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Abstract

The Barzilai and Borwein (BB) gradient method does not guarantee a descent in
the objective function at each iteration, but performs better than the classical steepest
descent (SD) method in practice. So far, the BB method has found many successful
applications and generalizations in linear systems, unconstrained optimization, convex
constrained optimization, stochastic optimization, etc. In this paper, we propose a new
gradient method that uses the SD step and the BB step alternately. Hence the name
“alternate step (AS) gradient method”. Our theoretical and numerical analyses show
that the AS method is a promising alternative to the BB method for linear systems.
Unconstrained optimization algorithms related to the AS method are also discussed.
Particularly, a more efficient gradient algorithm is provided by exploring the idea of
the AS method in the GBB algorithm by Raydan (1997).

To establish a general R-linear convergence result for gradient methods, an impor-
tant property of the stepsize is drawn in this paper. Consequently, R-linear convergence
result is established for a large collection of gradient methods, including the AS method.
Some interesting insights into gradient methods and discussion about monotonicity and
nonmonotonicity are also given.

Key words: linear system, unconstrained optimization, gradient method, conver-
gence rate, nonmonotone line search.
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1. Introduction

It is well known that the solution of the linear system
Ax =0b, where A€ R"™ be R", (1.1)

also solves the minimization problem

1>

min ¢(z) %xTA;v — bz (1.2)

*This work was also reported on the International Workshop on “Optimization and Control with Appli-
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if A is a real symmetric positive definite (SPD) matrix. It is just due to this fact that
Fletcher and Reeves [11] extended the linear conjugate gradient method [15] to solve the
general unconstrained optimization problem

min f(x), x€ R™ (1.3)

The purpose of this paper is to develop a new gradient method for (1.1) or (1.2), and then
to discuss related algorithms for unconstrained optimization.

Denote g = Az — b to be the residual of (1.1) at z, or equivalently the gradient of the
q(z) in (1.2) at . The well-known steepest descent (SD) method [5] is defined by

Thi1 = Tk — Gk, (1.4)
where oy, is given by
SD — 919k (1.5)
9i Agr

The stepsize (1.5) minimizes f(zr—agy) along the line. In practice, however, the SD method
performs poorly, and is badly affected by ill-conditioning (see [1]). [1] also proved that the
directions generated tend to two different directions:

lim 25— g im 2L _ g (1.6)
k=00 ||gak|| k=00 ||g2k+1]
where and below || - || is the two norm if it is not prescribed. This is the so-called zigzagging

(or saw-tooth) phenomenon. The SD method is a simple but basic method, and has played
an important role in the development of nonlinear optimization and many other fields.
Reference [19] provided some new properties of the SD method.

Denote sy—1 = xx — xx—1 and yg—1 = gr — gr—1. Since the matrix Dy = aLkI is an
approximation to the Hessian of ¢(z) at xj, Barzilai and Borwein [4] chose the stepsize oy,
such that Dy has a certain quasi-Newton property, i.e., Dy = argmin{||Dsg_1 — yx—1] :
D = a1}, yielding

T
Si_1Sk_
apB = Tl (1.7)
Sk—1Yk-1
Noting that sy_1 = —ag_19x—1 and yr_1 = Ask_1, an equivalent formula of (1.7) is
T
BB 9i—19k—1
Rl = . (1.8)
ng_lAgkfl

In this paper, we call the method (1.4)-(1.7) as Barzilai and Borwein (BB) gradient method.
Fletcher [9] shows how the stepsize (1.7) is related inversely to the eigenvalues of the matrix
A. Comparing with the SD method, the BB method can not guarantee a descent in the
objective function at each iteration, but often requires less computational work. A direct
application of the BB method in chemistry can be found in [13].

An important work on the BB method was due to Raydan [21], where the method is
extended to unconstrained optimization by incorporating the nonmonotone line search in
[14]. The resulting algorithm, GBB, proves competitive to some standard codes. A successful
application of the algorithm can be found in [2]. The idea of Raydan was also extended by
[3] for minimizing differentiable functions on closed convex sets. Reference [17] provided a
powerful scheme for unconstrained optimization problems with strong noises by combining
the BB method and the stochastic approximation method.



Regarding convergence analyses, it is known that the SD method is @-linearly convergent
[1]. If g(z) in (1.2) is a two-dimensional convex quadratic, Barzilai and Borwein [4] showed
that the BB method is R-superlinearly convergent for almost all the starting points. For
the higher-dimensional case, the analysis of the BB method is relatively difficult due to the
nonmonotonic behaviour. Nevertheless, Raydan [20] was able to prove the global convergence
of the BB method. Dai and Liao [7] refined the analyses of Raydan and established the R-
linear convergence of the method. One corollary of this result is that the BB method is locally
R-linearly convergent for general functions [17]. Consequently, under suitable assumptions,
the BB stepsize can be accepted [6] by the nonmonotone line search when the iterate is close
to the solution, as first observed in Raydan [21].

Other work related to the BB method can be found in Friedlander et al. [12], Birgin et al.
[3] and a recent report [22]. Specifically, [12] investigated gradient methods with retards and
generalizations for linear systems. To sum up, due to its simplicity and numerical efficiency,
the BB method has now received much attention in the optimization community.

In this paper, motivated by how to avoid producing zigzags, we propose a new gradient
method. The new method uses the SD and BB steps alternately. Hence the name of alternate
step (AS) gradient method. Our theoretical and numerical analyses show that the AS
method is a promising alternative to the BB method for linear systems. Specifically, for two-
dimensional SPD linear systems and any € > 0, the AS method is proved to be two-step (3 —
€)-Q-superlinearly convergent for almost all the starting points, whereas only R-superlinear
convergence is achieved for the BB method. We will also show that the introduction of the AS
method is very useful in designing new gradient algorithms for unconstrained optimization.

This paper is organized as follows. In the next section, we describe our motivation
and propose the AS method. Some properties of the method are given and other gradient
methods related to the method are discussed. In Section 3, we analyze the AS method for
SPD linear systems in the case when n = 2. Two-step (3 — ¢)-Q-superlinear convergence
result is established for the method. Section 4 analyzes the method for any-dimensional
linear systems. To establish a general R-linear convergence result for gradient methods, one
property called Property (A) of the stepsize is drawn. Consequently, R-linear convergence
is proved for a large collection of gradient methods, including the AS method. In Section 5,
we discuss unconstrained optimization algorithms related to the AS method. Particularly,
a more efficient gradient algorithm is provided by exploring the idea of the AS method in
the GBB algorithm. Conclusions and discussion are made in the last section.

2. Alternate step gradient method

We consider the problem (1.1) or equivalently (1.2), where A is an SPD matrix. As
mentioned in Section 1, the SD method produces zigzags. If all SD steps are replaced with
BB steps, then the zigzagging phenomenon will not occur any more since the BB method
is R-superlinearly convergent for two-dimensional convex quadratics. Note that each zigzag
includes two steps. Intuitively, the zigzagging phenomenon will not occur either if one of
the two SD steps is replaced with a BB step. This motivates us to consider the gradient
method that chooses its stepsize as follows:

BB (2.1)

o — afD, for odd k;
7 aBB,  for even k.

In other words, the method uses an SD step and a BB step alternately. Hence, we call such
method as alternate step gradient method, and abbreviate it to AS method.



Now we discuss the properties of the AS method. First, the AS method uses more recent
information than the BB method. This is because, the AS method takes an SD step every
two iterations, and the SD stepsize (1.5) and the BB stepsize (1.8) are the inverse Rayleigh
quotients of A with respect to g, and gi_1, respectively. Following this line, we consider the
method that takes a BB step after m — 1 SD steps:

SD o .
agis fori=1,...,m—1;
AUmk+4i = BB . (22)
Qptms> fori=m,

where m > 1. It is obvious that (2.1) is corresponding to (2.2) with m = 2. We will see
that the above method even with a big value of m performs significantly better than the
SD method. This shows that the introduction of some delays in calculating the stepsize can
speed up the SD method greatly. Although we do not recommend the method (2.1) with a
large m in real applications and one may also consider for example the method that takes
an SD step after m — 1 BB steps, the study explains the importance of introducing some
delays in calculating the stepsizes.

Another property of the AS method is that the stepsizes in the AS method are iden-
tical every two iterations, i.e., aPP = afP,. Consequently, the AS method requires less
computational work than the SD method and the BB method in calculating the stepsizes.
This saving is worthwhile even when A is a sparse matrix. Following this line, one may be
interested in the method (1.4) where

ki = Qonyq, fori=1,---,m (2.3)
and the method (1.4) where
ki = Qg iy, fori=1,--- m. (2.4)

In (2.3) and (2.4), m is a positive integer. If m = 2, then (2.3) reduces to (2.1). The method
(2.3) with relatively large values of m was also studied in [12]. In this paper, we call the
method (2.3) and the method (2.4) as cyclic steepest descent step (CSDS) method and cyclic
Barzilai-Borwein step (CBBS) method, respectively. Note that

BB Sﬁksmk (2.5)

« = .
mk+1 T
SmkYmk

One advantage of the CBBS method over the CSDS method is that, its stepsize can be
computed without the matrix A explicitly. Thus like the BB method, it is easy to extend
the CBBS method to unconstrained optimization by combining the nonmonotone line search.
Further researches on this topic are required.

To have an immediate comparison of the AS and BB methods, we test the four-dimensional
example in [4] in an SGI indigo workstation with MATLAB. Here we should note that, since
our main purpose is to compare the AS and BB methods, only small dimensional linear
systems are tested in this paper. These examples are typical and facilitate the observation
of the relationship between the stepsizes and the eigenvalues of A. We refer to [10] and [12]
for comparisons of the BB method and the conjugate gradient method for some large-scale
SPD linear systems.

The example in [4] is to minimize the function ¢(z) = %xTA;v —bTx, where

A =diag(20, 10, 2, 1), b=ey4. (2.6)
Here e; means the i-dimensional vector whose elements are all 1. For both the BB and
AS methods, the starting points are 1 = o = 0 and the stepsize as = 1. The stopping



Table 2.1 Comparing BB and AS for the example in [4]

BB AS

k llgxl ay gl au,

2 | 2.000000000e+00 1.000000000e+00 | 2.000000000e+00 1.000000000e+00
3 | 2.104756518e+01  1.212121212e-01 | 2.104756518e+01  5.515438247¢-02
4 | 2.713844044e+01  5.515438247e-02 | 4.573627514e+00 5.515438247e-02
5 | 2.994865127e+00  5.015928785e-02 | 1.985820021e+00 1.132205353e-01
6 7.415329742¢-01 5.473128024e-02 7.052415295e-01 1.132205353e-01
7 5.735245384¢-01 2.149779845e-01 5.740712412e-01 1.296041404e-01
8 3.795997585e-01 3.439341351e-01 6.223633511e-01 1.296041404¢e-01
9 5.504678760e-01 2.109907996e-01 8.585273865e-01 5.449617282e-02
10 | 6.061557888e-01 1.024061516e-01 2.430102830e-01 5.449617282e-02
11 | 7.204225765e-02 9.992090956e-02 2.064644743e-01 4.954058547¢-01
12 | 6.534149118e-02 7.792830276e-02 5.901365954e-02 4.954058547¢-01
13 | 4.280539524e-02 6.786426829¢-02 5.251166367e-01 5.000730516e-02
14 | 2.801762984¢e-02 8.882203072e-02 4.487869368e-03 5.000730516e-02
15 | 2.284800386e-02 2.101416069e-01 2.243309753e-03 1.000031655e-01
16 | 2.991780903e-02 2.221805587e-01 1.128902045e-05 1.000031655e-01
17 | 9.417777814e-02 5.895504423e-02 9.030968717e-06 4.999930678e-01
18 | 1.786895454¢e-02 5.023775240e-02 1.008796076e-07 4.999930678e-01
19 | 5.419356357e-03 5.569706724e-02 9.079017800e-07 5.000000004e-02
20 | 4.815155825e-03 4.990214595e-01 1.798117219¢e-11 5.000000004e-02
21 | 8.239370279e-05 4.999838767e-01

22 | 7.366507283e-04 5.059567565e-02

23 | 8.776530117e-06 5.000000143e-02

24 | 4.355755920e-08 5.000246318e-02

25 | 2.177848363e-08 1.000025480e-01

26 | 1.769866292e-10 1.000082561e-01

condition is ||gk/l2 < 107%. The numerical results are listed in Table 2.1. From Table 2.1,
we see that the AS and BB methods require 20 and 26 iterations, respectively. Meanwhile,
the AS and BB methods need compute 9 and 24 stepsizes, respectively (the stepsize as =1
is not considered here). This small example shows that the AS method may be a promising
alternative to the BB method.

3. Convergence analyses: two-dimensional case

In the analyses of any gradient method (1.4) for SPD linear systems, by the invariance
property under any orthogonal transformation we can assume without loss of generality that
the matrix A is of the form

A:diag()\l,)\g,...,)\n), (31)

where 0 < A1 < Ay < ... < \,. Further, we assume that \; = 1, otherwise we consider the
matrix )\%A.
In this section, we analyze the two-dimensional case. The purposes of considering this

special case are to see whether the AS method can avoid producing zigzags and to compare



different gradient methods. Up to now, there is no other way in theory to compare different
gradient methods.

Let A = Ay and g,(;) be i-th component of gi. The following theorem shows that for
almost all the starting points, the AS method is two-step @Q-superlinearly convergent for
two-dimensional SPD linear systems. Hence like BB method, the AS method can avoid
producing zigzags.

Theorem 3.1 Consider the linear system (1.1), where A is a two-dimensional SPD matriz.
Consider the AS method (1.4)-(2.1). If the initial gradient g1 can be expressed as

g1 =t(1,+1)7T, (3.2)

we have that A 1
= Z k-t 1, £(-1 k=1 ork>1 3.3

which means that ||gk|| converges to zero linearly. Otherwise, if (3.2) does not hold for any
t, there exist positive constants ¢y and co such that

lgull < er(A = 1)fa—e2V3, (3.4)

which means that the convergence rate of ||gk| is R-superlinear. Further, for any ¢ > 0,
llgxll is two-step (3 — €)-Q-superlinearly convergent to zero, namely,

lgrs2ll = OCllgrl*~). (3.5)

Proof. Tf (3.2) is true for some ¢, we have from (2.1) that

r 2
m=£ﬁ;=ﬂj- (3.6)
It follows from (1.4) and the definition of gy that
ger1 = (I — axA)gy. (3.7)
Hence,
g2 = (1~ Ay =1 (3 )(1, 71" (38)

Further, by the induction principle, we can prove that (3.3) holds for all £ > 1.
Now we assume that (3.2) is false for any ¢. If at least one component of gy is zero, the
AS method will give the solution in at most two iterations. Thus we can assume that

g1 =&\, (=)™, where m; #0 and I; € {0,1}. (3.9)
Generally, suppose that
gr = (N (=) T for k> 1. (3.10)
It follows from (1.4), (2.1), (1.5) and (1.7) that

g2k = (I — azk_1A)gor—1,  gort1 = (I — aop—14)*gon_1. (3.11)



By (3.11), (3.10) and direct calculations, we can obtain

(A—1)A%"2k-1

Mok = —Mak—1, Top = Iok—1 + 1, & = Sok—1 - mmgmigy
e (3.12)
Mags1 = —3Mak—1, Jopr1 = lop—1,  Sopp1 = ka—lm-
Thus
mak+1 = (—3)km1. (313)

Assume without loss of generality that mq > 0, otherwise we can consider x3 as the new
starting point. If mo;_1 > 0, we have by A = Ay > 1 that
/\4m2i—1 1

1> > . .14
- (/\277121'71 _|_/\)2 = ()\+ 1)2 (3 )

It follows by (3.12), the first inequality in (3.14), A > 1, and (3.13) that

2k—1 k—1

)\47?’12,;_1 A4m41 1
= _1)2 < )ik—2
|€ak—1] [ST Z1;[1 (A—1) Oema a2 | = &2 (A — }:[ N )2
< |€1|( 4k 2 H )\4m41 1 |§1 4k 2 H A~ 4m, 3% 1
=1
= [&a|(A = 1)ty L (3.15)

Relation (3.10) gives

llgkll = 1€k[V'1 + A2me (3.16)
In addition, it is obvious that A=! < aj < 1, which with (3.7) implies that

lgr+1ll < (A= D)l gxll- (3.17)

Thus for any k, denoting k = 4k — 1 + j where k and j € [0, 3] are some integers, we can
obtain by (3.16), myz_; <0, (3.17) and (3.15) that

ol < = Dlgaeal < VE - 1lege]
\/_|£1|()\ )J+4k 2L Sma[32F 2 1]
VEGI(A — 1A (3.15)

IN

IN

Therefore (3.4) holds with some ¢; > 0 and ¢z > 0.
By the first equality in (3.15), (3.12), the second inequality in (3.14), and (3.13), we can
also show that

1 2k—2
> 4k—2 \ ~1.5my[32F 72 —1] 1
|Eak—1] |§1|()\+1) (3.19)

It follows from (3.10), (3.15), (3.19) and (3.12) that

m A )
lgar-nll € lga|A7Pmaer 419 | (S +1)4k 2 V2 (A — 1) (3.20)

Using (3.16) and (3.12), we can obtain without difficulties that

_||94k 1||( ) ATt < lgapioa || < [lgar—1[[(A = 1)* AT mar— (3.21)

+1



fori=1,...,5, where
I'=Ty=1, TI's=Iy=4, TIs5=13. (3.22)

Since by (3.13), max—1 tends to —oo exponentially, we know by (3.20), (3.21) and (3.22)
that the following relation holds for any ¢ > 0:

I9ak+ir1ll = O(lganri-1 ™), i=1,...,4. (3.23)

Therefore (3.5) holds. This completes our proof. O

From the above theorem, we know that the convergence properties of the AS method
are superior to those of the BB method in the two-dimensional case: (1) For almost all the
starting points, the AS method is shown to be two-step (3 — €)-Q-superlinearly convergent,
whereas only R-superlinear convergence is achieved in [4] for the BB method; (2) As indi-
cated by (3.4), the AS method is R-superlinearly convergent with the R-order of v/3. This
order is greater than the order v/2 of the BB method.

By the same technique, we can establish the R-superlinear convergence result for the
method (2.2), the CSDS method and the CBBS method for two-dimensional SPD linear
systems, and obtain their R-orders are as follow. For m > 2, the R-orders of the method
(2.2) and the CSDS method are

/3 and  V2m -1,

respectively. The R-order of the CBBS method is v/2 if m = 2, and

"\L/m—l.5+\/m2—3m+0.25 if m > 3.

For clarity, we list the approximate R-orders of all these methods with m € [1, 8] into Table
3.1. Note that if m = 1, both the method (2.2) and the CBBS method reduce to the BB
method whereas the CSDS method gives rise to the SD method. Since the SD method is
only @-linearly convergent even for the two-dimensional case, its R-order is only 1. From
Table 3.1, we can see that among all these methods, the AS method (namely, (2.2) or
(2.3) with m = 2) has the largest R-order, whereas the SD method has the smallest order.
Meanwhile, we see that the R-orders of the method (2.2) with m € [2, 3], the CSDS method
with m € [2,7] and the CBBS method with m € [4, 6] are greater than the order of the BB
method.

Table 3.1 Approximate R-orders for the two-dimensional case

m 1 2 3 4 ) 6 7 8
(2.2) | 1.4142 | 1.7321 | 1.4422 | 1.3161 | 1.2457 | 1.2009 | 1.1699 | 1.1472
(2.3) | 1.0000 | 1.7321 | 1.7100 | 1.6266 | 1.5518 | 1.4913 | 1.4426 | 1.4029
(2.4) | 1.4142 | 1.1892 | 1.2599 | 1.4614 | 1.4630 | 1.4361 | 1.4051 | 1.3759

To demonstrate the above results, we tested an example for all the methods. Consider
the minimization of ¢(z) = 127 Az — Tz, where

A = diag(20, 10), b= es. (3.24)

For the purpose of comparison, we assume for all the methods that the starting points are
x1 = 2 = 0 and ay = 1 although for some methods only one starting point is required and
their first stepsizes are well defined. The stopping condition is ||gx|| < 10716. See Table



Table 3.2 Numerical comparisons for a 2-dimensional example

m | 1]2[3[4]5]6]7]38
(22) [ 16 | 12 | 14 [ 16 | 17 | 19 | 20 | 22
(23) [ 3312 |13 ] 13| 15 | 16 | 18 | 20
(24) [16 |23 [ 17 | 17 | 20 | 22 | 25 | 28

3.2 for the numbers of the iterations required by all the methods. From Table 3.2, we can
see that (1) among all the methods, the AS method ((2.2) or (2.3) with m = 2) requires
the least iterations; (2) the method (2.2), the CSDS method, and the CBBS method with
some values of m other than 2 perform better than or similarly to the BB method; and
(3) the SD method ((2.3) with m = 1) is the slowest method. However, the SD method
will significantly be improved if a BB step is done even after every 8 SD steps. Table 3.2
basically demonstrated our theoretical analyses.

4. Convergence analyses: any-dimensional case

In this section, we establish the R-linear convergence of the AS method applied to any-
dimensional SPD linear systems. To make our result more general, however, we define the

following property for the stepsize ay, where gg) is the i-th component of g and

l
G(k,1) =Y (g2 (4.1)

i=1

Property (A). Suppose that the matriz A has the form of (8.1), with1 =X 1 < --- < X,. We
say that the stepsize oy has Property (A) if there exist an integer m and positive constants
Mi( > A1) and My such that (i) A\ < 04,:1 < M;; (i) for any integer | € [1,n — 1] and real
number € > 0, if G(k — j,1) < e and (g,gl:rjl))g > Mae hold for j € [0, min{k, m} — 1], then
ot > ZNi41-

The item (i) means that the inverse stepsize is bounded below and above. By this,
we will be able to show that the first eigencomponent of g tends to zero Q-linearly. The
item (ii) requires that for any integer [, the inverse stepsize is so large that the (I + 1)-th
eigencomponent of g, will decrease if the first [ eigencomponents of g; are much smaller.
Combining (i) and (ii), we can extend the result in [7] and establish the following R-linear

convergence theorem. As will be seen later, there are many formulae of stepsize such that
Property (A) holds.

Theorem 4.1 Consider the linear system (1.1), where A has the form (3.1) with 1 = \; <
<o+ < \p. Consider the gradient method (1.4), where the stepsize ay has Property (A). Then
either g, = 0 for some finite k, or the sequence {||gx||} converges to zero R-linearly.

Proof. 1t follows from (1.4) and (3.1) that
9221 =(1- ozk)u')g;(f)- (4.2)

Denote §; = max{(1 — I\A/I—ll)Q, 1} € (0,1) and & = max{(1 — 1;4—11)2,2}. Then by (4.2) and
the definition of G(k, 1), it is easy to get that for all k > 1,

Gk +1,1) < 6,G(k, 1), (4.3)



(g,@rl)2 < 52(g,(f))2, fori=1,2,...,n, (4.4)

lgr+111? < d2llgkll. (4.5)

The rest of our proof is divided into the following three parts.
(I) We prove that, for any integer 1 <1 < n and k > 1, if there exist some ¢, € (0, M, *)
and integer m; such that

G(k+34,.0) < ellgel®, forall j >my, (4.6)
then we must have
(98 )? < Maell|gel®,  for some jo € [ma,my +m + Ay +1], (4.7)
where (rmpcbm)
log(Mae6, ™™
A= 2 | 4,
! log 01 (4.8)
In fact, suppose that
(glgl;rjl))Q > Maer||gr||®,  for j € [my,my+m+ A (4.9)
Then we have from (4.6), (4.9) and the (ii) of Property (A) that
_ 2 .
akij > §Al+1, for j € [my +m,m; +m + Ay]. (4.10)
By (4.2), (4.10) and the (i) of Property (A), we can get that
! 1 )
G2 < GG, for g € iy + mymy + m+ A (411)

Thus we obtain from (4.11), (4.4) and the definition of A; that

I+1 A1, (141 Aj+1 I+1
(gl(c+7n)l+m+Al+1)2 <07 o (gl(c—i-m.)l—i-m.)z S h o 572’ﬂz+m(gl(€ ))2) < M2€ngkH2-

So the relation (4.7) must hold.
(II) Denoting my41 = my +m + A;+ 1 and €41 = (1 + M25")e;, we show that if (4.6)
holds, we can further have

Gk + 4,1 +1) < ergallgrl?,  for all j > myi. (4.12)

In fact, by (I), we know that there are infinitely many integers j; and jo with jo > j1 > jo
such that

l . . .
(gi,(HJ_rJ-l))2 < Moe||g|l?, for j = ji1,jo (4.13)
and .
()2 > Maerlgel®, for j € [y + 1,2 — 11. (4.14)

Then we have by (4.4) and (4.13) that
(92 < 85 (gl )2 < Mo ellgell?, for j € [ + 1,51 +m). (4.15)

If jo > j1 + m, then we have by (4.6), (4.14), Property (A) and (4.2) that

_ 2 I+1 41 . .
apty = ghn and (g))7 < 8u(gl )% for j € [r +m. g2 — 1) (4.16)
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It follows from (4.16), (4.13) and (4.5) that
()2 < (o) )P < MaoPelgel®, for j € [ +m+1,ja). (4.17)

Due to the arbitrariness of j; and ja, (4.15) and (4.17), we know that the following relation
holds for any j > jo:

(g0 )? < Maog e ge|* (4.18)
Since jo < myt1, we then know by (4.6), (4.18) and the definition of G(k,l) that (4.12)

holds.
(III) Denoting for any 1 <1 < n,

1
a=0+ Myoy)t=m), (4.19)

loge1
]Og o1

prove by induction that for all 1 <[ <n,

and letting m; = { —‘,ml+1 =m+m+LA+1forl=1,...,n—1and M = m,, we

G(k+4,1) < ellgrl|?, for all j > my. (4.20)

In fact, by (4.3) and the definition of mq, relation (4.20) clearly holds for I = 1. Suppose
that (4.20) is true for some 1 <1 < n — 1. Then by the statement in (II), we know that
(4.20) holds for [ 4+ 1. Thus by induction, we know that (4.20) holds for all 1 <! <n. Note
that €, = 1 and G(k,n) = ||gx||*>. It follows from (4.20) that

1
lgrarll* < < llgll*. (4.21)

Since M = m,, depends only on A;, M; and M,, we can then obtain by (4.21) and (4.5)

that the sequence {||gx||} converges to zero and the convergence rate is R-linear. O
Assume that m is some positive integer and that {; > 0, j = 1,...,m are a set of real

numbers. Also assume that the stepsize aj can be expressed as the following form

. T A" g (122)
Ty APV
where
v(k) € {k,k — 1, max{k —m+1,1}} (4.23)
and
p(k) € {Cru- v\ ). (4.24)

The global convergence of general gradient method (1.4) and (4.22) is shown in [12]. For
such method, we can prove that Property (A) holds (see the following proof). Hence by
Theorem 4.1, the method is R-linearly convergent.

Corollary 4.2 Consider the linear system (1.1), where A has the form (3.1) with 1 = X\; <
- < A\p. Consider the gradient method (1.4) and (4.22). Then we have either g, = 0 for
some finite k, or the sequence {|gi||} converges to zero R-linearly.
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Proof. Noting that a; ' is the Rayleigh quotient of A at the vector v/ Ar(¥) Ju(k), the (i) of
Property (A) holds with M; = A,,. Denote

Cmaz = max ¢; and My = 2\5me". (4.25)

1€[1,m]

Then for any integer I € [1,n — 1] and real number € > 0, if both G(k — j,1) < € and
(g,(cl+j1)) > Myse hold for j € [0, min{k, m} — 1], we have by (4.22), ¢; > 0, and the choice of
M2 that
k)+1, (i
1 Z’L I+1 )\P( ) ( (() ))2
1 k) i
Yo Mg u(k) + i A g l(/()k))Q
k i
)\l+1 Ez I+1 )‘p( )( (() ))2
l (v(k), )+Z¢:l+1 i (gy(k))

M26 2
———— N1 = A1 4.26
)\?maze + M2€ 1 3 i1 ( )

Y

So, the second part of Property (A) holds. By Theorem 4.1, this corollary is true. O

It is easy to see that the AS method, the method (2.2), the CSDS method and the
CBBS method can be written into the form (4.22). Consequently, by Corollary 4.2, all these
methods are R-linearly convergent for SPD linear systems. In addition to (4.22), there are
also many other choices of o having Property (A). For example,

1

LA ZCIRY

U=\ g7 AR ’ (4.27)
(k) (k)

where p is any positive number. One application of (4.27) with p(k) = 0 and p = 2 can be
seen in [8]. More exactly, noting that s, = —ax_19x—1 and yr = Asy, the formula (4.27)
with p(k) = 0 and p = 2 reduces to

_ ||8u(k)+1||

— (4.28)
Hyu(k)+1 H

which can be regarded as some approximation of the inverse Lipschitz constant. In addition,
interestingly enough, one may consider the following convex combination of the SD stepsize
and the AS stepsize:

ar = wpad? 4+ (1 —wi)a®,  where wy, € [0,1]. (4.29)

The above includes the SD stepsize and the AS stepsize as its special cases. It is not difficult
to see that the formula (4.29) has Property (A). Hence we know by Theorem 4.1 that the
class of gradient methods (4.29) is R-linearly convergent.

An eight-dimensional example is used for demonstrating the convergence result. Consider
the function ¢(z) = 127 Az — bTx, where

A = diag(2000, 1000, 200, 100,20, 10,2,1), b = es. (4.30)

For the purpose of comparison, we assume for all the methods that the starting points are
71 = x5 = 0 and a3 = 1 as before. The stopping condition is | gx|| < 107°. For this example,
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Figure 4.1 {||gx||} generated by BB Figure 4.2 {||gx||} generated by AS

the BB and AS methods require 307 and 180 iterations, respectively. Figures 4.1 and 4.2
plot the sequences {||gx||} generated by the BB and AS methods, respectively. The Figures
demonstrate the nonmonotone behavior of the BB-like methods and confirm the R-linear
convergence result to some extent.

We also tested the methods (2.2), (2.3), (2.4) with different values of m. See Table 4.1
for the numbers of the iterations required by all the methods. Note again that the SD and
BB methods are corresponding to the CSDS and CBBS methods with m = 1, respectively.
From Table 4.1, we can see that the SD method is still the slowest, but will significantly
be accelerated if a BB step is done even after every 100 SD steps. The CBBS method with
m = 2 is also very slow. This can partly be explained by Table 3.1, from which we can
see that the method has the smallest R-order for the two-dimensional case except the SD
method.

Table 3.3 Numerical comparisons for an 8 —dimensional example

m 1 2 3 4 5 6 7 8 51 | 101
(2.2) | 307 180 | 344 | 372 | 431 | 444 | 524 | 352 | 313 | 414
(23) ] >107 ] 180 [ 142 | 72 | 84 | 88 | 88 | 76 | 259 | 408
(24) | 307 | 4881 133 | 96 | 79 | 94 | 95 | 92 | 310 | 307

From Table 4.1, we also see that the CSDS and CBBS methods with m € [4, 8] outperform
the method (2.2). The AS method performs better than the BB method, but the CSDS
and CBBS methods with m € [4, 8] only require not more than 100 iterations. A possible
explanation is given as follows. First we note that, like in the conjugate gradient field,
there is also a quadratic termination result in gradient methods (this result can be dated
back to at least Lai [16]). More exactly, if {a7',..., a5} = {\1,...,\,} which is the set
of all the eigenvalues of A, the gradient method (1.4) gives the exact solution in at most
n + 1 iterations. As the author observed, the stepsizes generated by the cyclic methods are
usually closer to the inverse eigenvalues of A than those by the BB method. This can partly
be seen from Table 3.1 since the AS method is corresponding to the CSDS method with
m = 2. Theoretically, we can show that, under suitable assumptions, the Rayleigh quotient
k1 AGk+1

o ort generated by the gradient method with constant stepsizes
k41

Tht] = Tht1—1 — OGk+1—1, for [ = 1, 27 e (4.31)
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tends to some eigenvalue of the matrix A if [ — co. Thus the cyclic methods are expected
to perform better than the BB method. In a forthcoming paper, we will propose an adap-
tive strategy of choosing the scalar m so that the stepsizes {ay} can capture the inverse
eigenvalues of A better.

5. Algorithms for unconstrained optimization

In this section, we discuss unconstrained optimization algorithms related to the AS
method. Two gradient algorithms will be proposed that are mainly based on the SD and
GBB algorithms, respectively.

For convenience in statements, we first describe the SD and GBB algorithms for uncon-
strained optimization. For the SD algorithm, the following strong Wolfe line search is used
while computing the stepsize ay:

flar) = floe —argr) > doullgnll®, (5.1)
l9(xk — angi) gkl < ollgrl?,

where the parameters § and o are chosen to be 10~ and 0.1, respectively. The unit initial
stepsize is also used. The GBB algorithm is the global BB algorithm provided by Raydan
[21], in which the nonmonotone line search [14] is used:

- < P 2 )
[z — argr) < OSjS%?;l}fk,M){f(xk i)} = daillgrll (5.3)

where M = 10 and § = 10~%. For the GBB algorithm, the BB stepsize (1.4) is used as
the initial stepsize, whereas some guaranteeing procedure is used to treat the case that
st yk—1 <0. See Algorithm 5.2 for more details in the calculation of the initial stepsize.

Our first algorithm related to the AS method is mainly based on the SD algorithm. Its
basic idea is to try to carry out a strong Wolfe line search and a nonmonotone line search
alternately. More exactly, if a nonmonotone step is used at the (k — 1)-th iteration, then
at the k-th iteration a strong Wolfe line search with the unit initial stepsize will be done.
On the other hand, if the stepsize aj_; is obtained by a strong Wolfe line search, we test
whether a1 satisfies the nonmonotone line search condition (5.3). If yes, set ar = ag_1;
otherwise, carry out a strong Wolfe line search with its initial stepsize being aj—;. A
detailed description of this algorithm will be given in the following, where &j stands for
the initial stepsize used at the k-th iteration. As suggested by one referee, another choice
for the initial stepsize in the strong Wolfe line search is the BB stepsize. However, we
found that the numerical results are similar to and sometimes much worse than those by the
unit initial stepsize. In addition, the calculation of the BB stepsize needs one vector-vector
multiplication. Therefore the unit initial stepsize is used in our tests.

Algorithm 5.1

Step 0 Given 1 € R*, § =107%, 0 = 0.1, ¢ > 0 and any M > 2.
Letk:=1 and j :=1.
Step 1 If ||gklloc < €, stop.

Step 2 If j =1, ax = 1. Carry out a strong Wolfe line search, obtaining ay. Go
to step 4.
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Step 8 If j = —1 and (5.3) holds for ai_1, set ax = ai—_1 and go to Step 4.
Otherwise, let j := 1, a = ag—1 and carry out a strong Wolfe line
search.

Step 4 xp41 = xp — argr, k:=k+1, j:=—j, go to step 1.

The second algorithm related to the AS method is mainly based on the GBB algorithm.
In the GBB algorithm, a nonmonotone line search is always done except at the first iteration.
However, it is possible that some nonmonotone line searches in the algorithm are relatively
exact. Assuming that the k-th line search is relatively exact, aj can be regarded as an SD
stepsize at the k-th iteration and hence as a BB stepsize at the (k + 1)-th iteration. Thus
ay can be used as the initial stepsize of the next nonmonotone line search (we observed that
this initial stepsize is usually accepted in our numerical experiments) and the calculation of
a new BB stepsize is not necessary. The only problem with this idea of incorporating the AS
method and the GBB algorithm is then how to evaluate if a line search is relatively exact.
Ihy 1k
9t gr
requires the computation of the quantity ngH gk, which is not ready if @41 is not calculated.
Instead we use the testing condition

fzr) = f(zry1)
0.5a,9% gk

We may use the quantity since the previous search direction is —gg. However, this

where 71 € (0,1) is given. If (5.4) holds, it is reasonable to believe that the function is close
to be quadratic along the line {z) — agr : a € R'}. Further, since the new trial stepsize
is usually obtained via a quadratic interpolation, we may regard that the line search is
relatively exact. The algorithm that uses the testing condition (5.4) is stated as follows:

Algorithm 5.2

Step 0 Given x1 € R™, § = 1074, ttmin = 107%°, apae = 1030, € > 0, M = 10;
Set &1 = max{min, min{1/||g1|lccs ¥maz 1}, k:= 1.

Step 1 If ||lgrlloo < €, stop.

Step 2 Carry out a nonmonotone line search, obtaining oy
T4l = Tk — OkGk-

Step 3 If (5.4) holds, apy1 = oy and go to Step 4. If styr <0, Qpt1 = Qmaa;

T
. _ . S}, Sk
otherwise, ap+1 = max{@min, min{ S;’%yk s Qg )}
k

Step 4 Set k:=k+1 and go to Step 1.

Under the assumption that f is twice continuously differentiable and has bounded level
sets, we can prove that both Algorithm 5.1 and Algorithm 5.2 with ¢ = 0 converge in the
sense that

Jim g ]| =0, (5.5)

which indicates that every limit point of {z} is a stationary point of f. To do so, it suffices
to notice that both the initial trial stepsize aj and the real stepsize «y at every iteration
are no less than some positive constant. This can easily be achieved by using the induction
principle and the fact that if a; > 79, then we also have aj > 13 no matter whether «y is
obtained by the strong Wolfe line search (5.1)-(5.2) or by the nonmonotone line search (5.3).
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We have tested the SD algorithm, the GBB algorithm, Algorithm 5.1 and Algorithm
5.2 on an SGI Indigo workstation with the machine error of 2 x 10716, All algorithms are
written with the FORTRAN language. The code of the GBB algorithm, that was kindly
provided to us by Professor Marcos Raydan, is based on those for the SPG2 algorithm in [3].
Our test problems were taken from [18], except “Strictly Convex 1”7 and ” Strictly Convex 27
that are provided in [21]. The test problems from [18] are numbered in the following way:
“MGH?” means the i-th problem in [18]. The total number of the test problems is 26.

For all the algorithms, the stopping condition is

lgklloc < 107°.

The maximal numbers of function evaluations is set to 9999, and the maximal times of
calculating «j, in each line search is set to 20. We mark it with “Failed” if either of
these limits is exceeded. The parameter M in Algorithm 5.1 can be set to any integer
not less than 2, because we found that the choice of M does not influence the numerical
performance provided that M > 2. For Algorithm 5.2, the parameter ¢; in (5.4) is set to
be 0.001. The SD algorithm performs very poorly and can solve only 14 of the problems.
Hence its numerical results are not listed. The results of the other algorithms are reported
in Tables 5.1, where n denotes the dimension of the problem, and I, F, G are number of
iterations, number of function evaluations and number of gradient evaluations, respectively.
For the GBB algorithm and Algorithm 5.2, the number of gradient evaluations is equal to
that of iterations, since no gradient evaluation is required in the line search procedure. If
a problem is successfully solved by the algorithm, then the CPU time (in second) is given;
otherwise, we do not give the CPU time and use the symbol ‘x’. The symbol ‘-> means that
the performance of Algorithm 5.2 is the same as that of the GBB algorithm. For Algorithm
5.2, the numbers of iterations at which the condition (5.4) holds are also listed in the brackets
of Table 5.2.

Algorithm 5.1 solves almost all of the test problems and is much faster than the SD algo-
rithm. Comparing Algorithm 5.1 with the GBB algorithm, we see that the GBB algorithm is
robuster and solves all the problems. However, for the three problems Algorithm 5.1 failed,
the GBB algorithm also takes a large number of iterations. Among the rest 23 test prob-
lems, Algorithm 5.1 and the GBB algorithm win 11 and 12 respectively from the CPU time.
Further, for the 11 problems with n > 1000, Algorithm 5.1 and the GBB algorithm win
7 and 4, respectively. For the very difficult problem “Strictly Convex 2” with n = 10000,
Algorithm 5.1 only requires 61.20 seconds, that are significantly less than the CPU time
109.7 seconds required by the GBB algorithm. The comparison of Algorithm 5.1 and the
GBB algorithm might indicate that the gradient method for unconstrained optimization is
far from maturity.

Comparing the GBB algorithm and Algorithm 5.2, we found that the strategy of testing
(5.4) influenced only eight of the 26 test problems. For the eight problems, Algorithm 5.2 is
uniformly much better than the GBB algorithm. This further shows that the introduction
of the AS method is worthwhile although Algorithm 5.2 is mainly based on the GBB algo-
rithm, and that it still remains to study how to design more efficient gradient methods for
unconstrained optimization.

6. Conclusions and discussion

In this paper, motivated by how to avoid producing zigzags, we have proposed the alter-
nate step (AS) gradient method. The AS method uses an SD step and a BB step alternately,
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Table 5.1 Numerical Comparisons of gradient algorithms

Method Algorithm 5.1 GBB Algorithm 5.2
Problem n I/F/G Time I/F Time I/F Time
MGHI11 3 Failed * 949/2507 | 2.960 778/2051(9) 2.461
MGH14 4 282/646/355 8.164e-03 163/ 329 3.345e-3 - -
MGHI18 6 | 1061/2068/1512 0.3590 1091/2042 0.3010 744/1456(21) 0.2105
MGII22 16 | 904/211/130 | 5.60000-3 | 466/ 776 | 2.364e-2 | 233/ 393(9) | 1.260e-2
MGI24 20 | 474/1184/762 | 0.1149 | 708/1939 | 0.1594 | 377/1046(6) | 8.512¢-2

40 223/523/337 9.743e-2 258/ 527 9.600e-2 - -
MGH28 20 Failed * 907/ 923 0.3095 - -
50 Failed * 6967/7018 12.17 - -
MGH30 50 35/75/42 6.457e-3 38/ 39 6.226e-3 - -
500 41/89/50 7.355e-2 36/ 37 6.107e-2 - -
MGHS31 50 34/84/53 2.626e-2 30/ 31 1.437e-2 - -
500 26/59/33 0.1791 29/ 30 0.1451 - -
MGII22 100 | 94/211/130 9.482¢-2 | 272/ 468 | 7.663c-02 | 219/ 362(4) | 6.088¢-2
500 | 94/211/130 0.1331 | 425/755 | 0.6456 221/ 334(6) | 0.3306
MGH25 100 11/50/22 5.770e-3 1/ 2 8.010e-4 - -
1000 17/98/39 0.1090 1/ 2 5.318e-3 - -
MGH21 1000 101/295/212 0.4182 53/ 279 0.2386 - -
10000 69/239/160 3.406 53/ 279 2.532 - -
MGH23 1000 49/134/86 0.1469 56/ 251 0.2805 - -
10000 49/134/86 1.559 64/ 163 2.612 - -
MGH26 1000 80/148/122 0.9051 89/ 205 1.161 - -
10000 38/66/57 4.235 83/ 107 7.408 - -
Strictly | 1000 1/6/6 1.051c-2 5/ 6 251702 - N
Convex 1 | 10000 4/6/6 0.1967 5/ 6 0.2561 - -
Strictly | 1000 | 459/1272/976 3574 533/ 756 2.702 151/ 620(4) 1.813
Convex 2 | 10000 | 961/2274/1356 61.20 2091/3205 109.7 1516/2278(41) 90.97

and is superior to the BB method for symmetric and positive definite linear systems. R-
linear convergence is established for a collection of gradient methods with Property (A).
Gradient methods related to the AS method and an extension of the AS method to uncon-
strained optimization have carefully been discussed in this paper. A more efficient gradient
algorithm for unconstrained optimization is also provided by exploring the idea of the AS
method in the GBB algorithm of Raydan [21].

Up to now, it seems difficult to compare different gradient methods in the higher-
dimensional case even when n = 3 and hence the analyses of two-dimensional SPD linear
systems are important. We have proved that if n = 2, the AS method is two-step (3 — ¢)-
@-superlinearly convergent for almost all the starting points. This result is superior to that
for the BB method, for which only the R-linear convergence result is established. Our two-
dimensional analyses have also shown that some other gradient methods such as the method
(2.2), the CSDS method and the CBBS method with suitable values of m are faster than
the BB method.

In the any-dimensional case, we have drawn a property, namely, Property (A), of the
stepsize with which a gradient method can be proved R-linearly convergent. As a result, a
large collection of gradient methods including the AS method, the CSDS method, and the
CBBS method are proved to be R-linearly convergent. Our numerical experiments show that
the cyclic methods, either CSDS or CBBS, are very efficient. Although we still do not know
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yet how to understand why these R-linear gradient methods are better than the SD method
that is @-linearly convergent, we have observed that the cyclic methods generate stepsizes
that are much closer to the inverse eigenvalues of the coefficient matrix A. However, further
research is required on how to choose the stepsizes in gradient methods efficiently under the
supervision of the quadratic termination property of the gradient method.

This paper has also provided some interesting insights into the use of nonmonotone
steps in the gradient methods. To minimize a smooth function, it is natural to require the
function value to be monotonically decreasing at each iteration. The SD method is just
this type of method, but it is very slow. As seen from Tables 3.2 and 4.1, however, the
SD method can significantly be accelerated if a BB step, that is normally a nonmonotone
step, is done even after many SD steps. Another interesting point is about the choice of M
in the nonmonotone line search. We know by [21] that the GBB algorithm works well for
unconstrained optimization, but its numerical performance sometimes is very sensitive to the
choice of the parameter M in (5.3). On the other hand, our numerical experiments showed
that Algorithm 5.1 is independent of the value of M provided that M > 2. Comparing the
GBB algorithm and Algorithm 5.1, the former is robuster and the latter provides better
performance for large-scale test problems. Therefore it still remains to study how to design
robuster and more efficient gradient algorithms for unconstrained optimization.
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