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Abstract

We study the problem of learning a kernel
matrix from an apriori kernel and training
data. An unconstrained convex optimization
formulation is proposed, with an arbitrary
convex smooth loss function on kernel en-
tries and a LogDet divergence for regulariza-
tion. Since the number of variables is of order
O(n2), standard Newton and quasi-Newton
methods are too time-consuming. An opera-
tor form Hessian is used to develop an O(n3)
trust-region inexact Newton method, where
the Newton direction is computed using sev-
eral conjugate gradient steps on the Hessian
operator equation. On the uspst dataset, our
algorithm can handle 2 million optimization
variables within one hour. Experiments are
shown for both linear (Mahalanobis) metric
learning and for kernel learning. The conver-
gence rate, speed and performance of several
loss functions and algorithms are discussed.

1 Introduction

Kernel methods have played a central role in modern
machine learning. In recent years, there has been a
growing interest in learning kernels from data. One
approach is to learn a linear or convex combination
of base kernels (Lanckriet et al., 2004). Others spec-
ify a parametrization of the kernel, and learn it from
training data (Kondor & Lafferty, 2002).

A number of methods learn the kernel matrix directly
from training data with few assumptions on the kernel
structure (Tsuda et al., 2005; Kulis et al., 2006; Hoi
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et al., 2007; Li et al., 2007) – we refer to this as the
general kernel learning problem in the sequel. The typ-
ical assumption is the positive semi-definiteness of the
kernel, and the existence of an apriori reference kernel.
This approach is also related to metric learning, where
by learning a kernel, an implicit Euclidean metric is
obtained (Li et al., 2007; Zhang, 2003). Therefore,
kernel learning algorithms can also be used to esti-
mate a Mahalanobis metric in the input space, e.g.,
linear metric learning (Davis et al., 2007).

Kernel learning requires a similarity/dissimilarity
measure between a given kernel and the reference;
recently, several authors (Tsuda et al., 2005; Kulis
et al., 2006; Davis et al., 2007) have used Bregman
divergences for this purpose. Many Bregman diver-
gences are generated by functions that are essentially
smooth(Bauschke & Borwein, 1997), which means that
a function is smooth in the interior of its domain, and
the norm of the gradient tends to infinity on its bound-
ary. Essential smooth functions can act as barriers
that prohibit the optimizer from moving across the
boundary of its domain. Kulis et al. (2006) used this
property to implement a low-rank kernel learning algo-
rithm, where the domain of the divergence is the range
space of the reference kernel.

For kernel learning, the positive semi-definiteness of
the kernel matrix must be guaranteed. Therefore, ker-
nel learning is formulated naturally as a semi-definite
program (SDP), although this is not easily solvable.
Alternatively, by including in the objective function a
Bregman divergence with the semi-definite cone as its
domain, the semi-definite constraint can be made im-
plicit. In conjunction with differentiable loss functions,
we can formulate kernel learning as unconstrained op-
timization, which is easier to solve, and allows for a
larger class of loss functions. However, even this is
still too hard, since the number of variables is large
and it is difficult to apply standard Newton methods.
In this work, an operator form Hessian is used, which
decreases the cost of computing Hessian-matrix prod-
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ucts to O(n3). Based on it, we use a trust-region New-
ton method, where inexact Newton directions are com-
puted with several conjugate gradient steps, based on
the Hessian operator equation. On the uspst dataset,
the method is capable of optimizing 2 million kernel
matrix entries in less than an hour. Notably, the reg-
ularization path of the problem coincides with the cen-
tral path of the interior-point method. It is thus pos-
sible to obtain many points on the regularization path
using a warm-start strategy with little computational
overhead – in fact, computing a number of solutions
with different regularization parameters is sometimes
faster than computing a single one.

The framework can flexibly work with any second-
order differentiable convex loss function on the kernel
matrix. We can not only approximate the loss used in
most previous work, but also introduce new loss func-
tions. In the experiments we use several loss functions
with different datasets and make comparisons.

The paper is organized as follows: Sec. 2 reviews Breg-
man divergences as well as our unconstrained formula-
tion of kernel learning. Sec. 3 presents trust-region in-
exact Newton methods to solve the optimization prob-
lem. Algorithmic details are discussed in Sec. 4. Dif-
ferent loss functions and related work are summarized
in Sec. 5. Experimental results are presented in Sec.
6; we conclude in Sec. 7.

2 Kernel Learning with Bregman

Divergences

We use n to denote the total number of labeled and un-
labeled examples, m the number of labeled examples,
d the number of dimensions of the input data, c the
number of training constraints, I the identity matrix
and 1 the vector of all ones.

2.1 Bregman Matrix Divergences

Let φ(X) be a strictly convex differentiable function
of a matrix X . The Bregman matrix divergence of X
is defined as (Kulis et al., 2006):

Dφ(X,Y ) = φ(X)−φ(Y )−tr((∇φ(Y ))T (X−Y )), (1)

where tr(X) is the trace of X . Given φ(X) = ‖X‖2
F ,

we haveDφ(X,Y ) = ‖X−Y ‖2
F , the squared Frobenius

norm. We are primarily interested in Bregman diver-
gences that have dom(Dφ) = {X |X � 0}, the cone of
positive semi-definite matrices. We are also interested
in those Bregman divergences that are generated from
essentially smooth functions, which satisfy

lim
t↓0

〈∇φ(X + t(Y −X)), Y −X〉 = −∞

∀X ∈ bd(domφ) and Y ∈ int(domφ).

A Bregman divergence generated from an essentially
smooth function is a good barrier since it has the
property that limYn→Y ∈bd(dom(f))Df (X,Yn) → +∞
(Bauschke & Borwein, 1997).

In this work, we use the LogDet divergence, generated
from the function φ(X) = − log detX . Noticing that
∇φ(X) = −X−1, the matrix divergence is1:

DLogDet(X,Y ) = tr(XY −1)−log det(XY −1)−n. (2)

We focus on the LogDet divergence in this paper since
it is easy to compute numerically, but the algorithms
and the discussion applies to other divergences gener-
ated from essentially smooth functions, e.g. von Neu-
mann divergence (Kulis et al., 2006). Instead of us-
ing (2) to compute the LogDet, we take advantage of
Y � 0 and use factorization Y −1 = ZZT . The trace
and determinant of ZTXZ are then computed instead
of XY −1. Cholesky factorization is used to compute
the determinant. Using this decomposition, we can
also detect when the matrix X has become indefinite.

2.2 Kernel Learning Formulation

When only the semi-definiteness of kernels is assumed,
the admissible class is very large and it is easy to design
kernels that fit the information given in the training
data perfectly, e.g., the idealized kernel in (Cristianini
et al., 2002). However, this would have little gener-
alization ability without regularization. Our choice of
regularizer is to bias the estimated kernel to an apriori
one, with Bregman divergence acting as distance.

Let ψ(x) be a convex second-order differentiable func-
tion; the kernel learning problem is formulated as:

f(K) = min
K�0

γ

m

c
∑

i=1

ψ(tr(KAi)) +Dφ(K,K0), (3)

where K0 is the apriori kernel matrix and Ai, i =
1, . . . , c are given constraint matrices. A list of ψ(x)
and Ai, including those used in previous work, are
given in Table 2. Eq. (3) uses only convex mappings
of linear constraints on the kernel matrix K, but arbi-
trary convex nonlinear constraints are also applicable.

By using a Bregman divergence with dom(Dφ) =
{X |X � 0}, the constraint K � 0 is automatically
satisfied. Another constraint common in kernel learn-
ing is centering K1 = 0. Kernels satisfying centering
constraints has a 1-1 correspondence to a Euclidean
distance matrix (Zhang, 2003). This can also be made
implicit in (3), by specifying K01 = 0 and Ai1 = 0.

1It is also possible to define similar divergences for rank-
deficit matrices (Kulis et al., 2006), just sums up only the
nonzero eigenvalues for φ(X).
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Using (1) with the LogDet divergence, the gradient of
the optimization problem is

G =
γ

m

c
∑

i=1

ψ′(tr(KAi))Ai + (K−1
0 −K−1), (4)

and gradient descent methods can be applied to solve
it. However, the convergence rate can be very slow.
For an intuition, consider a simplified optimization
problem, where K =

∑n

i=1 λiviv
T
i , vis form an orthog-

onal basis of R
n and ψ(x) = 0 for simplicity. Then the

optimization will only be on the eigenvalues λi

min
λ

−

n
∑

i=1

logλi + λitr(K
−1
0 viv

T
i ),

where we dropped constants. The Hessian is diagonal
with entries 1

λ2

i

. If λi is small, its condition number

will be large, slowing down the convergence of gradient
descent significantly.

3 An Inexact Newton Method

For unconstrained optimization, minx f(x), the New-
ton method starts with a point x0 sufficiently close
to the optimal value x∗. In each step k, it sets
xk+1 = xk −H−1

k gk, where Hk is the Hessian of f(x)
and gk its gradient at xk.

The Newton method is best known for its quadratic
convergence rate. The success of interior-point meth-
ods on conic programming largely depends on this fast
rate (Boyd & Vandenberghe, 2004). However, for our
problem the Hessian matrix is of order O(n2), and
contains O(n4) entries. Instead of handling this di-
rectly, we resort on Hessian operators on matrices, in
the Fréchet sense, which satisfy

lim
‖T‖F →0

‖G(K0 + T ) −G(0) −H(T )‖2
F

‖T ‖2
F

= 0,

as described in (Renegar, 2001). The Hessian (opera-
tor) of our optimization problem is2

H : ∆K 7→
γ

m

c
X

i=1

ψ′′(tr(KAi))tr(∆KAi)Ai+K
−1∆KK−1.

(5)

To obtain the exact Newton step D, one needs to
compute D = H−1(G) or solve the Newton equation
H(D) = G, both intensive calculations. A large-scale
optimization alternative (Nocedal & Wright, 2006) is
the inexact Newton method that uses conjugate gra-
dient to find an approximate solution to the Newton
equation H(D) = G. Solving H(D) = G with conju-
gate gradient is equivalent to the following optimiza-
tion problem: minD

1
2 tr(DTH(D)) − tr(DTG). The

2If kernel matrices are rank-deficit, K+, the Moore-
Penrose pseudo inverse of K is used instead of K−1.

inexact solver stops when the Frobenius norm of the
residual R = H(D) −G satisfies:

‖Rk‖ ≤ νk‖Gk‖. (6)

Besides direction, we also need the step length in the
inexact Newton case. One option is to line search
along the estimated descent direction. However, line
searches tend to miss-estimate the step length when
the Hessian is badly conditioned (Nocedal & Wright,
2006). In our case, this tends to be the case for large γ,
since the γ-related component of the Hessian can have
low rank. To palliate this, we opt for a more sophis-
ticated trust region method where the step length is
controlled based on the size of the trust region. Specif-
ically, a trust region is defined around the current it-
erate, assuming that a quadratic approximation of the
objective is sufficiently accurate. We choose a step
inside the trust region that minimizes the quadratic
model. If the step estimate hits the boundary, the
trust region is increased. If the step cannot provide
satisfactory decrease of the objective, the trust region
shrinks. We use the following standard second-order
model for the trust region (Nocedal & Wright, 2006):

min
Dk

mk(Dk) = ϕ(Kk) − αtr(GkDk)

+ 1
2α

2tr(DkHk(Dk))

s.t. ‖Dk‖F ≤ ∆k, (7)

where ∆k is the size of the trust region. We decide

on sufficient decrease based on ρk = ϕ(xk)−ϕ(xk−pk)
mk(0)−mk(pk) .

ρk < 0 means the objective function does not de-
crease. In this case, the trust region shrinks before
solving (7) again. If ρk is near 1, the step is good, and
the size of the trust region is increased; otherwise, it
remains unchanged. Details are similar to the ones in
(Nocedal & Wright, 2006), Chap. 4. The conjugate
gradient method is used to solve (7) approximately.
The convergence rate of conjugate gradient depends
on the distribution of Hessian eigenvalues (Nocedal &
Wright, 2006). It is therefore advisable to improve this
by preconditioning the Newton equation, so to make
the eigenvalue distribution better behaved in the new
coordinate system. Usually, it is possible to provide
a matrix M = CTC the convergence rate relates to
the eigenvalue distribution of C−THC−1 instead of H .
For Hessian matrices, there are conventional precondi-
tioning methods such as symmetric successive overre-
laxation (SSOR) or incomplete Cholesky decomposi-
tion. However, these methods do not directly apply to
Hessian matrix operators.

In our methods, we use the inverse of the second part
of the Hessian as preconditioner. It is easy to de-
rive as H−1

s : ∆K 7→ K∆KK, where Hs : ∆K 7→
K−1∆KK−1 denotes the second part of the Hessian



         331

Kernel Learning by Unconstrained Optimization

(5). In this case, M−1 = H−1
s = H

− 1

2

s H
− 1

2

s . After
preconditioning, C−THC−1 becomes

H
−

1

2
s (H(H

−
1

2
s (D̂))) :

γ

m

c
X

i=1

ψ′′(tr(KAi))tr(Ai(K
1

2 D̂K
1

2 ))K
1

2AiK
1

2 + D̂.

The last part of the expression is an identity opera-
tor I(D) = D, a natural regularizer which makes the
eigenvalue distribution of C−THC−1 more preferable.
Based on (Nocedal & Wright, 2006) (Sec. 7.2) with
preconditioner introduced above, we provide the pre-
conditioned conjugate gradient algorithm in Table 1,
where HF : ∆K 7→ γ

m

∑c

i=1 ψ
′′(tr(KAi))tr(∆KAi)Ai

is the first part of (5), Yj = KRjK is the precondi-
tioned residual, and Qj = K−1PjK

−1 is an auxiliary
matrix, from which we compute H(Pj) = HF (Pj)+Qj

to avoid the matrix inversion K−1DK−1 in (5).

4 Discussion

4.1 Convergence of the Algorithm

The following result guarantees the convergence rate:

Theorem 1 ((Nocedal & Wright, 2006)) Suppose that
the Hessian H exists, is continuous near the optimal
solution x∗ and H(x∗) is positive semi-definite. If the
iterate Dk satisfies (6) and νk ≤ ν < 1, then the al-
gorithm converges if the initial point x0 is sufficiently
close to x∗. Moreover, the convergence rate is superlin-
ear if νk → 0. If the Hessian is Lipschitz near x∗ and
νk = O(‖∇f(k)‖), the convergence rate is quadratic.

The proof is basically based on using νk to remove the
H(D) terms in a Taylor expansion of Gk, to get suf-
ficient decrease of gradient on each iteration. If we
choose νk = min(0.5,

√

‖∇fk‖), we can get superlin-
ear rates. If νk = min(0.5, ‖∇fk‖), then quadratic
rates are expected. However, more iterations may be
needed to solve the linear operator equation. In the
experiments we use νk = min(0.5,

√

‖∇fk‖).

4.2 Complexity

The worse-case time complexity is O(n3 + cn2) for
each iteration. The main bottleneck is the compu-
tation of the gradient, which requires summing up the
constraints and inverting the Gram matrix. For ker-
nel learning, constraint matrices Ai are usually sparse.
In this case, the complexity for each iteration becomes
O(n3+c). Since c is usually much smaller than n3, the
dependence on c is negligible. O(n3) operations are
also necessary for computing the LogDet divergence
and the verification of positive semi-definiteness.

4.3 Connection with the Barrier Method and

Regularization Path

The barrier method is a basic interior-point method in
convex programming (Boyd & Vandenberghe, 2004).
To solve the optimization minX�0 f(X), the barrier
method solves sequentially tf(X)− log detX with in-
creasing t. The optimal solution is found when t→ ∞.
The set X∗(t) that minimize tf(X) − log detX forms
the central path. Literally, the algorithm traverses the
central path to find the optimal solution at the end of
it (as t→ ∞).

It is often hard to optimize tf(X) − log detX with a
large t directly, since X tends to be near the bound-
ary of the semi-definite cone where the Hessian varies
rapidly (Boyd & Vandenberghe, 2004). Therefore, the
barrier method usually starts with a small t and in
each step scales it by a constant factor µ. The solu-
tion at t is always used as the starting point at µt.
This warm-start strategy can increase the efficiency of
barrier methods significantly.

A term − log detX is also present in our cost, hence
the behavior of our method relates to the one of
the barrier method, with one important difference:
− log detX is not only a barrier function, but also part
of the objective. Therefore, instead of finding only one
optimal solution at the end of the central path, as in
SDP barrier methods, our points on the central path
correspond to our solutions with various γ. Otherwise
said, the regularization path of kernel learning formu-
lation in (3) is the central path of the barrier method
used to solve a corresponding SDP. Therefore, a sim-
ilar warm-start strategy is used in our algorithm to
compute the solution path. It might be possible to ex-
tend our algorithm to provide an approximate solution
to general nonlinear SDP. We note that a similar path
property has been observed by Koh et al. (Koh et al.,
2007) for l1-regularized logistic regression.

5 Loss Functions and Related Work

5.1 Loss Functions and Regularization

Many existing kernel and metric learning methods can
be formulated in our framework with little or no mod-
ification. Problems with new loss functions can also
be solved. Euclidean metric learning algorithms can
be transformed to an equivalent kernel learning by:
d2(x, y) = k(x, x) + k(y, y) − 2k(x, y)(Zhang, 2003).
For linear metrics (Mahalanobis matrix), defining the
metric as d2(x, y) = (x − y)TK(x − y), we have
d2(x, y) = Tr(K(x − y)(x − y)T ). We list some loss
functions of kernel learning in Table 2. These losses are
sparse for kernel learning, namely for any constraint
involving xi, xj , xk, only the i, j, k rows and columns
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are nonzero. In Table 2, we use A{i, j, k} to denote
the i, j, kth row and columns of a matrix A, and sim-
ilarly A{i, j} for the ith and jth row and column of
A. These functions can be adapted into linear metric
learning by simply change the representation of d2.

Table 1: Preconditioned conjugate gradients for the
trust region subproblem
input νk, Z0 = 0, R0 = −Gk, Y0 = −KkGkKk, P0 =
KkGkKk, Q0 = Gk.

output Dk

if ‖R0‖F < ǫk then
return Dk = Z0 = 0

end if
for j = 1, 2, . . . do
αj = tr(YjRj)/(tr(PjQj) + tr(Pj ,HF (Pj)))
Zj+1 = Zj + αjPj {Update the direction}
if ‖Zj+1‖F ≥ ∆k then

Binary search for τ ≥ 0 so that Dk = Zj + τPj

satisfies ‖Dk‖F = ∆k

return Dk {Hit boundary}
end if
Rj+1 = Rj + αj(HF (Pj) +Qj) {Update the residual}
if ‖Rj+1‖F < νk‖Gk‖F then

return Dk = Zj+1 {Stopping condition}
end if
Yj+1 = KRj+1K = Yj + αj(KkHF (Pj)Kk + Pj)
βj+1 = tr(Yj+1Rj+1)/tr(YjRj)
Pj+1 = −Yj+1 + βj+1Pj

Qj+1 = −Rj+1 + βj+1Qj

end for

For piecewise differentiable loss functions, our algo-
rithm can be extended to do subgradient descent.
However, a simpler alternative is to use a smooth sur-
rogate, for example, approximate max(1 − x, 0) with

f(x) =







2+2t
3+t

− 4
3+t

x, x ≤ t
2

(1−t)(3+t) (1 − x)2, t < x ≤ 1

0, x > 1

(8)

For t < 1, this function is second-order smooth and a
good approximation for max(1 − x, 0) when t→ 1.

The regularizers used in previous work are similar to
the ones we use (e.g. the one in (Kulis et al., 2006) is
identical). The term of (Weinberger et al., 2006) can
be written as Tr(K

∑

ηij
(xi − xj)(xi − xj))

T , where
ηij = 1 if xi and xj are of the same class. Substituting
∑

ηij
(xi − xj)(xi − xj)

T as K−1
0 in (3) the difference

remains in the LogDet term − log detK, which can
be interpreted as the barrier for the positive definite
constraint. This also holds for (Hoi et al., 2007) and
(Li et al., 2007).

5.2 Related Work

While the general formulation of previous metric and
kernel learning methods is similar to ours, substantial
differences lie in the algorithms used. Weinberger et al.

(2006) solve a linear metric learning problem with al-
ternating projections between subgradient descent and
projection to the semi-definite cone. For every projec-
tion, an eigenvalue problem needs to be solved. Kulis
et al (2006) use Bregman projection for kernel learn-
ing. In each step, the Gram matrix is projected in
O(n2) onto the half-plane specified by a linear con-
straint. The semidefinite constraint is implicit so no
computation of eigenvalues is needed. The algorithm
is also used in (Davis et al., 2007). Hoi et al (2007)
use an SMO-based algorithm to solve kernel learning
in the dual. The number of variables in the optimiza-
tion is c. At each iteration, the algorithm needs to
solve an optimization problem on a quadratic function
with n variables in O(n2).

Most of the above methods are iterative and process
a single constraint per iteration with cost O(n2). For
convergence, every constraint must be visited several
times. For t sweeps, the overall time complexity is
O(tcn2). It is quite possible that c is of the same
magnitude, or even much larger than n, when one
constraint is generated for each neighboring pair or
all neighboring triplets of labeled items, as in (Wein-
berger et al., 2006). In such cases, a O(cn2) algorithm
needs a much larger factor than the O(n3) algorithm
we proposed.

Weinberger and Saul (2008) propose a method that
exploits the piecewise-linear property of the hinge loss
to compute the gradient in a time independent on c,
in linear metric learning. This makes their algorithm
faster than ours (notice that their speed-up can also be
used for our method using the hinge-loss and subgra-
dient methods). However, for more general loss func-
tions, as pursued here, the speed-up does not apply.

6 Experiments

We refer to our algorithm as TRIN (Trust-Region In-
exact Newton). All experiments are run using a single
core on a dual-core Pentium Xeon 5130 PC.

6.1 Speed in Linear Metric Learning

Here we compare the speed of TRIN and the ITML al-
gorithm (Davis et al., 2007) in linear metric learning.
We use the same loss function and constraint matrices
as in (Davis et al., 2007). Note that TRIN is not par-
ticularly profiled for linear metric learning, since every
iteration takes O(cd2) if c is larger than d. However,
this evens the ground with ITML, since a sweep in
ITML also takes O(cd2).

Experiments are run on the Spambase dataset from
the UCI machine learning repository, which has 4601
examples in 57 dimensions. We randomly choose 400,
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Table 2: List of the loss functions used in previous work and the newly proposed loss function. yi = yj means
that items i and j are in the same class, while yi 6= yj means that i and j are in different classes.

Loss Function Pattern of Constraint Matrix Literature

Log-loss: ψ(x) = log(1 + exp(−2x)) A{i, j, k} =

2

4

0 −1 1
−1 1 0
1 0 −1

3

5 New

LMNN-loss: ψ(x) = max(1 − x, 0) A{i, j, k} =

2

4

0 −1 1
−1 1 0
1 0 −1

3

5 (Weinberger et al., 2006)

Linear loss: ψ(x) = −x A{i, j, k} =

2

4

0 −1 1
−1 1 0
1 0 −1

3

5 (Li et al., 2007)

ITML loss: ψ(x) =



1(x > u)( x

u
− log x

u
− 1), yi = yj

1(x < l)(x

l
− log x

l
− 1), yi 6= yj

A{i, j} =

»

1 −1
−1 1

–

(Davis et al., 2007)

Hoi loss: ψ(x) = max(1 − x, 0) A{i, j} =

»

0 1
1 0

–

(Hoi et al., 2007)

800 or 6400 item pairs and add a constraint for each.
The convergence tolerance is set to 10−3. The initial
kernel K0 is set to the identity matrix. Both algo-
rithms are tested on 9 parameters 10−4−104. γ is not
normalized by the number of labeled samples m here
to provide equal comparison with ITML. The result is
averaged over 20 random trials. The ITML code was
made available by the authors (Davis et al., 2007).

The results are shown in fig. 1. ITML scales unfavor-
ably with the number of constraints. With increasing
number of constraints, the performance of ITML dete-
riorates heavily, whereas TRIN is virtually unaffected.
For 6400 constraints, ITML only converges on the first
4 parameters in the 8000 sweeps limit. In fig. 1 we
notice that the error rate drops significantly as more
constraints are added, which suggests that methods
that can deal with many constraints time-effectively
are likely to be more successful learners.
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Figure 1: Comparison of the speed of ITML and the
trust-region Newton method. The performance of
ITML drops when the number of constraints increases.
In contrast the speed of TRIN is roughly unaffected.

6.2 Regularization Path and Speed in Kernel

Learning

Here we test the number of steps required for con-
vergence and running times for kernel learning. Also,
we compare the speed of computing many solutions
on the regularization path, with the one computing
a single one. Comparisons are not done with the low-
rank ITML kernel learning method (Kulis et al., 2006),
since in this setting (we use 50n constraints), all meth-
ods that depend on the number of constraints (O(cn2)
complexity) are too slow to terminate in a reasonable
time. Instead, we compare with a Polak-Ribiere+ con-
jugate gradient method (Nocedal & Wright, 2006) on
our unconstrained formulation.

We use the log-loss in this experiment and test on sev-
eral UCI datasets. A random 50% of the items are
labeled. For each labeled item, 100 constraints are
generated from each pair between 10 in-class neigh-
bors and 10 out-class neighbors of the item – total
50n constraints. The initial kernel used for penalty
is the pseudo-inverse of the Laplacian of the adja-
cency graph, built using the Gaussian kernel pij =

exp(−
‖xi−xj‖

2

σ2 ). Convergence tolerance is set to 10−3

and results are averaged over 50 random trials.

To test the regularization path of the algorithm, we
search γ in the range 2−12 − 216. Like barrier meth-
ods, for each γ we initialize using the solution from
solving for the previous regularization parameter. By
multiplying γ each time with a multiplier α we in-
stantiate points on the regularization path. The base-
line is the solution for γ = 216. For each multiplier
α, we also compute the baseline solution for γ = 216

when αγ ≥ 216. The results are shown in Table 3
and 4. The average number of iterations needed for
TRIN ranges from 10 to 263, with convergence rate
seemingly depending more on the intrinsic ‘hardness’
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Table 3: Speed, convergence rate and path of TRIN. The number of examples and problem dimension of the
problem are shown in parentheses. The number of distinct optimization variables is also shown under “No. var”.

Dataset Changing multiplier α Baseline
Multiplier c 2 4 8 16 32 64 128
No. of parms 29 15 11 8 7 6 5 1

Breast (699 × 9) Iter: 101.9 54.8 42.6 34.5 32.0 30.1 26.9 14.3
No. var: 243951 Time (s): 400.0 221.6 171.6 139.1 129.6 122.1 106.4 55.4
Sonar (208 × 61) Iter: 262.4 212.3 267.8 308.3 604.0 465.0 1343.8 > 10000
No. var: 21528 Time (s): 70.8 64.5 106.9 157.3 520.4 261.0 2452.2 > 10000
Iono (351 × 33) Iter: 348.7 539.0 797.9 1411.6 1746.9 1731.9 3173.1 > 10000
No. var: 61425 Time (s): 293.9 538.9 1051.5 2930.3 4067.6 4460.5 9232.4 > 10000
Heart (270 × 14) Iter: 78.8 51.6 39.9 32.3 29.6 26.4 26.3 13.2
No. var: 36315 Time (s): 29.4 27.2 21.6 17.5 16.2 15.0 13.7 5.4
Wine (178 × 9) Iter: 73.4 45.8 35.5 29.5 27.0 24.6 22.2 10.1
No. var: 15753 Time (s): 17.6 10.6 9.0 7.6 6.0 5.6 5.1 1.8

Table 4: Speed, convergence rate and path of CG. The number of examples and the problem dimension are
shown in parentheses. The number of distinct optimization variables is also shown under ‘No. var’.

Dataset Changing multiplier α Baseline
Multiplier c 2 4 8 16 32 64 128
No. of parms 29 15 11 8 7 6 5 1

Breast (699 × 9) Iter: 245.3 152.5 121.2 104.9 90.7 85.9 76.3 96.4
No. var: 243951 Time (s): 766.1 483.6 401.7 343.6 296.9 285.1 253.1 815.2
Sonar (208 × 61) Iter: 14826.3 9191.7 7863.1 6733.9 6111.5 5307.5 5458 5220.8
No. var: 21528 Time (s): 4759.6 3125.7 2688.5 2279.4 2127.4 1969.1 1996.0 3080.8
Iono (351 × 33) Iter: > 10000 > 10000 > 10000 > 10000 > 10000 8322 7123.6 > 10000
No. var: 61425 Time (s): > 10000 > 10000 > 10000 > 10000 > 10000 11293.5 9784.7 > 10000
Heart (270 × 14) Iter: 364.1 231.9 178.9 155.1 143.4 118.9 119.6 119.7
No. var: 36315 Time (s): 97.4 63.3 50.5 45.7 42.8 35.6 36.6 73.5
Wine (178 × 9) Iter: 220.5 134.6 105.7 90.7 80.4 71.3 71.5 72.5
No. var: 15753 Time (s): 24.6 15.0 11.8 10.2 9.1 8.4 8.4 12.9

of the dataset than the size of the kernel matrix, per se.
Both algorithms seem to be able to compute a number
of solutions with no significant overhead compared to
the work required to compute a single one, sometimes
even faster. In the ‘hard’ Iono and Sonar datasets,
the speed of conjugate gradient is very slow, whereas
TRIN solves the problem fairly quickly. But even for
the ‘easy’ datasets where conjugate gradient has good
convergence rates, TRIN is still about twice as fast.

6.3 Loss Functions

In this experiment we use the same setting as previ-
ously but focus on different loss functions. We test the
first four losses in Table 2, where LMNN is approxi-
mated by (8) with t = 0.7. For classification, we fol-
low (Li et al., 2007) to do Kernel PCA on the learned
kernels to obtain a 10-dimensional representation of
each item, then 1-NN is used to classify. The results
are shown in Table 5. There are no significant dif-
ferences between the log-Loss, ITML loss and LMNN
loss. However these losses are better than the simple
linear ones in several datasets. All methods perform
better than the baseline Laplacian Eigenmaps, where
label information is only used for 1-NN classification.

6.4 uspst Dataset

We did kernel learning experiments on the testset of
USPS, which has 2007 examples. The kernel matrix
has 2015028 distinct entries, which makes optimization
very difficult. Using log-loss and a multiplier α = 32,
we are able to get the kernel learning solution for 7
different γ in less than 1 hour. The number of con-
straints used is 40100. The results are averaged over
10 random trials. The results are shown in fig. 2.

7 Conclusion

A framework for kernel learning based on Bregman
divergences is proposed. Different from existing al-
gorithms, the problem is formulated as unconstrained
optimization solved with a trust-region inexact New-
ton method. Each iteration needs O(n3 + cn2) but
the method can take advantage of the sparsity of
constraint matrices to obtain an effective complexity
O(n3). The regularization path of our problem coin-
cides with the corresponding central path of the barrier
method, so we can obtain a number of solutions on the
regularization path with no significant additional com-
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Table 5: Test set error rates on UCI datasets, lowest error rate in bold.

Dataset Log-Loss LMNN Loss ITML Loss Linear Loss Laplacian
Breast 3.54 3.54 3.62 4.78 4.78

(±0.73) (±0.74) (±1.26) (±0.84) (±0.87)
Sonar 17.79 17.52 17.37 16.22 18.50

(±4.14) (±5.06) (±4.10) (±4.15) (±3.51)
Ionosphere 9.40 8.42 9.08 7.07 9.68

(±1.46) (±2.05) (±1.70) (±1.81) (±1.85)
Heart 18.22 18.22 18.46 23.64 23.53

(±2.65) (±2.61) (±3.29) (±3.61) (±3.35)
Wine 2.57 3.01 2.63 3.09 3.39

(±1.39) (±1.41) (±1.51) (±1.95) (±1.09)
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Figure 2: Time required to traverse the regularization
path on the uspst dataset and the error rate. Best
error rate is obtained for γ = 0.25 (log2 γ = −2).

putation time. The computation time and accuracy
of the algorithm is systematically tested on a number
of datasets and loss functions. The results show that
our method is more efficient than the state-of-the-art
ITML algorithm for problems with many constraints.
We plan to investigate using von Neumann divergence
in the framework and possible improvements by better
utilizing the sparsity of constraints.
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