, q(ck) ≤ α. For any x, y ∈ Rn

with x 6= y, denote by L(x,y) the line segment connecting x and y,

L(x,y) = {x + η (y − x) : η ∈ [0, 1]}. (2.4)

The algorithm takes xk+1 as the minimizer of the distance ‖x − a‖ on the set
L(a, ck) ∩ E . Equivalently, defining wk = ck − a, the algorithm calculates

xk+1 = a + ηk wk, (2.5)

where ηk ∈ (0, 1) is such that xk+1 ∈ Ω(E). The above procedure is then
repeated until some convergence criterion is satisfied.

Let us denote ga = ∇q(a)/2 = A a+b, the requirement xk+1 ∈ Ω(Ek) asks
ηk to satisfy

α = q(xk+1) = q(a+ηkwk) = (wT
kAwk) η

2
k+2 (gT

a wk) ηk+q(a) := ψ(ηk). (2.6)
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Figure 1. Diagram of The General Algorithm

Notice that ψ(0) = q(a) > α, ψ(1) = q(a+wk) = q(ck) ≤ α, and ψ(η) → +∞
as η → +∞. Therefore the quadratic equation ψ(η) = α has one root in (0, 1)
and one root in (1,+∞). The smaller one is taken for ηk, namely,

ηk = − gT
a wk

wT
kAwk

−

√

√

√

√

(

gT
a wk

wT
kAwk

)2

− q(a) − α

wT
kAwk

. (2.7)

Define vk = a − xk. The following criterion is used for the termination of
the algorithm:

1 − uT
k vk

‖uk‖ ‖vk‖
≤ ε, (2.8)

where ε > 0 is some tolerance error. Now we provide a detailed description of
the general algorithm.

The General Algorithm

1. Given a staring point x0 ∈ Ω(E) and ε > 0. Set k := 0.

2. Calculate γk in some way, uk = Axk + b and ck by (2.3).

3. Calculate wk = ck − a and xk+1 by (2.5) and (2.7).

4. If (2.8) does not hold, set k := k + 1 and go to step 2.

As will be seen, all the algorithms in this paper are special cases of the above
general algorithm, but differ on the choice of γk.

3. A Numerical Analysis of the Lin-Han Algorithm

The algorithm by Lin and Han [9], which consists in constructing a ball
that lies inside the ellipsoid E and intersects Ω(E) at the point xk, is a special
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ζ 1 0.5 0.2 0.1 0.05 0.02 0.01
#iter 142 284 710 1420 2839 7098 14197

Table 1. Performances of the Lin-Han algorithm with γk = 0.01 ζ

case of the General Algorithm. More exactly, their algorithm aims to find a
positive number γk such that the n-dimensional inside ball

B(γk) = {‖x − ck‖ ≤ γk‖uk‖ : x ∈ Rn} ⊂ E . (3.1)

Consequently, Lin and Han require the choice of γk to satisfy the following
condition

τ ≤ γk ≤ (ρ(A))−1, (3.2)

where τ is some small positive constant and ρ(A) is the spectral radius of A.
As analyzed in [9], the first inequality can provide a sufficient decrease of

d(a,xk) and hence the global convergence of the algorithm can be established.
The function of the second inequality is to guarantee the n-dimensional ball
B(γk) to lie inside the ellipsoid E . For this purpose, they need to estimate some
matrix norm |||A||| ≥ ρ(A) and the 1-norm or ∞-norm is suggested. As will
be shown, the numerical performance of their algorithm heavily relies on the
estimation of the spectral radius ρ(A) and an under estimation of this quantity
may deteriorate the algorithm greatly.

Consider the following 10-dimensional example:

Example 1. E = {x ∈ R10 : q(x) :=
∑10

i=1 i
2x2

i = 385}, a = (ai) with

ai = 10i2 + 1 (i = 1, · · · , 10). The initial point is x0 =
√

385
q(a)

a. In this

example, the projection x∗ of a on E is x∗ = (1, 1, · · · , 1)T .

Since in this example A = diag(1, 4, · · · , 100), we have that ρ(A) = 100. We
tested the Lin-Han algorithm using γk = ζ (ρ(A))−1 = 0.01 ζ with different
values of ζ ≤ 1. The tolerance error ε in (2.8) is set to 10−6. Table 1 lists the
iteration numbers required by the algorithm with different values of ζ.

From Table 1, we see that the number of iterations required by the Lin-
Han algorithm is almost linearly dependent on the value ζ. A good estimation
of the spectral radius ρ(A) may accelerate the algorithm significantly. This
example even suggests that, it is worthwhile to do so before the projection
calculations if a good approximation can be obtained with relatively low cost.
As will be seen in the following sections, however, this estimation procedure
is not necessary and algorithms much faster than the Lin-Han algorithm even
with γk = (ρ(A))−1 can be obtained.
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4. Maximal 2-Dimensional Inside Ball Algorithm

Our new algorithms are based on the following observation: all the points
a, xk, ck and xk+1 lie in the 2-dimensional linear manifold

Sk = {xk + (uk,vk) r : r ∈ R2}, (4.1)

where (uk,vk) stands for a matrix whose columns are uk and vk. Thus at
the k-th iteration we may just consider the 2-dimensional linear manifold Sk

instead of the whole space Rn.
Define Ek = E ∩ Sk to be the 2-dimensional reduced ellipsoid of E and

Ω(Ek) = Ω(E) ∩ Sk to be the boundary of Ek. A direct extension of the Lin-
Han algorithm is to construct a 2-dimensional inside ball

B2(γk) = {‖x − ck‖ ≤ γk‖uk‖ : x ∈ Sk} ⊂ Ek. (4.2)

In addition, the numerical analysis of Lin-Han algorithm in the previous section
suggests that the larger γk the more efficient the algorithm. Therefore it is
natural for us to choose the maximum 2-dimensional inside ball and propose
the following algorithm.

Algorithm 1 (maximal 2-dimensional inside ball algorithm)
At step 2 of the General Algorithm, calculate the maximal γk such that (4.2)
holds.

Since the dimension of the ellipsoid Ek is only two, we can directly calculate
the radius of the maximum inside ball of Ek at xk and then decide the value of
γk in the above algorithm. To do this, we orthonormalize the vectors vk and
uk as follows:

pk =
vk

‖vk‖
, qk =

zk

‖zk‖
, (4.3)

where zk = uk − uT

k
vk

vT

k
vk

vk. Denote

Hk = (pk,qk) ∈ Rn×2, (4.4)

which satisfies HT
k Hk = I. The linear manifold Sk in (4.1) can be expressed

by
Sk = {xk +Hkl : l ∈ R2}. (4.5)

Consequently, the 2-dimensional reduced ellipsoid Ek can be expressed in the
vector l as follows:

E (l)
k = {l ∈ R2 : lTAkl + 2bT

k l ≤ 0}, (4.6)
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where

Ak = HT
k AHk =







vT

k
Avk

‖vk‖2

vT

k
Azk

‖vk‖ ‖zk‖

zT

k
Avk

‖vk‖ ‖zk‖

zT

k
Azk

‖zk‖2





 , bk = HT
k uk =







uT

k
vk

‖vk‖

uT

k
zk

‖zk‖





 . (4.7)

At the same time, xk corresponds to the origin in the l subspace. Our problem
is then to compute the radius rk of the maximal inside ball of the ellipsoid E (l)

k

at the origin.
To this aim, for any t > 0 we consider the ball

B(l)
2 (t) = {l ∈ R2 : ‖l + tbk‖ ≤ t‖bk‖}

that is tangent with the boundary of E (l)
k at the origin. For any l on the

boundary of B(l)
2 (t), we have that ‖l + tbk‖2 = t2‖bk‖2 and hence

lT l + 2tbT
k l = 0. (4.8)

If t ≤ (ρ(Ak))
−1, we can get by this, (4.8) and (4.6) that,

lTAkl + 2bT
k l = lTAkl − t−1 lT l ≤ lTAkl − ρ(Ak)l

T l ≤ 0,

which means l ∈ E (l)
k and hence rk ≥ (ρ(Ak))

−1‖bk‖. On the other hand, for
any t > (ρ(Ak))

−1, consider the point

l̄ = −2t(bT
k ū)ū,

where ū is one unit eigenvector of the matrix Ak corresponding to ρ(Ak). By
direct check, we know that

l̄ ∈ B(l)
2 (t) but l̄ /∈ Ek.

Hence we also have that rk ≤ (ρ(Ak))
−1‖bk‖. To sum up, rk = (ρ(Ak))

−1‖bk‖
is exactly the radius of the maximal inside ball of B(l)

2 (r) of Ek at xk.
By direct calculations, we know that the spectral of the matrix Ak is

ρ(Ak) =
1

2







vT
kAvk

vT
k vk

+
zT

kAzk

zT
k zk

+

√

√

√

√

(

vT
kAvk

vT
k vk

− zT
kAzk

zT
k zk

)2

+
4 (vT

kAzk)2

vT
k vk zT

k zk





 .

(4.9)
On the other hand, we have by HT

k Hk = I that ‖bk‖ = ‖HT
k uk‖ = ‖uk‖.

Thus the spectral radius of the maximal 2-dimensional inside ball of Ek at xk

is (ρ(Ak))
−1 ‖uk‖ and the value of γk in Algorithm 1 is

γk = (ρ(Ak))
−1. (4.10)
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In the implementation of Algorithm 1, we need not store and compute
the vectors pk and qk since only the value ρ(Ak) is required. We counted
that Algorithm 1 requires 1 matrix-vector multiplication and 12 vector-vector
operations or scalar-vector multiplications (here note that to calculate ρ(Ak)
by (4.9), we can obtain Azk and Avk by Auk and uk and hence only require
one matrix-vector multiplication, that is Auk, at each iteration). Comparing
with the Lin-Han algorithm, Algorithm 1 requires only 1 more vector-vector
operation. However, Algorithm 1 avoids the direct estimate to the spectral
radius ρ(A). Even if ρ(A) is available, we may expect that Algorithm 1 is
better than the Lin-Han algorithm with γk = (ρ(A))−1 because it follows from
Ak = HT

k AHk and HT
k Hk = I that

ρ(Ak)
−1 ≥ ρ(A)−1. (4.11)

Example 1 in Section 3 has been used for a quick check, and it is found that
Algorithm 1 requires only 111 iterations to achieve a solution with the same
precision. More numerical comparisons will be provided in Section 8.

5. Sequential 2-Dimensional Projection Algorithm

A numerical drawback of Algorithm 1 is that, even in the case of 2-
dimension, if the ellipsoid E is flat and the point a to be projected is close
to the sharp area, the algorithm may take a large quantity of iterations. Con-
sider the example

Example 2. E = {x ∈ R2 : x2
1 + 10000x2

2 = 2}, a = (1, 100.01)T . The initial
point x0 is either (

√
2, 0)T or (−1, 0.01)T . The exact projection of a onto E is

x∗ = (1, 0.01)T .

If x0 = (
√

2, 0)T , Algorithm 1 takes 7361 iterations to reach the stopping
condition (2.8) with ε = 10−6. If x0 = (−1, 0.01)T , Algorithm 1 requires 12858
iterations to find a satisfactory point. In this example, we have that γk ≡ 10−4.
This drawback of Algorithm 1 still exists in the higher dimensional case. Take
the 10-dimensional example in Section 3 as an instance. Denoting by Mk the
matrix with columns formed by ek+i = xk+i−x∗

‖xk+i−x∗‖
(i = 0, 1, 2), we found that the

determinant of MT
k Mk eventually tends to zero, which means that the solution

procedure of Algorithm 1 tends to some 2-dimensional reduced ellipsoid. At
the same time, the γk tends monotonically increasingly to some value, which
is 1.2804e−2 approximately.

To overcome the above drawback of Algorithm 1, we propose another
algorithm that consists in calculating the exact projection of a onto the 2-
dimensional ellipsoid Ek at each iteration. The following lemma, together with
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the invariance of the projection under orthogonal transformations, indicates
that the projection onto any 2-dimensional ellipsoid can be obtained via a
quartic equation.

Lemma 1 Consider the 2-dimensional ellipsoid

E (h) = {h ∈ R2 : hTDh ≤ β}, (5.1)

where β > 0 and D = diag(λ1, λ2) with λ1, λ2 > 0. For any h = (h1, h2)
T with

hTDh > β, denote by h∗ = (h∗1, h
∗
2)

T the projection of h onto E (h). Then

h∗2 =
λ1h2

(λ1 − λ2)h∗1 + λ2h1
h∗1, (5.2)

where h∗1 satisfies the quartic equation

[(λ1 − λ2)h
∗
1 + λ2h1]

2 [λ1(h
∗
1)

2 − β] + λ2
1λ2h

2
2(h

∗
1)

2 = 0. (5.3)

Proof By the Karush-Kuhn-Tucker condition (for example see Fletcher [5]),
there exists some µ > 0 such that h − h∗ = µDh∗, or equivalently

{

h1 − h∗1 = µλ1h
∗
1,

h2 − h∗2 = µλ2h
∗
2.

(5.4)

It follows that
λ1h

∗
1(h2 − h∗2) = λ2h

∗
2(h1 − h∗1), (5.5)

which implies the truth of (5.2). In addition, by the feasibility condition,

λ1(h
∗
1)

2 + λ2(h
∗
2)

2 = β. (5.6)

Substituting (5.2) into (5.6), we then know that h∗
1 satisfies (5.3). q.e.d.

The quartic equation (5.3) can be solved in an analytical way or easily by
some numerical methods (in our implementation with MATLAB, we use the
function roots). From (5.4) and the positiveness of the multiplier µ, we can
get that

µ =
h1 − h∗1
λ1h∗1

=
h2 − h∗2
λ2h∗2

> 0. (5.7)

The above relations and (5.2) can help us to pick up the correct value for h∗
1

among the four roots of (5.3). The h∗
2 is then determined by (5.2).

Note that the computation amount of projecting a point onto a 2-dimensional
ellipsoid is negligible when n is relatively large. We propose the following al-
gorithm for projecting onto an n-dimensional ellipsoid.
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Algorithm 2 (sequential 2-dimensional projection algorithm)
At the k-th iteration, having xk ∈ Ω(E) we take the projection of a on the
2-dimensional reduced ellipsoid Ek = E ∩ Sk to be xk+1.

Now we describe how to calculate xk+1 in Algorithm 2. Notice that the
linear manifold Sk in (4.1) can be expressed by (4.5) where Ak and bk are
still given by (4.7), (4.4) and (4.3). Also notice that the point a in Rn is
corresponding to al = (‖vk‖, 0)T in the l space. Due to the invariance property
of the projection under orthogonal transformations and the fact that HT

k Hk =

I , if the projection a∗
l of al onto the ellipsoid E (l)

k in (4.6) is obtained, the xk+1

in Algorithm 2 is given by

xk+1 = xk +Hka
∗
l . (5.8)

Therefore our calculation of xk+1 in Algorithm 2 can be divided into two steps:

the first step is to compute the projection a∗
l of al = (‖vk‖, 0)T onto E (l)

k in
(4.6) and the second step is to calculate xk+1 from a∗

l .
At the first step, to compute a∗

l , we assume that the eigendecomposition
of the 2 × 2 matrix Ak in (4.7) is

Ak = QTDQ, where D is diagonal and QTQ = I. (5.9)

Under the orthogonal transformation l → h = Ql +D−1Qb, the ellipsoid E (l)
k

can be expressed by the form (5.1) with β = (Qbk)
TD−1(Qbk). The point al

in the l space is corresponding to ah = Qal +D−1Qbk in the h space. Denote
by a∗

h the projection of ah onto E (h), we also have that a∗
h = Qa∗

l + D−1Qbk.
Consequently, we have that

a∗
l = QT (a∗

h −D−1Qbk). (5.10)

By Lemma 1, the projection a∗
h of ah onto E (h) can be obtained via a quartic

equation. Therefore after Ak and bk has been obtained, the computational
work to obtain the projection a∗

l of al onto the 2-dimensional ellipsoid E (l)
k is

again negligible when n is relatively large.
At the second step, we may calculate xk+1 from a∗

l directly by (5.8). To
avoid the explicit storage of Hk, however, we express xk+1 by the form (2.5)
and treat Algorithm 2 as a special case of The General Algorithm described in
Section 3. Assume that a∗

l = (a∗l,1, a
∗
l,2)

T . It follows from (5.8), the definition
of Hk and (4.3) that

xk+1 = xk + a∗l,1pk + a∗l,2qk = xk +
a∗l,2
‖zk‖

uk +

[

a∗l,1
‖vk‖

− uT
k vk

vT
k vk

a∗l,2
‖zk‖

]

vk. (5.11)
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On the other hand, the definitions of wk, ck and vk in Section 2 indicate that

wk = ck − a = xk − γk uk − a = −γk uk − vk. (5.12)

By (5.12) and the definition of vk, the xk+1 in (2.5) can be expressed as

xk+1 = xk + vk + ηk wk = xk − ηk γk uk + (1 − ηk)vk. (5.13)

Comparing (5.11) and (5.13), we can then calculate the xk+1 by (2.5) and
(5.12) with

ηk = 1 −
a∗l,1
‖vk‖

+
uT

k vk

vT
k vk

a∗l,2
‖zk‖

(5.14)

and

γk = − a∗l,2
‖zk‖

1

ηk

. (5.15)

The above equivalent treatment also convenes us in designing a safeguard for
Algorithm 2. If the γk in (5.15) is negative or tiny (this is sometimes the case
in our numerical experiments though seldomly), we can turn to use (4.10) and
carry out one step by the maximal 2-dimensional inside ball algorithm.

Using (4.4) and (4.3), the matrix Ak and bk in the expression of E (l)
k can

be also calculated without the explicit storage of Hk. If we do not consider
the difference in the calculation of γk, the computation amount of Algorithm
2 and that of Algorithm 1 are identical since they require the same vector
operations; namely, both of them require only 1 matrix-vector multiplication
and 12 vector-vector operations or scalar-vector multiplications. Due to the
minimal property, however, Algorithm 2 is expected to perform better than 1.
When we use Algorithm 2 to solve the example in Section 3, a solution with
the same precision is achieved at the 79-th iteration.

6. Hybrid Projection Algorithms

Algorithm 1 and Algorithm 2 avoid the direct estimate to the spectral
radius ρ(A) and are more efficient than the Lin-Han algorithm. Algorithm 2
seems to be optimal since the distance function d(a,x) achieves the maximal
decrease in the 2-dimensional ellipsoid Sk at every iteration. However, the
following example shows that Algorithm 2 produces some kind of zigzags.
Consider the 3-dimensional example with

Example 3. E = {x ∈ R3 : x2
1 + 100 x2

2 + 10000 x2
3 = 1.0101}, a =

(2, 1.01, 1.0001)T . The initial point is x0 = (0.01, 0.01, 0.01)T . The exact
projection of a onto E is x∗ = (1, 0.01, 0.0001)T .
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Figure 2. The {γk} by Algorithm 2 Figure 3. The {γk} by Algorithm 3

Even for this 3-dimensional example, Algorithm 2 takes 113 iterations to reach
the stopping condition (2.8) with ε = 10−6. Denote again ek = xk−x∗

‖xk−x∗‖
and

the matrices

M̄k = [e2k, e2k+2, e2k+4], M̃k = [e2k+1, e2k+3, e2k+5].

We found that both the determinants of M̄k and M̃k tend to zero as k increases.
This shows that the iterations generalized by Algorithm 2 tend to two 2-
dimensional reduced ellipsoids alternately. Meanwhile, the sequence {γk} also
tend to two different values, as shown in Figure 2. The same phenomenon is
observed for Algorithm 2 in Example 1 in Section 3.

Instead of establishing strict theoretical results for the above observations,
we are interested in this paper to find more efficient algorithms. A naive idea
to avoid the zigzagging phenomenon of Algorithm 2 is to use one iteration of
Algorithm 1 after every two iterations of Algorithm 2. We then obtain the
following simple hybrid projection algorithm, where for some given xk, γ

(1)
k

and γ
(2)
k stand for the values of γk given by Algorithm 1 and Algorithm 2,

respectively.

Algorithm 3 (simple hybrid projection algorithm)

At step 2 in The General Algorithm, set γ3k+i = γ
(2)
3k+i for i = 0, 1 and γ3k+2 =

γ
(1)
3k+2.

Although its basic idea is simple, our numerical experiments on a collec-
tion of test problems showed that Algorithm 3 is much more efficient than
Algorithm 1 and Algorithm 2. For instance, to solve Example 3 with the same
precision, Algorithm 3 only requires 49 iterations, which is significantly smaller
than the number by Algorithm 2. To solve Example 1 in Section 3, Algorithm
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3 only takes 27 iterations. At the same time, we notice that the value of γk

changes frequently in Algorithm 3 (see Figure 3 for {γk} in Example 3).
A possible explanation for the success of Algorithm 3 is that, the inex-

actness in the projection of a on the 2-dimensional reduced ellipsoid E3k+2

introduced by Algorithm 1 can make E3k+3 and E3k+4 be much different from
E3k and E3k+1 and hence help Algorithm 2 continuously achieve big decreases in
the distance function d(a,xk). It is interesting to note that a similar idea has
been used in the steepest descent method and leads to significant numerical
improvement (see [3]).

The degree of inexactness in Algorithm 3 depends on the values of γ
(1)
3k+2

and γ
(2)
3k+2. If γ

(1)
3k+2 ≈ γ

(2)
3k+2, Algorithm 3 fails to bring enough inexactness.

On the other hand, we see that there are many other ways to control the
inexactness (for example, to multiply γ

(2)
k by some positive constant less than

1). In addition, from Figure 3 we have some worry that the sequences {γk}
and {ek} in Algorithm 3 may also sink into some type of cycle. Therefore we
propose the following general hybrid projection algorithm.

Algorithm 4 (general hybrid projection algorithm)
At step 2 of The General Algorithm, compute γk by some positive function
ψ(γ

(1)
k , γ

(2)
k ) of γ

(1)
k and γ

(2)
k .

The above algorithm includes Algorithm 1, Algorithm 2 and Algorithm 3 as
its members. Now we discuss how to choose the function ψ. To guarantee the
existence of xk+1 and d(a,xk+1) < d(a,xk), we impose the following condition

γk ≤ max(γ
(1)
k , γ

(2)
k ). (6.1)

If this relation holds, it is easy to know by continuity that the line segment
connecting a and ck = xk − γkuk must have an intersection point with Ω(Ek).
By (6.1) and the positivity of ψ, we can express γk as

γk = c
(1)
k γ

(1)
k + c

(2)
k γ

(2)
k , (6.2)

where c
(1)
k and c

(2)
k are such that

c
(1)
k ≥ 0, c

(2)
k ≥ 0, c

(1)
k + c

(2)
k ≤ 1. (6.3)

To ensure the convergence of the algorithm, we require that

c
(1)
k + c

(2)
k ≥ τ, for some τ ∈ (0, 1] and all k. (6.4)

Under these requirements on c
(1)
k and c

(2)
k , we will show in the next section that

the algorithm is globally convergent and the convergence is linear.
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In this paper, we are particularly interested in the following four-parameter
family of hybrid projection algorithms:

γk =

{

γ
(2)
k , if mod(k,m1 +m2) < m1;

c1γ
(1)
k + c2γ

(2)
k , otherwise,

(6.5)

where m1 ≥ 1 and m2 ≥ 1 are integers, and c1 and c2 are non-negative con-
stants satisfying 0 < c1+c2 ≤ 1. The formula (6.5) indicates that the algorithm
will carry out m2 inexact 2-dimensional projection steps after every m1 steps
of Algorithm 2. In Section 8, we will find that some methods in the family
(6.5) are more efficient than the simple hybrid projection algorithm. Here we
would like to note that Algorithm (6.5) with the choice (8.2) only require 23
iterations for Example 1.

7. Linear Convergence

Lin and Han [9] proved the global convergence for their algorithm under
the condition (3.2) on γk. In the following we will establish the linear conver-
gence of the general hybrid projection algorithm with γk given by (6.2) under

the assumptions (6.3) and (6.4) on c
(k)
1 and c

(k)
2 . Consequently, the Lin-Han

Algorithm and Algorithms 1-3 are all linearly convergent.
For any nonzero vectors x and y in Rn, define the angle between x and y

as

θ(x,y) = arccos(
xTy

‖x‖‖y‖), 0 ≤ θ(x,y) ≤ π. (7.1)

For any xk ∈ S(a, E), we denote the angles

νk = θ(a − xk, Axk + b), θk = θ(a − xk,x
∗ − a), (7.2)

where x∗ is the projection of a on E as before. In the following, Lemmas 2 and
3 aim to provide a lower bound for the decrease d(a,xk) − d(a,xk+1) by the
angel νk. Lemma 5, that calls Lemma 4, estimates the upper bound for the
distance d(a,xk)−d(a,x∗) by the angel θk. Then using the relation νk ≥ θk, as
shown in Lemma 6, we establish the linear convergence of the general hybrid
projection algorithm in Theorem 7.

Denote by κ and λmin(A) the condition number and the minimal eigenvalue
of A, respectively. Define

ᾱ = α + bTA−1b. (7.3)

Under the transformation x → y = x + A−1b, we can express Ω(E) as

Ω̄ = {y ∈ Rn : yTAy = ᾱ}. (7.4)
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Then we can obtain

min
x∈Ω(E)

‖Ax + b‖ = min
y∈Ω̄

‖Ay‖ = min
y∈Ω̄

√

(A
1
2y)TA(A

1
2 y)

= min
y∈Ω̄

√

λmin(A) ‖A 1
2 y‖ =

√

λmin(A) ᾱ. (7.5)

Lemma 2 For Algorithm 1, there exists some positive constant c3 such that

d(a,xk) − d(a,xk+1) ≥ c3 sin2 νk

2
, for all k, (7.6)

where

c3 =
2 d(a, x∗)

1 + c4 d(a, x∗)
and c4 = (ρ(A)/ᾱ)

1
2 κ

1
2 . (7.7)

Proof Denote by xs the intersection of the line segment L(a, ck) and the
boundary of the 2-dimensional ball B2(γk) in (4.2) (see Figure 4). Then we
have that ‖xs − ck‖ = ‖xk − ck‖ = γk ‖uk‖. Noting that B2(γk) ⊂ Ek and
considering the triangle formed by the points a, ck and xk, we can get that

d(a,xk) − d(a,xk+1) = [d(a,xk) + ‖xk − ck‖] − [d(a,xk+1) + ‖xs − ck‖]
≥ [d(a,xk) + ‖xk − ck‖] − ‖a − ck‖

≥ [d(a,xk) + ‖xk − ck‖]2 − ‖a − ck‖2

2 [d(a,xk) + ‖xk − ck‖]

=
d(a,xk) ‖xk − ck‖ [1 − cos(π − νk)]

d(a,xk) + ‖xk − ck‖

=
2 sin2 νk

2

[d(a,xk)]−1 + [γk‖uk‖]−1
. (7.8)

From the above relation, (4.10), (4.11), the definition of uk and (7.5), we know
that (7.6) holds. q.e.d.

Lemma 3 Consider Algorithm 4 with γk given by (6.2). If c
(k)
1 and c

(k)
2 satisfy

(6.3) and (6.4), we have that

d(a,xk) − d(a,xk+1) ≥ c3 τ sin2 νk

2
, for all k. (7.9)

Proof For any fixed xk, denote by x
(1)
k+1 and x

(2)
k+1 the points generated

by Algorithm 1 and Algorithm 2, respectively. Noting that d(a,x
(2)
k+1) =

min{d(a,x) : x ∈ Ek} ≤ d(a,x
(1)
k+1), we have by this and Lemma 2 that

d(a,xk) − d(a,x
(i)
k+1) ≥ c3 sin2 νk

2
, for i = 1, 2 and all k. (7.10)
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 ck
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 ck
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 ck
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Figure 4. Diagram of proof of Lemma 2 Figure 5. Diagram of proof of Lemma 3

The relations (6.2) and (6.3) imply that γk ≤ max(γ
(1)
k , γ

(2)
k ). Define

xk+1(γ) = L(a,xk − γuk) ∩ Ω(Ek). Since γ
(2)
k is the unique minimizer of the

function d(a,xk+1(γ)) such that xk+1(γ) ⊂ Ω(Ek), we know that d(a,xk+1(γ))

is monotonically decreasing as γ moves from γ
(1)
k to γ

(2)
k . Consequently, if

γk ≥ min(γ
(1)
k , γ

(2)
k ), (7.11)

we have that d(a,xk+1) ≤ d(a,x
(1)
k+1) and hence (7.9) is true.

If (7.11) does not hold, we have by (6.2) and (6.3) that

τ γ
(i0)
k ≤ γk ≤ γ

(i0)
k , (7.12)

where i0 ∈ {0, 1} is such that γ
(i0)
k = min (γ

(1)
k , γ

(2)
k ). Equivalently, we have

that
τ ‖c(i0)

k − xk‖ ≤ ‖ck − xk‖ ≤ ‖c(i0)
k − xk‖, (7.13)

where c
(i0)
k = xk − γ

(i0)
k uk. Denote again by xs the intersection of L(a, ck) and

the line segment connecting xk and x
(i0)
k+1 (see Figure 5). Due to the convexity

of Ω(Ek), we know that xs belongs to the interior of Ek and hence

d(a,xk+1) < d(a,xs). (7.14)

For convenience, for any given vectors z1, z2, and z3, we denote by 6 z1z2z3

the angle between z1 − z2 and z3 − z2. Note that 6 ackxk > 6 ac
(i0)
k xk. If in-

troducing a supplementary point s ⊂ L(xk,x
(i0)
k+1) such that L(s, ck) is parallel

to L(x
(i0)
k+1, c

(i0)
k ), we can see that

‖xs − xk‖
‖x(i0)

k+1 − xk‖
>

‖ck − xk‖
‖c(i0)

k − xk‖
. (7.15)

16



Now we introduce a supplementary point s1 ⊂ L(a,xk) such that ‖a − s1‖ =

‖a − x
(i0)
k+1‖. Then we have that

6 ax
(i0)
k+1s1 = 6 as1x

(i0)
k+1 = 6 s1x

(i0)
k+1xk + 6 axkx

(i0)
k+1, (7.16)

6 ax
(i0)
k+1s1 + 6 as1x

(i0)
k+1 + 6 xkax

(i0)
k+1 = π. (7.17)

Substituting (7.16) into (7.17), we get that

2 6 s1x
(i0)
k+1xk = (π − 2 6 axkx

(i0)
k+1) − 6 xkax

(i0)
k+1. (7.18)

Similarly, if we introduce another supplementary point s2 ⊂ L(a,xk) such that
‖a − s2‖ = ‖a − xs‖, we have that

2 6 s2x
(i0)
k+1xk = (π − 2 6 axkx

(i0)
k+1) − 6 xkaxs. (7.19)

The relations (7.18), (7.19) and 6 xkaxs < 6 xkax
(i))

k+1 imply that 6 s2x
(i0)
k+1xk >

6 s1x
(i0)
k+1xk. Similarly to (7.15), we can prove that

‖s2 − xk‖
‖s1 − xk‖

>
‖xs − xk‖
‖x(i0)

k+1 − xk‖
. (7.20)

Therefore by (7.14), (7.20), (7.15) and (7.12), we obtain

d(a,xk) − d(a,xk+1)

d(a,xk) − d(a,x
(i0)
k+1)

>
d(a,xk) − d(a,xs)

d(a,xk) − d(a,x
(i0)
k+1)

=
‖s2 − xk‖
‖s1 − xk‖

>
‖xs − xk‖
‖x(i0)

k+1 − xk‖
>

‖ck − xk‖
‖c(i0)

k − xk‖
≥ τ, (7.21)

which, with (7.10), indicates the truth of (7.9). q.e.d.

To estimate the distance between d(a,xk) and d(a,x∗), we require the
following lemma.

Lemma 4 Consider the n-dimensional ellipsoid E in (1.2). For any x, y ∈
Ω(E) with x 6= y, we have that

cos θ(Ax + b,x − y) ≤ 1

2
c4‖x − y‖, (7.22)

where c4 is given in (7.7).
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Proof Without loss of generality, we assume that n = 2 for otherwise con-
sider the reduced ellipsoid of E restricted to the 2-dimensional linear manifold
{x + (Ax + b,x − y) r : r ∈ R2}. Further, by making the transformation
x → x + A−1b and some orthogonal transformation, we assume that

E = {x ∈ R2 : xTAx ≤ ᾱ}, where A = diag(β2, δ2) with 0 < β ≤ δ, (7.23)

and ᾱ is still given in (7.3). Let % = ᾱ
1
2β−1δ−1. Then we can express any x,

y ⊂ Ω(E) as

x = %
(

δ cosα1,
β sinα1

)

, y = %
(

δ cosα2,
β sinα2

)

.

Denote α3 = α1+α2

2
and α4 = α1−α2

2
, we have by direct calculations that

‖x − y‖2 = %2 [δ2(cosα1 − cosα2)
2 + β2(sinα1 − sinα2)

2]

= 4%2 sin2 α4(δ
2 cos2 α3 + β2 sin2 α3) (7.24)

≥ 4%2β2 sin2 α4 (7.25)

and

(x − y)TAx = %2β2δ2[cosα1(cosα1 − cosα2) + sinα1(sinα1 − sinα2)]

= %2β2δ2[1 − (cosα1 cosα2 + sinα1 sinα2)]

= %2β2δ2[1 − cos(α1 + α2)] (7.26)

= 2%2β2δ2 sin2 α4. (7.27)

In addition, we can get that

‖Ax‖ = %βδ
√

β2 cos2 α1 + δ2 sin2 α1 ≥ %β2δ. (7.28)

Thus by (7.1), b = 0, (7.25)–(7.28) and the definition of %, we obtain

cos θ(Ax+b,x−y) =
(x − y)TAx

‖x − y‖2 ‖Ax‖ ‖x−y‖ ≤ δ

2%β2
‖x−y‖ ≤ δ2

2ᾱ
1
2β

‖x−y‖.

If n = 2, we have that δ =
√

ρ(A) and β =
√

λmin(A). If n ≥ 3, in which case a

2-dimensional reduced ellipsoid is considered, we have similarly to (7.16) that

δ ≤
√

ρ(A) and β ≥
√

λmin(A). Consequently, (7.22) is always true. q.e.d.

With the help of Lemma 3, we can now estimate the distance between
d(a,xk) and d(a,x∗) by the angle θk in (7.2).

Lemma 5 Denote S(a, E) = {x ∈ Ω(E) : θ(a − x, Ax + b) ≤ π
2
}. If xk ∈

S(a, E), there exists some positive constant c5 such that

d(a,xk) − d(a,x∗) ≤ c5 sin2 θk

2
. (7.29)
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Proof Define

φ(x) =

{

θ(a − x∗,x − x∗), if x 6= x∗

π
2
, if x = x∗.

It is easy to see that φ∗ := max{φ(x) : x ∈ S(a, E)} ≥ π
2

since x∗ ⊂ S(a, E). In
addition, notice that the point x̄ in E satisfying θ(a−x∗, x̄−x∗) = π does not
belong to S(a, E). Then we have by the compactness of S(a, E) that φ∗ < π.
Further, denote σk = θ(a − x∗, xk − x∗) (see Figure 6). In a similar way, we
can show that π

2
≥ π − (θk + σk) ≥ ξ∗. It follows that for any xk ∈ S(a, E),

sin σk ≥ sin φ∗ and sin(θk + σk) ≥ sin ξ∗. (7.30)

From the triangle formed by a, x∗ and xk, we have that

‖x∗ − xk‖
sin θk

=
d(a,xk)

sin σk

=
d(a,x∗)

sin(θk + σk)
. (7.31)

Noting that a − x∗ is parallel to Ax∗ + b, we have by Lemma 4 and the fact
that a − x∗ is parallel to Ax∗ + b that

− cos σk = cos(π − σk) ≤ c4‖x∗ − xk‖. (7.32)

Now, by (7.31), (7.32) and (7.30), we can obtain

d(a,xk) − d(a,x∗)

d(a,x∗)
=

sin σk − sin(θk + σk)

sin(θk + σk)

=
sin σk(1 − cos θk) − cos σk sin θk

sin(θk + σk)

≤ 2 sin σk sin2 θk

2
+ 1

2
c4‖x∗ − xk‖ sin θk

sin(θk + σk)

=
2 sin2 σk sin2 θk

2
+ 1

2
c4 d(a,xk) sin2 θk

sin(θk + σk) sin σk

=
2 sin2 σk + 2c4 d(a,xk) cos2 θk

2

sin(θk + σk) sin σk

sin2 θk

2

≤ 2(1 + c4dmax)

sin ξ∗ sinφ∗
sin2 θk

2
. (7.33)

In the above, dmax = maxx∈E d(a,x) < +∞. Therefore (7.29) holds with

c5 =
2(1 + c4dmax) d(a,x

∗)

sin ξ∗ sinφ∗
, (7.34)
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Figure 6. Diagram of proof of Lemmas 5 and 6

which completes the proof. q.e.d.
To establish the linear convergence of the algorithm, we now need a relation

between the angle νk and θk. Similarly to the proof of Theorem 3.8 in [9], we
can show that νk ≥ θk. In the following, we present a geometrical proof to this
result (see also Figure 6 for the diagram of the proof).

Lemma 6 For any xk ∈ S(a, E) with xk 6= x∗, we have that νk ≥ θk.

Proof Denote ξk = θ(x∗ − xk, uk). Since uk is the normal direction of q
at xk, we know that ξk >

π
2
. Denote by S̄k the 2-dimensional linear manifold

including a, x∗ and xk. Note that the direction uk does not necessarily lie in
S̄k. We then introduce a supplementary direction us ∈ S̄k such that the angle
θ(x∗ − xk, us) has the same size as ξk. Meanwhile, we denote by C̄k the cone
xk ∪ {y 6= xk : θ(x∗ − xk, y − xk) = ξk}. Then we can see that

νs
.
= θ(a − xk, us) = min{θ(a − xk, y − xk) : y ∈ C̄k\{xk}} ≤ νk. (7.35)

On the other hand, since x∗ is the projection of a on the ellipsoid, we have
that θ(a − x∗,xk − x∗) > π

2
. Consequently, the straight line passing a and x∗

and the one {xk + tus : t ∈ R1} must cross at some point, still say xs. From
the triangle formed by a, xs and xk, we can get that

νs ≥ θk. (7.36)

Combining (7.35) and (7.36), we know the truth of this lemma. q.e.d.

Now we are able to give the main theorem.

Theorem 7 Consider Algorithm 4 with γk given by (6.2). If c
(1)
k and c

(2)
k

satisfy (6.3) and (6.4), there exists some positive constant c6 < 1 such that

d(a,xk+1) − d(a,x∗)

d(a,xk) − d(a,x∗)
≤ 1 − c6. (7.37)
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Proof By Lemmas 3, 5 and 6, we have that

d(a,xk+1) − d(a,x∗)

d(a,xk) − d(a,x∗)
= 1 − d(a,xk) − d(a,xk+1)

d(a,xk) − d(a,x∗)
≤ 1 − c3τ

c5
. (7.38)

Substituting the values of ci’s, we know that (7.37) holds with

c6 =
c3τ

c5
=

τ sin ξ∗ sin σ∗

[

1 + (ρ(A)/ᾱ)
1
2 κ

1
2 d(a,x∗)

] [

1 + (ρ(A)/ᾱ)
1
2 κ

1
2 dmax

] . (7.39)

The proof is then completed. q.e.d.

When xk → x∗, we have that σk → π
2
, θk +σk → π

2
and d(a,xk) → d(a,x∗).

Consequently, from the proof of Lemma 5, the linear convergence constant in
(7.37) can be approximated by 1 − c̄6 where

c̄6 =
τ

[

1 + (ρ(A)/ᾱ)
1
2 κ

1
2 d(a,x∗)

]2 . (7.40)

The relation (7.40) indicates that the convergence becomes slower when the
condition number of A becomes larger or the point a to be projected is farther
from the ellipsoid.

8. Numerical Experiments

A 10-dimensional example has been used before to show the efficiency
of new projection algorithms. Now we provide some numerical results for
higher dimensional problems. To convene our observation, we assume that the

matrix A is diagonal and its diagonal entries are given by aii = 10
i−1
n−1

ncond

(i = 1, . . . , n) and ncond controls the condition number of the matrix A. The
vector b is set to 0 in our tests although the algorithms can apply to the case
of nonzero b. In case of nonzero b, we need to find a feasible initial points in
E . We set c = 0 and α = 1 so that the ellipsoid E lies in the unit ball at the
origin. Equivalently, given n and ncond, the ellipsoid used in our test is

E = {x ∈ Rn :
n
∑

i=1

10
i−1
n−1

ncondx2
i = 1}.

For the choice of a, we first generate a point ã = (ãi) by

ãi = a−ω
ii , (8.1)

where ω ≥ 0 is some parameter. Then we ask x∗ = (ãTAã)−
1
2 ã to be the

projection of a in the ellipsoid E . It is easy to see that the larger ω is, the
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more x∗ tends to an eigenvector of the matrix A corresponding to its small
eigenvalue. For each x∗, we choose different ϑ’s for a such that ‖a‖ = ϑ. Given
the size ϑ of a, the point a can be calculated by

a = x∗ +
ϑ2 − ‖x∗‖2

1 +
√

1 + ‖Ax∗‖2 [ϑ2 − ‖x∗‖2]
Ax∗.

The above strategy enables us not only to control both the size and the direc-
tion of a (by the parameters ω and ϑ) but also to know its exact projection
x∗. To sum up, the construction of our test problems depends on the four
parameters n, ncond, ω and ϑ. In our tests, we fix n = 104 and vary the other
parameters:

ncond ∈ {2, 3, 4, 5}, ω ∈ {0, 1/8, 1/4, 1/2}, ϑ ∈ {2, 5, 10, 50}.

We tested the Lin-Han Algorithm and Algorithms 1-4 with the MATLAB
language (version 6.5.0). For all cases, the initial point is set to x0 = ϑ−

1
2a.

The stopping condition is (2.8) with ε = 10−6. For the Lin-Han Algorithm,
we set γk = (ρ(A))−1 = 10−ncond. As analyzed in Section 3, this choice of γk

favors the comparison of the Lin-Han Algorithm since any under estimation of
this value may deteriorate the performance of the algorithm. The parameters
in Algorithm 4 are chosen as follows:

m1 = 1, m2 = 1, c1 = 0.1, c2 = 0.8. (8.2)

Nevertheless, good numerical results are also obtained with (m1, m2 c1, c2) =
(1, 1, 0.05, 0.9), etc. Generally, if m1 = m2 = 1 are fixed, the suggested
arranges for c1 and c2 are that

c2 ∈ [0.7, 0.9], c1 ∈ [0, 0.95 − c2].

The iteration numbers required by the algorithms for each case are taken
down in Table 2, where LH and Ai stand for the Lin-Han algorithm and
Algorithm i, respectively. Since the computation amount per iteration required
by each algorithm is similar, the algorithmic performance can basically be
evaluated by the required iteration numbers. From Table 2, we make the
following comments:

Regarding influence of ncond, ω and ϑ. In general, we see that the problem
becomes more difficult as ncond and ω increase. In other words, when the
ellipsoid becomes more flat, it is more difficult to project those points close
to the flat part of the ellipsoid. The influence of ϑ, namely, the size of a,
is different. If fixing ncond and ω, the increase of ϑ leads to more projection
iterations in most of the cases. However, for quite many cases such as ncond =
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ncond = 2 ncond = 3
LH A1 A2 A3 A4 ω ϑ LH A1 A2 A3 A4
72 49 40 19 17 0 2 209 141 118 44 43

110 74 62 25 25 0 5 316 212 184 62 57
134 90 76 29 29 0 10 382 256 231 77 65
163 109 94 35 31 0 50 434 290 280 86 77
82 54 45 19 19 1/8 2 269 173 148 52 41

127 82 70 26 29 1/8 5 435 278 246 83 48
157 101 88 32 31 1/8 10 559 357 324 104 51
194 124 110 40 35 1/8 50 716 456 440 137 87
94 58 50 22 21 1/4 2 344 208 186 65 49

146 89 80 31 31 1/4 5 580 349 322 104 64
181 110 100 37 33 1/4 10 773 465 436 137 121
225 136 126 43 39 1/4 50 1076 647 630 193 97
121 63 64 37 27 1/2 2 579 293 304 136 62
187 96 100 52 35 1/2 5 994 501 534 223 115
228 117 124 62 37 1/2 10 1337 672 728 295 166
278 142 152 73 43 1/2 50 1899 953 1052 409 165

ncond = 4 ncond = 5
LH A1 A2 A3 A4 ω ϑ LH A1 A2 A3 A4
479 321 282 92 75 0 2 809 541 529 158 77
621 415 396 125 85 0 5 697 466 529 137 82
623 416 429 125 88 0 10 580 388 440 116 70
524 350 377 104 74 0 50 506 338 364 104 69
734 469 414 128 70 1/8 2 1732 1104 1018 290 141

1136 724 672 200 97 1/8 5 2255 1437 1466 386 141
1362 868 854 239 101 1/8 10 2069 1318 1546 362 126
1298 828 932 236 105 1/8 50 1299 828 1008 236 94
1068 643 586 188 76 1/4 2 3020 1815 1684 509 151
1834 1102 1036 311 120 1/4 5 5015 3012 2920 833 175
2485 1493 1452 425 173 1/4 10 6430 3862 3972 1058 247
3261 1959 2122 557 197 1/4 50 5404 3245 4288 899 203
2357 1183 1246 535 171 1/2 2 8700 4357 4622 1858 429
4352 2181 2354 937 253 1/2 5 16715 8367 9074 3415 546
6352 3182 3488 1312 379 1/2 10 25653 12839 14178 5071 775

10769 5391 6128 2119 360 1/2 50 49765 24902 29210 9349 800

Table 2. Numerical comparisons of five projection algorithms
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4, ω ∈ {0, 1/8} and ncond = 5, ω ∈ {0, 1/8, 1/4}, the required iterations for
ϑ = 50 are generally less than those for ϑ = 10. It seems to us that for each
case of ncond and ω, the problem becomes eventually more difficult as a gets
farther away from the ellipsoid and then eventually easier after a exceeds some
distance.

Regarding efficiency of five projection algorithms. It is evident that the
Lin-Han is the worst and Algorithm 4 is the best. Further, we see that the
gain achieved by Algorithm 4 is bigger as the problem becomes more difficult.
In the most difficult case that ncond = 5, ω = 1/2 and ϑ = 50, the iteration
number required by Algorithm 4 is only about one sixty-third of the number
by the Lin-Han algorithm. In other words, Algorithm 4 is less influenced by
the difficulty of the problem. Algorithm 3 is the second best among the five
algorithms. Comparing Algorithm 1 and Algorithm 2, we see that in easy
cases, Algorithm 2 is better than Algorithm 1, whereas Algorithm 1 requires
fewer iterations than Algorithm 2 in difficult cases.

9. Discussion

In this paper we have proposed several new algorithms for projection on
a general ellipsoid by considering the 2-dimensional reduced ellipsoid at each
iteration. To avoid the direct estimation of the spectral radius ρ(A) in the
Lin-Han algorithm, we provided the maximal 2-dimensional inside ball algo-
rithm (Algorithm 1) and the sequential 2-dimensional projection algorithm
(Algorithm 2). However, we found that the solution procedure of Algorithm 1
tends to some 2-dimensional reduced ellipsoid. For Algorithm 2, the iterations
tend to two 2-dimensional reduced ellipsoids alternately. Therefore we inves-
tigated the hybrid use of the two algorithms and proposed the simple hybrid
projection algorithm (Algorithm 3) and the general hybrid projection algo-
rithm (Algorithm 4). Our numerical experiments show that Algorithms 1-4,
even Algorithm 4, are much faster than the Lin-Han algorithm even when the
spectral radius ρ(A) is exactly known. To further improve Algorithm 4, we feel
that one possible approach is to impose some conjugacy on the 2-dimensional
reduced ellipsoids {Ek}.

One disadvantage of the algorithms of this paper is that they require a
feasible point of the ellipsoid E . Assume that a feasible point, xf say, has
been found. Then one can choose the intersection of E and the line segment
L(a,xf) as an initial point. If the right-hand-side term b = 0, a feasible point
can be easily found in E . However, this is not always the case with nonzero
b. In this case, to find a feasible point of E and use the algorithms, one may
need to reduce the function q(x) from some infeasible point with the help of
some minimization algorithm. Therefore it may be interesting to find some
infeasible projection algorithms in which a feasible point is not necessary.
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It is obvious that the maximal 2-dimensional inside ball algorithm can be
extended to the problem of calculating the distance between two ellipsoids
considered in Lin and Han [10],

min ‖x − y‖
s.t. x ∈ E , y ∈ Ē .

Hence the similar disadvantage of estimating the spectral radius of some ellip-
soid in their algorithm can be avoided. Some kind of extension of the sequential
2-dimensional ellipsoid projection algorithm to such problem is also possible.
For example, assuming that xk ∈ E and yk ∈ Ē has been obtained at the k-th
iteration, we can construct a maximal 2-dimensional inside ball of E at xk.
Denote the center of this ball to be ck. Then we can take yk+1 ∈ Ē to be the
projection of ck on Ē and then let xk+1 = Ω(E)∩L(ck,yk+1). Therefore faster
algorithms for the above problem should also be able to be obtained. Never-
theless, it still remains to study how to design the most efficient algorithms.
In addition, it may be also interesting to investigate how to extend the idea
of the algorithms proposed in this paper to solve the projection problem on a
general convex set. More recent work on this aspect can be seen in Lin [8] and
Lin and Han [11].
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