Appl Math Optim 43:87-101 (2001)

DOI: 10.1007 /5002450010019 All]lliﬂl
Mathemalics
A SOpUmization

© 2001 Springer-Verlag New York Inc.

New Conjugacy Conditions and Related Nonlinear Conjugate
Gradient Methods*

Y.-H. Dai! and L.-Z. Liao?

1 State Key Laboratory of Scientific and Engineering Computing,

Institute of Computational Mathematics and Scientific/Engineering Computing,
Academy of Mathematics and Systems Sciences, Chinese Academy of Sciences,
Box 2719, Beijing 100080, The People’s Republic of China

dyh@Isec.cc.ac.cn

2 Department of Mathematics, Hong Kong Baptist University,
Kowloon Tong, Kowloon, Hong Kong
liliao@hkbu.edu.hk

Abstract. Conjugate gradient methods are a class of important methods for uncon-
strained optimization, especially when the dimension is large. This paper proposes a
new conjugacy condition, which considers an inexact line search scheme but reduces
to the old one if the line search is exact. Based on the new conjugacy condition, two
nonlinear conjugate gradient methods are constructed. Convergence analysis for the
two methods is provided. Our numerical results show that one of the methods is
very efficient for the given test problems.
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1. Introduction

Our problem is to minimize a function of n variables,

min f (x), x e R", (1.1)

* This research was supported in part by the Chinese NSF Grant 19801033 and Grant FRG/97-98/11-42
of Hong Kong Baptist University.
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where f is smooth and its gradient V f is available. The conjugate gradient method is
very useful for solving (1.1) especially when n is large, and has the following form:

Xkp1 = Xk + o, 1.2)
_ 7% for k=1,
“” {—Qk + Brk—1, for k> 2, (1.3)

where ax > 0 is a step-length, B is a scalar, and gk denotes V f (xk). In the case when
f is a convex quadratic function,

f(x) =g "x+ $x"Hx, (1.4)
and when oy is the one-dimensional minimizer along d, i.e.,

o = argmin (i + ad), (1.5)
the conjugate gradient method is such that the conjugacy condition holds, namely,

d"Hd, =0, Vi #£ . (1.6)
Denote yx_; to be the gradient change,

Yk-1 = Ok — Ok-1- (1.7)

For general nonlinear functions, we know by the mean value theorem that there exists
somet € (0, 1) such that

A Yeer = o V2 (X1 + tak_10k-1)0k_1, (1.8)

therefore it is reasonable to replace (1.6) with the following conjugacy condition:

dy Y1 = 0. (L9)
Multiplying yk_1 in (1.3) and using (1.9), we can deduce a formula for the scalar By:
O Vi1
S = =K (1.10)
g d|;r_1yk—1

This is the so-called HS formula, which was given by Hestenes and Stiefel [4]. In practical
computation, the HS method resembles the PRP method (see [8] and [9] for the PRP
method); both methods are generally believed to be two of the most efficient conjugate
gradient methods.

However, both the conjugacy conditions (1.6) and (1.9) depend on exact line searches.
In practical computation, one normally carries out inexact line searches instead of exact
line searches. In the case when gJHdk = 0, the conjugacy conditions (1.6) and (1.9)
may have some disadvantages (for instance, see [11]). Suppose we minimize the convex
quadratic function (1.4) on a subspace spanned by a set of mutually conjugate directions
{di, ..., dk}. Suppose that the line search along d; is not exact, that is, oy # o where
aj is the step-length that solves (1.5). Then no matter what line searches are used in the
subsequent iterations, it is always true that

X1 — XHTH X1 — X¥) > (o1 — of)d] Hdy, (1.11)
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where x* = —H~1g is the minimum of the objective function (1.4). Hence we see that
the error left in the current iteration cannot be eliminated in the subsequent iterations as
long as the subsequent search directions are conjugate to the current search condition.

In [7], Nazareth develops a three-term-recurrence (TTR) algorithm, in which the
search direction d is of the form

Vi Yk Vi1 Yk
Oki1 = —Yk + dk + 1. (1.12)
" dy Vi d_; Vi1
For convex quadratic functions, the search directions generated by the TTR algorithm
are mutually conjugate even when line searches are inexact or the initial direction is not
along the negative gradient. After n iterations, the algorithm implements a line search

along the vector

_ Xn: gk+1 (1.13)

Tdk

with the initial step being unity, and hence finite quadratic termination is retained. How-
ever, despite theoretical advantages on quadratics, the TTR algorithm has not been proved
to be significantly superior to the PRP method. One possible reason is that if f is very
nonlinear or the dimension n s large, then the coefficients (gk+1dk/y dy) in (1.13), which
are computed in the previous n iterations and attempt to approximate the second-order
information, may not provide accurate information.

In [11], Yuan and Stoer consider the search direction of the form

dk = Ok + VkOk-1, (1.14)

and compute the scalars ux and v by minimizing an approximate quadratic model in
the two-dimensional subspace spanned by the current gradient and the previous search
direction:

min g (d) = gi d + 3d" Hid, (1.15)
dEQk

where Q = span{gk, dk_1}. Then by approximating Hy through the memoryless BFGS
update matrix or estimating the quantity g Hyxgk suitably, they obtain satisfactory nu-
merical results.

The main object of this paper is to find some new and efficient conjugate gradient
methods with the search direction dx having the simple form (1.3). For this purpose, we
propose a new conjugacy condition, which considers an inexact line search scheme but
reduces to (1.9) if the line search is exact. Based on the new conjugacy condition, we
propose two new nonlinear conjugate gradient methods (see the next section). Conver-
gence analysis for the two methods is presented in Section 3, and numerical results are
reported in the last section.

2. New Conjugacy Condition and Its Resulting Formula for gy

Our idea originated mainly from the following observation: For many unconstrained
optimization methods, including quasi-Newton methods, the memoryless BFGS method,
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and the limited memory BFGS method, the search direction dy can be written in the form
dk = —Bkgk, (2-1)

where By is some n x n symmetric and positive definite matrix satisfying the quasi-
Newton equation:

BkYk-1 = S-1, (2.2)
where s_1 = ax_10k_1 is the step. By (2.1) and (2.2), we have that
i Y1 = —(Bed) " Vi1 = — 0 (BiYk-1) = — 0 Skt (2.3)

The above relation implies that (1.9) holds if the line search is exact since in this
case gy sc—1 = 0. However, practical numerical algorithms normally adopt inexact line
searches instead of exact line searches. For this reason, it seems more reasonable to
replace the conjugacy condition (1.9) with the condition

ol Y1 = —tglsc . (2.4)

where t > 0 is a scalar.
To ensure the search direction dy in (1.3) satisfies the conjugacy condition (2.4), we
only need to multiply (1.3) with y,_; and use (2.4), yielding

_ Oe (Yi—1 — tS-1)

2.5
Bx a7 s (2.5)
It is obvious that
Or Sk—1
B = B° —t : 2.6
k dJ_lyk_]_ ( )

from which we see that formula (2.5) with t € [0, co) really defines a class of nonlinear
conjugate gradient methods. For simplicity, we call the method defined by (1.2)—(1.3)
with i from (2.5), method (2.5). Notice that if d ;yk_1 > 0, which is required by the
(strong) Wolfe line search, we have that gxg] dk—1 < B9, di_1.

From (2.3), one reasonable value of t in (2.4) is

t=1 (2.7
In this case, it follows from (2.5) that

Ok (Yk-1 — Sk—1)
Bk = T .
dk,l)/k—l

Similarly, we call the method defined by (1.2)—(1.3) with gx from (2.8), method (2.8).
A remarkable property of formula (2.8) is that it is the solution of the following one-
parameter quadratic model on g:

min g d(B) + 3d(B)T Hkd(B), (2.9)

(2.8)



New Conjugacy Conditions 91

where

d(B) == —0k + Bk (2.10)

and the matrix Hy = B! is such that Hysc_1 = yk_1. Forany t > 0, denote dy and dy to
be the search directions given by method (2.5) and the HS method, respectively, namely,

dk = —0k + Bxbk_1 (2.11)
and
de = —k + B¢ Sdk_1. (2.12)

Assume that g d¢ < 0. Then from (2.11), (2.12), (2.6), and d_, Y1 > 0, we also have
that g, dk < 0. Thus if the direction generated by the HS method is descent, and if the line
search provides the relation d _; yk_1 > 0, then the direction given by method (2.5) must
also be a descent direction. Denote also «;f and ¢ to be the one-dimensional minimizers
of f along the directions d, and d, respectively. We have the following lemma for
quadratic functions.

Lemma2.1. Supposethat f isgivenin (1.4). Then we have that

f (X + afde) — (X + axdk)

T 2,2 T 2
(g dk—1)°t [(g B &k) o Gk — M} , (2.13)

T 2(d)  Ho_1) (0 Hdy) | \t Se_1 Ykt

Proof. By the definitions of « and a, it is easy to know that

. Ok Ok i} or di
=— and = ——=—. 2.14
T T A T T HA (2.19)
Hence we have that
f(Xq + adk) — (X + adk)
=[f(x+ogd) — )] — [f (X + axd) — f(x)]
_(gldo®  (gid0® _ I (2.15)
2d] Hdy  2d]Hde  2(d] Hdo)(d] Hdo)’ '
where
T = (d¢ Hdo) (g d)? — (d Hdi) (gy di)?. (2.16)
Define
AT AT
e OcSk-1  —Gc k1 2.17)

:dlllyk—l CdlHde g
It follows by (2.11), (2.12), (2.6), and (2.17) that
ok = dk + tAkOk_1. (2.18)
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In addition, since d yk_1 = 0, we clearly have that
d; Hdc_1 = 0. (2.19)
Substituting (2.18) and (2.17) into (2.16) and using (2.19), we obtain

Ty = t222(d)_;Hdk_1)(g] dk)® — 2tk (@] Hd) (gy di) (gy dk_1)
— t222(dy Hdk)(gy dk_1)?

(dT Hdo(gl de-1)%t2 | (2 gl dk T (9 dk—1)?
Tt =3 ) — ——F |-
dkledk 1 t dk Hdk dkledk—l

Therefore (2.13) follows from the above relation, (2.14), and (2.15). O

The above lemma indicates that if o, has been well estimated, and if

2
e = agy e + M <0 (2.20)
§< 1Yk-1
then a good choice of t is that
d
f— S 2.21)
Tk

which minimizes the value in (2.13). However, we should see that the information already
achieved along dy is not enough for us to have a good estimate on @y. In fact, how to
estimate the initial step-lengths in conjugate gradient methods still remains under study.
Thus not dealing with how to estimate & in a good manner, we only simply regard that
there exists some constant M such that

ak <M, forall k=>1. (2.22)
In this case we can choose t to be some constant such that
2
t < —. 2.23
== (2.23)
Then by this and (2.22), we have that
2
— —oax > 0. (2.24)

t
Equations (2.24), (2.13), and the condition g dx < 0 indicate that

f (X + Olf:dk) < f(X¢ + &kdk)- (225)

In numerical experiments we obtained good results by setting t = 0.1 (see Section 4).
In the next section we prove the global convergence of method (2.5) for uniformly
convex functions. For general functions, Powell [10] constructed an example showing
that the PRP method may cycle without approaching any solution point if the step-length
ay Is chosen to be the first local minimizer along dy. Since method (2.5) reduces to the
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PRP method in the case that g dk_; = 0 holds, the example also shows that method (2.5)
need not converge for general functions. Therefore, like Gilbert and Nocedal [3], who
have proved the global convergence of the PRP method with the restriction that 8¢R° > 0,
we replace (2.5) by

T T
Bo=max | w1 b FSe1 (2.26)
A1 Yk-1 A1 Yk-1

and prove that such a modification of (2.5) is globally convergent for general functions.
We call the method defined by (1.2)—(1.3) with Bx from (2.26), as method (2.26).

3. Convergence Analysis

Throughout this section we assume that
Ok # 0, forall k>1, (3.1

otherwise a stationary point is found. We also assume that there exists a constant ¢ > 0
such that

ge dk < —cllakll?, forall k> 1. (3.2)

The relation (3.2) implies that each search direction dy is a descent direction. If the
constant c is strictly greater than zero, which is needed in Theorem 3.6, then from (3.2)
we know that the so-called sufficient descent condition holds.

We make the following basic assumptions on the objective function.

Assumption 3.1.

(i) Thelevel set £ = {x | f(X) < f(x1)} is bounded, namely, there exists a
constant B > 0 such that

IX]| < B, forall xe L. (3.3)

(ii) Insomeneighborhood \V of £, f iscontinuously differentiable, and itsgradient
is Lipschitz continuous; namely, there exists a constant L > 0 such that

IVEX) = VI <Lix—x|, foral x,%xeN. (3.4)

Under the above assumptions on f, there exists a constant > 0 such that
VI <y, forall x e L. (3.5)

The step-length a in (1.2) is obtained by some line search scheme. In conjugate
gradient methods, the strong Wolfe conditions, namely,

f (X + i) — fic < Soucgy e (3.6)
190X + i) T | < —og A, (3.7)
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where 0 < § < o < 1, are often imposed on the line search (in this case we call the line
search the strong Wolfe line search).

For any conjugate gradient method with the strong Wolfe line search, we have the
following general result, which is obtained in [2].

Lemma3.2. Suppose that Assumption 3.1 holds. Consider any conjugate gradient
method in the form (1.2)—(1.3), where dy is a descent direction and « is obtained by the
strong Wolfe line search. If

1
_— = OO, 38
ghmmz (38)

we have that
Iikm inf||gk|| = 0. (3.9

For uniformly convex functions, we can prove that the norm of dyx generated by
method (2.5) is bounded above. Thus by Lemma 3.2 we immediately have the following
result.

Theorem 3.3.  Suppose that Assumption 3.1 holds. Consider method (2.5), where dy is
a descent direction and « is obtained by the strong Wolfe line search. If there exists a
constant x> 0 such that

(VEX) = VEE)NT (X — %) > nlx — X%, forall x,Xx e L, (3.10)
we have that
kIim gk = 0. (3.11)

Proof. It follows from (3.10) that f is a uniformly convex function in £ and
dy_1Yk—1 > por—1llde_q 1% (3.12)
By (1.3), (2.5), (3.4), (3.5), and (3.12), we have that

(L +Ollgkll lIsk—all
ok 1|1 dx—1|?
which implies the truth of (3.8). Therefore by Lemma 3.2 we have (3.9), which is
equivalent to (3.11) for uniformly convex functions. O

Idill < gkl + ldi—1ll < w XL+t + )y, (3.13)

For the general function, because method (2.5) is the same as the PRP method in the
case of exact line searches, it is known from the counterexample in [10] that method (2.5)
may also cycle without approaching any solution point. Nevertheless, we will show that
its modification, method (2.26), is globally convergent for general functions. The proof
of this result follows the same one as in [3] for their method with gx = max{g{<¥, 0}.
However, our result allows negative values for B¢ since, by (2.26), we only have

9|I Sk—1
d|;r_1Yk—l

B = —t (3.14)
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In addition, we should note that if the following relation holds,

O Ok—1 -
1, 3.15
lgkliz — (3:19)
then method (2.26) is restarted with the direction
Ok Sk-1
by = —Qg — t—= 1. (3.16)
Ohe_1 Yk—1

Since this direction might include some second-order information, it is reasonable to
expect that this direction would be better than the negative gradient —gx as a restart
direction. With t = 1 in (3.16), a neural network model for nonconvex optimization has
been constructed in [5]. The numerical results in [5] show that the new model is much
better than the gradient model.

Lemma3.4. Supposethat Assumption 3.1 holds. Consider method (2.26), where di is
a descent direction and «y is obtained by the strong Wolfe line search. If there exists a
constant y > 0 such that

[ = foral k=>1, (3.17)
then di ## 0 and

Z lug — uk_1]1? < oo, (3.18)
k>2

where uy = d/||dk]|.

Proof. First, note that dx # 0, otherwise (3.2) is false. Therefore u is well defined. In
addition, by relation (3.17) and Lemma 3.2, we have that

1
<o, (3.19)
kzzl 102

for otherwise we have that (3.9) holds, contradicting (3.17). Now, we divide formula (2.26)
for Bk into two parts as follows:

g,I Yi—1 ) g,I -1
BY = max { =< 0} and B® = —t , (3.20)
X di_; Vi1 “ A1 Yk-1
and define
@
Uk B Nl dk—1l
e =—— and & =———, (3.21)
< k] “ Ikl
where

v = — 0 + B A, (3.22)
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Then by (1.3) we have for k > 2,

Uk = 'k + SkUk_1. (3.23)
Using the identity ||uk|| = ||luk_1]] = 1 and (3.23), we can show

Irkll = lluk — SkUk—1ll = lldkUk — Uk_1]. (3.24)
Using the condition & > 0, the triangle inequality, and (3.24), we obtain

luk — Uk—1]l < (X + diuk — (1 + S Uk—1]l
< |lux — SkUk—1|l + [[dkUk — Uk—1]|
= 2|Ir]l. (3.25)

On the other hand, the line search condition (3.7) gives
di_1Yk-1 > (0 — 1)1 Ok_1. (3.26)

Equations (3.26), (3.7), and the assumption d,_,gk_1 < O imply that

T
NS LA (3.27)
1 Yk-1 l-0o
It follows from the definition of vy, (3.27), (3.3), and (3.5) that
O Oh—1 - 1
ol < Gkl +t | =5 Isc-1ll <y +2to (1 —0) " B. (3.28)
A1 Yk-1

Therefore by (3.25), (3.21), (3.28), and (3.19), we know that (3.18) holds, which com-
pletes our proof. O

Now we state a property of formula (2.26) for gk, which is similar to but slightly
different from Property (x) in [3]. Suppose that Assumption 3.1 and relations (3.7) and
(3.17) hold. Then if (3.2) holds with some constant ¢ > 0, we claim that there exist
constants b > 1 and A > 0 such that for all k,

1Bl < b, (3.29)

and
1
ISl <& = 1Al <. (3.30)
In fact, by (3.26), (3.2), and (3.17), we have that
di_1 Vi1 = (@ — DGL_sd1 = (L= o)c|grl? = (1 — o)cy?. (3.31)
Using this, (3.3), (3.4), and (3.5), we obtain

(L +Ollokllsk-1ll - 2(L+tyB b
(1-o)cy? =~ (1-o)cy?

Bl < (3.32)
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Note that b can be defined such that b > 1. Therefore we can say b > 1. As a result, we
define

(1 —o)cy?
- _ 3.33
b(L +t)y (3:33)
We get from the first inequality in (3.32) that if ||sx_1]| < A, then
(L+tyr 1
— = 3.34
Bl = 52 = b (3.34)

Thus for the b and A in (3.32) and (3.33), relations (3.29) and (3.30) hold.
Let N* denote the set of positive integers. For A > 0 and a positive integer A, denote

Kia={ieN“tk<i<k+A-1 [si_s]l > 2} (3.35)

Let |ICQ’A| denote the number of elements in ICQ,A. From the above property of formula
(2.26), we can prove the following lemma.

Lemma3.5. Suppose that Assumption 3.1 holds. Consider method (2.26), where dy
satisfies condition (3.2) with ¢ > 0, and «y is obtained by the strong Wolfe line search.
Then if (3.17) holds, there exists A > 0 such that, for any A € N* and any index ko,
there is an index k > kg such that

K al > (3.36)

E.

Proof. We proceed by contradiction. Suppose that for any A > 0, there exist A € N*
and kg such that

A
K Al < > forall k > ko. (3.37)

Letb > 1and A > 0 be given in (3.32) and (3.33). For . > 0, we choose A and kg such
that (3.37) holds. Then it follows from (3.29), (3.30), and (3.37) that

Ko+(i+1)A 1\ 272
I1 |ﬂk|sbm(g) —1.  forany i>0. (3.38)
ko+i A+1

If B« = 0, the direction in (1.3) reduces to —gx. Then either the method gives the
convergence relation (3.9) or we can take some x as a new initial point. Thus we assume
without loss of generality that

Bk # 0, forall k> 1. (3.39)

It follows from (3.38) and (3.39) that

ko+i A ko

[T187%=]]87% forany i >0, (3.40)

j=2 j=2
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which indicates
k
Y T8 =00 (3.41)
kZZ j:2

By (3.41), it can be shown [1] that any conjugate gradient method with the strong Wolfe
line search gives the convergence relation (3.9). In fact, it follows from (1.3) that for all
k> 2,

d¢ + Ok = ﬂkdk—l- (342)
Squaring both sides of (3.42), we can get

Idk 112 = =29, di — llgkl1? + B2 lIdk_1]|?
T 2

< (9, dy)

gk 12

+ Belld1 1. (3.43)

Hence we have

(gy dk)? !
'm”25<1_ﬂiﬁmﬂﬁ BEIIdk_1]I?

<...
k T2 \ 1/ k
(9; dj)
= 1_[ (l a 110; |J|2||Jd. ”2> (1_[ ﬁf) ”djo—l”Z, (3.44)
i=lo J J i=io

where jo > 2 is any integer. It is well known [12] that any descent method (1.2) with the
Wolfe line search gives the relation

T 2
3 CHEDM (3.45)

=L

This together with (3.17) indicates that there exists some integer jo such that

(9] dj)?
1—[ 1-— — ] >C1, for some constant c¢; > 0. (3.46)
Le 7 lglznd;]

From (3.41), (3.44), and (3.46), we know that (3.8) holds. Thus by Lemma 3.2 we have
(3.9). This gives a contradiction to (3.17). So (3.36) must be true. O

Here we note that (3.41) is also a sufficient condition for the global convergence of
any conjugate gradient method with the Wolfe line search, as is shown in [1]. We are
now ready to prove the following convergence theorem for method (2.26).

Theorem 3.6. Suppose that Assumption 3.1 holds. Consider method (2.26), where di
satisfies condition (3.2) with ¢ > 0, and «y is obtained by the strong Wolfe line search.
Then we have liminf,_, . ||kl = 0.
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Proof. We proceed by contradiction. Since liminfi_ o [|gkll > 0, (3.17) must hold.

Then the conditions of Lemmas 3.4 and 3.5 hold. Defining u; = d;/||d;||, we have for
any two indices |, k, with | > k,

|
X — X1 =) ls-1lui1
i=k
| |
= lls-alluca+ D lIs-allUis — ue-a). (3.47)
i=k i=k

This relation, the fact that ||ux_1|| = 1, and (3.3) give that
| |
D olscal < 1 =Xl + ) s allluia — Ukl
i=k i=k

|
<2B+ ) lIs allllui-a — Uk al. (3.48)
i=k

Let 2 > 0 be given by Lemma 3.5 and define A := [8B/A] to be the smallest integer
not less than 8B/A. By Lemma 3.4, we can find an index kg > 1 such that

1
DU < —. 3.49
2wl = 7 (3.49)

With this A and kg, Lemma 3.5 gives an index k > kg such that

A
|]Ck,A| > —

= (3.50)

Next, for any index i € [k, k + A — 1], by the Cauchy-Schwartz inequality and (3.49),

i
Ui — Ul < ) lluy — Uil
j=k

i 1/2
<(—k+1)? (Z luj — u,-1||2>

j=k

1\ 2
<a () = @s1)
From this relation, (3.50), and taking| = k + A — 1in (3.48), we get that
1 k+A—-1 A AA
2B > o Z Isi-1ll > EVCQ,M > (3.52)

i=k

Thus A < 8B/A, which contradicts the definition of A. Therefore, the theorem is
true. 0
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Table4.1. Numerical comparisons.
P Name n HS method Method (2.8) Method (2.26)
24 Penalty 2 20 2092/6528/3158 1483/4521/2208 476/1486/796
40 798/2398/1104 1326/4085/1838 342/1081/520
25 Variably 20 Failed 9/42/17 5/28/11
dimensioned 50 11/67/28* 14/72/27 12/55/24
35 Chebyquad 20 142/450/163 116/380/147 158/504/185
50 348/1162/418 395/1312/466 349/1156/420
30 Broyden 50 32/103/38 32/103/38 32/103/38
tridiagonal 500 34/109/41 34/109/41 34/109/41
31 Broyden 50 39/152/70 38/146/66 30/120/56
banded 500 36/131/56 37/138/60 23/79/32
22 Extended 100 126/373/170 208/629/277 98/292/134
Powell 1,000 151/448/210 265/793/349 149/433/199
26 Trigonometric 100 54/101/100 58/106/104 54/105/105
1,000 55/98/98 60/112/111 55/100/100
21 Extended 1,000 24/114/60 23/119/68 23/96/55
Rosenbrock 10,000 25/117/61 23/119/68 23/96/55
23 Penalty 1 1,000 28/98/74 29/93/69 24/77/57
10,000 72/278/176 36/138/81 38/136/98

4. Numerical Results

We tested the HS method, method (2.8), and method (2.26) on an SGI Indigo workstation.
Our line search subroutine computes «y such that the strong Wolfe conditions (3.6)—(3.7)
hold with § = 0.01 and o = 0.1. The initial value of «y is always set to 1. Although
our line search cannot always ensure the descent property of di for all three methods,
uphill search directions seldom occur in our numerical experiments. In the case when
an uphill search direction does occur, we restart the algorithm by setting dx = —gx. For
method (2.26), t = 0.1 is selected.

The test problems are drawn from [6]. The numerical results of our tests are reported
in Table 4.1.

The first column “P” and the second column represent the problem number and
problem name in [6], respectively. Each problem was tested with two different values of
n ranging from n = 20 to n = 10,000. The numerical results are given in the form of
I/F/G, where |, F, G denote the numbers of iterations, function evaluations, and gradient
evaluations, respectively. The stopping condition is

o]l < 107°. (4.1)

The iteration is also terminated if the number of function evaluations exceed 9999, but
we find that this never occurs. We also terminate the iteration if the function value
improvement is too small. More exactly, iterations are terminated whenever

f (X)) — F(Xir1) < 1016

4.2
1+ ]fx)l  — (4-2)
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In this case, we use a superscript “*” to show that the iteration is terminated due to (4.2)
but (4.1) is not satisfied. In addition, we write “Failed” if di is so large that a numerical
overflow occurs while the method tries to compute f (xx + dk).

From Table 4.1, we see that for some problems method (2.8) really performs much
better than the HS method, for example Problem 25 with n = 20 and Problem 23 with
n = 10,000; whereas for some other problems, method (2.8) performs worse than the
HS method, for example Problem 24 with n = 40 and Problem 22 with n = 1000. On
the whole, the method (2.8) and the HS method perform quite similarly for the given test
problems.

Comparing method (2.26) with the HS method, we find that there are quite a number
of test problems for which method (2.26) outperforms the HS method prominently;
whereas for the rest of these problems, method (2.26) and the HS method perform very
similarly. Therefore we could say that method (2.26) is much better than the HS method.
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