New Algorithms for Singly Linearly Constrained

Quadratic Programs Subject to Lower and Upper
Bounds *

Yu-Hong Dai I Roger Fletcher
November 19, 2003

Numerical Analysis Report NA /216, November 2003

Abstract

There are many applications related to singly linearly constrained quadratic
programs subjected to upper and lower bounds. In this paper, a new algorithm
based on secant approximation is provided for the case in which the Hessian matrix
is diagonal and positive definite. To deal with the general case where the Hessian
is not diagonal, a new efficient projected gradient algorithm is proposed. The ba-
sic features of the projected gradient algorithm are: 1) a new formula is used for
the stepsize; 2) a recently-established adaptive nonmonotone line search is incor-
porated; and 3) the optimal stepsize is determined by quadratic interpolation if
the nonmonotone line search criterion fails to be satisfied. Numerical experiments
on large-scale random test problems and some medium-scale quadratic programs
arising in the training support vector machines demonstrate the usefulness of these
algorithms.

1 Introduction

In this paper we consider the following quadratic programming problem
minimize f(x) = ixTAx — ¢"x
subject to 1<x<u (1.1)

a’x =b,

*This work was supported by the EPRSC in UK (no. GR/R87208/01) and the Chinese NSF grant
(no. 10171104).

tState Key Laboratory of Scientific and Engineering Computing, Institute of Computational Math-
ematics and Scientific/Engineering computing, Academy of Mathematics and System Sciences, Chinese
Academy of Sciences, PO Box 2719, Beijing 100080, PR China. Email: dyh@lsec.cc.ac.cn

!Department of Mathematics, University of Dundee, Dundee DD1 4HN, Scotland, UK. Email:
fletcher@maths.dundee.ac.uk



where A € IR"*" is symmetric but may be indefinite, a, ¢, 1 and u (with I < u) are
vectors in IR", and b is a scalar. Thus there is a single linear equality constraint in the
problem, in addition to simple bounds (box constraints) on the variables. We refer to
this as the SLBQP problem.

There are many real-world instances of SLBQP problems. For example, some prob-
lems in multicommodity network flow and logistics have the form (1.2) in which the
matrix A is diagonal (see Held et al [11], Meyer [14], Pardalos and Rosen [17]). The gen-
eral SLBQP is also solved in training the learning methodology known as Support Vector
Machine (SVM) (see Vapnik [23]). This SVM learning methodology has empirically been
shown to give good performance on a wide variety of problems such as handwritten char-
acter recognition, face detection, pedestrian detection, and text categorization (see Platt
18).

In this paper, we consider new algorithms for solving SLBQP problems. In the special
case that A is diagonal and positive definite, it is possible to have algorithms that only
require O(n) operations per iteration. Helgason et al [12] propose an O(n log n) algorithm
that is based on appropriate manipulation of the corresponding Kuhn-Tucker conditions.
Several linear time algorithms have been proposed by Brucker [3], Calamai and Moré
[4], and Pardalos and Kovoor [16] that are based on a similar characterization of the
solution. The algorithms in [3] and [4] are based on binary search. For large practical
problems, [16] proposes a randomized algorithm that runs in expected linear time and
has a very small time constant. A new simple and very efficient algorithm based on
secant approximation is proposed in Section 2 of this paper for this special case.

Next we consider general SLBQP problems in which A is non-diagonal. One possibil-
ity is to solve these using a standard solver for the general QP problem. This approach
is adequate for small problems, but may not work well if the dimension n is large. For
example, active set methods require many iterations if the initial active set and the op-
timal active set are significantly different since only one constraint is dropped or added
at each iteration. Also the methods become inefficient if the reduced Hessian matrix be-
comes large. A successful way of avoiding these difficulties for box constrained QP (BQP)
problems has been to use gradient projection methods. This idea dates back a long way,
and various references can be found in Dai and Fletcher [6], where we use this idea in
conjunction with the Barzilai-Borwein [1] (BB) stepsize formulae. For BQP problems,
gradient projection methods take advantage of the fact that projection on to the box is a
trivial calculation. However, a line search must be used to ensure global convergence. In
fact, gradient projection methods are attractive for any type of optimization problem in
which projection on to a (convex) feasible set can be done efficiently. Birgin, Marti’nez,
and Raydan [2] propose a general framework based on gradient projection, the BB for-
mula, and a non-monotonic line search. For the general SLBQP problem, projection on
to the feasible set of (1.1) can also be done very efficiently using one of the algorithms
described in the previous paragraph. Thus in Section 3 of this paper we explore the
practical implementation of this type of method. A new choice (3.4) for the stepsize is
proposed which seems to be a promising alternative to the BB formula. Following our
experience in [6], we use a different adaptive non-monotonic line search. In addition, the
optimal stepsize is determined by quadratic interpolation if the nonmonotone line search
criterion fails to be satisfied.



In Section 4 we test our approach on randomly generated test problems of moderately
large dimension, both for positive definite and for indefinite Hessian matrices. We find
that the new stepsize (3.4) with m = 2 is superior to the BB formula. As in [6], we
also observe that the adaptive non-monotonic line search works better than that used
in [2]. We also explore the real-world applications of SVM learning methodology. Such
problems can be very large indeed (n & 10°) say) and the matrix A is dense. In this
case, standard QP solvers based on explicit storage of A can be impractical due to the
difficulty of storing the Hessian. Even in the case that n is not all that large, which we
consider here, standard QP solvers can be inefficient. Serafini, Zanghirati and Zanni [21]
have implemented two projection gradient algorithms for medium-scale SVM problems
and have reported numerical results that are much better than are obtained with the
QP solvers pr_LOQO and MINOS, as suggested in the SVM""* package by Joachims
[13]. Moreover, in combination with a decomposition technique, it is shown in [21] that
projection algorithms are superior to the SVM"¢" software (version 3.5) equipped with
pr_LOQO for SVM problems of up to 60,000 variables. In this paper, we will report
numerical results for some medium-scale SVM problems, that are better than GVPM
proposed in [21] and SPGM proposed in [2]. Further discussion of all these issues is given
in Section 4.

2 An algorithm for the diagonal and strictly convex
case

In this section we develop an algorithm for the special case of (1.1) in which A =
diag(dy, dy,...,d,) is a positive definite diagonal matrix. The positivity of the d; is
important for the development of the algorithm, and we shall show at the end of the
section that there are difficulties to be surmounted if the positive definite condition is
to be relaxed. We shall refer to the resulting algorithm as Algorithm 1. The algorithm
has some features in common with previous work, notably that it runs in expected linear
time, but also includes some new features. The description of the algorithm aims to
provide a more simple exposition of the underlying principles than appears elsewhere.
The algorithm is based on constructing a Lagrangian penalty function

d(x; A) = %XTAX —c"x—MaTx —b), (2.1)

in which A is a scalar parameter. Because A is positive definite, no augmentation term
is needed. For any fixed value of A, we may solve the box constrained QP problem

minimize  ¢(x)
xe.]R" (22)
subject to 1 <x <u

giving a minimizer which we denote by x()). Then A is adjusted in an outer secant-like
method to solve the single nonlinear equation

r(A):=a’x(\) —b=0 (2.3)

3



in one variable A. The minimizer of ¢(x) is readily obtained because (2.2) separates into
n problems, each in one variable x;. The unconstrained minimizer of each problem is the
solution of the equation d;z; = ¢; + Aa;, so the solution of (2.2) is given by

x(\) = mid(1, h, u), (2.4)

where h = h(\) has components h; = (¢;4+Aa;)/d;, and mid(l, h, u) is the componentwise
operation that supplies the median of its three arguments.

If a value A\* is located such that alx(\*) = b, it follows that KT conditions for (1.1)
are satisfied. This is because the KT conditions for (2.2) are also necessary for (1.1),
and together with the feasibility condition alx = b, they make up the KT conditions
for (1.1). It follows when (2.3) is solved that x(A*) is a KT point for (1.1) and hence a
global minimizer by convexity.

We now consider how the equation r(A) = 0 might be solved. It is possible that the
constraints of (1.1) are inconsistent, in which case r(A) = 0 has no solution, a possibility
which we ignore at present and return to towards the end of this section. We note that
a;x; is a piecewise linear continuous function of A by virtue of (2.4), which takes either
the constant values a;l; or a;u;, or the value a;(¢; + Aa;)/d;, and hence is either constant
or a monotonically increasing function of A. It follows that the same is true of r(X). We
note that r(A) might be constant over part of its domain. In fact we may interpret r(\)
as the gradient of a dual function of A after eliminating the primal variables.

Although it would be a simple matter to evaluate the slope of the function r(\)
(except at a breakpoint), to be used in an iteration of the Newton-Raphson method,
the piecewise linear nature of r(\) makes this unappealing. For example the correction
would be infinite on a constant piece of the graph. Yet we would wish to use linear
approximation when the linear piece that crosses the A axis is located, so as to locate
M* exactly. Thus we have chosen a secant-type approach, with modifications to promote
rapid global convergence. Our algorithm divides into two parts, a Bracketing phase in
which a bracket on a solution is sought, followed by a Secant phase in which the bracket
is uniformly reduced until the piece which crosses the A axis is located, and the process
terminates.

In the bracketing phase we ask the user to supply an initial value of A and an initial
estimate AX > 0 of the likely change to A. The bracketing phase may be described by the
following matlab statements, in which a, b, ¢, d, 1, u refer to the data that defines
(1.1). If a value of () is located which is sufficiently close to zero, then the process ter-
minates. If r(A) < 0 then the search for a bracket takes place in the positive A direction,
else if r(A) > 0 then in the negative A direction. If the problem (1.1) is feasible, then the
bracketing phase is guaranteed to terminate with a bracket [A\;, A,] which contains a so-
lution of the equation r(A) = 0. The calculation of s in the above is such that dlambda/s
is the correction to A that gives either a secant step based on the two most recent iterates,
or a step of 10 times the previous step, whichever is the smaller. In practice, examples
were found in which dlambda/s could be much smaller than dlambda, giving rise to slow
convergence. Hence the updated value dlambda=dlambda+dlambda/s has been used, so
as to ensure that the new value of dlambda is greater than the old value. Perhaps a more
appealing way of achieving this would have been to define s=min(1,max(rl/r-1,0.1))

4



% Bracketing Phase of Algorithm 1
x=max(1l,min(u, (c+lambda*a)./d)); r=a’*x-b;
ifr <0
lambda_l=lambda; rl=r; lambda=lambda+dlambda;
x=max(1l,min(u, (c+lambda*a)./d)); r=a’*x-b;
while r < 0
lambda_l=lambda; s=max(rl/r-1,0.1);
dlambda=dlambda+dlambda/s; lambda=lambda+dlambda;
x=max (1l,min(u, (c+lambda*a)./d)); r=a’*x-b;
end
lambda_u=lambda; ru=r;
else
lambda_u=lambda; ru=r; lambda=lambda-dlambda;
x=max(1l,min(u, (c+lambda*a)./d)); r=a’*x-b;
while r > 0
lambda_u=lambda; s=max(ru/r-1,0.1);
dlambda=dlambda+dlambda/s; lambda=lambda-dlambda;
x=max(1l,min(u, (c+lambda*a)./d)); r=a’*x-b;
end
lambda_l=lambda; rl=r;
end

and to use dlambda=dlambda/s. This would enable the secant step to be accepted in
some cases, and hence give termination if the current piece intersects the A axis. However,
in practice the difference between these strategies is likely to be small.

Once a bracket is located, the second stage is to find the solution of the equation
r(A) = 0 by repeated use of the secant method, with certain modifications designed to
speed up convergence remote from the solution. Again the process is defined by some
matlab code. Initially values of A; and A, are available with r(};) < 0 and r(X,) > 0,
and a secant step to a new point A is taken. If r(A) > 0 then the iteration proceeds as
follows. If A lies in the left half of the interval [A;, A,] (that is s<=2), then a secant step
based on A; and A is taken on the next iteration. If A lies in the right half of the interval,
then either a secant step based on A and \A,, or a step to the point %A1—+ iA is taken,
whichever is the smaller step. This ensures that the interval length is reduced by a factor
of 2 or less. In both cases A, is replaced by A to give a new bracket. Similar decisions are
taken if (X)) < 0 at the start of the iteration. We terminate the secant phase if preset
tolerances on either r(A) or AX are met. Of course the parameters in the above pieces of
code are somewhat arbitrary, but are of an appropriate size. We feel that small changes
in these values would be unlikely to change the effectiveness of the method to any great
extent.

We now return to the issue of how to decide if the constraints of (1.1) are consistent.
If a bracket is found during the bracketing phase, then it follows that the constraints
are consistent, and no further calculation is required. Alternatively, we may define the



% Secant phase of Algorithm 1
s=1-rl/ru; dlambda=dlambda/s; lambda=lambda_u-dlambda;
x=max(l,min(u, (c+tlambda*a)./d)); r=a’*x-b;
while 1 % repeat until converged
ifr >0
if s <= 2
lambda_u=lambda; ru=r; s=1-rl/ru;
dlambda=(lambda_u-lambda_1)/s; lambda=lambda_u-dlambda;
else
s=max(ru/r-1,0.1); dlambda=(lambda_u-lambda)/s;
lambda_new=max (lambda-dlambda,0.75*1ambda_1+0.25%lambda);
lambda_u=lambda; ru=r; lambda=lambda_new;
s=(lambda_u-lambda_1)/(lambda_u-lambda) ;
end
else
if s >= 2
lambda_l=lambda; rl=r; s=1-rl/ru;
dlambda=(lambda_u-lambda_1l)/s; lambda=lambda_u-dlambda;
else
s=max(rl/r-1,0.1); dlambda=(lambda-lambda_1l)/s;
lambda_new=min(lambda+dlambda,0.75*lambda_u+0.25*1lambda) ;
lambda_l=lambda; rl=r; lambda=lambda_new;
s=(lambda_u-lambda_1)/(lambda_u-lambda) ;
end
end
x=max(1l,min(u, (ct+lambda*a)./d)); r=a’*x-b;
end

vectors
a; = max(a, 0), a_ = min(a, 0) (2.5)

to be the positive and negative parts of a, respectively. Since the linear function has a
maximum value of aiu—{—a?l and a minimum value of ail—{—a?u on theset {x |1 <x < u},
we can conclude inconsistency if either of the conditions

alu+a’l <b, all+alu>b (2.6)

hold, and consistency otherwise. However, this requires a certain amount of calculation,
which might be avoided if the problem is known to be consistent, or if a bracket is found
quickly. In our codes we have resolved this matter in the following way. The user is
asked to supply a parameter ktest. If a bracket is not found in ktest iterations then
the calculation in (2.6) is carried out to decide on consistency. If the user knows that the
problem is consistent, then ktest= oo can be set. Otherwise we suggest using the value
ktest=4.

Finally we examine whether it is possible to relax the condition that the A is positive
definite. Consider the case that d; = 0 occurs for some value of 7. The minimization of



@(x, A) still separates into n one-variable problems, and hence is readily solved. In the
case of x;, we simply set
- l; if ¢; 4+ Xa; <0
ol wy if e 4 da; >0

The difficulty is that z;, and hence x(}), is no longer continuous at a value of A at which
the solution x; switches from one bound to the opposite bound. The difficulties that
arise are illustrated by a simple example. Take n = 2, d; = 1, dy = 0, ¢ = (1, 1)7,
a=(2,1)7,b=1,1=0and u = (2,2)7. The solution is at x* = (0, 1)7 with
multiplier A* = —1. The problem is convex and x* is the unique global solution, so
the problem is in no sense badly behaved. However, consider the graph of the function
r(A). For A < —1 the minimizer of ¢(x, ) is x = (0, 2)T, whereas for —1 < X < 1 it
is x = (0, 0)Y. Thus r()) is piecewise constant in the neighbourhood of A < —1, and
jumps from —1 to +1 as A passes through —1. The solution is determined by choosing
x to solve a’x = b at the point of discontinuity in A\. The discontinuity in r(\) might
adversely affect the behaviour of the secant algorithm described above. In particular we
cannot expect the algorithm to terminate by locating a linear piece that crosses the A
axis. In the case that A is diagonal and positive semi-definite, one way to circumvent
these difficulties is to calculate the values of A such that ¢; + Xa; =0 for ¢ € {i : d; = 0}.
The corresponding values of r(\) can then be used to determine an interval that includes
the optimal multiplier. If d; # 0 for all 7+ but d; < 0 for some values of ¢, then the
problem may have many KT points. In this case, we can still define the one-variable
function r(A) as before. However, this function is not in general monotonic, but is still
continuous. Methods based on its continuity may be developed to calculate one KT point
of the problem.

3 A projected gradient algorithm for the general case

In this section we consider an algorithm for solving (1.1) when A is not a diagonal matrix.
The algorithm has the same framework as that of the SPG2 algorithm of Birgin, Martinez
and Raydan [2]. However a new choice for the steplength is used here, and the adaptive
non-monotone line search from [6] is incorporated. Our numerical experiments in the
next section show that these new techniques are very useful in practice. An overview of
the algorithm, referred to as Algorithm 2, is

% QOverview of Algorithm 2
Initialization
for k=1,2,...until converged
Calculate the projection step using Algorithm 1,
Possibly carry out a line search,
Calculate the BB step length,
Update the line search control parameters
end



Let us denote the feasible region of (1.1) by Q. The projection of any vector z € IR" on
to  is the minimizer of the problem

min{1|x — z||7: x € Q}. (3.1)

This is a special case of an SLBQP problem in which A = T is the identity matrix,
and hence it can be solved efficiently by for example Algorithm 1. On average, we find
that only about five iterations are required by Algorithm 1. The first stage in the loop
of Algorithm 2 is to take a steepest descent step from a current iterate x; with fixed
steplength aj, and then project the resulting point on to Q. If g = Ax — ¢ denotes the
gradient vector, we may express this as

dk = PQ(Xk — Oékgk> — Xk (32)

where Py(z) represents the projection of z on to Q. We note that the projection operation
has the property that (x — Po(2z))"(z — Pa(z)) < 0 for all x € Q, and it readily follows
if dy # 0 that dj is a feasible descent direction. The solution of (1.1) is characterised by
Po(x*—g*) = x*, so the algorithm is deemed to have converged when || Po(x — gk ) — Xx||
is within a prescribed tolerance. Although this is how convergence was recognised in our
codes, it does require an extra projection calculation, and a less expensive alternative is
to test HPQ(Xk — akgk) — XkH/ak (that is HdkH/ak)

The second stage of Algorithm 2 is to decide if a line search is necessary. A feature of
BB type algorithms is that they are inherently non-monotonic, that is to say the objec-
tive function value f(xj) must be allowed to increase on some iterations in order for the
methods to work well (see Fletcher [§]). When minimizing quadratic functions without
any constraints, convergence can be established without introducing a line search (see
Raydan [19]). However we show in [6] for box constrained QP that it is possible (al-
beit unlikely) for the algorithm to fail, unless some provision for a line search is made.
The same will certainly be true for the SLBQP problem. However it is important that
a non-monotonic line search is used, a fact first recognised by Raydan [20] for general
unconstrained minimization. In [20] and [2], a non-monotonic line search of the type sug-
gested by Grippo, Lampariello and Lucidi [10] is used. In [6] we show that an alternative
adaptive non-monotonic line search is preferable, as it cuts down the number of times
the line search is brought into play, and hence enables the non-monotonic aspects of the
BB method to operate more freely. All these non-monotonic algorithms make use of a
control parameter f,..; > f(Xx), and no line search is carried out if f(xg 4+ dg) < fres.
(In some methods a sufficient reduction on f,.s is required.) However, the way in which
frep 1s defined is different.

For k > 2 we carry out a line search if f(xx + di) > fref. We do this simply by a
quadratic interpolation along x;+Ady, using the function values f(x;) and f(xx+dy), and
the slope gl'd;. An alternative possibility would be to search along the path obtained
by projecting x; — Agx (as in SPGI1 of [2]). However this requires extra projection
operations, and in any event the distinction is of little importance because we use very
few line searches. Because f(x) is quadratic, f(xz) < frep and f(xx + di) > fres, and
d; is a descent direction, it follows that we obtain an exact line search along x; + Ad.
This is different to methods based on [10] which use an Armijo line search. On iteration

8



k =1, we carry out a line search whenever f(x; + di) > f(xx), because the initial value
of a1 might possibly be unreliable.

The third stage of the algorithm is to compute the stepsize ag41 for the next iteration.
Denote the difference vectors sy = xp41 — Xg and yr = gry1 — gx- One of the two BB
formulae in [1] is defined by

Qpy1 = szsk/szyk. (3.3)

There are many references to the fact that this choice is far more efficient than the
classical steepest descent stepsize, and in Section 4 we give some results for this choice
in the context of an SLBQP problem. Recently many other BB-like formulae for the
stepsize have been proposed. We have therefore tried alternating the two BB formulae
on successive iterations, as recommended in [6], but find this to be ineffective for random
indefinite test problems and SVM test problems. Other alternative stepsize choices,
such as the AS and CSDS methods described in [5], did not perform well in the box
constrained QP context [6], and we have not used them here. Here we also present a new
choice for the stepsize. To this end, we recall that the BB formula (3.3) can be obtained
by solving the one-dimensional subproblem: minimize Ha;_ll_lsk — V|2, in which a,;_ll_ll
can be regarded as some approximation to the Hessian at x;41. For each integer ¢ > 0,
we can have a similar formula if we replace the pair (sg,yx) with (sg—i,yz-i), yielding
Qpy1 = s{_isk_i/sg_iyk_i (this formula can be seen in [9]). It might be interesting to
study how to pick the best integer ¢ according to some rule. Here we propose a new
formula based on the idea of taking an average of the most recent m > 1 difference pairs,
where m is a preset integer. Hence we define the vectors S*) = (sT, ...,s{_mH)T and
Y = (yf, ...,ykT_m_l_l)T, and determine ajy; by minimizing min |\a,;+115(’“) — Y&,
Therefore we obtain

SWTGW) Sl sl s

LT STy () T ST T

i=0 Sk_i¥Yk—i

(3.4)

In fact, we let m be the maximal integer such that sI_.y;_; > 0 for all 0 < i < 7, and we
assume conventionally that sy, < 0 if £ < 0. Our practical algorithm then calculates
the stepsize by (3.4) with m replaced by min(rn,m). We also chop any extreme values
of ay, by truncating them to lie in preassigned interval [amin, Qmaz]. If it happens that
m = 0, that is sgyk < 0, we simply set apy1 = Quae. It is obvious that the formula
(3.4) with m = 1 reduces to the BB formula (3.3). However, our numerical experiments
suggest that m = 2 is a better choice in the BQP or SLBQP context. Results obtained
using this choice of stepsize are described in Section 4.

The fourth stage of Algorithm 2 is to update the line search parameters. The line
search we use is that described in [6], which is related to methods described by Toint [22]
and by Dai and Zhang [7]. The parameters involved are the reference value f,.f referred
to above, the current best function value fy.s, a candidate value f. for possible reduction
of fres, and a preassigned number L denoting the number of iterations with f(xz) > foest
that are allowed before reducing f,..; to f.. The updating process may be described by
the matlab code



if f_k < f_best,

f_best=f_k, f_c=f_k, 1=0,
else

f_c=max{f_c,f_k}, 1=1+1,

if 1=L, f_ref=f_c, f_c=f_k, 1=0, end
end.

A simple argument in [6] proves global convergence in real arithmetic. An important
property of this method is that if a better value of f(x;) is always found in at most L
iterations, then f,.s remains at its initial value of infinity, and no line searches are needed
after the first iteration.

Algorithm 2 requires parameter settings for L, tunin and upnqz, and initial values for
X1, fref = 00, 1 =0 and fresr = fo = f(x1). The major computational expense is that
required to update the gradient vector, which can be done in O(np) operations, where
p 1s the number of non-zero components of di. The number of projection calculations
can also be significant, since although each iteration of Algorithm 1 only requires O(n)
operations, quite a large number of projection calculations may be required.

4 Numerical experiments and discussion

We tested Algorithm 2 with MATLAB 6.5.0 on a Dell’™ OptiPlex’™™ computer. The
preset parameters for Algorithm 2 were chosen to be amin = 107°, amax = 10° and
L =10. For Algorithm 1, which is used as the projection subroutine of Algorithm 2, the
initial values for A and AX on the first call were set to 0 and 2, respectively. They were
then set to A" and 1+ |X'| on the second call and A" and 1 + |\ — \’| subsequently. Here
A and A" are the values of A provided by the previous two projections. The accuracy
required in the projection algorithm is either |r(X)] < 107® or AX < 107®%. The choice of
the initial stepsize a; is described later. The parameter m in the formula (3.4) is chosen
to be m = 2.

Three kinds of problem were used in our tests: (1) random symmetric positive definite
(SPD) test problems, (2) random indefinite test problems, and (3) medium-scale problems
generated by training Gaussian SVMs on two real-world data sets. The descriptions of
the test problems and the corresponding numerical results are presented as follows. We
let e denote the column vector of ones, and the vectors p; 2 = 1, 2,...,7 denote random
vectors whose elements are sampled from a uniform distribution in [0, 1]. Also we denote
v;,; to be the j-th component of the vector v;.

Random SPD test problems. The generation of these problems is based on the gener-
ation of random SPD BQP test problems in Moré and Toraldo [15] and Dai and Fletcher
[6]. At first, we use generate a BQP problem using the five parameters n, ncond, ndeg,
na(x) and na(x;) such that x is the solution of the BQP problem and X is the starting
point. Specifically, we denote A = PDPT, where

P = (I —2psp3)(I — 2p2p3 )(I — 2p1p] ),

10



Table 4.1. Numerical results for random SPD test problems

P ncond ndeg na(X) na(Xi) #iter kover Kmax BB
1 4 1 6788 6792 75 4.09 6 66
2 5 1 1345 8909 123 3.13 4 129
3 4 7 782 6117 79  3.00 4 85
4 6 7 2989 6526 238 4.05 5 287
5 4 9 1786 678 ] 3.71 4 73
6 4 5 7298 3911 68 4.73 6 76
7 7 3 2868 8823 410 3.41 6 438
8 7 5 17 7547 399 3.36 9 390
9 7 5 609 8891 429  3.33 10 536

10 5 1 5697 8831 126 2.76 5 154

11 4 5 1873 8362 71 3.35 4 80

12 6 3 4218 6529 263  4.73 6 248

13 7 7 8542 6840 459  6.50 10 540

14 5 1 448 156 115 3.34 4 130

15 4 5 1851 2689 69 3.25 4 76

16 7 5 6287 1378 713 5.85 7 *

17 7 9 9670 6729 513  7.37 12 511

18 7 7 727 5997 426  3.62 6 468

where D is a diagonal matrix with whose i-th component is defined by

The parameter ncond in the above relation specifies the condition number of A. We set
X = 2p4— 1, namely, X is chosen randomly in the interval [—1, 1]. The choice of active set
A(x) depends on the integer parameter na(z). Random numbers y; in [0, 1] are generated
fori=1,...,n and ¢ is selected for A(z) if y; < na(x)/n. This algorithm is also used to
select the active constraints A(X;) at the starting point of the BQP problem on the basis
of the parameter na(X;). Components of X; that are not in A(x;) are set to (I; + u;)/2.

The values of 1, u, and ¢ can now be determined using the parameter ndeg. This
parameter specifies the extent to which the resulting problem will be close to being dual
degenerate. We determine the value of V f(X) = r by setting |r;| = 107#"% for ; € A(X),
where p; is randomly generated in [0, 1]. The right hand term ¢ is set to ¢ = AX —r and

we define
for i ¢ A(z), and
or

for 1 € A(z).

Further, we let x, be the vector with components [; + psi(u;

log dZ =

1 —1

—

[ =-1

Then we have constructed an SPD BQP problem whose solution is X.
—1;), a = 2pg — e and

ncond,

U, = —}-1,
u; = +1,
u; = I,

11

r=1,...

7“2':0,

T'7j>0,

7“2'<0,

, M.



b = aTx;,. The starting point for the SLBQP problem is set to x; = Po(%X;). Hence we
have described how to generate our random SPD SLBQP test problems by five parameters
n, ncond, ndeg, na(x) and na(xy).

In our random SPD tests, we generated 18 problems in which the dimension is fixed
at n = 10* and the other parameters are randomly generated. For these problems, the
first stepsize used is ay = || Po(x1 — g1) — X1/ and the stopping condition is

1P (xx — k) — Xklloo < 1077,

as used in [2]. The numerical results are shown in Table 4.1, where P refers to the
problem number, #iter the number of required iterations and #/s the number of line
search. Also, kyper and Emax denote the average number of iterations and the maximum
number of iterations, respectively, taken by Algorithm 1. In these tests, no line searches
are carried out after the first iteration and hence the number of line searches is at most
one. That is to say, in this case Algorithm 2 reduces to the unmodified algorithm. The
number of iterations required by the BB formula (3.3) is also listed in Table 4.1. For
Problem 16, the BB method fails to provide a solution in 2000 iterations. From this
table, we can see that the formula (3.4) with m = 2 is significantly better overall than
(3.3) for random SPD problems. Discounting problems in which the number of iterations
required differs by less than 10, then formula (3.4) wins in 8 cases, as against 1 for (3.3).
Further tests with 100 random SPD problems showed a ratio of 42 : 6 wins in favour of
(3.4).

Random indefinite test problems. The generation of these problems is based on four
parameters n, ncond, na(X;) and negeig. The first three parameters are used to generate
the matrix A, the vector ¢, and the starting point X; as before. The parameter negetg is
used to specify the number of negative eigenvalues of A. Given an integer negeig € [1, n],
we change the sign of the i-th diagonal entry of D if p;; < negeig/n. The lower and
upper bounds are set to ]l = —e and u = e. The vector a and the scalar b are generated
as before.

We likewise generated 18 indefinite SLBQP test problems with n = 10*. The choice
of the first stepsize and the stopping condition are the same as before. The numerical
results are shown in Table 4.2. Again, we found that no line searches are done after the
first iteration. From Table 4.2, we see that the formula (3.4) is only slightly better than
the BB formula (3.3) for random indefinite problems. Again, discounting problems in
which the number of iterations required differs by less than 10, the ratio of wins is only
8 : 7 in favour of (3.4). Further tests with 100 random indefinite problems showed a ratio
in favour of (3.4) as 46 : 40.

SVM test problems [21]. Given a training set of labelled examples

DZ{(ZZ',U)Z'),’L.Z 1,...,n, ZZEIR,m,wZE{—l,l}},

the SVM algorithm classifies new examples z € IR™ by a decision function F': R™ —
{—1,1} of the form

F(z) = sign (Z ziw; K(z,2;) + b*) )

=1

12



Table 4.2. Numerical results for random indefinite test problems

P ncond negeig na(X,) Fiter koper Kmax BB

1 4 6788 470 136 3.42 19 149
2 6 3291 1786 249 3.85 26 417
3 4 199 5189 76 3.16 4 73
4 4 701 9535 117 3.47 18 133
5 4 3653 2332 194 3.89 26 116
6 7 4403 2525 480  6.26 22 637
7 4 1199 1379 95 2.82 14 124
8 4 2749 4854 228  3.17 23 125
9 6 30 4667 247 3.26 4 243
10 7 6067 4118 458 4.08 28 559
11 4 4942 9427 96 3.87 22 113
12 3 7736 8389 211 5.23 28 216
13 4 1672 1930 118 3.11 16 100
14 6 2015 2250 414 3.29 19 280
15 4 5871 930 113 3.56 21 138
16 7 9387 9552 375 6.45 44 329
17 6 179 3818 315 3.26 17 289
18 7 9712 715 387 7.33 37 306

where K : R™ x IR™ — IR is some kernel function and x* = (z}) solves

minimize %XTGX —eTx

subject to 0 <x < (e (4.1)
wlix =0,
where (G has entries G;; = wyw;K(2;,2;), 1,7 = 1,2,...,n, and C is a parameter of the

SVM algorithm. The quantity b* € IR is easily derived after x* is computed. Our prob-
lems are generated by training SVMs on two real-world data sets: the MNIST database
of handwritten digits and the UCI Adult data set. Test problems of size n = 800, 1600
and 3200 are constructed from MNIST by considering the first n/2 inputs of digit “8”and
the first n/2 inputs of the other digits. From the UCI Adult, the versions with n = 1605,
2265 and 3185 are considered. The Gaussian kernel

K(2i,2;) = exp (—|z: — z,][3/(207)) (4.2)

is used in our tests, which ensures the symmetric positive definiteness of the matrix G.
The parameters C' in (4.2) and o in (4.2) are set to (C,o) = (10,2000) for the MNIST
database and (1,1/10) for the UCT Adult data sets.

For these SVM test problems, a different stopping condition is used, which is based on
the fulfilment of the KKT conditions within 107 (see [13]). The initial point is x; = 0.
The first stepsize is simply set to o = ||g1]|~ since the projection Py (x;—g) is not used
by the stopping condition. The numerical results are shown in Table 4.3, where SV and

13



Table 4.3. Numerical results for SVM test problems

Problem n  Fiter #ls SV BSV  kuiver kpmar BB
800 128 8 281 1 4.18 12 152

MNIST 1600 198 20 457 9 4.87 13 273
3200 508 82 807 25  5.28 16 558

1605 106 4 691 584 4.49 7 108

UCT Adult 2265 141 9 1011 847  4.22 11 130
3185 186 17 1303 1108 4.43 11 167

BSV stand for the number of support vectors and bound support vectors, respectively
(a training example z; is called a support vector if the corresponding z is nonzero and
a bound support vector if 7 = C'). The iteration numbers required by the BB formula
(3.3) is also listed in Table 4.3. These numerical experiments again demonstrate the
usefulness of the formula (3.4).

From Tables 4.1-4.3, we see that both Algorithm 2 and the projection subalgorithm
Algorithm 1 are very efficient. To achieve a very accurate solution, Algorithm 1 only
requires around 4 or 5 iterations on average and in the worst case 44 iterations, although
often a lot less. We have observed the worst case to occur when the linear piece crossing
the X axis is very short, and so is difficult to determine quickly. The average performance
of Algorithm 1 is very similar over all the tables, suggesting that in most cases the
heuristics for globalizing the secant iteration are working well. All these experiments
suggest that the formula (3.4) is a promising alternative to the BB formula (3.3).

In order to test the efficacy of our adaptive line search procedure, we also tested
Algorithm 2 with the nonmonotone line search in [10]. This line search determines the
reference function value f,..; at the k-th iteration by

Jrep = max{f(x4—;) 11 =0,...,max{k — 1, M — 1}}, (4.3)

where M is some preset positive integer. Again, a quadratic interpolation will be done if
the initial stepsize fails to meet the line search condition. In these tests we have chosen
the commonly accepted value of M = 10. We found that this nonmonotone line search
is much worse than the adaptive one for the random SPD and indefinite test problems
(the results for these problems are not listed in this paper). However, it performs better
than the latter for the SVM test problems. See the column of Alg. 2* in Table 4.4 for
the numerical results corresponding to Alg. 2 with the choice (4.3) (inside the brackets
are the number of line searches).

To see whether the line search or the stepsize formula is the more significant influence
on numerical performance for the SVM test problems, we also tested the BB formula
(3.3) with the choice (4.3) (see the column BB* in Table 4.4 for the iteration number).
In Table 4.4 are also listed the iteration numbers required by Algorithm 2, the BB formula
with the adaptive line search, and the SPGM and GVPM algorithms that can be found
in [21] (here we note that the SPGM method is first proposed in [2]) . From the table,
we can see that the results of (3.4) are better than those obtained by the BB formula no
matter what line search is used. Thus this again confirms the usefulness of the formula

14



Table 4.4. Numerical comparisons for SVM test problems

Problem n  SPGM GVPM Alg. 2 Alg. 2 BB BB*
S00 163 161 128 141(16) 152 161(22)
MNIST 1600 303 277 198 218 ( 273 287(44)
3200 691 513 508 428 ( 558  558(107)
1605 90 153 106 96 ( 108 90(8)
(
(

UCT Adult 2265 135 196 141 142 130 150(23)
3185 175 282 186 155 167  143(19)

(3.4). We also see from Table 4.4 that Alg. 2* presents the best results for the SVM
test problems among the six gradient algorithms. Finally, we may have a comparison for
SPGM and BB*. We know that both the algorithms define the reference function values
by (4.3) with M = 10. The difference is in that, if the initial stepsize fails to meet the
line search conditions, the former decides the second initial stepsize by some Armijo rule
but the latter takes the optimal stepsize by a quadratic interpolation. Table 4.4 shows
that BB* is better than SPGM. This might suggest the use of quadratic interpolation in
the line search of gradient algorithms in the context of QP problems.

In our work on the box constrained QP problem [6], we found that the best strategy
was to alternate the use of the two BB stepsize formulae given in [1]. We tried a similar
approach for the SLBQP problems used in this paper, but found that the results were
noticeably worse for the SVM problems. For the problems, the alternation method
failed to provide a solution in a reasonable number of iterations. At present we have no
explanation for the discrepancy in these results. However, we note that [21] have had
considerable success in using the two stepsize formulae in a more sophisticated way in
the solution of SVM problems (see Table 4.4 for the numerical results of the method,
GVPM). It is worth to mention that GVPM is a monotone algorithm. We do not yet
know whether there exists some efficient way to combine the alternation technique of the
stepsize and the nonmonotone line search.

Acknowledgements The authors would very much like to thank Professor Gaetano
Zanghirati at Universita di Ferrara, and his colleagues, for the invaluable help that they
provided during our numerical tests on the SVM problems.

References

[1] J. Barzilai and J. M. Borwein, Two-point step size gradient methods, IMA J. Numer.
Anal., 8 (1988), pp. 141-148.

2] E. G. Birgin, J. M. Martfnez, and M. Raydan, Nonmonotone spectral projected gra-
dient methods on convex sets, STAM J. Optim. 10 (2000), pp. 1196-1211.

(3] P. Brucker, An O(n) algorithm for quadratic knapsack problems, Operations Re-
search Letters, 3 (1984), pp. 163-166.

15



[4]

[5]

[10]

[11]

[12]

P. H. Calamai and J. J. Moré, Quasi-Newton updates with bounds, STAM Journal
on Numerical Analysis, 24 (1987), pp. 1434-1441.

Y. H. Dai and R. Fletcher, On the asymptotic behaviour of some new gradient meth-
ods, Research report NA /212, Department of Mathematics, University of Dundee,
2003.

Y. H. Dai and R. Fletcher, Projected Barzilai-Borwein methods for large-scale box-
constrained quadratic programming, Research report NA /215, Department of Math-
ematics, University of Dundee, 2003.

Y. H. Dai and H. C. Zhang, An adaptive two-point stepsize gradient algorithm,
Numerical Algorithms, 27 (2001) 377-385.

R. Fletcher, On the Barzilai-Borwein method, Research report, Department of Math-
ematics, University of Dundee, 2001.

A. Friedlander, J. M. Martinez, B. Molina, and M. Raydan, Gradient method with
retards and generalizations, STAM J. Numer. Anal., 36 (1999), 275-289.

L. Grippo, F. Lampariello, and S. Lucidi, A nonmonotone line search technique for

Newton’s method, STAM J. Numer. Anal., 23 (1986), pp. 707-716.

M. Held, P. Wolfe and H. Crowder, Validation of subgradient algorithms, Mathemat-
ical Programming, 6 (1974), pp. 62-88.

R. Helgason, J. Kennington and H. Lall, A polynomially bound algorithms for a

singly constrained quadratic program, Mathematical Programming, 18 (1980), pp.
338-343.

T. Joachims, Making large-scale SVM learning practical, In: Advances in Kernel
Methods - Support Vector Learning (B. Scholkopf, C. J. C. Burges and A. Smola,
eds.), MIT Press, Cambridge, Massachussets, 1998.

R. R. Meyer, Multipoint methods for separable nonlinear nelworks, Mathematical
Programming Study, 22 (1984), pp. 185-205.

J. Moré and G. Toraldo, Algorithms for bound constrained quadratic programming
problems, Numer. Math., 55 (1989), pp. 377-400.

P. M. Pardalos and N. Kovoor, An algorithm for a singly constrained class of
quadratic programs subject to upper and lower bounds, Math. Prog., 46 (1990), pp.
321-328.

P. M. Pardalos and J. B. Rosen, Constrained global optimization: Algorithms and
applications, in: Lecture Notes in Computer Science, Vol. 268 (Springer, Berlin,

1987).

16



[18] J. C. Platt, Fast training of support vector machines using sequential minimal opli-
mization, In: Advances in Kernel Methods - Support Vector Learning, B. Scholkopf,
C. Burges and A. Smola, eds., MIT Press, Cambridge, Massachusets, 1998.

[19] M. Raydan, On the Barzilai and Borwein choice of steplength for the gradient
method, IMA J. Numer. Anal., 13 (1993), pp. 321-326.

[20] M. Raydan, The Barzilai and Borwein gradient method for the large scale uncon-
strained minimization problem, STAM J. Optim., 7 (1997), pp. 26-33.

[21] T. Serafini, G. Zanghirati, L. Zanni, Gradient projection methods for quadratic pro-
grams and applications in training support vector machines, Research report, 2003.

[22] Ph. L. Toint, A non-monotone lrust region algorithm for nonlinear optimization
subject to convexr constraints, Math. Prog. 77 (1997), pp. 69-94.

(23] V. Vapnik, Estimation of dependences based on empirical data, Springer-Verlag,
1982.

17



