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Abstract. The BFGS method is one of the most famous quasi-Newton algorithms for un-
constrained optimization. In 1984, Powell presented an example of a function of two variables that
shows that the Polak–Ribière–Polyak (PRP) conjugate gradient method and the BFGS quasi-Newton
method may cycle around eight nonstationary points if each line search picks a local minimum that
provides a reduction in the objective function. In this paper, a new technique of choosing parameters
is introduced, and an example with only six cyclic points is provided. It is also noted through the
examples that the BFGS method with Wolfe line searches need not converge for nonconvex objective
functions.
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1. The BFGS algorithm. The BFGS algorithm is one of the most efficient
quasi-Newton methods for unconstrained optimization:

min f(x), x ∈ Rn.(1.1)

The algorithm was proposed by Broyden [2], Fletcher [5], Goldfarb [7], and Shanno [19]
individually and can be stated as follows.

Algorithm 1.1. The BFGS algorithm.

Step 0. Given x1 ∈ Rn; B1 ∈ Rn×n positive definite;

Compute g1 = ∇f(x1). If g1 = 0, stop; otherwise, set k := 1.
Step 1. Set dk = −B−1

k gk.

Step 2. Carry out a line search along dk, getting αk > 0,
xk+1 = xk + αkdk, and gk+1 = ∇f(xk+1);
If gk+1 = 0, stop.

Step 3. Set

Bk+1 = Bk −
BksksT

k Bk

sT
k Bksk

+
ykyT

k

sT
k yk

,(1.2)

where

sk = αkdk,(1.3)

yk = gk+1 − gk.(1.4)

Step 4. k := k + 1; go to Step 1.
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The line search in Step 2 requires the steplength αk to meet certain conditions.
If exact line search is used, αk satisfies

f(xk + αkdk) = min
α>0

f(xk + αdk).(1.5)

In the implementations of the BFGS algorithm, one normally requires that the step-
length αk satisfies the Wolfe conditions [20]:

f(xk + αkdk) − f(xk) ≤ δ1αkdT
k gk,(1.6)

dT
k ∇f(xk + αkdk) ≥ δ2d

T
k gk,(1.7)

where δ1 ≤ δ2 are constants in (0, 1). For convenience, we call the line search that
satisfies the Wolfe conditions (1.6)–(1.7) the Wolfe line search.

Another famous quasi-Newton method is the DFP method, which was discovered
by Davidon [3] and modified by Fletcher and Powell [6]. Broyden [2] proposed a family
of quasi-Newton methods:

Bk+1(θ) = Bk −
BksksT

k Bk

sT
k Bksk

+
ykyT

k

sT
k yk

+ θ(sT
k Bksk)vkvT

k ,(1.8)

where θ ∈ R1 is a scalar and vk = yk

sT

k
yk

− Bksk

sT

k
Bksk

. The choice θ = 0 gives rise to the

BFGS update, whereas θ = 1 defines the DFP method.
For uniformly convex functions, Powell [12] showed that the DFP algorithm with

exact line searches stops at the unique minimum or generates a sequence that con-
verges to the minimum. Dixon [4] found that all methods in the Broyden family with
exact line searches produce the same iterations for general functions. For inexact line
searches, Powell [14] first proved the global convergence of the BFGS algorithm with
Wolfe line searches for convex functions. His result was extended by Byrd, Nocedal,
and Yuan [1] to all methods in the restricted Broyden family with θ ∈ [0, 1). However,
the following questions have remained open for many years (for example, see Nocedal
[9] and Yuan [21]): (i) does the DFP method with Wolfe line searches converge for

convex functions? and (ii) does the BFGS method with Wolfe line searches converge

for nonconvex functions?

In this paper, we will consider the n = 2, m = 8 example in [15] for the Polak–
Ribière–Polyak (PRP) conjugate gradient method [10, 11]. The two-dimensional ex-
ample shows that the PRP method may cycle around eight nonstationary points if
each line search picks a local minimum that provides a reduction in the objective
function. By introducing a new technique of choosing parameters, we will present a
new example for the PRP method (see section 2). The example has only six cyclic
points. Since, in the case that gT

k+1dk = 0 for all k, the BFGS method can produce
the same iterations as the PRP method does for two-dimensional functions, it can
be shown by the examples that the BFGS method with Wolfe line searches need not
converge for nonconvex objective functions (see section 3). Thus a negative answer is
given to question (ii). The last section contains some discussions.

2. A counterexample with six cyclic points. The PRP method uses the
negative gradient as its initial search direction. For k ≥ 1, the method defines dk+1

as follows:

dk+1 = −gk+1 +
gT

k+1yk

‖gk‖2
2

dk.(2.1)
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Powell [15] constructed a two-dimensional example, showing that the PRP method
with the line search (2.2) may cycle around eight nonstationary points:

αk is a local minimum of Φk(α) and such that Φk(αk) < Φk(0),(2.2)

where Φk(α) is the line search function

Φk(α) = f(xk + αdk), where α > 0.(2.3)

However, examples with fewer cyclic points do not seem possible from the practice in
[15]. In this section, we will introduce a new technique of choosing parameters and
provide an example with only six cyclic points.

Assume that n = 2. Similar to [15], our example will be constructed so that all
the iterations generated by the PRP method converge to the horizontal axis in R2.
For m even, we consider the steps {sk} in the form

smj+i = ai

(

1
biφ

2j

)

, smj+ m

2
+i = ai

(

−1
biφ

2j+1

)

, i = 1, . . . ,
m

2
,(2.4)

where φ, {ai}, {bi} are parameters to be determined, satisfying φ ∈ (0, 1) and ai >
0 (i = 1, . . . , m

2 ). To be such that

gT
k+1dk = 0 for all k,(2.5)

we assume that the gradients {gk} have the form



















gmj+1 = c1

(

bm

2
φ2j−1

1

)

; gmj+i = ci

(

−bi−1φ
2j

1

)

, i = 2, . . . ,
m

2
,

gmj+ m

2
+1 = c1

(

−bm

2
φ2j

1

)

; gmj+ m

2
+i = ci

(

bi−1φ
2j+1

1

)

, i = 2, . . . ,
m

2
,

(2.6)
where {ci} are also parameters to be determined. In this section, we are interested in
the case that m = 6.

By relations (2.1) and (2.5), we know that the PRP method satisfies the conjugacy
condition

dT
k+1yk = 0(2.7)

and the descent condition

dT
k+1gk+1 < 0.(2.8)

The above conditions require that gT
6j+is6j+i = gT

6j+i−1s6j+i < 0, yielding







c2(b2 − b1) = c1(b2 + b3φ
−1) < 0,

c3(b3 − b2) = c2(b3 − b1) < 0,
c1(b1φ + b3) = c3(b1φ + b2) < 0.

(2.9)

Denoting b0 = −b3φ
−1 and b4 = −b1φ, we can draw the following conditions on {bi}

from (2.9):

{

(b2 − b1)(b3 − b2)(b4 − b3) = (b2 − b0)(b3 − b1)(b4 − b2),
(b3 − b4)(b2 − b0) > 0, (b2 − b1)(b3 − b1) > 0, (b3 − b2)(b2 − b4) > 0.

(2.10)
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Defining ϕi = bi − bi−1, the above relations are equivalent to

{

ϕ2ϕ3ϕ4 = (ϕ1 + ϕ2)(ϕ2 + ϕ3)(ϕ3 + ϕ4),
ϕ4(ϕ1 + ϕ2) < 0, ϕ2(ϕ2 + ϕ3) > 0, ϕ3(ϕ3 + ϕ4) < 0.

(2.11)

Further, letting ti = ϕi+1/ϕi and noting that ϕ4/ϕ1 = −φ, we can obtain

{

t1t2t3 = (1 + t1)(1 + t2)(1 + t3) = −φ,
t1 > −1, t2 > −1, t3 < −1.

(2.12)

The first line in (2.12) is equivalent to

−t1t2t3 =
t1t2(1 + t1)(1 + t2)

1 + t1 + t2
= φ.(2.13)

Thus for any φ ∈ (0, 1) and t3 < −1, we may solve t1 and t2 from (2.13). If the solved
t1 and t2 are such that t1 > −1 and t2 > −1, then we can further consider the choices
of {ai}. In our real construction, we pick t3 = −2. This with (2.13) indicates that

t1t2 = 1 + t1 + t2.(2.14)

Further, we find that the following values of {ti} and φ satisfy (2.13) and allow suitable
{ai; i = 1, 2, 3}:

t1 = −
3

4
, t2 = −

1

7
, t3 = −2, φ =

3

14
.(2.15)

Now, by the definitions of ϕi and ti, we can express
∑4

i=2 ϕi in two ways:

4
∑

i=2

ϕi

(1)
= b4 − b1 = −b1(1 + φ)

(2)
= ϕ2(1 + t2 + t2t3) = (b2 − b1)(1 + t2 + t2t3).(2.16)

We then get that

b2 =

[

1 −
1 + φ

1 + t2 + t2t3

]

b1.(2.17)

Further, we have

b3 = b2 + ϕ3 = b2 + t2ϕ2 = (1 + t2)b2 − t2b1.(2.18)

Thus, letting b1 = 1, we have from this, (2.17), and (2.18) that

b1 = 1, b2 = −
1

16
, b3 =

5

56
.(2.19)

Letting c2 = 1, we obtain from (2.9) that

c1 = −3, c2 = 1, c3 = −6.(2.20)

As will be shown, the parameters chosen above allow the function value to be
monotonically decreased. Define f∗ to be the limit of f(xk). Since all the iterations
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are required to converge to the horizontal axis and, for each value of the first variable,
the dependence of f(x) on the second variable is linear, we have that

f(xk) − f∗ = (xk)2(gk)2 for all k ≥ 1,(2.21)

where (v)i means the ith component of vector v. Given the limit x̂1 = limj→∞ x6j+1,
we can compute {x6j+i; i = 1, . . . , 4} in the following way:

{

x6j+1 = x̂1 −
∑∞

k=j

∑6
i=1 s6k+i,

x6j+i = x6j+i−1 + s6j+i−1, i = 2, 3, 4.
(2.22)

As a result, the second components of {x6j+i; i = 1, . . . , 4} can be expressed as follows:

(x6j+i)2 = −hi(1 − φ)−1φ2j , i = 1, . . . , 4,(2.23)

where


















h1 = a1b1 + a2b2 + a3b3,

h2 = a1b1φ + a2b2 + a3b3,

h3 = a1b1φ + a2b2φ + a3b3,

h4 = h1φ.

(2.24)

Using the relations (2.21) and (2.23) and noting that the structure of this example
has some symmetry, we know that the monotonicity of f(xk) requires {ai} to meet

−c1h1 > −c2h2 > −c3h3 > −c1h4.(2.25)

This relation can be satisfied if we choose

a1 = 14, a2 = 160, a3 = 1.(2.26)

In this case, the four terms in (2.25) have the values

687

56
,

387

56
,

159

28
, and

2061

784
,

respectively. So (2.25) is satisfied. Further, if we let (x1)1 = −87.5, then {(x6j+i)1; i =
1, . . . , 6} have the values −87.5, −73.5, 86.5, 87.5, 73.5, and −86.5, which are all
different.

Finally, we discuss how to construct a smooth function f(x) ∈ R2 that satisfies
the gradient conditions (2.6). At first, for given real numbers p1, p2(6= 0), p3, p4, and
any j ≥ 1, we see that the function

Ψ(u1, u2) =
[

p4 + p−1
2 p3(u1 − p1)

]

u2(2.27)

is such that

∇Ψ

(

p1

p2φ
j

)

=

(

p3φ
j

p4

)

.(2.28)

Note that {x6j+i; i = 1, . . . , 6} are as follows:
(

−87.5

−

229
44

φ2j

)

,

(

−73.5
387
44

φ2j

)

,

(

86.5

−

53
44

φ2j

)

,

(

87.5

−

229
44

φ2j+1

)

,

(

73.5
387
44

φ2j+1

)

,

(

−86.5

−

53
44

φ2j+1

)

.
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Letting Bi = {u1; |u1 − (x6j+i)1| ≤ 0.1}, it is easy to find one-dimensional C∞ func-
tions ξ and γ such that their values at the intervals {Bi; i = 1, . . . , 6} are

8251

458
, −

2847

387
, −

6981

212
,

8251

458
, −

2847

387
, −

6981

212

and

55

229
, −

44

387
,

33

106
, −

55

229
,

44

387
, −

33

106
,

respectively. Then we can test that the function

f(u1, u2) = [ξ(u1) + γ(u1)u1]u2(2.29)

is a C∞ function in R2 and satisfies the gradient conditions (2.6). One deficiency of
the function (2.29) is that the point x6j+i+1 may not be a local minimum of Φ6j+i(α)
(see (2.3) for the definition of Φ). For example, x6j+2. For this, we can further choose
a one-dimensional C∞ function τ such that for i = 1, . . . , 6 its value at Bi is equal to
(x6j+i)1. Then the C∞ function

f(u1, u2) = [ξ(u1) + γ(u1)u1 + M(u1 − τ(u1))
2]u2(2.30)

with M > 0 sufficiently large can guarantee that each x6j+i+1 is a local minimum of
Φ6j+i(α). This completes the construction of our new example.

Thus by introducing the quantities ϕi and ti, we have obtained a new example.
The example shows that the PRP method with the line search (2.2) may cycle around
six nonstationary points. One advantage of this example over the one in [15] is that
it has only six cyclic points, whereas the latter has eight.

It is easy to see that the above example applies to the BFGS method if the choice
of B1 is such that B1s1 = −lg1, where l is any positive number. If one changes the
definition of f in a small neighborhood of x1 to meet the necessary initial conditions,
the example is also efficient for the BFGS method with any positive definite matrix
B1 or the PRP method with d1 = −g1.

3. Nonconvergence of the BFGS algorithm for nonconvex functions.

Generally, the line search (2.2) need not satisfy the Wolfe conditions (1.6)–(1.7). For
example, consider the function

f(x) = cosx, x ∈ R1.(3.1)

Assume that xk = 0 and dk = 1. For any nonnegative integer i, α = (2i + 1)π is
a local minimum of Φk(α). Then (1.6) is false if i is large. For the line search in
the example of section 2, however, we can directly test that the Wolfe conditions
(1.6)–(1.7) hold (see Theorem 3.1). Thus the example in section 2 also shows that the
BFGS algorithm with Wolfe line searches need not converge for nonconvex objective
functions.

Theorem 3.1. Consider the BFGS algorithm with the Wolfe line search (1.6)–
(1.7), where δ1 ≤ 69

7480 and δ2 ∈ (δ1, 1). Then for any n ≥ 2 there exists a starting

point x1 and a C∞ function f in Rn such that the sequence {‖gk‖2 : k = 1, 2, . . .}
generated by the algorithm is bounded away from zero.

Proof. Consider the example in section 2. For any starting matrix B1, we may
slightly modify the example such that it satisfies the necessary initial conditions. By
(2.21), (2.23), and (2.6), we see that

f(x6j+i) = f∗ − cihi(1 − φ)−1φ2j , i = 1, . . . , 4.(3.2)
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Still denote b0 = −b3φ
−1, b4 = −b1φ and let a4 = a1, c4 = c1. We have by (2.4) and

(2.6) that

gT
6j+is6j+i = aici(bi − bi−1)φ

2j , i = 1, . . . , 4.(3.3)

Combining (3.2) and (3.3) and noting the symmetry of the example, we know that
the first Wolfe condition (1.6) holds with any constant δ1 satisfying

δ1 ≤ min

{

f(x6j+i+1) − f(x6j+i)

gT
6j+is6j+i

: i = 1, 2, 3

}

=
1

1 − φ
min

{

cihi − ci+1hi+1

aici(bi − bi−1)
: i = 1, 2, 3

}

=
69

7480
.(3.4)

In addition, relations (2.5) and (2.8) imply that the second Wolfe condition (1.7) holds
for δ2 ∈ (δ1, 1). Thus the example in section 2 shows that the BFGS algorithm with
Wolfe line searches need not converge for two-dimensional functions.

In the case when n ≥ 3, we need only to consider the function

f̂(x) = f̂(u1, u2, . . . , un) = f(u1, u2),(3.5)

where f is the function in the example of section 2. This completes our proof.
The parameter δ1 in the above theorem is required to be no greater than 69

7480 ≈
0.0092. If we consider Powell’s example with eight cyclic points, then Theorem 3.1
can be extended to δ1 ≤ 1

84 ≈ 0.0119.

4. Some discussions. In this paper, it has been shown by one of Powell’s ex-
amples in [15] and a new example with six cyclic points that the BFGS algorithm
with Wolfe line searches need not converge for nonconvex objective functions. This
result also applies to the Hestenes–Stiefel conjugate gradient method [8], the Broyden
positive family (1.8) with θ ≥ 0, and the limited-memory quasi-Newton methods,
since all these methods satisfy both the conjugacy condition (2.7) and the descent
condition (2.8) if gT

k+1dk = 0 for all k.
To my knowledge, the parameters δ1 and δ2 in (1.6)–(1.7) are often set to 0.01 (or

a smaller value) and 0.9, respectively, in the implementations of the BFGS algorithm.
According to the remark after it, Theorem 3.1 can be extended to the case where
δ1 ≤ 1

84 . Since 1
84 > 0.01, one would be satisfied with this result for the BFGS

algorithm. As Professor J. C. Gilbert discussed with me, however, we wonder whether
Theorem 3.1 holds for any δ1 < 1 in theory.

Using the same technique as in section 2, we can show that there do not exist
examples of four cyclic points having similar structures. This means that the number
of cyclic points, six, cannot be decreased if we assume m to be even. In fact, if m = 4,
we have by (2.4) and (2.6) that

{

c2(b2 − b1) = c1(b2 + b2φ
−1) < 0,

c1(b2 + b1φ) = c2(b1 + b1φ) < 0,
(4.1)

where φ ∈ (0, 1). Denote b0 = −b2φ
−1, b3 = −b1φ, ϕi = bi − bi−1 (i = 1, 2, 3), and

ti = ϕi+1/ϕi(i = 1, 2). Similar to (2.10), (2.11), and (2.12), we can obtain
{

t1t2 = (1 + t1)(1 + t2) = −φ,
t1 > −1, t2 < −1.

(4.2)
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The above imply that t2 = −(1 + t1) and φ = t1(1 + t1). Since φ ∈ (0, 1), we can
then get that t1 > 0. Further, letting b1 = 1, we can, similarly to (2.16), obtain that
b2 = (1+ t1)

2/t1. Since b1, b2, and φ are all positive, we know by c1(b2 +b1φ) < 0 that
c1 < 0. Letting c1 = −t1, we can get by (4.1) that c2 = −(1 + t1). In a way similar
to (2.21)–(2.25), it is easy to see that the condition f(x4j+1) > f(x4j+2) requires

−c1(a1b1 + a2b2) > −c2(a1b1φ + a2b2).(4.3)

Substituting the expressions of φ, c1, and c2 with t1, (4.3) is equivalent to

−(2 + t1)t
2
1a1b1 − a2b2 > 0.(4.4)

This is not possible since t1, a1, a2, b1, and b2 are all positive. The contradiction
shows the nonexistence of examples of four cyclic points.

Under the assumption that xk → x̄, Powell [13] showed that the BFGS algorithm
with exact line searches converges globally for general functions when there are only
two variables. This result was extended by Pu and Yu [18] to the case in which n ≥ 2.
Therefore an interesting question may be, If xk → x̄, is the BFGS algorithm with
Wolfe line searches globally convergent for general functions? Another question is,
Does there exist an inexact line search that ensures the global convergence of the
BFGS method for general functions?

Recently, Powell [16] showed that if the line search always finds the first local min-
imum of Φk(α) in (2.3), the BFGS method is globally convergent for two-dimensional
twice-continuously differentiable functions with bounded level sets. Powell [17] and
the author are trying to construct a three-dimensional example showing that the
BFGS algorithm with the above line search need not converge.
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